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“Life is like riding a bicycle. To keep your balance you must keep moving.” 
 
    Albert Einstein 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    To my family.





ABSTRACT 

Rheumatoid arthritis (RA) is a common chronic inflammatory disease affecting 

peripheral joints in approximately 1% of the world population. Immunization of 

susceptible strains with CII, leads to development of collagen-induced arthritis (CIA), 

an animal model for RA. The aim of this thesis was to investigate mechanisms involved 

in regulation of immunological T-cell tolerance in CIA by studying availability of joint-

specific CII for presentation to autoreactive T cells in healthy as well as pathological 

settings.  

This work shows that transgenic expression of heterologous CII can inhibit 

expansion and Th1/Th17-skewing of antigen-specific T cells upon immunization with 

heterologous CII. The strength of tolerance induction was found to be dependent on the 

abundance of the self-antigen, the genetic background of the mice, as well as the 

presence or absence of posttranslational modifications on CII. Data indicate that joint-

specific antigens are readily available for presentation in draining lymph nodes to 

induce immunological tolerance. Furthermore, a defect in thymic tolerance induction 

suggests that certain CII modifications are presented differentially depending on the 

location in the organism (Paper IV).  

To obtain these results, established mouse systems were refined by generating a 

T-cell receptor specific antibody (Paper I) or by breeding diverse mouse and human 

transgenes on genetic backgrounds with different susceptibilities (Paper II & III).  

Even though it is accepted that T cells play an important role in arthritis 

development, it remains controversial where and how they contribute to pathogenic 

mechanisms after loss of tolerance. In summary, this thesis describes a series of new 

mouse models that will aid to further elucidate the arthritogenic action of T cells in 

disease relevant sites. This will hopefully enlarge the mechanistic framework for 

further investigation of human disease pathogenesis, which might lead to new 

therapeutic strategies to promote self-tolerance in diseased individuals. 
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INTRODUCTION 

Organisms are constantly challenged by pathogens encountered in the air, food 

and water or by malignancies of cells within the individual itself, i.e in cancer. To fight 

these exogenous and endogenous dangers, a complex defense system has developed 

which can be divided into two lines, the more primitive innate immune system and the 

highly evolved adaptive immune system. These two lines of defense work in concert to 

provide a high degree of protection for vertebrate species. 

Innate immunity confers immediate non-specific protection against a majority 

of the pathogens that we are confronted with, and consists of several protective 

features. First, the skin and the mucosal surfaces are the primary line of defense against 

intruders. Behind this strong barrier enforced with anti-microbial enzymes, a number of 

phagocytic cells, such as blood monocytes, neutrophils and tissue macrophages engulf 

cellular debris and microbes from infected tissues. Pattern-recognition receptors (PRRs) 

on the surface of these cells recognize a variety of evolutionary conserved microbial 

products, such as LPS, double-stranded RNA or flagellin, which are also called 

pathogen-associated molecular patterns (PAMPs). Engagement of these receptors 

activates antigen-presenting cells and initiate phagocytosis of the invading pathogens. 

The complex cell machinery breaks down and processes the pathogenic structures to 

finally present them to the second line of defense, the adaptive immunity. A key feature 

of the adaptive immune system is its memory, exerted through highly antigen specific 

T cells and antibody producing B cells allowing a rapid elimination of pathogens upon 

re-infection.  

A major challenge for the immune system is to distinguish between foreign and 

self, which can have very similar structures. During cell development, T-cell and B-cell 

receptors undergo random rearrangements of receptor genes generating a gigantic panel 

of specificities. These include both receptors binding to pathogens that might not have 

been encountered yet as well as receptors with potential self-specificity. These self-

reactive cells can induce an attack against the host if a favorable inflammatory 

environment is provided and cause what is termed autoimmunity. However, thanks to 

diverse regulatory checkpoints, several factors have to coincide for autoimmune disease 

to be induced. Nonetheless, around 5-10% of the world population is suffering from 

autoimmune disorders [1, 2] causing chronic morbidity and disability, which becomes a 

burden to healthcare systems around the world.  
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Rheumatoid arthritis (RA) is one of the most common autoimmune diseases 

affecting approximately 1% of the population worldwide [3]. There are multiple 

mechanisms leading to RA, some of which have been found and further investigated in 

animal studies. My thesis is aiming at shedding light on factors and mechanisms 

involved in regulation of immunological T-cell tolerance in CIA, a common animal 

model for RA. More specifically, in the presented work the interaction of the immune 

system with CII, the major protein in joint cartilage, has been studied to better 

understand the availability of joint-specific antigens for presentation to autoreactive T 

cells in healthy as well as pathological settings. To prepare the reader for the discussion 

of the findings made within this thesis, this introduction will first shortly describe 

general aspects of T cell tolerance and then give an overview on RA and its animal 

model CIA, the main model used in my thesis. 
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IMMUNE TOLERANCE 

To prevent autoimmunity, lymphocytes undergo tolerization processes ensuring 

that functional receptors are being expressed on the cell surface without being 

responsive for self-antigens. Regarding T cells, tolerance induction takes place at two 

different maturation states. First, the T-cell precursors undergo a selection process in 

the thymus, referred to as central tolerance, where the majority of the self-reactive T 

cells is deleted. However, this process is not absolute because in some cases potentially 

pathogenic self-reactive T cells were found to escape central tolerance. Therefore a 

series of different peripheral tolerance mechanisms are coping with these mature T cells 

to avoid activation and immunopathology.  

 

CENTRAL TOLERANCE 

The thymus is the site of T-cell development and maturation. A three-

dimensional sponge-like network of epithelial cells, dendritic cells (DC) and 

macrophages build the educational matrix for T cells. At first, a small number of T-cell 

progenitors being negative for the co-receptors CD4 and CD8 enters the thymus. Upon 

expression of the recombination activating gene (RAG), T cells begin to rearrange their 

T-cell receptor (TCR) β loci. In the case of conventional αβ-T cells, a rearranged TCR 

β-chain is eventually jointly expressed with a surrogate pre-TCR α-chain. A functional 

pre-TCR provides the double negative (DN) T cells with a survival signal, inducing 

massive proliferation together with upregulation of CD4 and CD8 and rearrangement of 

the TCR α loci [4]. After this “β-selection”, the motile CD4+CD8+ double positive cells 

migrate to the cortical region where the positive selection takes place. This process, is 

responsible for creating a self-MHC-restricted T-cell repertoire by ensuring that only 

those T cells survive, which recognize self-MHC molecules [5]. Low affinity TCR 

engagement induces survival and further maturation whereas TCRs with no or too low 

affinity for self-peptide-MHC complexes die by neglect [6]. Positively selected T cells 

ultimately develop into either CD4 or CD8 single positive cells, depending on their 

specificity for MHC class II or I, respectively. In addition, RAG transcription is 

suppressed to prevent further rearrangement of TCR genes [7]. 

In a next step, potentially autoreactive single positive (SP) T cells are deleted by 

negative selection in the thymic medulla. T cells that bind with high affinity to self-

peptide-MHC complexes are deleted by apoptosis [8]. Presentation of self-antigens by 
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thymic APCs occurs if the particular antigens are either expressed in the thymus [8] or 

transported from the tissue of origin into the thymus [9, 10]. Interestingly, it was shown 

that the thymic medulla, and more specifically the medullary thymic epithelial cells 

(mTECs) are capable of expressing a large spectrum of tissue-restricted antigens 

(TRA). Thus the mTECs can drive negative selection of antigens that would otherwise 

be secluded in specific organs or only secreted in specific situations [11-14]. Thymic 

expression of a wide array of TRAs is dependent on the transcription factor 

autoimmune regulator (Aire) and Aire-deficiency leads to organ-specific autoimmune 

disease [15, 16]. However, mTECs by themselves are poor mediators of negative 

selection [17] and partly have to rely on cross-presentation by bone-marrow derived 

DCs for which they act as a TRA pool [18]. In addition, SP CD4+ and CD8+ 

thymocytes were shown to reside in the medulla for up to 2-3 weeks and so enable the 

scanning of a multitude of self-antigens on thymic APCs [19]. 

The process of positive and negative selection is controlled by a delicate 

balance of affinity of the TCR and the avidity of interactions, meaning the number of 

TCRs in contact with self-peptide-MHC complexes [20, 21]. Differential activation and 

localization of signaling molecules in the cell defines a very narrow affinity threshold, 

which determines the selection outcome for a given TCR specificity [22]. This means 

that self-reactive T cells have only a very small window to potentially escape negative 

selection. On the other hand, it has also been shown that strong selection of a TCR can 

drive thymocytes towards differentiation into the regulatory T cell lineage (Treg). The 

exact molecular mechanisms are not understood yet. It seems that not only the affinity 

threshold of the TCR/self-peptide-MHC interaction may induce either Treg 

differentiation or clonal deletion, but also the actual expression pattern of co-

stimulatory molecules on APCs, and the cytokine environment [23].  

Nonetheless, negative selection is incomplete because circulating T cells that 

are reactive with self-antigens in peripheral blood are detect in organ-specific 

autoimmune diseases, such as type I diabetes and multiple sclerosis (MS) [24, 25]. 

Moreover, autoreactive T cells, such as CII-specific T cells, can be found in healthy 

individuals, indicating that additional mechanisms in the periphery suppress the onset 

of autoimmune disease. 
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PERIPHERAL TOLERANCE 

Thymic selection effectively deletes premature T cells that express TCRs with 

high affinity for self-peptide-MHC complexes. Therefore, peripheral tolerance 

mechanisms are critical to keep mature T cells bearing TCRs with relatively low 

affinity for self-peptide-MHC complexes under control. This was recently shown in an 

elegant study using double-transgenic mouse model expressing a TCR β-chain 

originating from an ovalbumin (OVA)-specific CD8+ T cell in concert with a rat insulin 

promoter-dependent and membrane-bound OVA transgene exclusively expressed in the 

pancreas, the kidney and in mTECs [26]. The advantage of using a transgenic TCR β-

chain is to allow rearrangement with endogenous TCR α-chains resulting in a 

detectable polyclonal CD8+ T cell population with heterogeneous affinity for OVA-

MHC (A similar strategy was used in paper I [27] included in this thesis, although in a 

different context). Thus, although low-affinity OVA-MHC-specific CD8+ T cells could 

be detected in the periphery in relatively high numbers in these mice, no signs of 

diabetes appeared in naïve as well as virus or Listeria-infected mice. Infecting these 

mice with Listeria monocytogenes genetically modified to express the OVA sequence 

resulted in rapid development of diabetes driven by low-affinity CD8+ effector T cells. 

This demonstrates that the interplay between central and peripheral tolerance is 

eliminating or keeping T cells in check that could potentially be primed with 

endogenous levels of TRAs. If, however, higher levels and/or mimic of self-antigens 

activate these T cells the system fails and autoimmunity can develop. Some examples 

of overlapping mechanisms of peripheral tolerance will be described below, including 

ignorance, clonal anergy and clonal suppression. 

Clonal ignorance is achieved when the expression site of the autoantigen is 

anatomically separated from potentially autoreactive cells or when the antigen is 

inappropriately presented for immune activation. Naïve T cells are circulating from 

blood to secondary lymphoid organs, and back to the blood through the efferent lymph. 

It is basically only in the secondary lymphoid organs where the naïve T cells scan 

interdigitating DCs for the presence of pathogen-derived peptide-MHC complexes. 

Hence, they are secluded from non-lymphoid peripheral tissues, where the chance of 

encountering a tissue-resident cell that expresses sufficient levels of TRA is higher. To 

illustrate this, naïve TCR-transgenic lymphocytic choriomeningitis virus (LCMV) 

glycopeptide specific CD8+ T cells remain unresponsive to pancreatic islet cells 

engineered to express the LCMV glycoprotein [28]. Despite the presence of 
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autoreactive T cells, these mice do not develop diabetes. However, infection of these 

mice with LCMV results in priming and infiltration of the autoreactive CD8+ T cells 

into the pancreas, that target the β cells. 

The situation changes once the naïve T cell has encountered its antigen. The 

engagement of the TCR and the co-stimulatory molecules with peptide-MHC 

complexes on APCs mediate activation and maturation of the naïve T cells. 

Upregulation and downregulation of defined receptors and molecules follows, which 

change the circulation pattern of the antigen-primed T cells. They now migrate through 

most tissues of the body, preferentially to local sites of inflammation, thereby 

increasing the risk of encountering sites with high TRA expression. However, this does 

not necessarily lead to immune activation because T cell unresponsiveness (anergy) 

occurs when T cells are activated by APCs through TCR engagement in absence of co-

stimulatory signals, including for example B7/CD28 pathway [29]. An APC type of 

major importance in regulation of immune responses is the dendritic cell (DC). 

Different types of DCs are found in different tissues and they act as sentinels detecting 

“danger signals” by constantly processing available antigens through MHC class II 

complexes or MHC class I complexes as a result of cross-presentation [30]. This 

ensures that debris from apoptotic and necrotic cells but also pathogen-derived proteins 

will be presented to T cells upon DC maturation. Activation of Toll-like receptors 

(TLRs) by microbes or necrosis, and proinflammatory cytokines are ways of triggering 

DC maturation [31]. Subsequently, DCs up- and downregulate a battery of molecules 

that influences their migration pattern, the co-stimulatory capacity, and secretion of 

proinflammatory cytokines. However, if this maturation is incomplete DCs adopt a 

tolerogenic phenotype instead. An illustration of this comes from a study, where DCs 

were given the experimental antigen hen egg lysozyme (HEL) without inducing 

maturation, i.e. there was no detectable upregulation in MHCII and CD80 expression 

[32]. When these semi-mature DCs stimulated naïve HEL-specific TCR-transgenic 

CD4+ T cells, initially there was a proliferative expansion. However, a coupe of days 

later most of these HEL-specific CD4+ T cells had disappeared and the remaining cells 

were refractive to additional HEL stimulation. In summary, these data suggest that in 

the absence of “danger”, lymph node and spleen resident DCs can induce tolerance by 

functionally inactivating T cells that ultimately can lead to peripheral deletion from 

secondary lymphoid organs where their cognate antigen is presented.  
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Co-stimulatory molecules, including CTLA-4 and PD-1 on T cells have also 

been shown to be crucial in controlling immune responses in the periphery. CTLA-4 

deficient mice were found to develop spontaneous lymphoproliferation and 

autoimmunity [33]. CTLA-4 downregulates immune responses after the acute phase by 

outcompeting CD28 for binding to the costimulatory molecules CD80/86 on APCs [34, 

35], thus slowing down proliferation and expansion of effector T cells. CTLA-4 also 

prevents activation induced cell death (AICD) by inhibiting upregulation of FasL [36], 

which allows memory T cells to remain in the system. An alternative function for 

CTLA-4 in T cell downregulation may be through the interaction with CD80 on DCs, 

which can induce production of indoleamine 2,3-dioxygenase (IDO). The catabolizing 

enzyme IDO depletes the essential amino acid tryptophan from the surrounding tissue 

and strongly inhibits naïve T cell activation [37]. IDO-expressing DCs can promote 

Treg differentiation and induce PD-1 expression on Tregs to allow bystander 

suppression [38].  

PD-1 appears to be expressed in different developmental stages of T cells as 

well as on a variety of other immune cells. PD-1 promotes both Treg development and 

function and maintains T cells in an anergic state [39]. For example, PD-1 seems to 

block inhibitors of cell migration that are required to allow T cells to engage activating 

TCR contacts with APCs [40]. Blocking of PD-1 and its ligand PD-L1 repressed T cell 

migration and prolonged T cell-DC contact, which triggered TCR signaling and 

enhanced T cell cytokine production. The result of this treatment was reactivation of 

anergic T cells leading to impaired peripheral tolerance with development of type I 

diabetes. In summary, data suggest that CTLA-4 signaling may terminate proliferation 

and promote anergy induction, whereas PD-1 ligation controls previously tolerized 

autoreactive T cells in the periphery by keeping them in an anergic state. 

Clonal suppression is mediated by different subsets of Tregs, such as natural 

killer (NK) T cells, CD8+ and CD4+ T cells. Most attention has been given to the 

CD4+Foxp3+ Tregs that are divided into natural Tregs, mostly generated in the thymus, 

and induced Tregs, whose differentiation from naïve T cells is driven by TGF-β in the 

periphery [41]. The importance of Foxp3 in Treg development and function has been 

illustrated with the scurfy mouse, which harbors a loss of function mutation in the 

FOXP3 gene [42]. Similarly as in humans with IPEX (Immune 

dysfunction/Polyendocrinopathy/Entheropathy/X-linked; also mutated in FOXP3 

gene), these mice suffer from fatal autoimmune lymphoproliferative disease [43]. The 
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mode of action of Tregs is to suppress the activation of T cells by direct cell-to-cell 

contact and by secreting anti-inflammatory cytokines, including IL-10 and TGF-β. A 

major molecule involved in cell-cell-contact is CTLA-4, which is constitutively 

expressed on murine Tregs [44, 45]. The direct interaction of CTLA-4 on Tregs with 

CD80/86 on DCs may block DC accessibility to effector T cells [46], modulate DC 

phenotypes by inhibition of CD80/86 upregulation on immature DCs that experience 

antigenic stimulation, or downregulate the expression of CD80/86 on mature DCs [47]. 

Furthermore, as mentioned previously, interaction of the Treg CTLA-4 with CD80/86 

on DCs may also induce IDO production in the DCs, thereby depriving the surrounding 

with the essential amino acid tryptophan [37, 47]. Foxp3+ Tregs were also shown to 

deplete the surrounding of IL-2, upon which they are highly dependent on for their 

survival [48]. Taken together, the data on regulatory T cells that has accumulated over 

the last decade suggests a key role of Tregs in peripheral self-tolerance and immune 

homeostasis. 

Most of our knowledge about tolerance has been established in TCR transgenic 

systems. However, it is unclear to which extent these findings can be applied to 

physiological polyclonal conditions, where clonal populations of naïve T cells have 

been estimated to be much smaller [49]. It is easy to imagine that a massive increase of 

precursor frequencies of a given antigen specific transgenic T cell and the level of 

expression of the cognate antigen in a host can distort the picture. Therefore, it may be 

that some observations on incomplete tolerance or even autoimmunity originating from 

double transgenic animal systems are artifacts from an overburden of the natural 

tolerance mechanisms. 

 

AIRE IN TOLERANCE INDUCTION 

Discovery of AIRE in humans 

The autoimmune regulator gene (AIRE) was first positionally cloned in 

autoimmune polyendocrine syndrome type I (APS I) and autoimmune 

polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients [50, 51]. 

The disease APECED is rare and characterized by a set of three syndromes including 

chronic mucocutaneous candidiasis, hypoparathyroidism, and Addisons’s disease. 

Often APECED patients develop additional clinical manifestations, such as thyroiditis, 

type 1 diabetes, ovarian failure, alopecia or hepatitis [52]. APECED is characterized by 

circulating autoantibodies against self-antigens expressed in affected tissues. Most 
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autoantibodies have been found to be specific for enzymes in neurotransmitter and 

hormone synthesis [53]. Recently, antibodies against IFN-α subtypes and IFN-ω have 

also been discovered, which are thought to be valuable diagnostic markers for 

APECED [54]. Despite being a monogenic disease, there is a striking variation in 

clinical symptoms in patients suffering from APECED, even in twin-siblings with 

identical mutations, suggesting that additional genes and/or environmental factors 

might be involved. However, since the available studies on APECED are based on 

small patient numbers from genetically isolated groups it is difficult to pinpoint these 

factors. 

After the discovery of the Aire gene in humans, the mouse models for APECED 

were created [15, 16, 55-59]. All these Aire-deficient mice have greatly contributed to 

the understanding of AIRE function.  

 

Role of Aire in central tolerance 

Aire has a major role in the negative selection of T cells by inducing TRA 

expression in mTECs [15]. This was confirmed in studies using transgenic mice 

harboring transgenic T cells specific for a defined antigen, which was expressed under 

the Aire-regulated insulin promoter [60, 61]. In Aire-deficient mice, there was an 

increase of antigen specific T cells in the periphery due to impaired deletion in the 

thymus [62, 63]. In addition, Aire was shown to exert its effect in a dose dependent 

manner, where AIRE homozygous mice displayed a less efficient thymic deletion than 

AIRE heterozygous mice [64]. Surprisingly, it also appeared that next to regulating the 

expression of TRAs in mTECs, AIRE had an additional function in thymocyte deletion. 

This became clear when negative selection of antigen specific T cells was impaired in 

Aire-deficient mice even though the antigen was normally expressed in the thymus 

[61]. Correspondingly, other Aire-deficient mice displayed circulating antibodies 

against the self-antigens α-fodrin [55] and pancreas-specific protein disulfide isomerase 

[58] that are expressed in the thymus in an Aire-independent manner. In both of these 

studies the autoantibodies did not seem to be pathogenic but reflected B cell activation 

through primed and expanded T cells. 

Data supporting alternative roles of Aire in tolerance induction revealed that a 

whole battery of additional genes is expressed under the control of Aire that is not 

linked to expression of peripheral-tissue antigens. Many of these loci encoded proteins 

involved in antigen processing/presentation and thymocyte trafficking (chemokines and 
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cytokines) [61]. These changes might very well influence thymocyte access and 

attachment to mTECs, as illustrated by the reduced expression of the chemokine 

CCL22 in Aire-deficient mTECs [61]. CCL22 is required to attract thymocytes to the 

medulla to finalize their maturation process [65]. In contrast, CCL19 and CXCL10 are 

upregulated in the Aire-deficient cortico-medullary junction and aid SP T cells to leave 

the thymus through the blood vessels [66]. Taken together, these reports indicate that 

Aire might play multiple roles in central tolerance. 

 

Role of Aire in peripheral tolerance 

Although Aire is principally expressed in the thymus, it has also been detected 

in peripheral tissues. The function of this expression in peripheral lymphoid organs has 

however been controversial [15, 67-69]. Two recent reports offered arguments in favor 

of a contribution of Aire in establishing peripheral tolerance. The first study identified a 

fraction of nonhematopoietic cells in the mesenteric lymph nodes that express Aire and 

a repertoire of TRAs, which were mostly overlapping with those of mTECs. 

Presentation of a transgenically targeted antigen by these stromal cells led to activation 

and subsequent deletion of T cells [69]. However, it was not investigated if the array of 

TRAs is Aire-dependent. The second study found stromal cells in peripheral lymph 

nodes, spleen, and Peyer’s patches, that expressed Aire and mediated deletion of 

autoreactive T cells [70]. The TRA repertoire in these cells appeared to be more 

restricted and overlapped only minimally with the TRA repertoire of mTECs. As in the 

first study, T cells encountering the transgenically targeted antigen on these stromal 

cells underwent activation followed by death. Whereas the first study proposed the 

peripheral tolerance to be a backup for central tolerance because of the overlapping 

TRA repertoires, the second study rather suggests a complementary role due to the 

mainly distinct TRA repertoires in the thymus and the periphery. 

Several reports have suggested a contribution of Aire to hematopoietic cells 

function in the periphery. Strikingly, Aire-deficient mice were found to have an 

increased proliferative response upon immunization with the foreign HEL antigen [16]. 

This might be caused by the increased number of peripheral APCs, which also display 

an altered phenotype in both Aire-deficient mice and APECED patients. These APCs 

expressed higher levels of vascular cell adhesion molecule-1 (VCAM-1), which in turn 

partly provided them with an increased ability to activate naïve T cells [71]. Also, aging 

Aire-deficient mice were found to develop increased levels of various autoantibodies, 
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marginal zone B-cell lymphoma, and liver infiltrates of B cells [72], indicating an 

overstimulation of B cells. This overt activation of B cells could be explained by recent 

findings showing that Aire is involved in regulation of the IFNγ signaling pathway in 

peripheral DCs. The absence of Aire leads to augmented signaling downstream of the 

IFNγ receptor and increased production of the cytokine B-cell-activating factor of the 

TNF family (BAFF) by the DCs. BAFF specifically binds to B cells and is required for 

maturation and plasma cell survival. Hence, the higher BAFF levels can explain the 

enhanced activation of B cells [73]. Taken together, the deficiency of Aire may lead to 

breakdown of several central and peripheral tolerance mechanisms. Therefore, Aire-

deficient mice provide a unique tool for investigating mechanisms behind autoimmune 

diseases. 
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RHEUMATOID ARTHRITIS 

Rheumatoid arthritis (RA) is a common chronic inflammatory disease affecting 

peripheral joints in approximately 1% of the world population. RA is considered an 

autoimmune disease because of the presence of autoantibodies such as rheumatoid 

factors (RF) and anti-citrullinated protein antibodies (ACPAs), which can be detected 

years before clinical manifestation of RA [74, 75]. As for many autoimmune diseases 

women are more affected than men. Furthermore, the incidence of RA generally 

increases with age. Compared to a healthy joint, a typical rheumatic joint features 

immune complexes in the articular cartilage layers and variable numbers of 

macrophages, T cells and plasma cells in the synovium, often accompanied by fibrosis 

and synovial hyperplasia. This condition leads to gradual destruction and deformation 

of the joint cartilage and the underlying bone in mostly hands, feet and spine. However, 

larger joints like knee and shoulder can also be affected, and in some cases extra-

articular manifestations in vasculature and organs such as the lung can be observed. 

The etiology of RA is largely unknown, but genetic factors as well as 

environmental factors are believed to increase the risk. First historical evidence for RA 

dates back several thousands of years and can be located to North America. 

Interestingly, the incidence of RA to date is still very high in this region and reaches up 

to 5% in certain groups [76]. The first signs of RA in Europe can be found in paintings 

of the 17th century created by Dutch artists, such as Van Gogh. However, about 300 

years had to pass from the first case report in the 17th century until RA was exactly 

defined and distinguished from diseases with similar symptoms, such as osteoarthritis, 

systemic lupus erythematosus, and others.  

 

RISK FACTORS OF RHEUMATOID ARTHRITIS 

Estimations from twin-studies revealed a 60% chance of inheritability of RA 

[77], showing that genetic factors have a high influence on the development of the 

disease. With a 30% contribution to the total genetic risk, the HLA (human leukocyte 

antigen) locus was found to be the most important. Within the HLA gene cluster, the 

HLA-DRB1 alleles encoding the β-chain of the class II molecule HLA-DR are 

associated with higher risk. A number of RA associated alleles share a conserved 

amino acid motif that constitutes an α-helical domain shaping one side of the antigen-

presenting peptide groove of the DRβ-chain. This motif, called the shared epitope, is 
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thought to be involved in presentation of arthritogenic peptides to T cells in different 

stages [78].  

PTPN22, a gene encoding the intracellular tyrosine phosphatase Lyp in 

lymphocytes, was also found to be associated with RA, however to a lesser extent than 

the HLA locus. A mutation in PTPN22 leads to a stronger negative regulation of T cell 

activation [79, 80]. This might result in a failure of deleting autoreactive T cells during 

thymic selection due to increased threshold for negative selection. Alternatively, it 

might influence the activation of Tregs and hamper suppressor functions [80]. 

Interestingly, the PTPN22 polymorphism was also shown to have effects on B cell 

numbers and the stimulation level through the B cell receptor [79]. 

Recently, a T cell-related RA associated SNP on STAT4 has been indentified in 

a North American population [81].  STAT4 is expressed in lymphoid and myeloid 

tissues and is a transcription factor involved in development of Th1 and Th17 responses 

[82].  

Apart from genetic factors, a number of environmental factors have been 

indentified as risk factors for RA. One of the most prominent environmental risks is 

smoking, which has been shown to correlate in a dose dependent manner with 

development of RF [83, 84]. An insteresting study also suggested that smoking might 

be inducing citrullination of proteins and by that formation of ACPAs in RA patients 

carrying the shared epitope [85]. Citrullination and other posttranslational 

modificiations will be discussed in more detail below. 

Infectious agents were also suspected to favor RA development. Up to 20% of 

early RA patients have serological indication for recent infection of for example 

Epstein-Barr virus (EBV) and Parvovirus or bacteria, such as Streptococcus, E. coli or 

Mycoplasma. However, none of these infectious organisms could be conclusively 

pinpointed as being the cause, indicating that the total infection status might be more 

important than a single agent in the early phase of disease [86].  

Advancing age is a strong and inevitable risk factor for developing RA [87] 

because the mean onset of disease is around the age of 50 and the incidence is 

increaseing with progessing age. The process of aging affects all aspects of immunity 

but especially the adaptive immune system. An aged immune system is less efficient in 

mouting adaptive immune responses through rapid clonal expansion of antigen specific 

T cells. Due to the reduced thymic activity in adults, the constantly diminishing 

lymphocyte pool is replenished by homeostatic proliferation of mature cells instead of 
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novel cell generation as in childhood. Firstly, this leads to faster senescence of the cells 

which is reflected in the shortening of the telomeric ends of chromosomes. 

Interestingly, RA patients have been shown to have a significantly older immune 

system than comparable healthy individuals and importantly, the age phenotype could 

be observed prior to arthritis onset [88]. Secondly, homeostatic proliferation occurs 

under selective pressure with potential loss of TCR diversity. Thus it can be 

hypothesized that lymphopenia, peripheral repertoire selection and reduced diversity 

provide prerequisites for autoimmune deviations [89]. Remarkably, senescent T cells 

have been shown to change their phenotype by downregulating co-stimulatory 

molecules, such as CD28 and CD40L and upregulating other stimulatory molecules 

including killer cell immunoglobulin-like receptors and others. Thus, senescent T cells 

inappropriately express a set of molecules that allows them to receive various 

unconventional costimulatory signals in the synovial membrane, which may be enough 

to maintain a chronic autoreactive T-cell response. 

 

PLAYERS IN ARTHRITIS PATHOGENESIS 

In RA, most of the aberrations of the immune system are systemic, but the main 

target organs in established disease are the joints. It is still unclear how this joint-

specificity is achieved. As mentioned earlier, an arthritic joint is characterized by 

synovial inflammation and destruction of joint cartilage and bone mediated by local 

production of proinflammatory cytokines and matrix metalloproteinases (MMP). The 

healthy synovium consists of a thin layer of macrophage-like and fibroblast-like 

synoviocytes. These cells ensure production of extracellular matrix, provide a smooth 

and low-resistance surface at the joint interface and allow diffusion of nutrients to the 

cartilage. The synovium in RA on the other hand, forms an inflamed invasive tissue 

packed with immunocompetent cells. T cells are the most abundant cells making up 30-

50% of the arthritic synovium with a majority being CD4+CD45RO+ memory cells and 

a small number being CD8+ cells [90]. Approximately 15-20% of RA patients have 

lymphoid follicle-like structures with germinal centres in the synovium that provide a 

potent milieu for antigen recognition by T and B cells presented by follicular and 

myeloid DCs [91]. The antigen presented in these structures does not need to be locally 

expressed, but can be caught by follicular DC from the bloodstream and transported 

into the synovial tissue by migrating DCs. Thus, the availability of such ectopic 

lymphoid structures may be an important factor in sustaining a self-directed immune 
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response in the tissue [92]. An additional layer covering the described cell groups is 

made up of infiltrating and activated macrophage-like and fibroblast-like cells. This 

intimal lining of the synovium produces a whole range of proinflammatory cytokines, 

chemokines and growth factors, which in turn activates the local fibroblast-like 

synoviocytes to produce cytokines such as IL-6 and MMPs. This inflammatory network 

recruits more cells to the joint including macrophages, osteoclasts and invasive 

fibroblast like synoviocytes, which shapes an invasive tumor like structure called the 

pannus with highly erosive effect on cartilage and bone structure. Interestingly, the 

pannus contains relatively few T and B cells (reviewed in [90]). 

 

DIAGNOSIS AND TREATMENT 

RA can be considered a collection of symptoms, differing in severity and 

progression. In a joint effort the American College of Rheumatology (ACR) and the 

European League Against Rheumatism (EULAR) have recently introduced a new set of 

classification criteria for RA [93] to replace the traditional classification criteria, which 

have been defined over 20 years ago [94] and are widely used in the clinics. Modern 

and early detectable serological (ACPAs and RFs) and acute phase parameters (ESR 

and CRP), which were shown to have high specificity for RA have been exchanged for 

older long term parameters such as radiographic detection of erosive joints. This should 

facilitate the identification of patients in early stage of disease whereby increasing the 

benefit from early therapeutic intervention. Over the past decade a set of disease-

modifying anti-rheumatic drugs (DMARDs) has greatly ameliorated disease symptoms 

in RA patients. In particular metothrexate in combination with TNF-α blockers has 

brought benefit to a subgroup of patients [95]. Other cytokine blockers are reaching the 

market, such as anti-interleukin (IL)-6 [96] and anti-IL-15 therapy [97] which have 

promising anti-inflammatory capabilities. Other successful therapy strategies are aimed 

at blocking T-cell co-stimulation with a recombinant protein comprising CTLA-4 fused 

to immunoglobulin (Ig), [98] or by B cell depletion with an anti-CD20 antibody [99]. 

Although these therapies are greatly alleviating symptoms and dampening disease 

progression, one has to keep in mind that they are not curing the disease. 

 

AUTOANTIGENS AND POSTTRANSLATIONAL MODIFICATION IN RA 

The first autoantigen that was suggested for RA has been immunoglobulins 

(IgG) because of the occurrence of rheumatoid factor (RF), an antibody reactive with 
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the Fc portion of IgG, in the serum and synovial fluid of RA patients [100]. However, 

RF is not specific for RA but can also be detected in other autoimmune diseases, 

infections and even healthy individuals. Therefore, it is unlikely that IgG is the 

pathogenic antigen driving the destructive autoimmune inflammation in RA. Other 

antigens of clinical relevance have been shown to be either ubiquitously expressed 

molecules, including glucose-6-phosphoisomerase [101], heterogeneous nuclear 

ribonucleoprotein-A2 [102], the stress protein BiP [103] or joint-specific proteins, such 

as aggrecan [104], human cartilage gp39 [105], and collagen type II [106]. Given the 

heterogeneity of clinical and pathological aspects of RA, it seems likely that different 

antigens are dominating in different subgroups of RA patients. 

Recently, it was discovered that a whole range of autoantibodies in RA patients 

was citrullinated protein-specific, including citrullinated fibrinogen, vimentin, 

fibronectin, α-enolase and again CII. The process of citrullination (deamination of 

arginine into citrulline) is a posttranslational modification occurring naturally on many 

different proteins and is necessary for physiological processes, such as gene regulation 

and brain development to name a few. However, apoptosis and inflammatory 

conditions, such as during RA, are thought to activate further pathologic citrullination, 

which allows for accumulation of citrullinated proteins. The exact implication of these 

proteins in the autoimmune pathology is not known. Nonetheless, ACPAs are of great 

value for diagnosis of disease because of their high specificity for RA (96%) [107, 

108].  

There is a plethora of posttranslational modifications and they are of major 

importance for the well functioning of an organism. They involve modification of 

amino acids (arginine/citrulline), addition of chemical groups (acetylation, 

phosphorylation) and sugar moieties (glycosylation), cleavage, and other changes on 

proteins. Stress conditions as inflammation can trigger production of radicals and 

reactive oxygen species that can induce various uncontrolled modifications. This has 

very important implications in autoimmune diseases, since these modifications may 

create neo-self-antigens against which the immune system is not tolerized [108]. 

Glycosylation of CII, an additional important posttranslational modification in RA and 

its animal model CIA, will be discussed in more detail below. 
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THE NEED FOR ANIMAL MODELS 

It is difficult to understand mechanisms of RA and to develop optimal 

treatments by studying the disease in humans although this would obviously be the 

most direct approach. Investigations on initial immune responses setting off the disease 

are basically impossible because at the time of diagnosis the subclinical disease course 

might have been going on without obvious symptoms for some time. Individual 

medication, enormous genetic and environmental variation between persons, and 

ethical issues on human experimentation are other drawbacks for this type of research. 

Therefore, animal models are helpful tools to circumvent some of these problems by 

controlling environmental conditions in animal houses and reducing genetic complexity 

by the use of inbred strains. Another advantage of using mouse models in particular is 

the possibility of generating knock-out/in and transgenic mice to test the molecule of 

interest in a given disease. However, one should not forget that none of the animal 

models for RA truly reflects the human disease, but the models imitate diverse features 

and can be used as tools to understand particular pathways.  

Many mouse models have been used to study the central role of CD4+ T cells in 

promoting and controlling crucial steps in autoimmune responses due to the strong 

linkage between MHC class II, CTLA-4, PTPN22, and RA. Among those, CIA is the 

most widely used animal model for RA. 

 

COLLAGEN-INDUCED ARTHRITIS 

CIA was first described over 30 years ago in rats, mice, and primates [109-111]. 

CIA is induced by intradermal injection of heterologous CII in adjuvant in susceptible 

animals. The effect of the immunization can be detected in the secondary lymphoid 

tissues some days later and three to six weeks after immunization mice develop arthritis 

with swelling and redness in the peripheral joints. In contrast to RA, murine CIA is 

mostly an acute inflammation, which resolves 2-4 weeks later whereas chronic 

relapsing disease is only observed in certain mouse strains after immunization with 

homologous CII [112-114], or rat CII with a subsequent booster injection [115], or in 

IL-4 deficient mice when immunized with heterologous CII in Incomplete Freund´s 

Adjuvant (IFA) [116]. As in RA, the inflammation starts with infiltration of 

macrophage-like (CD11b+) cells expressing high levels of MHC class II and CD4+ T 

cells into the marginal zone of the joint [117]. By the time when clinical arthritis 
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becomes apparent, edema formation is accompanied by massive infiltration of 

granulocytes. Finally, pannus tissue forms along the marginal zone by abnormal 

proliferation of activated macrophages, fibroblasts, T cells and DCs [118]. At this stage 

bone and cartilage destruction becomes apparent, as detected through the release of 

cartilage oligomeric matrix protein (COMP) in serum [119] and leads to deformed and 

stiff joints because of uncontrolled neo-formation of bone tissue.  

As for RA, susceptibility to CIA is genetically associated with the MHC class II 

region. Susceptible mouse strains express the MHC class II haplotypes H-2q or H-2r 

[120]. Unlike the shared epitope in humans, these two murine MHC molecules 

however do not share the same sequence specificity. Mice with the H-2q haplotype 

develop arthritis upon immunization with rat, bovine, human or chick CII. In contrast, 

H-2r expressing mice are more restricted and develop disease only after bovine and 

porcine CII immunization. Humanized transgenic mice expressing HLA-DR4 and DR1 

were shown to develop arthritis with a very similar CII binding pattern as the mouse H-

2q counterpart [121-123]. These data not only show that the mouse model shares many 

similarities with the human disease but also point to a direct link between the HLA-DR 

alleles associated with susceptibility to RA and the development of immunity to CII in 

RA patients. 

Other non-MHC genes have also been identified as regulating arthritis in 

murine CIA, including Ncf1. The Ncf1 gene encodes the p47phox protein of the 

phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex 

and has first been positionally cloned in rats [124]. Rats, carrying a certain Ncf1 

mutation that causes low production of reactive oxygen species (ROS), were shown to 

develop more severe arthritis caused by a changed oxidation status of arthritogenic T 

cells [125]. Similar results were obtained in mice with a comparable Ncf1 mutation 

[126, 127]. Thus, the reduced ROS production lowers the threshold for T cell activation 

and promotes CIA susceptibility. 

 

COLLAGEN TYPE II 

CII is the major component of hyaline cartilage and is exclusively expressed in 

the cartilage and the vitreous body of the eye. Chondrocytes are responsible for the 

production of CII. Between the actual synthesis of the three α1(II)-chains and the 

formation of the triple helical structure, CII is undergoing posttranslational 

modifications on defined amino acids [128, 129]. These include proline and lysine, 
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which can be hydroxylated when positioned N-terminally to glycine. In a next step, 

hydroxylysine can be further glycosylated in maximally two steps resulting in four 

different posttranslational variants: lysine (K), hydroxylysine (HyK), β-D-

galactopyranosyl-hyrdoxylysine (GalHyK) and α-D-glucopyranosyl-(1>2)-β-D-

galactopyranosyl-hyrdoxylysine (GlcGalHyK). However, the degree of hydroxylation 

and glycosylation of CII is varied and dependent on the functional state of the 

chondrocyte. 

 

The immunodominant T cell epitope in T cell tolerance 

In H-2q expressing mice, the immunodominant T cell epitope of CII has been 

identified and is located within the region of the residues 260-270 of CII (CII260-270) 

[130, 131]. This sequence is identical between rat, human, bovine and chick CII but 

differs in one amino acid at position 266 in mouse CII, where a glutamic acid on 

heterologous CII is exchanged for an aspartic acid in mouse [130]. This difference was 

found to critically influence the binding affinity to the MHC class II molecule and may 

offer an explanation as for why the heterologous CII is a stronger inducer of disease 

than the corresponding mouse CII peptide with the lower affinity [132]. In addition, 

this low affinity-binding between the self-CII peptide and the MHC molecule may 

represent a typical self-antigen that is recognized by autoreactive T cells escaping 

tolerance, as discussed above.  

Two different transgenic mice have been established expressing the 

heterologous CII260-270 epitope in a mutated mouse CII protein restricted in cartilage 

(MMC mouse) or systemically in type I collagen (TSC mouse). These constructs allow 

T cells in these mice to interact with self-CII and to become tolerized to the 

immunodominant T cell epitope present on heterologous CII. Consequently, only 

autoreactive T cells became activated in CII-primed MMC and TSC mice and 

differences between transgene-positive and transgene–negative mice were either 

directly or indirectly related to T cell tolerance. The data demonstrated that the immune 

system indeed interacts with self-CII under physiological conditions. However, this 

interaction did not necessarily lead to complete T cell tolerance and protection from 

CIA [133]. Instead, the level of T cell tolerance and CIA-susceptibility seemed to be 

influenced by the availability and the location of the antigen. TSC mice, which express 

the heterologous CII260-270 epitope more ubiquitously, were completely tolerized, 

whereas the MMC mice with the joint-restricted self-CII epitope expression exhibited 
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incomplete tolerance. CII-specific MMC T cells displayed a reduced proliferative 

capacity while still producing detectable IFN-γ levels and aiding B cells to produce 

class-switched anti-CII antibodies. Although MMC mice were less susceptible to CIA, 

some still developed arthritis with similar severity as non-transgenic littermates. 

Comparable results were also observed in transgenic mice expressing human CII in a 

cartilage-restricted fashion. Although reduced susceptibility to CIA after immunization 

with human CII was observed, some mice still developed arthritis [134]. 

Importantly, the MMC mouse model also revealed that posttranslational 

modifications of the CII260-270 epitope strongly influence the level of T cell tolerance 

to self-CII. More specifically, tolerance to self-CII in H-2q mice was found to primarily 

affect T cells specific for the non-glycosylated version of the CII260-270 epitope [135]. 

The remaining autoimmune response in MMC mice was strongly biased towards the 

galactosylated CII260-270 peptide, which was also correlated with the development of 

CIA in MMC mice [136, 137]. In line with the mouse data, RA patients expressing the 

shared epitope were also found to predominantly respond to the galactosylated CII260-

270 peptide [138].  

Initially, this suggested that the non-modified CII peptide would be more 

accessible in vivo in the MMC mouse for induction of T cell tolerance, compared to the 

galactosylated CII-peptide. However, CII prepared from both healthy rats and humans 

was found to be uniformly galactosylated [139, 140]. Furthermore, by crossing MMC 

mice with a TCR transgenic mouse specific for the hydroxylated CII-peptide it was 

shown that T cells remained unaffected, suggesting that the hydroxylated CII-peptide is 

not available for immune recognition and tolerance induction in the naïve MMC mouse 

[139]. Hence, it is still uncertain how or where partial tolerance to self-CII is induced 

and which posttranslational modifications of CII tolerize or trigger arthritogenic T cells. 

 

T CELLS AND B CELLS IN ARTHRITIS 

The role of T cells in both RA and CIA has regained interested with the 

discovery of IL-17, a T-cell derived proinflammatory cytokine involved in joint 

inflammation and destruction. Previously, RA and CIA were regarded as Th1-driven 

diseases supported by the predominance of IFNγ and a lack of Th2 cytokines, such as 

IL-4. Although not conclusively demonstrated, an active role for CII-specific T cells 

during clinical arthritis in CIA was indirectly supported by their presence in the arthritic 

joints [141, 142], and also a number of studies have shown amelioration of disease by 
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reducing Th1 cytokines [143-145] or increasing Th2 cytokines [145], which were 

found to antagonize Th1 cytokine production. However, determining the role of Th1 

and Th17 cells in mediating effector functions and regulating the initiation or 

progression of CIA and RA is challenging as the lymphoid response varies over time 

and in between lymphoid organs and the joints [146, 147]. The role of IFNγ and IFNγ-

signalling in CIA and other organ-specific autoimmune diseases is complex and has 

now been associated with both proinflammatory and anti-inflammatory functions [148-

153]. Furthermore, the prerequisite of an IL-12-mediated Th1 establishment in 

autoimmune inflammation was questioned in several studies [154-156]. It soon became 

clear that the heterodimer IL-12 (IL-12p40/IL12-p35) is sharing a subunit with IL-23 

(IL-12p40/IL-23p19) [157], which explained the discrepancy seen in the different 

knockout mice affecting the IL-12/IFNγ pathways, such as IFNγ-/-, IL-12p40-/-, and IL-

12p35-/- mice. Therefore, it appeared that many autoimmune mechanisms that 

previously had been attributed to IL-12 (CIA, EAE) were actually caused by effects of 

IL-23.  

Today, we know that IL-23 is required for expansion of the newly established 

Th17 cell subset and that a combination of the cytokines TGF-β, IL-6 and IL-1 is 

required for differentiation of these cells (reviewed in [158, 159]). IL-17 was shown to 

be important in development of CIA, since IL-17-/- mice were protected from disease 

[160]. The precise molecular effects of IL-17 in arthritogenesis are not well understood 

but it was found to be associated with the process of bone destruction. Th17 cells are 

thought to promote joint degradation by induction of MMPs and RANKL expression 

on T cells and synovial fibroblasts. RANKL and proinflammatory cytokines including 

IL-17, TNF-α, and IL-1 were found to drive osteoclast differentiation and bone erosion 

[161]. In addition, IL-17 was revealed to recruit neutrophils and monocytes by inducing 

various chemokines, which in turn mediate inflammation in RA [162]. However, other 

reports suggested that Th1 cells are more important than Th17 cells in inflamed joints 

of RA patients [163]. Also, the conclusion was drawn that Th1 and Th17 cells are 

relatively plastic, as shown in a mouse study where differentiated Th17 cells rapidly 

responded to IL-12 in vitro, by upregulating IFNγ production and downregulating IL-

17 expression [164]. Moreover, Th17 cells seem to be associated with Tregs, as 

suggested by the common use of TGF-β for induction and the close relation ship of the 

Th17-associated transcription factor RORγt and the Treg factor Foxp3 [159].  
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Besides producing proinflammatory and regulatory cytokines, T cells are also 

believed to provide help to B cells to produce autoantibodies in arthritis [165]. The RA 

synovium contains approximately 5% of B cells, which are thought to undergo clonal 

expansion triggered by antigen-driven maturation. This may lead to local production of 

RF, ACPAs, and anti-CII autoantibodies in many patients [90]. Interestingly, B cells 

also have a reciprocal role on T cells by regulating T-cell infiltration into the synovial 

tissue. This was concluded from experiments using severe combined immune 

deficiency (SCID) mice that were transplanted with RA-synovium and adoptively 

transferred with human RA T cell clones. Depletion of B cell originating from the 

transplant prior to transfer resulted in a diminished infiltration and activation of T cells 

[166]. In line with this, depletion therapy of B cells in RA patients using anti-CD20 

antibodies has a strong ameliorating effect on the arthritis symptoms [99]. Of note, RA 

patients frequently display antibody titers against CII, reminiscent of the observation 

made in mice during CIA. The transfer of human sera containing high levels of anti-CII 

antibodies can induce arthritis in mice [167]. Even though the role of these antibodies 

in human arthritis is unknown, these experiments suggest that the anti-CII antibodies 

have the potential to initiate an articular inflammatory response. In accordance with this 

potential function is the observation that anti-CII antibodies can be detected in RA 

cartilage, but not in osteoarthritic cartilage [168]. 

In CIA, several studies have revealed the importance of B cells in arthritis 

pathogenesis. Adoptively transferred CII-specific T cells alone were not potent enough 

to induce clinically apparent arthritis although microscopic changes in the joints were 

detected [169], and B-cell deficient mice were protected from CIA [170]. Moreover, 

arthritis could be induced in normal mice by injecting serum from arthritic mice or a 

cocktail of monoclonal anti-CII antibodies [171, 172]. Along with the fact that 

development of arthritis was only reported in mice immunized with native CII and not 

with the single immunodominant T cell peptide, this indicates that the availability of B-

cell epitopes on the administered CII is crucial for the production of arthritogenic anti-

CII antibodies that bind to the triple helical structure. 

Despite an obvious role of anti-CII antibodies in arthritis it is not clear which 

factors are important for antibody pathogenicity. Both genetically susceptible as well as 

non-susceptible mouse strains were reported to produce anti-CII antibodies, however 

the latter did not develop arthritis [152, 173, 174]. Data on this matter suggest that a 

combination of antibody specificity for various CII-epitopes, the antibody isotype and 
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the quantity of antibody strongly modulates disease induction [172]. These factors were 

shown to influence the interaction of the CII-antibodies with complement cascade 

components as well as with Fc receptors on phagocytes [175-177]. 
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PRESENT STUDY 

Paper I. Visualization and phenotyping of proinflammatory antigen-

specific T cells during collagen-induced arthritis in a mouse with a fixed collagen 

type II-specific transgenic T-cell receptor β-chain 

The use of TCR transgenic mice has proven a powerful tool for investigating 

the nature of self-reactive T cells in tolerance and autoimmunity. To investigate the role 

of antigen-specific T cells in CIA the Vβ12-transgenic mouse was previously generated 

[178]. This mouse expresses a transgenic TCR β-chain with specificity for CII, which 

may combine with any endogenous TCR α-chain, leading to increased immunity to CII 

and increased susceptibility to CIA [136]. However, the frequency and distribution of 

CII-specific T cells in the Vβ12-transgenic mouse has not been determined. 

 

The aim of paper I was to establish a system enabling identification of CII-

specific T cells in the Vβ12-transgenic mouse in order to determine to what extent the 

transgenic expression of CII-specific β-chain would skew the response towards the 

immunodominant galactosylated T-cell epitope and to use this system to monitor these 

cells throughout development of CIA. To this end we have generated and thoroughly 

characterized a clonotypic antibody, which recognizes a TCR specific for the 

galactosylated CII(260-270) peptide in the Vβ12-transgenic mouse. We found that the 

Vβ12-transgenic mouse expresses several related but distinct T-cell clones specific for 

the same galactosylated peptide. The clonotypic antibody could specifically recognize 

the majority of these. Clonotypic T cells occurred at low levels in the naïve mouse, but 

rapidly expanded to around 4% of the CD4+ T cells, whereupon the frequency declined 

with developing disease. Combinatorial analysis with the clonotypic antibody, the early 

activation marker CD154 (CD40L), and cytokine production revealed an early Th1-

biased response in the draining lymph nodes that would shift to also include Th17 

around the onset of arthritis. Data showed that Th1 and Th17 constitute a minority 

among the CII-specific population, however, indicating that additional subpopulations 

of antigen-specific T cells regulate the development of CIA. Thus, this study presents a 

new tool that will greatly facilitate further investigation of the different subsets of CII-

specific T cells during development and regulation of CIA at different time points and 

in different tissues, including joints. 
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Paper II. Breaking T-cell tolerance against self type II collagen in HLA-

DR4-transgenic mice and development of autoimmune arthritis 

RA is associated with DRB1-genes encoding HLA-DR1 and HLA-DR4 

molecules. Because of the presence of anti-CII specific autoantibodies and CII-specific 

T cells in many RA patients, CII has been proposed as a possible autoantigen in RA. 

Furthermore, the DR4 molecule in both humans and humanized DR4-transgenic mice 

presents almost the same immunodominant peptide to CII-specific T cells as the murine 

MHC class II Aq-molecule. Importantly, posttranslational modifications of the 

immunodominant T-cell epitope have a great impact on CII-specific T cell reactivity 

and may be a possible cause for the tolerance breakdown to self-antigens. To 

investigate T cell tolerance to self-CII, Aq- and DR4-expressing mice harbouring a 

transgene for heterologous CII (of rat or human origin) have been established earlier 

[133, 136, 138]. Upon immunization with heterologous rat CII, the Aq-expressing mice 

display incomplete tolerance to self-CII, characterized by reduced proliferative T cell 

response to CII while retaining their ability to produce proinflammatory cytokines and 

giving B-cell help. However, DR4-transgenic mice expressing human CII in a 

cartilage-specific manner would exhibit total tolerance to self-CII without any signs of 

arthritis. However, to be able to study the interaction of the immune system with joint-

derived self-antigens and the impact of posttranslational modifications in establishing 

immunologic tolerance, it is favourable to have a weaker tolerance effect in the 

humanized system. 

 

Therefore, efforts have been made in paper II to establish a new animal model 

in DR4-transgenic mice in which T-cell tolerance to self-CII could be broken and allow 

for development of autoimmune arthritis. To achieve this goal DR4-transgenic mice 

expressing either the entire human CII protein (HuCII) or the immunodominant T-cell 

epitope of heterologous CII (MMC) in joint cartilage were established on different 

genetic backgrounds, and susceptibility to CIA was tested. We found that HuCII mice 

displayed stronger T-cell tolerance to heterologous CII than did MMC mice. On the 

B10-background, arthritis developed only in MMC mice with a defective oxidative 

burst. However, MMC mice on the C3H background were susceptible to arthritis also 

with a functional oxidative burst. With regards to posttranslational modifications, 

significant recall responses in tolerized mice were detected only against the non-

glycosylated CII250-270 epitope. Although the recognition of the CII260-270 epitope 
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was heterogeneous, the majority of T cells in DR4 mice specifically recognized the 

non-glycosylated side chain of the critical lysine at position 264. These data showed 

that arthritis susceptibility is tightly controlled by the genetic background and by the 

source of the transgenic element for expressing the heterologous CII peptide as a self-

CII protein in the joint. In contrast to CIA in Aq-expressing mice, the non-glycosylated 

CII260-270 epitope was clearly immunodominant in both tolerized and non-tolerized 

DR4 mice. 

 

Paper III. Tolerance to glycosylated self-CII is regulated in the periphery 

and leads to protection from collagen-induced arthritis 

Immunization of susceptible strains with CII leads to development of CIA. To 

further define the interaction between the immune system and self-antigens in cartilage, 

we generated a novel T cell receptor (TCR) transgenic mouse, denoted HCQ.3, and 

crossed it to the earlier described MMC and TSC mice [133]. The transgenic TCR is 

highly specific for the galactosylated immunodominant T cell epitope of CII (CII260-

270). The MMC- and TSC mouse express the heterologous CII260-270 in cartilage-

restricted and systemic fashion, respectively. The amino acid exchange from aspartic 

acid (mouse CII) to glutamic acid (rat CII) at position 266 increases binding to the 

MHC class II, which results in more effective presentation of the peptide in vivo. As a 

result, the MMC mouse and TSC mouse are protected from CIA on the B10.Q 

background and show strong T cell tolerance to CII.  

 

In paper III, we have thoroughly characterized the immune response of the 

HCQ.3 mouse to CII and investigated the tolerance induction mechanisms in the 

context of MMC and TSC. Transfer experiments showed that CII-specific T cells 

interact rapidly with CII in the peripheral joint draining lymph nodes. This interaction 

did not result in complete deletion of autoreactive T cells as CII-specific T cells were 

maintained in MMC mice. HCQ.3 mice were more susceptible to CIA than non-

transgenic littermates. Still, the CII-skewed TCR repertoire was not sufficient to break 

tolerance in MMC and TSC double transgenic mice, even though significant pro-

inflammatory Th1 and Th17-responses against self-CII could be documented. Instead 

arthritis protection was associated with a significantly decreased anti-CII antibody 

response in MMC and TSC expressing mice. Due to the increased frequency of CII-

specific T cells in naïve HCQ.3 mice, this model is very suitable for investigating 
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induction and maintenance of tolerance towards self-CII in a normal, non-inflamed 

environment, in contrast to the Vβ12-transgenic mouse in paper I. By further increasing 

arthritis susceptibility in these mice, it will also become possible to investigate how 

breaking T cell tolerance to self-CII may cause development of autoimmune arthritis in 

HCQ.3-MMC double transgenic mice. 

 

Paper IV. AIRE-expression is specifically associated with controlling 

tolerance to non-glycosylated collagen type II in collagen-induced arthritis 

Development of CIA is dependent on T-cell recognition of the CII260-270 

peptide. Transgenic expression of the heterologous CII epitope in cartilage in the MMC 

mouse induces tolerance to self-CII after immunization with rat CII as shown in paper 

II and III. Although the role of CII as a relevant autoantigen in RA is unclear, CII may 

still serve as an excellent model autoantigen for understanding how the immune system 

interacts with joint-derived self-antigens in order to establish immunologic tolerance 

and for understanding how posttranslational modifications may influence these 

processes. An intriguing problem that remains to be solved is how T cell tolerance to 

the autoantigen CII is achieved. It was suggested that CII may be expressed in human 

and mouse mTECs and that Aire drives expression of a wide array of TRAs in these 

cells. Deficiency of Aire in humans leads to a multi-organ autoimmune disease, 

APECED. Mice lacking Aire develop similar symptoms and exhibit a decreased 

expression of TRAs in mTECs. Taken together, these facts lead to an interesting 

possibility that Aire might be controlling central tolerance induction to CII.  

 

The aim of paper IV was to investigate how tolerance to self-CII is achieved. 

Introduction of the Aire-deficiency in MMC-mice was found to overcome arthritis 

resistance in B10.Q.MMC mice. Development of arthritis in Aire-deficient 

B10.Q.MMC mice was associated with a specific loss of tolerance towards the non-

glycosylated version of the CII260-270 epitope, whereas T cell tolerance towards the 

glycosylated version remained intact. Although we failed to identify Aire-dependent 

expression of CII within the thymus, these findings clearly show that tolerance to non-

glycosylated and glycosylated self-CII is regulated by distinct mechanisms. 

Furthermore, this finding helps to explain the earlier enigma as to why T cell tolerance 

primarily affects T cells specific for non-glycosylated self-CII, despite the fact that self-

CII derived from healthy cartilage is only available in its glycosylated form. 
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CONCLUDING REMARKS 

RA, as far as it concerns our current understanding, is an autoimmune disease 

with involvement of many different cell types, which are in continuous communication 

with each other. It is however not clear how the generally systemic aberrations of the 

immune system translate into joint-specific pathology. The inflamed joint synovium is 

a dynamic tissue with high density of MHC class II molecules expressed on DCs, 

macrophages, fibroblasts, B cells, and mast cells, which all can communicate with T 

cells. The role of T cells in RA patients is not fully understood, and it is likely that 

several autoantigens are involved in arthritis development. Although the role of CII as a 

relevant autoantigen in RA is unclear, CII may still serve as an excellent model antigen 

for understanding how the immune system interacts with joint-derived self-antigens. 

Even though it is accepted that T cells play an important role in arthritis development, it 

remains controversial where and how they contribute to pathogenic mechanisms after 

loss of tolerance.  

In this thesis we were able to contribute to the understanding of tolerance 

mechanisms in CIA. We show that the strength of tolerance induction is dependent on 

the abundance of the self-antigen, the genetic background of the mice, as well as the 

presence or absence of posttranslational modifications on CII. Moreover, data indicate 

that joint-specific antigens are readily available for presentation in draining lymph 

nodes to induce immunological tolerance in the periphery in a non-inflammatory 

environment. Furthermore, a defect in thymic tolerance induction suggests that certain 

CII modifications are presented differentially depending on the location in the 

organism. Thus, the variation of the posttranslational modification levels of antigens 

over time and location may have important implications in tolerance to self-antigens. 

This holds true for a healthy milieu as well as in a stressed environment, such as during 

inflammation, infection, trauma or aging, where inappropriate posttranslational 

modifications can lead to accumulation of neo-epitopes. These could induce priming of 

naïve T cells and promote induction of autoimmune responses. 

Still, important questions in tolerance induction remain unanswered. What are 

the regulatory processes utilized by the joint-resident cells to inhibit activation of CII-

specific T cells and subsequent inflammation? Are these processes imposed by APCs 

and/or Tregs and which molecules and signals could be involved? Are the T cells 

directly involved in arthritogenic mechanisms in the joints or do they trigger other cells 
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systemically and their own infiltration into the joints is only a secondary effect? 

I am confident that the new mouse models developed in the presented thesis 

will help to answer some aspects of these questions and to further elucidate the 

arthritogenic action of T cells in disease relevant sites. This will hopefully enlarge the 

mechanistic framework for further investigation of human disease pathogenesis, which 

might lead to new therapeutic strategies to promote self-tolerance in diseased 

individuals. 
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