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Success is the ability to go from one failure  
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ABSTRACT 
The aim of the study was to evaluate what NAFLD is from a molecular 

perspective, what influences the disease progression and what the 

prognosis of the disease is. 

Fatty liver has earlier often been associated with excessive alcohol intake 

and only in the last two decades has it been viewed as a condition in non-

drinkers i.e. non-alcoholic fatty liver disease (NAFLD).  Nowadays 

NAFLD is considered the most common cause of liver disease, showing 

that this is a highly modern problem that has taken epidemic forms. 

NAFLD is strongly associated with obesity, insulin resistance/diabetes, 

atherosclerosis and hypertension, thus NAFLD is considered the liver’s 

manifestation to the metabolic syndrome. NAFLD encompasses a wide 

range of clinical diagnosis from simple steatosis to non-alcoholic 

steatohepatitis (NASH) and cirrhosis to, in some individuals, 

hepatocellular carcinoma (HCC). 

In the first study we investigated the mortality and causes of death in a 

cohort of subjects with elevated serum levels of aminotransaminases. We 

determined the frequency of NAFLD and NASH in this population and 

compared the survival rate and the causes of death in NAFLD-subjects to 

those subjects with other liver diseases, and to the general population of 

Sweden. NAFLD was detected in 118 subjects of the total 256, 51 out of 

the 118 subjects were classified as NASH. During the follow-up period 47 

(40%) of the 118 subjects diagnosed with NAFLD died. Compared with the 
total Swedish population, subjects with NAFLD exhibited 69% increased 

mortality and subjects with NASH, an increased risk with 86% and 

NAFLD-patients tend to in a higher extent die form liver disease. 

Hyperferritinemia is quite common in NAFLD patients and in the second 

study we used two animal models of hepatic steatosis to investigate how 

iron regulatory genes are affected by steatosis alone or in combination 

with increased oxidative stress and inflammation. We found an increased 
hamp1 expression in leptin deficient ob/ob mice and it seems to be caused 



 

 

by up-regulation of the IL-6, STAT3, Hamp1-pathway, indicating systemic 

inflammation. Hepatocytes from both NAFLD mice-models were more 
sensitive to oxidative stress than their non fat controls.  

In the third study, we evaluated biopsies from 31 NASH or borderline 

NASH subjects. We saw that in livers with NASH, hepatocytes with 

microvesicular steatosis seem to express more inflammatory markers, and 

in these livers an increased number of Foxp3+ T-cells (e.g. regulatory T-
cells) and increased area of CD68 cells were seen. NASH patients also 

showed positive staining for inter cellular adhesion molecule-1 (ICAM-1) 

on hepatocytes and that it was localized in areas with microvesicular fat. 

ICAM-1 was also found to be increased in the blood circulation of NASH 

patients.  

In the fourth study, we evaluated the role of neural cell adhesion molecule 

(N-CAM) in biliary type fibrosis and liver fibrosis due to parenchymatous 

disease. N-CAM knock out mice had attenuated liver fibrosis after bile 

duct ligation but not after carbon tetrachloride injections. Furthermore, 

hepatic stellate cells isolated from N-CAM knock-outs had impaired 

activation. These results suggest a role of N-CAM in biliary type liver 

fibrosis.  
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CECILIA SÖDERBERG 

1 INTRODUCTION 
1.1 FATTY LIVER, NAFLD 

The liver normally contains less than 5% of fat but under certain 

conditions excess fat may accumulate in the liver.  Fatty liver can occur 
for many different reasons, the most known of which is excessive alcohol 

consumption. Other causes are the metabolic syndrome, obesity, protein-

calorie malnutrition, starvation or rapid weight loss,  total parenteral 

nutrition, various drugs such as Amiodarone, Tamoxifen, Glucocorticoids,  

Tetracycline, Oestrogens, Methotrexate and Thallium. Also certain types 

of metabolic disorders can cause fatty liver such as Wilson disease and 

Glycogen storage disorders.  However, today, the most common cause is 

non-alcoholic fatty liver disease (NAFLD) which is a disorder closely 

related to the metabolic syndrome and obesity. NAFLD is increasing 

immensely in the western world and a similar trend is seen in Asian 

countries. Over the last 10 years, the prevalence of obesity has doubled 

among the adult population and tripled in children, and according to 

American national institutes of health (NIH), two thirds or up to as many 

as 85% of the American population is now overweight or obese. It is 

estimated that 75 % of the overweight population or those with type 2 

diabetes have NAFLD. About 20% of those with NAFLD have an 

inflammation in the liver so called non-alcoholic steatohepatitis (NASH). 

Some studies show that among patients with non-NASH (simple steatosis 

and steatosis with inflammation), about 40% progress to fibrosis and over 

half developed NASH during 4-13 years follow-up [1, 2].  

The diagnosis of NAFLD is based on detection of fat in the liver by either 

liver histology or by imaging modalities and exclusion of any other liver 

disease. Imaging such as ultrasonography and computed tomography have 

limited sensitivity as they can only detect moderate to severe steatosis, 

that is when more than 30% of the liver cells (hepatocytes) are affected, 

and therefore does not detect mild steatosis [3]. As a result of this, it is 

hard to estimate the true prevalence and prognosis of NAFLD and NASH.   
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NAFLD is, as mentioned, highly associated with obesity but it is 

important to remember that this is not a condition that affects only obese 

individuals but can also be seen in lean persons. In a study from the US it 

was found in autopsies that 2.7% of the lean individuals have 
steatohepatitis [4].  

NAFLD has been considered the hepatic manifestation to the metabolic 

syndrome because it’s close relation with obesity, insulin resistance and 

many of the other factors of metabolic syndrome [5].  

The metabolic syndrome is a group of risk factors. Patients who have this 

syndrome have been shown to be at an increased risk of developing 

cardiovascular disease (CVD) and/or type-2 diabetes. Metabolic syndrome 

is a common condition that goes by many names; syndrome X was 

introduced in 1988 to focus attention on cardiovascular disease risk [6] 

also dysmetabolic syndrome, insulin resistance syndrome, obesity 

syndrome, and Reaven’s syndrome are common names of the same 

clustering. 

The National Heart Lung and Blood Institute (NHLBI) estimated in 2004 

that in the U.S. over 47 million adults (25%) have the metabolic 

syndrome. It can affect anyone at any age, but the risk increases with age 

and is most frequently seen in those with significant overweight, with 

most of their excess fat in the abdominal area. 

There is debate regarding whether obesity or insulin resistance is the 

cause of the metabolic syndrome or if they are consequences of a more far 

reaching metabolic derangement. A number of markers of systemic 

inflammation, including C-reactive protein, are often increased, as are 

fibrinogen, interleukin 6 (IL–6), and others. IL-6 are most likely increased 

because of obesity, about one third of the total circulating IL-6 originates 

from adipose tissue [7] and an increase in IL-6 has been associated with 
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obesity and insulin resistance [8].  There is also a debate concerning 

whether the sum of metabolic syndrome actually is greater than its parts. 
The general agreement is that the metabolic syndrome precedes both type 

2 diabetes and cardiovascular diseases, thus providing a tool to predict 

both cardiovascular disease and type 2 diabetes [9, 10] but it is not clear 
that the metabolic syndrome actually performs better than its individual 

compartments [11].   

Criteria for Clinical Diagnosis of Metabolic Syndrome 

Clinical Measure WHO [12] ATP III [13] AHA/NHLBI [14] 

Waist 

Circumference 
  102 cm in men,  

88 cm in women 
Same as ATP III 

BMI BMI >30 kg/m2     

Triglycerides 150 mg/dL Same as WHO Same as WHO 

HDL-C <35 mg/dL in men,  

<39 mg/dL in women 

<40mg/dL in men,  

<50 mg/dL in women 
Same as ATP III 

Blood Pressure 140/90 mm Hg 130/85 mm Hg Same as ATP III 

Glucose IGT, IFG, or T2D Fasting >110 mg/dL (IFG) Fasting 100 mg/dL (IFG) 

Insulin Resistance YES NO NO 

Microalbuminuria YES NO NO 

Notes: WHO requires insulin resistance plus two additional risk factors for diagnosis; ATP III requires 

three of five risk factors for diagnosis. AHA/NHLBI recommends that triglycerides, HDL-C, and blood 
pressure should be considered abnormal when drug treatment is prescribed. 

Abbreviations: BMI=Body mass index; IGT=Impaired Glucose Tolerance; IFG=Impaired Fasting Glucose; 

T2D=Type 2 Diabetes 
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1.2 HISTOPATHOLOGY OF NAFLD 

NAFLD is a spectrum of conditions from simple hepatic steatosis to NASH 

with extensive fibrosis leading to cirrhosis and eventually in some cases 
hepatocellular carcinoma (HCC). Liver biopsy remains the gold standard 

for the diagnosis, grading and staging of NAFLD and NASH. However, 

given that liver biopsy is associated with a small risk of complications, as 
well as sampling variability, the urgent need for non-invasive diagnostic 

biomarkers is being pursued. In many studies, a staining system 

developed by Kleiner et al. [15] is utilized to evaluate liver biopsies from 

NAFLD patients. The scoring system evaluates the percentage of fat 

content, inflammatory foci and swollen hepatocytes, i.e. ballooning. The 

scoring system also evaluates the disease activity by grading of fibrosis. 

The hallmark of NAFLD is the histopathologic finding of macrovesicular 

steatosis. In severe cases this can be found through out the whole biopsy 

(fig 1.). There is no clear cut off for the number of fat-containing 

hepatocytes allowed in a normal liver but a number of <5% ha been 

suggested and is for now accepted as some kind of gold standard. However 

this is just a speculation and not based on hard evidence.  

 

Figure1. Pronounced macrovesicular steatosis in NAFLD  

(Haematoxylin/Eosin-staining) 
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When steatosis is found together with inflammatory infiltrates and other 

signs of necroinflammation the diagnosis of NASH can be made. Lobular 
inflammation with a mixture of neutrophiles, lymphocytes and 

macrophages are often found but the severity is often mild (fig 2.). A 

characteristic feature of NASH is swelling of hepatocytes, ballooning. 
Since it is difficult to distinguish between a hepatocyte swollen due to 

excessive fat accumulation and a hepatocyte suffering from 

necroinflammation, a immunohistochemical method to be able to 

accurately determine the cause of the morphological change is highly 

desirable. Sometimes fibrosis is considered as a feature of steatohepatitis 

and it is commonly used to describe the stage of the disease.  

 

 

 

 

 

 

 

 

 

Figure 2. Lobular inflammation in NASH (Haematoxylin/Eosin-staining) 

 

1.3 OBESITY (BMI) TRENDS IN THE SWEDISH POPULATION 

Since 1980 Statistics Sweden (Statistiska Centralbyrån, SCB) has 

regularly collected data about weight and height in a cohort of Swedes. 
From that it has been possible to follow the progression of body mass 

index (BMI) and in that way follow overweight and obesity in the Swedish 

population. Numbers from SCB shows that more than every second man 
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and every third woman in Sweden today are overweight (BMI 25-30), 

which is an increase with about 50% since 1980. The number of obese 
(BMI >30) Swedes has during the same period increased with 100%, from 

5% to 10%, among both men and women. One should have in mind that 

these numbers are based on self-reporting from telephone interviews and 
it is known that people tend to underestimate these kinds of numbers. 

One study that is not based on subjective measures is a study from 

Gothenburg where 50 year old men have been weighted and measured 

every 10th year from 1963 and onwards [16]. During the 40 years the 

study has been going on, the 50 year old men has become on average 9 kg 

heavier but also 4 cm taller. The number of overweight and obese 

individuals increased from 44% to 60% and the number of obese more 

than doubled from 6% to 14%. 

The Swedish board of agriculture (Jordbruksverket) has published 

statistics on sales from food consumptions from 1960-2006. These data 

demonstrate increased consumptions of sweets such as sodas from 20L to 

90L soda/person and year, chocolates  and candy from 6kg to over 15kg 

per person and year during the last 40 years [17]. Statistics from National 

food administration (Livsmedelsverket) show that 25% of children’s daily 

energy intake comes from candy, sodas, snacks, ice cream or deserts [18]. 

Unless drastic changes will take place, food habits combined with 

statistics saying that physical activity is decreasing will lead to an 

increasing prevalence of overweight and obesity.  

 

1.4 NAFLD AND INSULIN RESISTANCE (IR)  

The first definition came already in the 1960s, when measurement of 

insulin concentrations became available. Insulin resistance is not a 

disease as such, but rather a state or condition in which a person's body 

tissues have a lowered level of response to insulin. As a result, the body 

produces larger quantities of insulin to maintain normal levels of glucose 

in the blood.  There are a few ways to measure IR and the gold standard is 

to perform a euglycaemic hyperinsulinaemic glucose clamp. The subject is 
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given an infusion of insulin and the blood is then buffered with glucose to 

maintain normal blood glucose level, the amount glucose needed then 
reflects whole-body  insulin sensitivity [19]. This is however a rather 

difficult measurement and very time-consuming so most commonly fasting 

insulin and glucose concentrations are used to approximate the insulin 
resistance. Homeostasis model assessment, HOMA [20], is a measurement 

of insulin resistance which is calculated by the formula HOMA=(fasting 

glucose x fasting insulin)/22.5 and has a good correlation with the glucose 

clamp [21].  Obesity and diabetes has initially been held responsible for 

NAFLD but IR is perhaps now considered the most important mechanism 

throughout the progression and prevalence of NAFLD [22].  Some patients 

develop hepatic steatosis without evidence of obesity or IR [23], but the 

proportion of lean, non-IR NAFLD patients is small. The underlying 

mechanisms that contribute to obesity-induced IR are not entirely clear. 

Suggestions have been made that obesity may lead to hepatic IR through 

activation of pro-inflammatory macrophages in adipose tissue that secrete 

pro-inflammatory cytokines such as IL-6 and TNF-  [24]. IL-6 blocks the 

insulin signalling pathway [25] and inflammatory stress can up-regulate 

the production of IL-6 in adipocytes via activation of c-Jun kinase (JNK1) 

[26]. Patients with NAFLD often have decreased plasma levels of 

adiponectin which is negatively related to hepatic IR and hepatic 

inflammation [27]. 

 

1.5 IRON 

Iron is essential for many vital functions and there is no regulated way by 

which excess iron can be disposed of in humans. Normally, the iron level 

is regulated by decreasing the body’s uptake of iron from the gut. 

Therefore, iron toxicity may arise when the body’s needs and storage 

capacity are filled. There are many causes of iron overload in humans, 

both genetic and acquired, e.g. hemochromatosis and post-transfusion iron 

overload respectively, both of which have traditionally been associated 
with severe hepatic deposits of iron. NAFLD and NASH among others are 
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conditions in which iron deposits are mild to moderately increased which 

however may have clinical relevance [28]. In chronic liver diseases, iron 
deposits are found either in hepatocytes, Kupffer cells or in both. Together 

with oxygen, iron can form free oxygen radicals, causing oxidative stress, 

which in turn leads to serious cell and tissue damage. Therefore, each 
organism (and every cell) needs to keep the iron concentration at a 

moderate level. The dual challenge of avoiding iron deficiency and iron 

overload has resulted in a tightly controlled and complex regulation of 

iron homeostasis. Alternation of iron pools is the result of a complex 

network of events, acting at the transcriptional and translational level to 

change the expression of proteins involved in transport, uptake, 

utilization, and storage of iron.  

 

1.5.1 Iron and NAFLD 

Hepatic iron in excess is associated with insulin resistance [29] and 

therefore also commonly observed in patients with NAFLD. 

Hyperferritinemia, associated with mild hepatic iron accumulation, is 

frequently observed in about one-third of NAFLD cases examined [29-31]. 

Hepatic iron accumulation is an independent risk factor for advanced liver 

fibrosis in NAFLD [31, 32]. Iron is suspected to enhance hepatic damage 

as associated with non-alcoholic fatty liver disease [33] and iron reduction 

therapy has been shown to have positive effects on both NAFLD disease 

activity and insulin sensitivity [30, 34].  

Moreover, a condition known as insulin resistance-associated hepatic iron 

overload (IR-HIO) has been described [29]. It has been previously shown 

that insulin stimulates ferritin synthesis, and facilitates iron uptake, 

whereas iron, in turn, influences insulin signalling, reduces the hepatic 

extraction and the metabolism of insulin [35]. In addition, hepatic iron 

overload in experimental NAFLD models is associated with lipid 

peroxidation products and increased necro-inflammation [36].   
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1.5.2 Hepatic Iron Metabolism  

Approximately 40% of the storage iron, or about 400 mg for a normal 

adult man, is located in the liver [37, 38]. Under normal circumstances, 
the majority of the iron (98%) is found in hepatocytes [39]. The remaining 

2% is mostly found in Kupffer cells, and very small amounts in stellate 

cells, endothelial cells and bile duct cells. During iron overload the 
amount of iron stored in Kupffer cells can increase considerably, but 

hepatocytes remain the major storing place. The liver can take up iron in 

several ways but under normal conditions the majority of iron in the 

circulation is bound to Transferrin (Tf), so the main source is diferric Tf 

[40].  The liver can also take up iron from circulating heme, hemoglobin 

and ferritin. Studies on hepatocytes have showed that there are both high-

affinity saturable and low-affinity unsaturable components [41-43]. The 

high affinity uptake of Tf is mediated by Tf receptor 1 (TfR1) [44].  After 

Tf has bound to TfR1 on the cell surface the complex is endocytosed. Tf is 

then reduced after a proton pumping by ATPase [45]. The iron released 

from Tf is then carried across the membrane of the vesicle to the 

cytoplasm by the ferrous iron transporter divalent metal transporter 1 

(DMT1). There are some regulation of TfR1 gene at transcriptional level 

but most of the regulation is carried out on mRNA level by the iron 

regulatory protein (IRP)/iron responsive element (IRE) system [46]. The 

IRE system acts by that the TfR1 mRNA 3´region contains a series of 

loops, the IRE, to which the IRP1 and IRP2 binds. When intracellular iron 

levels are low the IRPs bind to the IREs on TfR1 3´and protects the 

mRNA from endonuclease degradation and more TfR1 can be synthesized. 

When cells have an excess of iron the opposite is seen and TfR1 expression 

is reduced, protecting the cell from accumulating more iron. With heavy 

iron loading, such as the case in hemochromatosis, TfR1 can be almost 

undetectable in liver tissue [47-49]. TfR2 is a homologue to TfR1 and it is 

suggested that TfR2 is responsible for the low affinity process [50-52]. 

TfR2 is like TfR1 a membrane bound protein and binds to Tf, but the 
affinity to diferric Tf is 25-fold lower than that of TfR1. TfR2 also has a 

more restricted tissue distribution; high expression is found on hepatic 
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parenchymal cells [53, 54].  TfR2 does not, unlike TfR1 contain any IREs 

in its mRNA and is therefore not regulated by cellular iron content [53].  

 

Most cells take up iron via serum Tf by receptor-mediated endocytosis. 

However hepatocytes and hepatoma cells, among others can also take up 

non-transferrin bound iron (NTBI) from serum although how this is 
mediated is poorly understood. The role of NTBI in the normal individual 

is limited because of most serum iron is normally bound to Tf. Under 

certain conditions when Tf is fully saturated with iron, a substantial 

amount of NTBI may be present. NTBI is rapidly cleared from the 

circulation by the liver, mainly hepatocytes [55, 56]. Findings showed that 

when divalent cations such as; Cu2+, Zn2+ and Co2+ were added in high 

concentrations, uptake of ferrous iron was inhibited. This indicated that 

NTBI shared the same pathway with other divalent cations [57]. More 

recent studies have showed that divalent metal transporter 1 (DMT1) is 

responsible for iron transport from Tf-recycling endosomes to the 

cytoplasm [58]. DMT1, also called divalent cation transporter 1 (DCT1) or 

natural resistance-associated macrophage protein 2 (Nramp2), transports 

cations such as Fe2+, Zn2+, Mn2+, Co2+, Cu2+ and Ni2+, is the major 

duodenal ferrous iron transporter [59, 60].  

 

1.6 INFLAMMATION 

The classical definition of inflammation is the body’s response to diverse 

injuries. Inflammation can be classified as either acute or chronic. Acute 
inflammation is typical in the initial response of the body to harmful 

stimuli and is achieved by the increased movement of plasma and 

leukocytes from the blood into the injured tissues. Prolonged 
inflammation, known as chronic inflammation, leads to a progressive shift 

in the type of cells which are present at the site of inflammation and is 

characterized by simultaneous destruction and healing of the tissue from 
the inflammatory process. The process of acute inflammation is initiated 
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by cells already present in all tissues, mainly resident macrophages, 

dendritic cells, Kupffer cells and mast cells. The mediator molecules also 
alter the blood vessels to permit the migration of leukocytes, mainly 

neutrophils, outside of the blood vessels (extravasation) into the tissue. 

The acute inflammatory response requires constant stimulation to be 
sustained. Inflammatory mediators have short half-lives and are quickly 

degraded in the tissue. Hence, inflammation ceases once the stimulus has 

been removed.  

The main cells involved in chronic inflammation are macrophages and 

lymphocytes i.e. mononuclear cells. With the aid of chemical mediators 

such as lymphokines, macrophages engulf, neutralize or kill foreign 

antigens. Lymphocytes are the predominant cell in chronic inflammation. 

Activation of low-grade chronic inflammation appears to be a common 

factor for obesity, type 2 diabetes and cardiovascular disease.  

 

1.6.1 Inflammation and cell damage in NASH 

In NAFLD/NASH two types of inflammation are seen; either lobular or 

portal or a mixture of these. Lobular infiltrates consists of a mixture of 

acute (polymorphonuclear leukocytes) and chronic (mononuclear cells, 

including lymphocytes, monocytes and plasma cells and eosinophils) cell 

types. Portal inflammation can range from absent to marked in NASH 

[61].  NASH patients often have an increase in Kupffer cell aggregates 

and the dominating place is zone 3 [62].    

ICAM-1 (Intercellular Adhesion Molecule-1, CD54) is known for its 

importance in stabilizing cell-cell interactions and facilitating leukocyte 

endothelial transmigration. The primary receptors for ICAM-1 are 

integrins which mediate cell-cell interactions and allow for signal 

transduction. Inflammatory responses will up-regulate the expression of 

ICAM-1 thereby increasing the adhesive nature of leukocytes and 

endothelial cells.  While the selectins instigate a rolling behavior over the 
endothelial layer, the ICAM-1 interaction with leukocyte Lymphocyte 
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function-associated antigen 1 (LFA-1) or Mac-1 actually stabilizes the 

leukocyte for extravasation. The arrested leukocytes then begin 
diapedesis, the process of crossing the endothelial layer, which is 

mediated by PECAM (platelet endothelial cell adhesion molecule, CD31), 

a protein expressed both on leukocytes and the intercellular junctions of 

endothelial cells [63]. Expression of ICAM-1 in livers with NASH has been 
shown to be significantly higher in either the cytoplasm or in the lobular 

inflammation. The level of ICAM-1 has also been shown to have a positive 

correlation with both lobular inflammation and severity of 

necroinflammatory activity. Patients with NAFLD had significantly 

higher hepatic immunoreactivity of ICAM-1 than those with a normal 

liver. Considering that ICAM-1 antigen is important in mediating 

immune and inflammatory responses, it has been speculated that an 

altered hepatic immune response may participate in the hepatic 

inflammation observed in NASH [64]. 

Forkhead box protein P3 (FOXP3) is an acetylated and phosphorylated 

protein (transcription factor) active in human regulatory T cells (Tregs) 

[65]. In contrast to CD8+ cytotoxic T-cell lymphocyte, which generally 

exert a suppressive influence on tumor growth, Tregs are thought to have 

a positive effect on tumor growth through suppression of antitumor 

immune cells. CD4+CD25+ Tregs constitute a minor but functionally 

unique population of T-cells that maintain autoimmunity. Tregs can 

inhibit immune response mediated by CD4+CD25- and CD8+ T-cell in vitro 

by contact-dependent and cytokine-independent mechanism [66-68].  

FOXP3 is critical for the development and function of Tregs in mice and 

humans [69] and is still the only marker for evaluating real Tregs that 

have a suppressive function. The number of Tregs increases during the 

progression of established cancers as well as that of their precursor 

lesions. Furthermore, the prevalence of Tregs is significantly correlated to 

poor patient survival, independent of other prognostic factors [70].   

CD3 is a surface glycoprotein and part of a big complex on T-cells This 

complex plays an important role in coupling antigen recognition to several 
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intracellular signal-transduction pathways, and could therefore be used to 

examine the infiltration of T-cells in a tissue.  

Caspase 3 is a member of a family of evolutionarily conserved cysteine 

protease proteins known as caspases. Many of these enzymes are part of a 
proteolytic cascade that plays a central role in cell death by apoptosis. 

Caspase-3, -6 and -7 have been classified as executioners because of their 

capacity to cleave crucial substrates, thus killing the cell [71]. One of the 
essential substrates cleaved by executioner caspases is Poly (ADP-Ribose) 

Polymerase (PARP), an abundant chromatin-associated protein involved 

in maintaining DNA stability and repair [72]. To be active, caspase 3 

requires proteolytic cleavage. In normal cells, caspase 3 should exist as a 

procaspase in which the potential cleavage site is intact.  

 The presence of a “leaky gut” has been shown in patients with obesity 

which lead to increased bacterial and endotoxin levels in the portal 

circulation. Lipopolysaccharide has been shown to be involved in NASH 

[73]. Once the microbes have breached physical barriers they are 

recognized by toll like receptors (TLRs) that activates immune cell 

responses. Mammalian TLRs include intracellular and transmembrane 

receptors that recognize microbial proteins, nucleic acids, carbohydrates, 

and lipids to activate host defence mechanisms. Activation of TLR-4 

triggers multiple intracellular signalling pathways and is important for 

the amplification of and maintenance of inflammatory signals and fibrosis 

[74, 75].   It has become increasingly apparent that the toll-like receptors 

(TLRs), and in particular TLR4, may be involved in the initiation and 

activation of kinases including IKK (IkB Kinase) and JNK (c-Jun N 

terminal Kinase), leading to the secretion of inflammatory cytokines and 
inhibitory phosphorylation of IRS-1 (Insulin Receptor Substrate 1), which 

promotes insulin resistance [24, 76].   
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1.7  LIVER FIBROSIS 

Liver fibrosis is the accumulation of tough, fibrous scar tissue in the liver. 

The formation of scar tissue is a normal response to injury, but in fibrosis 
this healing process goes awry. When liver cells, hepatocytes, are injured 

due to any type of injury such as viral infection, alcohol over-consumption, 

diabetes, obesity, toxins, trauma, or other factors, the immune system is 
activated to repair the injury. Also hereditary diseases such as 

hemochromatosis, 1-anti-trypsine deficiency and cystic fibrosis cause 

liver fibrosis as well as autoimmune disorders such as primary biliary 

cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis [77]. 

The injury or death of hepatocytes stimulates inflammatory immune cells 

to release cytokines, growth factors and other substances. The chemical 

messengers induce activation of hepatic stellate cells (HSC) and the 

production of collagen, glycoproteins (such as fibronectin), proteoglycans 

and other substances that are deposited in the liver. This builds up the 

extracellular matrix (non-functional connective tissue). At the same time, 

the process of breaking down or degrading collagen is impaired. In a 

healthy liver, the synthesis (fibrogenesis) and breakdown (fibrolysis) of 

matrix tissue are in balance. Fibrosis occurs when excessive scar tissue 

builds up faster than it can be broken down and removed from the liver.  

In early stages of fibrosis few people experiences any symptoms at all and 

the liver function is still preserved. As the liver injury and inflammation 

continue, more scar tissue builds up and connects with existing scar 

tissue. This can eventually interfere with the metabolic functions of the 

liver. And if the disease progresses, it will lead to cirrhosis, an end-stage 

condition when the liver is severely scarred, this restricts the blood flow, 

causes portal hypertension and the ability for the liver to function is 

impaired. (fig3.) 



 

 CECILIA SÖDERBERG  15

 

 

Figure 3. Cirrhosis in NAFLD. Regenerative nodules and severe steatosis (Sirius 

staining) 

To the general public cirrhosis is mostly associated with excessive alcohol 

consumption but it marks the end-point of a number of liver diseases [77, 

78]. Morbidity and death due to complications from cirrhosis represents a 

major global health issue [79]. The prevalence of cirrhosis follows the 

prevalence of the diseases causing it. For example there are about 360 

million people with hepatitis B infection and about 123 million with 
hepatitis C in the world. Deaths related to these infections have been 

estimated to over 900 000 per year [80-82]. 

As mentioned earlier, many cases develop liver fibrosis without any 

symptoms for the patient, but when the progression of the disease has 

progressed to severe fibrosis or cirrhosis complications appear. Clinical 
symptoms of decompensated liver cirrhosis are ascites, jaundice, bleeding 

from, esophageal varices and itching. The prognosis for decompensated 

cirrhosis is poor and one year survival rate is only 60%. Liver cirrhosis 

also increases the annual risk of developing hepatocellular carcinoma, 

(HCC), to 1.4-3.3% [83].  
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A special type of fibrosis is the biliary type of fibrosis. It develops in 

response to bile duct injury causing cholestasis. This could be the result of 
stone impaction or diseases affecting the smaller bile ducts such as 

primary sclerosing cholangitis (PSC), cystic fibrosis and primary biliary 

cirrhosis (PBC). This shows in histological stainings as proliferation of 
small bile ductules, inflammation and fibrosis in conjunction to the small 

bile ducts with an increased number of myofibroblastic cells [84]. 

Neural cell adhesion molecule (NCAM) is as ICAM a member of the 

superfamily of immunoglobulin-like adhesion molecules. NCAM was the 

first neural adhesion molecule to be discovered and it is also the most 

studied one. NCAM has many different functions such as regulation of cell 

sorting, migration and proliferation. There are more than 20 isoforms of 

NCAM and all isoforms have five immunoglobulin domains in the 

extracellular region. NCAM adhere to molecules such as FGFR, L1, 

GDNF, N-cadherin and extracellular matrix components such as agrin 

and proteoglycans [85]. T-lymphocytes express NCAM and it is then 

denoted as CD56. CD56 positive lymphocytes are suggested to contribute 

to hepatocellular damage in chronic hepatitis C infection [86].  NCAM is 

expressed in many tissues in connection with injury and is associated with 

fibrosis in liver, heart and kidney [87-89]. Mice deficient in NCAM show 

brain defects such as increased anxiety and cognitive dysfunction [90]. 

NCAM deficient mice appear, despite the defect, relatively normal and are 

fully viable and fertile. In normal adult human liver NCAM is expressed 

on a few nerve fibers. However when the liver gets injured, 

cholangiocytes, activated HSC and periportal fibroblasts as well as 

intermediate cells of the ductual reaction express NCAM [87, 91-95]. The 

function of NCAM in liver injury or fibrogenesis has yet not been studied. 

 

1.7.1 Mechanisms of liver fibrosis in NASH 

Insulin resistance in patients with NAFLD may affect HSCs as these cells 

express receptors both for insulin and insulin-like growth factor-1 (IGF-1), 

two proteins promoting cell division in HSCs. IGF-1 also increases 
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collagen type 1 gene expression [96]. Also connective tissue growth factor 

is up-regulated by insulin and glucose [97]. Connective tissue growth 
factor does not only stimulate HSCs but also extracellular matrix 

production and profibrogenic activity by transforming growth factor-  

[98]. Inflammation is part of the wound-healing process during 
fibrogenesis.  When activated, Kupffer cells release pro-inflammatory and 

fibrogenic factors such as chemokines and cytokines [99]. One such 

cytokine is the transforming growth factor-  (TGF- ) which then again 

stimulates the pro-fibrogenic activity in HSCs. Pro-inflammatory 

cytokines are controlled by pro-inflammatory pathways including c-Jun N-

terminal kinase (JNK), a pathway which has been linked to apoptosis, 

inflammation and insulin resistance [100, 101]. In experimental NASH 

jnk knock-out mice showed less hepatic inflammation and fibrosis which 

could be interpreted as that JNK1 in Kupffer cells contributes to liver 

fibrosis by inducing chronic liver inflammation [102]. More detailed 

knowledge of the molecular mechanisms regarding fibrosis in NASH is 

needed in order to develop therapeutic approaches.     

 

1.8 ANIMAL MODELS OF NASH 

Animal models are widely used in pre-clinical research. They can either be 

used to induce a disease that mimic the disease to study or be 

manipulated to study the effects of a specific gene. Shutting down a gene 

can be done in different ways; some times this happens spontaneously, the 

gene can be technically erased and the animal can also be technically 

prepared so that a gene can be turned off after the animal is born. This is 

usually used when the effects of one specific gene is to be studied. 

 NAFLD and NASH is a clinical spectrum that develops over years and 

even decades and results from accumulation of risk factors. A good animal 
model should mimic both the histological pattern with fatty liver, 

inflammation and fibrosis, and the animal model should also mimic the 

metabolic disturbances related to NAFLD such as insulin resistance and 
systemic inflammation. Presently there is no animal model that reflects 



 

CECILIA SÖDERBERG 18 

all these aspects but there are a few that can mimic some of the aspects. 

There are two major types of animal models available to day; dietary and 
genetic models. The most commonly used dietary model is the methionine- 

and choline-deficient (MCD)-diet which results in intrahepatic steatosis, 

liver inflammation, oxidative stress and changes in cytokines and 
adipokines [103-106]. Fibrosis in this model appears after at least 4 weeks 

of feeding [107]. A major disadvantage of this model is that it lacks the 

characteristics of obesity and insulin resistance; in fact the animals loose 

about 50% of their body weight over 4 weeks [103]. Another dietary model 

is the high-fat diet (HFD) in which the majority of calories comes from fat 

(45-75%). These animals become obese, insulin resistant and develop get 

hepatic steatosis but the liver damage is not as severe as in the MCD-

model [108, 109]. Among the genetic models some of the most common 

models are those interfering with leptin-signalling pathways. There are 

three types of leptin deficient mice, two with a mutation in the receptor 

(db/db and fa/fa) and one with a mutation in the ligand (ob/ob). They 

display similar but not identical features [110, 111]. ob/ob-mice develop 

extensive obesity and fatty liver whereas obese humans rather have 

hyperleptinemia[112]. Since leptin has profibrogenic effects, fibrosis in 

ob/ob-mice is delayed significantly [113]. Leptin was also showed to 

regulate the innate immune system and ob/ob mice are at risk to develop 

liver injury [114].  
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2 AIM 
The general aim of this thesis is to improve our knowledge about NAFLD 

and NASH, with regard to long-time prognosis, immunological and 

histological features in NASH livers, and the association to iron 
metabolism, adhesion molecules and fibrosis. 

 

Specific aims: 

 To determine the frequency of NAFLD and NASH in a Swedish 

population with elevated liver function tests. To study the mortality 

and causes of death among those subjects with NAFLD and 

compare the survival and causes of death to those subjects with 

other liver diseases, and compared to the general population. 

 To evaluate the effects of inflammation and oxidative stress on iron-

regulatory gene-expression and signalling in two animal NAFLD 

models. 

 To evaluate if the amount and type of storage of fat in hepatocytes 

is of importance for hepatocyte injury and if not only the innate 

immunity but also the adaptive immunity is involved in NASH. 

 Since NCAM is expressed in injured liver and is associated with 

fibrosis, we wanted to examine if loss of NCAM would affect fibrosis 

development after injury of the liver parenchyma and/or fibrosis 

development in biliary type liver fibrosis. 
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3 METHODS, STUDY I-IV 
3.1 PATIENTS (STUDY I) 

Between 1980 and 1984, 256 subjects with unexplained elevated serum 

levels of ALT, and therefore referred to our unit, have been characterized 
in a retrospective and a prospective study by Hultcrantz and coworkers 

[115, 116]. Inclusion criteria were persistently elevated levels of aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT) for longer 

than 6 months. Subjects with symptoms or clinical signs of liver disease 

were excluded, as were those with serum levels of alkaline phosphate 

(ALP) (greater than twice the upper normal limit, 4.2 kat/L) and those 

exhibiting clinical or laboratory signs of kidney disease. Unless otherwise 

stated in the medical chart, the patient was assumed not to over consume 

alcohol. A great deal of effort was put into uncovering any such over 

consumption at the time.  

 

3.2 GRADING OF LIVER BIOPSIES FOR NASH (STUDY I AND III) 

All liver biopsies had been performed on all of the subjects percutaneously 

with a 1.6-mm Menghini-type needle. All of these biopsies were re-

evaluated employing a modern classification by two of the authors (C.S. 

and R.H.), as well as by a third reference person (H.G.), all of whom were 

blinded to the patient details. Liver histology was scored in accordance 

with the NAS-system developed by Kleiner and Brunt et al. [15] The 

classification of NASH was made on the basis of steatosis (both macro and 

microvesicular), lobular inflammation, and ballooning degeneration, and 

fibrosis was scored to determine the stage (progression) of this condition.  

The degree of steatosis was graded 0-3 based on the area of the biopsy 

that was occupied by fat (grade 0: fatty infiltration <5% of the area, grade 

1: more than 5% but less than 1/3 of the area, grade 2: 1/3-2/3 of the area 

and grade 3: more than 2/3 of the area occupied by fat vacuoles). Lobular 

inflammation is graded 0-3 based on the number of foci/200 magnification 

(grade 0: No foci/200x, grade 1: <2 foci/200x, grade 2: <2-4 foci/200x and 
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grade 3: >4 foci/200x). Ballooning was graded 0-2 where 0 stands for no 

balloon cells, 1: few balloon cells and 2: many balloon cells/prominent 
ballooning is seen.  NAS is calculated as the unweighted sum of steatosis 

(0-3), lobular inflammation (0-3) and hepatocellular ballooning (0-2). 

For grading disease activity in connection with chronic hepatitis, we used 

the scoring system developed by Batts and Ludwig [117]. Iron content was 

evaluated according to Scheuer [118] as: no staining, weak, moderate, or 
intense staining, and localization predominantly in Kupffer cells or in 

hepatocytes.  

 

3.3 CAUSES OF DEATH (STUDY I) 

Since all Swedish residents are assigned a unique 10- digit national 

registration number, and these identification numbers are recorded in the 

nationwide and virtually complete Cause of Death Registry [119]  it is 

possible to find out which patients are still alive and who has deceased 

and what the cause of death was.  Through this registry, information 

concerning all deaths during the study period (1980 to July 9, 2008), 

including dates and causes of death (coded according to the Inter-national 

Classifications of Diseases versions 8, 9, and 10 [120-122]) could be 

obtained. 

 

3.4 AMIMALS  

All mice were males and in the age of 8-12 weeks at sacrifice and they 

were all housed in a pathogen free barrier facility (12 h light/12 h dark 

cycle), and were fed rodent chow containing 4% fat. Mice were sacrificed 

or perfused at 10-12 weeks of age and the liver was collected for analysis.  

 

3.4.1 Mttp (Study II) 

In the Mttp flox/floxMx1-Cre+/– mice that were used in this study, the gene 

for microsomal triglyceride transfer protein is floxed (Mttp flox/flox) and can 
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be recombined in the liver upon induction of Cre-recombinase (Mx1-Cre+/–) 

with polyinosinic-polycytidylic ribonucleic acid (pI-pC; 1 g/ l; Sigma). 

This recombination results in termination of hepatic VLDL synthesis, 
leading to a reduction in plasma triglycerides levels and an increase in 

hepatic lipid stores with a 3-fold increase in liver triglycerides, as 
described [123, 124]. Two weeks before sacrifice, Mttp was recombined 
(Mttp / ) with pI-pC, and littermate wild-type mice (Mttp flox/flox) were 

injected with phosphate-buffered saline. The study mice had been 

backcrossed at least six times (>95% C57BL/6, <5% 129/SvJae). All mice 

used were male and the mice were fasted overnight before blood sampling. 

Total plasma cholesterol and triglyceride concentrations were determined 

with colorimetric assays (INFINITYtriglyceride/ cholesterol kits, Sigma) 2 

weeks after the final pI-pC injection. 

 

3.4.2 ob/ob (Study II) 

Homozygous leptin-free ob/ob (on a C57BL/6 background) and C57BL/6J male 

mice were obtained from Taconic (Denmark) at 5-8 weeks of age and were 

housed within the animal facility with free access to food and water. The 
ob/ob-mice are from approximately age 4 weeks insulin resistant which 

later around week 16 progresses to diabetes. The ob/ob obese mice were 

age-matched with wild-type C57BL/6J mice for each experiment.  

 
 
3.5 MORPHOMETRY (STUDY III) 

3.5.1 Grading of Fibrosis  

The area of fibrosis was determined with a computer software program, 

Image J (public domain, NIH). Twenty consecutive images from each 

biopsy (in cases were the biopsy was smaller than 20 images the whole 
biopsy was used) were stacked together and converted in to grey scale. 

The images were corrected for background by setting a threshold where 

black is converted in to red, the area of fraction (the red colour) was 
measured for all 20 pictures and a mean value was calculated. 
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3.5.2 Steatosis (Study III) 

The size of the hepatocytes depends on how much fat they contain which 

thereby influences the number of cells per defined area. We wanted to 
compare the number of inflammatory cells between patients with different 

degree of steatosis. In order to do this we developed a method to correct 

the number of positive cells to the amount of cells by using the known 
area of fat. That is, if a biopsy contained 0% fat this would be the “true 

value” since no area was occupied by fat, but if a biopsy contains of 50% 

fat the number of positive cells seen are in fact half of what we should see 

because of the occupying 50% of the area. We used the formula: 

“estimated true number of positive cells” = number of positive cells 

counted /(1 - % of fat) in an attempt to approximate the number of cells. 

 

3.6 IMMUNOHISTOCHEMISTRY (STUDY III, IV AND V) 

Immunohistochemistry has been performed both on frozen sections and 

paraffin embedded tissue from both animals and human liver biopsies. 

 
3.6.1 Paraffin embedded sections 

Immunostaining using the IMPRESS system were used for Cleaved 

Caspase-3, CD3, ICAM1, CD68 and TLR4. In brief, sections were 

deparaffinized with xylene and then ethanol in decreasing concentrations. 

After rehydration, sections were blocked in 0,3-3% H2O2, put in 

unmasking solution Vector, H-3300, pH 6 and heat activated by press 

cooker for 10-30 min, treated with IMPRESS serum block and  incubated 
with primary Ab over night at 4 C. For secondary Ab we used IMPRESS. 

The bound antibody was revealed by addition of DAB and then 

counterstained with hematoxylin. 

 

3.6.2 Frozen sections 

Mouse liver was immediately after retrieval put in ice-cols Histocon 

(HistoLab Products), snap frozen in liquid nitrogen, embedded in tissue-
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tec and cut in sections 4-6μm. Fixated in 2% paraformaldehyde in 

phosphate buffered saline containing 0.1% Triton X100 (Sigma Aldrich) 
for 10 minutes at room temperature. The sections were immunostained 

with primary antibody over night at 4ºC. The slides were then triple 

washed and incubated with secondary antibody for 60 minutes at room 
temperature. Stainings with biotinylated secondary antibody was after 

washing visualized by incubation with streptavidin.  

 

3.7 ELISA 

Serum levels of sICAM-1 were measured with ELISA (RnD Systems, 

Human sICAM-1/CD54 Immunoassay. The assay was performed 

according to the manufactures instructions.  

 

3.8 PROCEDURES 

3.8.1 Hepatocyte isolation and cell culture (Study II) 

Primary mouse hepatocytes were isolated using an in situ collagenase 

perfusion technique. Mice were deeply anesthetized with Isofluran and 

perfusion solutions were administrated via the right atrium of the heart 

and let to flow out through the caval vein that was cut below the liver. 

Briefly, the liver was first perfused, at 4 ml/min, with 50 ml Krebs-Ringer 

buffer (Sigma K-4002) including 100 U/ml penicillin, 100 μg/ml 

streptomycin (Gibco, Invitrogen), 0.01 M HEPES and 0.01 % EDTA 

equilibrated at 96% O2. Subsequently, using the same rate, the liver was 

perfused with 0.025% w/v collagenase (Sigma) solution in DMEM-F12 

buffer, at 96% O2,  containing 100 U/ml penicillin, 100 μg/ml streptomycin 

and 0,01 M HEPES. The resulting cell suspension was filtered and 
centrifuged at 50g for 4 min, 4°C. The pellet was then washed in cold 

Williams E medium including 100U/ml penicillin and 100 μg/ml 

streptomycin, three times at 50g. The final pellet was re-dissolved in 
Medium 199 (Gibco, Invitrogen) containing 5% fetal bovine serum, 1 μM 

hydrocortisone and 4 units/l of insulin. Cell viability was estimated using 
Trypan-blue exclusion with results > 95% viability for all experiments 
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described here. 2,5 million cells were plated on collagen (collagen type I, 

0,01% in 0,1 M acetic acid) coated 35 mm dishes in Medium 199 including 
5% fetal bovine serum, 1 μM hydrocortisone and 4 units/l of insulin for 4 

h. Cells were rinsed three times and the medium replaced with a serum-

free version including 0.1% BSA for at least 16h, (37°C, 5% CO2) before 
stimulation. 

 

3.8.2 Incubation of hepatocytes with cytokines and induction of oxidative 

stress with TBH (Study II) 

Hepatocytes were subjected to cytokine stimulation with TNF-  (10ng/ml) 

or IL-6 (20ng/ml) diluted in conditioned media containing medium 199 

including 0.1% BSA, 1 μM hydrocortisone and 4 units/l of insulin. 

Stimulation was continued for 24h (37°C, 5% CO2). Following incubation, 

cells were rinsed several times with ice-cold PBS and used immediately 

for analysis. Tert-butyl-hydroperoxide (TBH) was diluted to concentration 

between 0.05 and 0.5 mM in Medium 199 including 0.1% BSA, 1 μM 

hydrocortisone and 4 units/l of insulin. The mixture was then used to 

replace the growth-medium of the isolated hepatocytes for 2h (37°C, 5% 

CO2). After incubation, cells were rinsed several time with ice-cold PBS 

and used at once for analysis.  

 

3.8.3 Cell damage assessment (Study II) 

Lactate dehydrogenase (LDH) levels in cell culture medium were 

measured using the LDH optimized assay kit (Sigma) according to the 

manufacturer’s instructions. Briefly, an aliquot of growth medium was 

removed from each plate and incubated with LDH assay mix. The results 

were analyzed on a 96-well plate spectrophotometer by measuring the 

absorption at 490- and 650 nm. Results were expressed as a percentage 

compared to the controls from each group containing total LDH from lyzed 

cells. 
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Free malondialdehyde (MDA) concentrations were measured to estimate 

the level of lipid peroxidation in cell culture medium. Medium from cell 
culture dishes was ultra-filtrated, snap frozen in liquid nitrogen and 

stored at -70°C pending analysis. A free MDA standard was prepared to 

corresponding MDA concentrations of 0.1- 4.0mM, using 1,1,3,3-
tetraethoxypropane (Sigma). The concentrations of MDA in samples were 

then calculated from the standard curve obtained in this interval. The 

HPLC system consisted of a Waters 600 delivery system (Waters 

Chromatography Division, Millipore Corporation, Milford, MA). A Waters 

486 UV detector was used at 267 nm. The column consisted of a Waters 

carbohydrate analyzer column (125 Å, 10 m) with a mobile phase 

consisting of Acetonitrile/0.03 M Tris -HCl (pH 7.4), 4:1 at a flow rate of 

2.4 ml/min. The data were recorded in a Waters Millenium computerized  

chromatography system. 

 

3.8.4 Bile duct ligation in mice (Study IV) 

Under deep anaesthesia with Isofluran, the abdomen was opened by a 

mid-line incision. The hepatoduodenal ligament was identified and the 

common bile duct carefully mobilized by blunt dissection. The common 

bile duct was then ligated with non-resorbable thread and cut between 

ligatures. Controls were sham operated with laparotomy and 

identification, but no ligation, of the common bile duct [125]. Mice were 
given buprenorphine subcutaneously before and after surgery for 

analgesia. At two weeks after surgery, mice were sacrificed by 

exsanguinations under deep anaesthesia with Isoflurane followed by 
cervical dislocation.  

 

3.8.5 Bile flow rate (Study IV) 

Bile flow was measured as follows; after a midline incision as described 

above, the common bile duct was ligated and the gallbladder cannulated 

with a polyethylene tube (PE-10). Bile flow rate was then measured by 
collecting bile for 20 minutes and thereafter adjusting for body weight. 
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3.8.6 Carbon tetrachloride injections in mice (Study IV) 

Carbon tetrachloride (2mg/kg body weight) was mixed 2:5 with sterile 

mineral oil and given intraperitoneally twice weekly for three weeks. 
Controls received injections with only mineral oil. Mice were given 

buprenorphine subcutaneously before and after injection for analgesia. 

Mice were sacrificed after three weeks.  

 

3.8.7 Isolation and in vitro activation of hepatic stellate cells (Study IV) 

Isolation of HCS was performed as described earlier [126]. C57BL/6J and 

N-CAM-/- mice were deeply anesthetized with Isofluran. Perfusion 

solutions were administrated via the right atrium of the heart and let to 

flow out through the caval vein that was cut below the liver. Firstly 

Krebs-Ringer buffer supplemented with 0.01MHepes and 0.01% EGTA 

was supplemented to remove blood. Secondly the liver was perfused with 

pronase (2.5mg/ml) and 35ml collagenase (0.074mg/ml). The liver was 

then removed, minced and transferred to a solution with pronase (0.6 

mg/ml) and DNase (0.16mg/ml). The mixture was then incubated at 

39ºCwith shaking for 30 min. After a low speed centrifugation the 

hepatocytes was removed. HSC were isolated further by 

ultracentrifugation through a Larcoll (Sigma Aldrich) gradient. HSC were 

then plated on Petri dishes in DMEM-F12 supplemented with 10% FBS, 

penicillin and streptomycin (100U/ml and 100μg/ml respectively). The 

HSC were cultured for 20 days at 37ºC and 5% CO2 where after they were 

analyzed or used in experiments. At the first passage, 95-99% purity of 

the HSC were confirmed by morphological appearance, vitamin A specific 

fluorescence in polarized light and immunofluorescence for -smooth-

muscle actin. After gentle wash with PBS, the medium was replaced with 

new medium containing 10ng/ml of recombinant TGF- 1 (R&D Systems). 

The HSC were stimulated for 0h (control), 4h or 72h before analysis. 
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3.8.8 Total Iron (StudyII) 

Total iron content in the liver tissue of ob/ob mice and controls was 

measured by flame absorption spectrometry (Varian SpectrAA 220 atomic 
absorption spectrometer) using background correction. Samples were 

dried in 50°C for 3 days and then hydrolyzed in concentrated HNO3 

overnight before analysis [127]. 

 

3.8.9 Quantitative Real.Time PCR (Study IV) 

First strand cDNA synthesis from isolated RNA was performed using 1,5 

μg RNA, 500 μM of dNTPs, 3,5 μM of random primers, 200 units of 

SuperScript™ II reverse transcriptase in 1X first strand buffer including 

10mM DTT and 40 units of RNase out™. The reaction mix was incubated 

at 42°C for 50 min. Gene expression was analyzed using TaqMan® 

Universal PCR Master Mix and exon-to-exon spanning probes. Probes 

were obtained commercially from Applied biosystems. 

The amplification was performed at 95-60°C for 50 cycles in an ABI Prism 

7000 sequence detection system. Samples were run in duplicate or 

triplicate and results were normalized to the house-keeping genes HPRT 

or GAPDH which had been chosen due to their lack of response to the 

stimuli used. 

 

3.8.10 Immunoblot (Study II and IV) 

Immunoblots were performed with standard techniques and are describes 

in detail in Study III and V. Briefly the tissue was first minced and 
subsequently homogenized, in homogenisation buffer. Equal amount of 

protein extracts was separated on SDS-PAGE gel and subsequently 

blotted over to nitrocellulose membrane (Pierce). After blocking in 5% fat-
free dry milk, the membrane was incubated in appropriate primary 

antibody solution overnight, 4°C with gentle shaking. After washing the 

membranes extensively and incubated in appropriate secondary antibody 
conjugated to HRP. Results were visualized using the SuperSignal West 
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Pico ECL system (Pierce). Ponceau staining (Sigma Aldrich) and actin 

antibody (Sigma) was used to evaluate good transfer and equal loading of 
protein.  

 

3.9 ETHICAL CONSIDERATIONS 

For patient studies ethical approval was given from regional ethics 

committee at the Karolinska Institutet in Stockholm.  

Experiments performed on animals were performed after a priori approval 

by the local ethics committee for humane use of research animals in 

Northern Stockholm.  

Carbon tetrachloride (CCl4) was used with specific permission from the 

Swedish Environmental Protection Agency.  

 

3.10 STATISTICS 

3.10.1 Study I  

To assess the relative risk of death, we employed standardized mortality 

ratios (SMR), that is, the ratio between the observed numbers of deaths in 

the cohort compared with the number expected on the basis of mortality 

rates for the general population. The expected numbers of deaths were 

calculated by adding all person-years accumulated in the cohort into 

strata (sex, age [in 5-year groups]) and calendar year of follow-up [in 5-

year intervals]) and then multiplying the stratum-specific person-years by 

the corresponding  incidence rates for the entire Swedish population. 

Ninety five percent confidence intervals (CI) were calculated assuming 

that the observed events followed a Poisson distribution. Follow-up began 

at the date of the initial liver biopsy and ended on July 9, 2008, or, if 

earlier, the date of death. Kaplan-Meier curves are used to depict the 

mortality in the cohort graphically. All analyses were conducted stratum-

specific using SAS statistical software. 
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3.10.2 Study II 

All statistical analysis was done using SPSS (Ver 16. SPSS Inc.), and 

results were obtained using students t-test, paired or non-paired 
depending on the experiment. Results are presented as mean and SD. 

 

3.10.3 Study III 
All statistics were performed with GraphPad Prism 4. When two groups are 

analysed, we used student´s t-test for unpaired parametric data. For 

correlation we used Pearson´s correlation. Results are presented as mean ± 

SEM or mean and range. All p-values are presented as 2-tailed and on 95% 
confidence interval.  
 

3.10.4 Study IV 

Statistical tests were performed with GraphPad version 4.01 (Prism 

Software). Two tailed Students t-test was used for single comparisons. 
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4 RESULTS AND DISCUSSION 
4.1 STUDY I 

4.1.1 Re-evaluation of the Liver Biopsies 

Fatty liver was detected in 143 of the 256 subjects, including 25 (10%) 
with alcoholic fatty liver disease and 118 (46%) exhibiting NAFLD. Of 

those, 51 (20%) were classified as NASH and 67 (26%) as non-alcoholic 

bland steatosis. Cirrhosis was present in 9% at inclusion. 

 
4.1.2 Relative Risk of Death 

During this follow-up, 113 (44%) of the 256 subjects died, which 

corresponded to an 80% increased risk of death in comparison with the 

general population. Of the 118 subjects with NAFLD, 47 died. Compared 

with the total Swedish population, adjusted for sex, age, and calendar 

period, subjects with NAFLD exhibited a 69% increased mortality 

(standardized mortality ratio [SMR] 1.69; 95% confidence interval [CI], 

1.24-2.25); subjects with bland steatosis, a 55% increase (SMR, 1.55; 95% 
CI, 0.98-2.32; P =0.062); and subjects with NASH, 86% (SMR, 1.86; 95% 

CI, 1.19-2.76; P =0.007). In the case of the AFLD/ASH subjects, a 294% 

increased risk of death was observed (SMR, 3.9; 95% CI, 2.41-6.09). 

Chronic infection with hepatitis C or B was associated with an increased 

risk of death (Table 3; Fig. 2C). By contrast, subjects with autoimmune 

hepatitis or another diagnosis did not exhibit reduced survival, although 

certain subsets contained too few subjects to allow valid comparison. 
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Figure 4. Overall survival of subjects in the study with NASH or bland steatosis and 

the entire cohort. (A) Overall survival of subjects with NASH or bland steatosis and the 
entire cohort of 256 subjects. Of the 118 subjects with NAFLD, 47 died. Twenty-three 
patients of the 67 with bland steatosis died (SMR, 1.6; 95% CI, 1.19-2.76; P=0.007). (B) 
Overall survival of subjects with NAFLD, divided into those with only fatty liver or 
subjects with fat and any type of inflammation, ballooning or fibrosis. (C) Overall 
survival among subjects with NAFLD compared with those with alcoholic fatty liver and 
hepatitis C.  
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4.1.3 Causes of Death 

47 NAFLD patients died during follow up and 14 (30%) of them died of 

cardiovascular disease, 13 (28%) of extra hepatic malignancies, and nine 
(19%) of liver disease. Liver diseases are in our material in third major 

cause of death for NAFLD patients compared to normally on 11th place in 

Swedish population. On the whole, patients with NAFLD die of liver-
related causes to a greater extent than the general population, but we still 

see cardiovascular disease and extrahepatic malignancies to be the 

primary and secondary causes of deaths among these patients. The 

frequency of HCC is almost 1000-fold higher in this group than what has 

been reported for Sweden earlier. 

 

4.1.4 Summary and conclusions 

We conclude that in our cohort of subjects with elevated serum levels of 

liver enzymes who underwent consecutive liver biopsies 28 years ago, 46% 

could be diagnosed as suffering from NAFLD. Overall survival was 

reduced in subjects with NAFLD and NASH, whereas bland steatosis with 

or without severe fibrosis was not associated with any increase in 

mortality risk in comparison with the general population. Patients with 

NASH had a lower risk of death than those with alcoholic liver disease or 

chronic viral hepatitis but a higher risk than those suffering from 

autoimmune and metabolic liver diseases. 

Patients with NASH are at increased risk of death compared with the 

general population. Liver disease is the third most common cause of death 

among patients with NAFLD.  

 
 
4.2 STUDY II 

4.2.1 Iron content 

Since patients with NAFLD and NASH quite commonly have 

hyperferritinemia we expected increased iron contents in the livers from 

animals in our mouse models with fatty liver. However, on the opposite, 



 

CECILIA SÖDERBERG 34 

our mice with fatty livers actually had less amount of iron in their livers 

than the controls. We cannot rule out however, that the flame absorption 
spectrometry technique underestimates iron content when there is an 

increased fat content in the same specimen  

 

4.2.2 Intracellular signalling of hamp1 

We found that the STAT3 protein expression which is a member of the IL-

6/STAT3/Hamp signalling pathway was significantly up-regulated in 

ob/ob-animals with fatty liver compared to controls.  However, no 

significant changes could be detected in Smad4 expression. Neither could 

any significant difference be found when comparing BMP6 or Smad 1/5/8 

expression between ob/ob animals and their controls.  IL-6 has earlier 

been reported to be increased in blood circulation in ob/ob-mice and an 

increase may trigger an up-regulation of the IL-6/STAT3/Hamp 

signalling-pathway which results in increased hepcidin levels and 

lowering uptake of iron from the intestines.  

 

4.2.3 Iron regulatory genes  

We wanted to describe the effect that oxidative stress and pro-

inflammatory cytokines has on iron regulatory genes. There were no 

significant differences in gene expression following TBH incubation 

(oxidative stress). After incubation with IL-6, there was an increased 

expression of hamp1 in ob/ob mice hepatocytes but not of similar 

magnitude compared to normal mice. In hepatocytes from Mttp /  and 
Mttpflox/flox mice both cell types reacted with increased expression of 

hamp1 following incubation with IL-6. Both animal types also decreased 

their expression of the same gene following incubation with TNF- . No 

other gene expressions were affected by either IL-6 or TNF- . When we 

looked at whole liver samples both TfR2 and ferritin gene expression were 

decreased in ob/ob-mice compared to control animals (p=0,008 and 0,045 
respectively). For the other genes analyzed, the differences in expression 
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were not significant. For the liver tissue samples in Mttp-mice, no significant 

differences were seen between the Mttp /  mice and the Mttpflox/flox in any of 

the analyzed genes. It seems as if fat loaded cells are resistant to further 

uptake of iron into the cell. Also, it seems to be a tendency towards 

binding the existing internal iron to ferritin. This may explain why obese 
mice (ob/ob) contain less iron in the liver. Possibly, this could be viewed as 

a defence mechanism against oxidative stress which is in line with the 

reports on iron reduction therapy being beneficial in respect to NAFLD 

disease development 

 
4.2.4 Summary and conclusions 

We saw increased hamp1 expression in ob/ob mice, and it appears to be 

caused by up-regulation of IL-6, STAT3, hamp1-pathway, indicating 
systemic inflammation. ob/ob and Mttp /  mice hepatocytes were more 

sensitive to oxidative stress, seen with MDA and LDA, but no specific 

alterations were seen in gene expression from incubation with pro-
inflammatory cytokines. 

 

4.3 STUDY III 

4.3.1 NAS-classification and Morphometrical measurements 

 

Figure 5. The amount of fat scored with NAS-classification and by point counting for fat amount. 

Results from point counting are given in volume density (Vd,%). 
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The amount of fat was scored both according to NAS-classification and 

also more precisely by morphometry using point-counting (fig 5.). The 
mean volume density of fat was 58.8% ± 13.0% in the NASH patients. The 

two values differed in some patients and this was mainly because of 

presence of microvesicular fat, which is more difficult to estimate in the 
NAS score. 

Fibrosis correlated well between the two scoring systems; area 

measurement by software program and NAS.  

Patients with the highest grade of lobular inflammation according to the 

NAS-method were not those with the highest numbers of inflammatory 

cells in the tissue. The number of lobular inflammatory foci was not 

correlated to the number of CD3 positive cells, nor did it correlate to the 

number of PMNs 

 

4.3.2 Apoptosis and inflammation 

The amount of cells expressing cleaved Caspase 3 was low and did not 

differ between the different zones in the liver. Apoptotic bodies as seen 

with cells positive for the Apoptag antibody were mainly located in the 

hepatocytes with big fat droplets rather in those with micro-vesicular fat. 

Apoptosis has earlier been suggested to drive the inflammation but we 

could not find any evidence for that in our material. There was no 

statistical significant correlation between the NAS-score and the number 

of apoptag positive cells, p=0.54.   

ICAM-1 staining around hepatocytes was seen in almost all NASH 

patients and it was localized mainly in areas with hepatocytes with 

microvesicular fat. The areas with positive hepatocytes differed from 

patient to patient. Non-NASH biopsies did not show any ICAM-1 positive 

hepatocytes. This suggests that ICAM-1 is some what involved in the 

inflammatory process in the livers from NASH patients. 

There were an increased number of cells positive for Foxp3 in the NASH 

patients and also those with fat or inflammation. Higher foxp3/CD3 quota 
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correlated to higher NAS-score. Cells positive for Foxp3 were distributed 

in both the lobule and in the portal tracts. There was no preferred 
localisation in the lobules and these cells were sometime more frequent in 

central areas of lobules and sometimes in the periportal areas. Presence of 

regulatory T-cells has been shown in previous work in liver diseases and 
found to be increased in inflammatory liver diseases such as autoimmune 

hepatitis and HCV. The role of Tregs is to control the immune system 

which is well in line with our findings demonstrating higher amounts of 

Tregs in the NASH group than those with only fat. NASH patients also 

had lower numbers of CD3 positive cells.  

We found no differences in the number of macrophages but when we 

looked at the area of Kupffer cells it was twice the area seen in non-NASH 

livers. We did not se any difference in the number of TLR 4 expressed in 

the different patient groups and nor was it correlated to the amount of fat 

or inflammation. This speaks against that NASH is induced by bacterial 

influences from the gut or from other areas in the body, at least in our 

material, something that has been suggested in previous publications. 

ICAM-1 positive hepatocytes were seen in NASH patients and were 

localized in areas with microvesicular fat. Non-NASH biopsies were 

negative for ICAM-1 positive hepatocytes.  

 

4.3.3 Soluble ICAM-1 

We found that sICAM-1 were significantly higher in NASH-patients 

(339.8 ± 34.07) than in non-NASH (229.5 ± 12.14), p=0.0015 (fig 6).  No 

correlation between the BMI of the patients and the level of sICAM1 was 

seen. 
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Figure 6. Serum levels of sICAM-1in patients with NASH and non-NASH (controls) 
Patients with NASH had significantly higher serum levels of sICAM-1 than non-NASH 
subjects, P=0,0015 

 

 

4.3.4 Summary and conclusions 

We found that liver content of fat is difficult to estimate and that the 

presence of fat seems more important than the actual amount of it. In 

liver tissue with NASH, hepatocytes with microvesicular steatosis seem to 

be expressing more inflammatory markers. As in many other types of liver 

diseases NASH patients and borderline NASH patients have more 

regulatory T-cells. Inflammation seems to be important and affecting 

especially hepatocytes with microvesicular fat, which is seen by 

expression of ICAM-1 which also could be seen in serum samples. ICAM is 
known for facilitating leukocyte endothelial transmigration. Inflammatory 

responses will up-regulate the expression of ICAM-1 and thereby increase 
the adhesive nature of leukocytes. We thereby speculate that, since we se 

an increased expression of ICAM-1 among hepatocytes with 

microvesicular fat that these areas perhaps also has an increased amount 
of released inflammatory cytokines. 
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4.4 STUDY IV (NCAM) 

4.4.1 N-CAM expression 

After a single CCl4 injection in wild type mice, highest level of N-CAM 

was found after 72 h. N-CAM was expressed by all bile ducts and also by 

mesenchymal cells around blood vessels and bile ducts. In wild-type mice 

exposed to CCl4 injections twice weekly for three weeks, N-CAM was 
detected mainly in myofibroblastic cells, both in portal areas and around 

necrotic areas. 

At 72 hours after bile duct ligation (BDL), wild-type mice showed positive 

staining for N-CAM in cholangiocytes and mesenchymal cells of the portal 

areas.  2 weeks after BDL, proliferating bile ductules and periportal 

fibroblasts were N-CAM positive but the larger bile ducts were N-CAM 

negative. In mice that were sham-operated or injected with mineral oil 

alone, occasional N-CAM positive cells were seen.  All N-CAM-/- mice were 

negative for immunoblotting and immunofluorescence with anti-NCAM. 

 

4.4.2 Blood chemistry tests 

Serum bilirubin was significantly higher in 2-week BDL N-CAM-/- and 

showed a trend towards higher values in sham-operated, 3-week CCl4 or 

mineral oil-injected N-CAM-/- mice. ALT was significantly higher in 3-

week CCl4-injected mice. 

 

4.4.3 Loss of N-CAM attenuates fibrosis following bile duct ligation. 

Two weeks after BDL wild-type mice had developed a pronounced liver 

fibrosis with expansion of the portal tracts and formation of fibrous septa 

between the portal areas. N-CAM deficient BDL mice had milder fibrosis 

with less bridging and less expansion of the portal areas.  Wild-type mice 

had more formation of bridging fibrous septae and thickness of fibrosis 

surrounding the bile ducts. In N-CAM-/- mice a significantly larger area of 

bile infarcts was seen as compared with wild-type, 2,2% vs. 0,78%, p=0.02. 

Bile flow rate was equal between genotypes.  
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The finding of an increased amount of bile infarcts and increased serum-

bilirubin in the two week BDL N-CAM knock-outs indicate that loss of N-
CAM is associated with an increased vulnerability to cholestasis. 

 
4.4.4 CCl4 induced liver fibrosis 

No evident difference in the amount of liver fibrosis was seen between N-

CAM knockouts and wild-type mice that were subjected to CCl4 injections. 

CCl4 treated mice of both genotypes had moderate partially bridging 
fibrosis. Control mice injected with mineral oil alone had normal liver histology 

without fibrosis.  

 
 
4.4.5 Expression of myofibroblast marker –SMA 

N-CAM deficient BDL mice had milder fibrosis with less bridging and less 

expansion of the portal areas. 

In CCl4 treated mice, -SMA positive cells were distributed around the 

interlobular margins as well as in regeneration areas. No significant 

difference were seen in the distribution or amount of SMA positive cells 

between N-CAM-/- and wild type in neither BDL nor CCl4 injected mice. 

 
4.4.6 Hepatic stellate cells isolated from N-CAM-/- mice have impaired 

activation after stimulation with TGF- 1 

The 140kD isoform of N-CAM, which is expressed by activated HSC, has 

been reported to be important for cell migration [128] and hence it is 

possible that loss of N-CAM has a negative effect on recruitment of 

activated HSC to the portal areas. 

The 140kD isoform of N-CAM was present at start of stimulation with 
TGF- 1 followed by a slight increase after 72h in HSC isolated from wild-

type mice. No N-CAM protein was found in HSC from N-CAM-/- mice.  

All isolated HSC showed normal viability throughout the experiments and 

no signs of increased apoptosis were seen.  
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Following stimulation with TGF- 1, - -SMA levels decreased at both 4 

and 72 hours in N-CAM-/- HSC. In wild-type derived HSC, a moderate 
increase of -SMA was seen at the same time points.  

Desmin had in N-CAM-/- HSC, after 4 hours of TGF- 1 stimulation, 

decreased significantly and at 72h and was almost undetectable. In 
contrast to this, a marked temporal increase of desmin was found in HSC 

from wild-type mice. 

The clear impairment of activation of N-CAM deficient HSC as measured 

by SMA and desmin supports the hypothesis that N-CAM is important in 

differentiation of HSC and possibly other types of cells to fibrogenic cells 

in the injured liver. 

 
 
4.4.7 Summary and conclusions 

The results indicates a role of N-CAM in cholestatic liver disease since the 

loss of N-CAM resulted in decreased hepatic collagen and fibronectin 

deposition in mice subjected to BDL. Animals exposed to repeated CCl4 

injections and therefore a hepatocellular injury did not show the same 

alterations. It also indicates a roll of N-CAM in HSC activation since N-

CAM null mice show impaired activation in vitro.  
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5 GENERAL DISCUSSION 
Fatty liver was in the beginning thought upon as a benign disease but 

more and more reports are indicating that this is perhaps not the fact. In 

the society today major topics for discussions are how obesity, diets 
physical activity are affecting not only our quality of life but also relates to 

diseases such as diabetes and coronary heart diseases. However little is 

mentioned in the debate how this also has a strong relation to liver 

diseases. In the first paper of this thesis we performed the longest follow-

up of patients who originally demonstrated elevated serum levels of 

hepatic enzymes and were subsequently shown by biopsy to be suffering 

from NAFLD. Four major strengths were pointed out in this work: First, 

all of the subjects were enrolled consecutively during a defined period. 

Second, all underwent liver biopsy at the time of referral, so that the 

diagnoses of NAFLD are based on histological criteria. Third, re-

evaluation of the initial biopsy findings was performed in all cases. And 

finally, all deceased subjects could be followed-up through the Cause of 

Death Registry, so that there were no losses during follow-up. The study 

showed that of all patients enrolled because of elevated liver enzymes, 

46% was due to NAFLD. Patients with NAFLD had decreased survival 

compared with the general Swedish population. Our data confirmed 

previous studies by Adams [129] and Ekstedt [1]. In both these studies as 

well in our own, liver related death including HCC was the third most 

common cause of death.  HCC is a major health problem worldwide, with 

more than 500,000 cases diagnosed annually [130].  Whereas the incidence 
of HCC has been increasing during the last 5 to 8 years, the survival of 

those affected has not changed significantly during the past two decades. 

With obesity and NAFLD becoming more and more common, with 
enhanced prevalence among younger people, the associated rise in relative 

risk of mortality and terminal liver disease will be of considerable 

significance to public health in the future. In the current investigation, 
four subjects with NAFLD/NASH died of complications of cirrhosis, and 

five died of HCC. If NASH then is caused by obesity, insulin resistance 
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and sedentary lifestyle, it thus seems reasonable to recommend changes 

in lifestyle for all subjects with NAFLD. Of the nine subjects diagnosed 
with NAFLD and concomitant cirrhosis at the time of inclusion in the 

current study, only one remained alive.  

It seems as the prognosis for patients with NAFLD is highly dependent on 

the fibrosis stage in the biopsy. We found that when patients with 

cirrhosis or severe fibrosis are excluded from the group with bland 
steatosis, deaths attributable to either cirrhosis or liver cancer are much 

less common.  It has in shorter studies been shown that patients with no 

fibrosis at baseline only a few will develop end-stage liver disease [131, 

132], but one has to remember that fibrosis and NAFLD has a slow 

progression and it has been shown in a study with repeated liver biopsies 

[1] that out of patients with no fibrosis at baseline about 40% later at 

follow up about 10-14 years later have developed fibrosis. Perhaps 

younger individuals who get the diagnosis fatty liver without fibrosis, it 

even though the risk for end stage liver disease at the moment looks 

minimal, should be carefully followed up to reassure that they are not 

developing fibrosis later on.    

The scoring system developed by Kleiner et al. [15] combines the three 

parameters hepatic fat content, lobular inflammation, and ballooning, all 

of which contribute equally to the NASH score. Thus, a patient with 

pronounced steatosis and relatively moderate inflammation could receive 

the same NASH score as one with mild steatosis but intense inflammation 

and ballooning. One disadvantage to this scoring system is that it does not 

take fibrosis into consideration.  Another problem with the scoring system 

is that as no one yet knows what is driving the disease progression and 

the scoring systems equally weigh steatosis and inflammation, it is hard 

to say if the NAS score actually is of any value for the physician. Is it as 

discussed before steatosis and the fibrosis grade that are important to 
investigate for the disease progression and mortality or are inflammation 

of importance as well? Data available on prognosis based on NAS score is 
still limited [15, 133].  We found an increased amount of Kupffer cells in 
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the tissue of NASH patients and when activated, Kupffer cells release pro-

inflammatory and fibrogenic factors such as chemokines and cytokines 
[99]. One such cytokine is the transforming growth factor-  which then 

could stimulate the profibrogenic activity in HSCs. As mentioned in the 

introduction pro-inflammatory cytokines are controlled by pro-
inflammatory pathways such as c-Jun N-terminal kinase (JNK), which 

pathway has been linked to apoptosis and inflammation [100, 101]. In 

experimental NASH jnk knockout mice showed less hepatic inflammation 

and fibrosis which could be interpreted as that JNK1, in Kupffer cells, 

contributes to liver fibrosis by inducing chronic liver inflammation [102]. 

These experimental data thus links the development of fibrosis to 

inflammation elicited from Kupffer cell cytokine release. Proinflammatory 

cytokines  have been shown to be capable to induce ICAM1 expression on 

cell lines in vitro [134]. In non-NASH livers, we found that ICAM1 

expression is largely confined to sinusoidal lining cells with only faint 

staining on part of hepatocyte membranes. But in NASH or borderline-

NASH patients, ICAM-1 shows positive hepatocyte staining for the whole 

membrane. 

Another interesting finding in our study was that ICAM-positive cells 

largely were located in the areas of microvesicular fat deposits. Thus our 

data indicate that locally released cytokines might be more common in 

areas of microvesicular fat.  

Patients with NASH also had higher levels of sICAM-1 than patients with 

borderline NASH or non-NASH. This has been shown before [135] and it 

is also known that obese patients may have higher sICAM-1 than subjects 

with normal BMI [136, 137]. Interestingly, earlier studies also showed 
that sICAM-1 levels are elevated in alcoholic liver disease [138, 139] and 

it was possible to correlate to the severity of liver damage [140]. As noted 

earlier, whether the circulating levels of sICAM-1 originate from the liver 
is hard to say but we and others [135] have shown that NASH livers 

express elevated levels of ICAM-1. Whether or not sICAM-1 could be used 
as a new non-invasive tool to diagnose NASH needs to be studied further. 
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Previous work have demonstrated the presence of regulatory T-cells in 

liver diseases and it was found to be increased in inflammatory liver 
diseases such as autoimmune hepatitis and chronic hepatitis C [141]. Our 

findings are in line with those seen in other inflammatory liver diseases, 

since our patients with NASH had higher amounts of Tregs as compared 
to those having only fat without inflammation. However in a study where 

mice were fed high fat diet to induce liver steatosis, steatosis was 

associated with the depletion of hepatic Tregs and led to up-regulation of 

the inflammatory TNF-  signalling pathway [142]. Our finding with 

increased amount of Tregs is interpreted as a attempt to regulate the 

inflammation and may suggest an immunological disturbance, still 

leading to an increased inflammation in these livers. Tregs had in the 

experiment with high fat diet, an increased susceptibility to oxidative 

stress-induced apoptosis. After treatment with an antioxidant, Treg 

apoptosis was reduced; the number of hepatic Tregs increased and the 

liver inflammation decreased [142]. 

As mentioned in the introduction, hepatic iron excess is associated with 

insulin resistance [29] and also commonly observed in patients with 

NAFLD. There is contradictiory evidence that hepatic iron may play a role 

in the pathogenesis of NAFLD/NASH. Some studies have shown abnormal 

serum ferritin and/or transferrin saturation and elevated hepatic iron 

concentration in NASH [143]. George et al. have proposed the hypothesis 

of iron related liver injury in NASH [32]. They showed that 41% of 

patients in their study had increased hepatic iron and above 20% had 
hepatic iron concentrations in the upper limit of normal. They also showed 

that the increased hepatic iron content was associated to the severity of 

fibrosis. Others have reported high frequencies of hyperferritinemia and 
increased hepatic iron in NASH patients [144]. Serum levels of an 

indicator of oxidative stress (TRX) were increased and in proportion with 

the hepatic iron load. These findings suggest that iron could be a cofactor 
for the oxidative stress in NASH by enhancing the lipid peroxidation and 

fibrogenesis in NASH.  In contrast to this, many others [145-148] have 
shown that only a minority of NASH patients have significant iron 
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accumulation. Nor did they find a connection between iron overload and 

aggressive histological, clinical outcome or degree of fibrosis. From these 
results the authors draw the conclusion that increased serum ferritin in 

NASH is a non-specific effect of hepatic necroinflammation. Ferritin is 

known to increase in serum when it is released from damaged 
hepatocytes. It is also possible that increased serum levels of ferritin come 

from iron-independent oxidative stress such as free fatty acid lipid 

peroxidation and cytokine release. 

In our second paper on iron regulatory genes we aimed to establish if iron 

metabolism is altered in mice with liver steatosis. Instead of finding 

increased hepatic iron in our mice with fatty liver we actually found less. 

We conclude that iron probably does not play a significant role in the 

development of NAFLD and NASH in our models. We interpreted our 

results from gene expression assays to be an effect of systemic 

inflammation from the adipose tissue. Ob/Ob mice have excessive amount 

of fat tissue and increased IL-6 levels in the blood circulation [149], which 

could explain the increased hamp1 expression in their livers. IL-6 increase 

may trigger an up-regulation of the IL-6/STAT3/HAMP signalling-

pathway which results in increased hepcidin levels and a decreased 

uptake of free iron, in line with a recent publication by Fatih et al [150]. 

Animals with less fat tissue did not show the same alterations. Thus, in 

conclusion we suggest that the increased ferritin levels seen in this 

animal model of fatty liver do not reflect a true iron overload but rather a 

chronic inflammation, since ferritin also acts as an acute-phase reactant. 

This chronic inflammation thus displays high levels of IL-6 and hepcidin. 

In humans the clinical picture is more complex. Indeed, many NAFLD 

patients with hyperferritinemia have signs of chronic inflammation and a 

normal iron content of the liver, whereas others have an increased liver 

iron content, the so-called insulin-resistance hepatic iron overload. The 

serum levels of hepcidin in these two subgroups of hyperferritinemic 

NAFLD patients are presently unknown. 
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NCAM only had an effect on BDL induced fibrosis. Fibrosis plays a central 

role when predicting the prognosis of NAFLD patients. NCAM is as 
earlier mentioned, associated with fibrosis in liver, heart and kidney [87-

89]. NCAM) is expressed by activated hepatic stellate cells (HSC), portal 

fibroblasts, cholangiocytes and hepatic progenitor cells during liver injury 
and has a functional role in liver disease and fibrogenesis. By performing 

repeated injections of CCl4 we aimed to induce a similar type of damage 

that can be seen in NAFLD, although necrosis becomes more severe in the 

animal model chosen compared with that seen in human NASH.  NCAM 

appears to play a role in liver fibrosis induced by cholestasis since mice 

lacking NCAM experienced less collagen and fibrinogen deposition. 

Periportal fibroblasts are major contributors of fibrosis induced by 

cholestasis and HSC, even though they are activated, to a less extent, 

contribute with matrix deposition [125, 151, 152]. The loss of NCAM could 

be associated with an increased vulnerability to cholestasis since mice 

lacking NCAM, after bile duct ligation, showed increased amount of bile 

infarcts and increased serum billirubin. HSC migrate in biliary fibrosis 

towards the portal areas were they contribute to fibrosis [151]. The 

impairment of activation of NCAM deficient HCS supports the hypothesis 

that NCAM is important for the differentiation of HCS and possibly other 

cell types to fibrogenic cells in the injured liver. How NCAM modulates 

fibrogenesis is not clear. One possible mechanism is that NCAM takes 

place in integrin signalling and function [128, 153]. The integrin, Vb6 is 

a fibronectin receptor specifically expressed by epithelia, and it is induced 

in bile ducts concomitant with N-CAM after acute biliary obstruction. In 
mice mutant for 6, BDL-induced fibrosis was decreased and accompanied 

by impaired TGF-b signalling. In the livers of CCl4-treated mice, no 

expression of aVb6 on difference in fibrosis was seen. This raises the 
possibility that N-CAM contributes to fibrosis through interaction with 

integrin functions. The similar effects caused by loss of NCAM and 

abolished integrin function or signalling in in vitro studies of liver fibrosis 
and activation of HCS suggests a connection between integrins and 

NCAM in liver fibrogenesis. 
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6 GENERAL CONCLUSIONS 
(Study I) Of subjects with elevated liver function tests 46%, was due to 

NAFLD. Patients with NAFLD were at increased relative risk of death 

compared with the general Swedish population. We saw that patients 
with fatty liver, to a higher extent than the normal population died from 

liver related causes. Liver disease was the third most common cause of 

death among patients with NAFLD.  

(Study II) Exposure to pro-inflammatory cytokines in vitro did not show 

great effect on the iron regulatory genes in either of the mouse model. 

However, there was an increased hamp1 expression in obese mice (ob/ob-

mice) that appear to be caused by up-regulation of IL-6, STAT3, Hamp1-

pathway, indicating systemic inflammation. Hepatocytes from mice with 

liver steatosis were more sensitive to cell damage in response to oxidative 

stress than control animals. 

(Study III) Hepatocytes with microvesicular steatosis seemed to be more 

affected by inflammation than hepatocytes with macrovesicular fat as 

shown by expression of more ICAM-1 on the cell surface. In liver tissue 

from NASH-patients, we found an increased number of regulatory T-cells 

(e.g. Foxp3+ cells) and an increased area of CD68 cells compared to non-

NASH controls. This indicates an involvement of both the innate and the 

adoptive immune systems  

(Study IV) Loss of N-CAM does not result in decreased hepatic fibrosis in 

animals exposed to hepatocellular damage whereas it did in mice 

subjected to BDL. HSC isolated from N-CAM null mice showed impaired 

activation in vitro. This indicates a role of N-CAM in liver fibrosis caused 

by bile duct damage. 
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7 POPULÄRVETENSKAPLIG SAMMANFATTNING 
Syftet med avhandlingen var att utreda varför fett i levern orsakar svår 

leverskada hos vissa personer. Fett i levern har tidigare ansetts vara 

relativt ofarligt under förutsättning att det inte varit orsakat av 
överkonsumtion av alkohol. Idag är fettlever den vanligaste orsaken till 

leversjukdom i världen. Fettlever är en bred term och inkluderar allt från 

enkel fettinlagring till leverinflammation och bindvävsbildning.  

I första arbetet fann vi att personer med fettlever hade en ökad risk att dö 

under uppföljningstiden jämfört med normalbefolkningen. Om personerna 

dessutom hade en leverinflammation ökade risken ytterligare. I Sverige 

ligger leverrelaterad dödlighet på 11:e plats som dödsorsak men hos 

patienter med fettlever är leverrelaterad dödlighet tredje vanligaste 

dödsorsak. 

Ökad järninlagring i levern hos personer med fettlever är relativt vanligt. 

I arbete två studerade vi hur järnomsättningen förändras då isolerade 

leverceller från feta möss utsattes för inflammatoriska stimuli eller fria 

radikaler. Hos feta möss fann vi ökat uttryck av den gen i levern som 

minskar järnupptag från tarmen. Den ökade mängden järn i levern vid 

fettlever beror troligen således inte på ett ökat upptag av järn från 

tarmen, utan på en ökad cellskada med lokal ansamling av järn. 

I vår tredje studie har vi undersökt inflammatoriska molekyler i levern 

vid fettlever. Vi visar att levrar med inflammation och mikrofett i 

levercellerna uttryckte fler inflammatoriska markörer. Patienter med 

leverinflammation hade också ökad mängd av inflammationsmolekylen 

ICAM-1 i serumprover.  

Det fjärde arbetet handlar om bildandet av ärrvävnad i levern. 

Adhesionsmolekylen NCAM uppträder vid leverskada hos celler som 

medverkar i läkningsprocessen och bildandet av bindväv. Med hjälp av 

möss som saknar molekylen N-CAM kunde vi se att den typen av skada 

som uppkommer vid fettlever, nämligen hepatocytskada, inte är beroende 
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av molekylen N-CAM. N-CAM verkar snarare ha en påverkan på 

gallgångsceller och den typen av skada ses normalt inte hos 
fettleverpatienter.  
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