
Networks and Firm Location

José Pedro Pontes (ISEG/UTL and UECE)

January 2006

Abstract

This paper models the decision of vertically-linked firms to build either partitioned

or connected networks of supply of an intermediate good. In each case, the locations

of upstream and downstream firms are correlated. Input specificity is related both to

variable costs (transport costs of the input) and fixed costs (learning costs of the use of

the input). When both are low, a connected network emerges and a partitioned pattern

arises in the opposite case. In the boundary region, there are multiple equilibria, either

asymmetric (mixed network) or symmetric.
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1. Introduction

The issue of the flexibility of an intermediate good concerns the choice that

a supplier makes between either producing a specialized input exactly tailored to

the needs of a given buyer or manufacturing a generic or standardized input that

can be used by all or at least by several buyers. In spatial terms, if the sellers and

buyers of the intermediate good are defined by addresses in an attribute space,

the specialization strategy amounts to the input supplier competing locally in its

neighborhood, while the generic strategy is equivalent to competing globally in

the whole attribute space.

This issue is important on two grounds. The first is the relationship between

input specificity and the incentive to vertical integration, which was established

by Williamson (1981) and Joskow (1987). Under input specificity, an incentive

to a long-term bilateral relationship between buyer and seller is created, which

can be best governed (in the sense of minimizing transaction costs) in the context

of vertical integration rather than through the open market. Although this is an

important strand in the literature, the focus on the importance of input specificity

in this paper will lie elsewhere.

Following Bonaccorsi and Giuri (2001), it will be stressed that the decision to

specialize an input conditions the structure of the network of relations between

upstream and downstream firms. Particularly, the degree of connectivity of a

network depends on the decisions taken with regard to specialization. If most sup-

plying firms decide to specialize their inputs, a "partitioned" network will emerge,

in the sense that it is made up of sparse, exclusive relations. In such a network,

each node (firm) has at most one connection. By contrast, if the upstream firms
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decide to produce generic inputs, each supplier will sell to several buyers and each

buyer will procure the input from several sellers, so that a connected network will

emerge, in which each node (firm) has at least two connections. The structure of

the network matters because a partitioned structure implies an interdependence

between the industrial dynamics at the upstream and downstream levels that is

closer than the one found in the connected structure.

The choice of the degree of specialization of an input is usually regarded as the

outcome of a trade-off between economies of scale (which are maximized under

the standardization of the input) and adjustment costs (which are minimized if

the inputs are specialized, see Lorz and Wrede, 2005). A generic input can be

produced in large amounts, thus saving fixed costs, but on the other hand must be

adapted to the specific needs of the users. These adaptation costs can be viewed as

transport costs in relation to the distance between the seller and buyer’s addresses

in the attribute space.

This paper seeks to model the adjustment costs of the intermediate good, us-

ing the spatial framework. We assume that the transport cost of the intermediate

good in the distance between the seller and the buyer’s addresses is the variable

component of the adjustment cost, as mentioned by the literature on flexible man-

ufacturing systems (see Eaton and Schmitt, 1994; Norman and Thisse, 1999) and

on the endogenous choice of the degree of input specificity (see Pontes, 2005).

Furthermore, following Kranton and Minehart (2000), it is argued that input flex-

ibility has not only a variable cost, but also a fixed cost. In order to sell the input,

the upstream firm has to train the buyer to use it, and this learning cost has the

nature of a fixed cost.

In section II, the model is presented. In section III, conclusions are drawn.
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2. The model

2.1. Assumptions

The paper models a spatial economy that obeys the following assumptions:

1. The consumers are uniformly distributed with unit density in the space de-

scribed by the interval [0, 1]. Each consumer has an inverse demand function

p = 1− q.

2. Two downstream firms, Da and Db, supply a consumer good in the market

space. These firms have fixed locations at the end points of the market: Da

locates in 0 and Db locates in 1. They compete in quantities at each point

of the market and they transport and deliver the product to the consumers.

The transport cost of one unit of the consumer good per unit of distance is

given by t ∈ (0, 1).

3. Two upstream firms Ua and Ub have variable locations sa and sb in [0, 1].

They compete in quantities in the markets represented by downstream firms

Da and Db and they transport and deliver the intermediate good. The

transport cost of the intermediate good per unit of distance is given by τ .

4. The downstream firms transform one unit of intermediate good in one unit

of consumer good and the cost of the intermediate good is their only variable

cost.

5. Each upstream firm can choose to supply to either one or both downstream

firms. The "connection" to a buyer implies a fixed cost c for the input

supplier, which reflects the learning cost of using the input by the buyer.
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It is assumed that this cost is borne by the seller of the intermediate good.

Without loss of generality, it is assumed that, if firm Ua (respectively, Ub)

sells to a single buyer, it selects firm Da (firm Db, respectively).

2.2. The game structure

We assume that the firms play a four stage game:

First Stage Each upstream firm decides to sell to one or to two input buyers.

As a consequence, a network is formed with one of four different types: a

partitioned structure, where each firm has a single connection; a connected

structure, where each firm has two connections; and two mixed structures,

where an upstream-downstream pair of firms has two connections, with the

remaining firms having a single connection (see Figures 1, 2 and 3).

Second Stage The upstream firms simultaneously select locations sa and sb in

[0, 1] .

Third Stage The upstream firms select quantities of the intermediate good xaa, xab, xba, xbb,

where, for instance, xab is the quantity of input sold by firm Ua to firm Db.

xab and xba can be zero, depending on the the outcome of the first stage of

the game.

Fourth Stage The downstream firms Da and Db choose quantities qa (r) and

qb (r) to be sold at each point of the market r ∈ [0, 1].

(Insert here Figures 1,2,3)

A subgame perfect equilibrium of this game is found through backward induc-

tion. In the fourth stage, the downstream firms compete in quantities at each
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point of the market. Their profits on sales in point r ∈ [0, 1] are:

πDa (r) = [(1− (qa + qb)− wa − tr)] qa (1)

πDb
(r) = [(1− (qa + qb)− wb − t (1− r))] qb (2)

where qa and qb are the quantities and wa and wb are the prices of the intermediate

good in the downstream firms’ locations. The Nash equilibrium quantities are:

qa (r) =
1

3
t− rt− 2

3
wa +

1

3
wb +

1

3
(3)

qb (r) = rt− 2
3
t+

1

3
wa − 2

3
wb +

1

3
(4)

In order to solve the third-stage game, it is necessary to consider separately

the networks that follow from the first stage and are depicted in Figures 1, 2 and

3.

The following proposition summarizes the findings (see proof in Appendix A):

Proposition 1 In the partitioned network case (Figure 1), the Nash equilibrium

quantities of the input are

xaa =
1

15
τ − 1

10
t− 4

15
τsa − 1

15
τsb +

1

5
(5)

xbb =
1

15
τsa − 4

15
τ − 1

10
t+

4

15
τsb +

1

5
(6)

with xab = xba = 0 by assumption. In the connected network case (Figure 2), the
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Nash equilibrium quantities of the input are

xaa =
1

9
τ − 1

18
t− 2

3
τsa +

1

3
τsb +

1

9
(7)

xab =
2

3
τsa − 2

9
τ − 1

18
t− 1

3
τsb +

1

9
(8)

xba =
1

9
τ − 1

18
t+

1

3
τsa − 2

3
τsb +

1

9
(9)

xbb =
2

3
τsb − 2

9
τ − 1

3
τsa − 1

18
t+

1

9
(10)

In the mixed network case (Figure 3-a), the Nash equilibrium quantities of the

input are given by

xaa =
1

6
τ − 1

12
t− 1

2
τsa +

1

6
(11)

xab =
7

12
τsa − 1

4
τ − 1

24
t− 1

6
τsb +

1

12
(12)

xbb =
1

3
τsb − 1

6
τ − 1

6
τsa − 1

12
t+

1

6
(13)

and xba = 0 by assumption. The Nash equilibrium quantities of the input in the

mixed network case of Figure 3-b are symmetric to 11, 12 and 13.

It is also simple to show the following proposition (see proof in Appendix B):

Proposition 2 In each network structure, the Nash equilibrium locations of the

upstream firms entail the location of an input supplier alongside an input buyer

(i.e. sa = 0, sb = 1) in order to save the transport costs of the intermediate good.

Substituting the locations of proposition 2 into 8, 9 and 12, it is easily concluded

that the feasibility of connections between spatially separated firms (i.e. xab > 0

and xba > 0) implies that the transport cost of the input is bounded from above

τ <
1

5
− 1

10
t (14)
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From 3, 4 and proposition 1, it can be concluded that the condition

t <
2

7
(1 + τ) (15)

together with condition 14 ensures that each downstream firm located at an ex-

treme point of the interval [0, 1] sells a positive amount of the consumer good at

each point of the market for any network structure.

The co-location of the suppliers and buyers of the input is not sensitive to the

network structure. However, it should be noticed that:

Remark 3 Although co-location of input supplier and buyer holds in each network

structure, the robustness of the equilibrium decreases with the degree of connectivity

of the network. With a partitioned network, co-location is a dominating strategy

equilibrium. With a mixed network, it is a unique Nash equilibrium. With a fully

connected network, there are two co-location Nash equilibria.

Hence, there is a close relationship between the location of the upstream and

downstream firms. However, the robustness of this correlation decreases with the

degree of connectedness of the network, confirming the findings of Bonaccorsi and

Giuri (2001).

Input flexibility is expressed inversely by the unit transport cost of the input

and by the fixed cost entailed by establishing a connection between a supplier and

a buyer of the intermediate good.

In the first-stage game, each upstream firm decides to establish a single con-

nection with a buyer (action "1") or to establish connections with both buyers

(action "2") . The profit functions of the firms in the different outcomes are:
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πUa (1, 1) = πUb (1, 1) =
1

50
t2 − 2

25
t− c+

2

25

(16)

πUa (2, 1) = πUb (1, 2) =
5

72
tτ − 7

72
t− 5

36
τ − 2c+ 7

288
t2 +

19

72
τ2 +

7

72

(17)

πUa (1, 2) = πUb (2, 1) =
1

9
τ − 1

18
t− c− 1

18
tτ +

1

72
t2 +

1

18
τ2 +

1

18

(18)

πUa (2, 2) = πUb (2, 2) =
1

27
tτ − 2

27
t− 2

27
τ − 2c+ 1

54
t2 +

14

27
τ2 +

2

27

(19)

The game expressed by these payoff functions is a symmetric two-person game.

Let us define

A1 = πUa (1, 1)− πUa (2, 1)

A2 = πUa (2, 2)− πUa (1, 2)

Then, the signs of A1 and A2 completely determine the equilibrium of the

game. It is easy to see that

A1 > 0⇔ c >
5

72
tτ − 5

36
τ − 31

1800
t+

31

7200
t2 +

19

72
τ2 +

31

1800
≡ F (t, τ)

(20)

A2 > 0⇔ c <
5

54
tτ − 5

27
τ − 1

54
t+

1

216
t2 +

25

54
τ2 +

1

54
≡ G (t, τ) (21)
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For given values of t, F (t, τ) and G (t, τ) define two convex parabolas in τ .

F (t, τ) has two roots, namely τ = 1
5 − 1

10 t and τ = 31
95 − 31

190 t, the former root

being smaller than the latter for t ∈ (0, 1). G (t, τ) has a single root τ = 1
5 − 1

10 t.

Given boundary condition 14, only values of (t, τ), such that τ < 1
5 − 1

10 t , have

any economic meaning. In this region, F (t, τ) and G (t, τ) intersect twice.

F (t, τ) = G (t, τ)⇔ τ =
7

215
− 7

430
t ∨ τ = 1

5
− 1

10
t (22)

It is clear that in 22, the first root is positive and strictly smaller than the

second root for t ∈ (0, 1). Summing up, it is possible to plot condition 14 and 20
and 21 in the space (τ , c) in Figure 4 (a value t = 0.5 is implicitly assumed in this

figure, but the figure is not sensitive to the specific value of t, provided that this

value is feasible according to conditions 14 and 15).

(Insert here Figure 4)

Figure 4 shows that, for high values of the transport cost of the intermediate

good and for high connection costs, to compete locally, i.e. to supply only the

nearby buyer, is a dominating strategy for both upstream firms. By contrast, if

τ and c are low, it is a dominating strategy for both input suppliers to compete

globally, i.e. to supply both downstream firms.

These dominating strategy regions are separated by two regions where Nash

equilibria are multiple. If the transport cost of the intermediate good is low and

the connection cost is high, we have a Coordination Game, so that there are two

symmetric Nash equilibria in pure strategies: for each upstream firm, the best

reply is to replicate the strategy of the competitor. By contrast, if τ is high and c

is low, we have a Chicken Game, with two asymmetric equilibria. If the competitor
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decides to compete globally, the best reply is to compete locally and vice-versa. A

mixed network as depicted in Figure 3 emerges. It should be noticed that:

Remark 4 For any value of t, the region where the connection game has multi-

ple asymmetric equilibria is much larger than the region with multiple symmetric

equilibria. Whenever there is no dominating strategy, the connection game is more

likely to be a Chicken Game than a Coordination Game. Refraining from compet-

ing globally, one firm supplies a public good that benefits the competitor (as in Choi

and Yi, 2000).

3. Conclusions

It is possible to conclude that the degree of input flexibility is inversely ex-

pressed by the transport cost of the input (a variable cost) and by the learning

cost resulting from a trade connection in the input market (a fixed cost). This

confirms the intuition of the literature on flexible manufacturing systems (Eaton

and Schmitt, 1994, Norman and Thisse, 1999) and on the endogenous determina-

tion of input specificity (Pontes, 2005). It also confirms the idea that inputs tend

to be traded through networks, where the establishment of a connection entails a

fixed cost (as in Kranton and Minehart, 2000).

The locations of upstream and downstream firms always tend to be closely

related, as was acknowledged by Belleflamme and Toulemonde (2003). However,

the robustness of this relationship is greater in a partitioned network than in a

connected network.

Two causes determine the degree of input flexibility, namely the transport cost

of the intermediate good and the fixed cost of establishing a trade connection. If
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both are low, the input is flexible, and to compete globally is a dominating strategy,

so that a connected network emerges. If both are high, the input is specific and it

is always better for each upstream firm to compete locally, so that a partitioned

pattern arises. The boundary cases where one of the variables is high and the other

is low entail multiple equilibria, either symmetric or asymmetric. The case with

multiple asymmetric equilibria occurs in a larger region of the parameter space.

The case where the downstream firms have variable locations in [0, 1] is left

for further research. In this case, inter-firm distance would be a cause of input

specificity together with the unit transport cost of the input.

Appendix A: Derivation of the equilibrium quantities of the intermediate

good

In the partitioned network case (Figure 1), the derived demand of the input in

location 0 is

xaa =

Z 1

0

qa (r) dr =
1

3
wb − 2

3
wa − 1

6
t+

1

3
(A.1)

where qa (r) is given by 3.

The derived demand of the input in this case in location 1 is

xbb =

Z 1

0

qb (r) dr =
1

3
wa − 1

6
t− 2

3
wb +

1

3
(A.2)

where qb (r) is given by 4.

If we invert this system of derived demand functions, we obtain

wa = 1− 2 xaa− xbb−1
2
t (A.3)

wb = 1− xaa−2 xbb−1
2
t (A.4)
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The profit functions of the upstream firms are

πUa = (wa − τsa) xaa (A.5)

πUb = (wb − τ (1− sb)) xbb (A.6)

Calculating the Cournot-Nash equilibrium yields the outputs 5 and 6.

We now deal with the case of the connected network. The derived demand

function of the input in location 0 is given by

xaa+xba =

Z 1

0

qa (r) dr (A.7)

where qa (r) is again given by 3. The derived demand function of the input in

location 1 is given by

xab+xbb =

Z 1

0

qb (r) dr (A.8)

where qb (r) is again given by 4.

Inverting the derived demand functions, we obtain

wa = 1− 2 xaa− xab−2 xba−xbb−1
2
t (A.9)

wb = 1− xaa−2 xab−xba−2 xbb−1
2
t (A.10)

The profit functions of the upstream firms are

πUa = (wa − τsa) xaa+ (wb − τ (1− sa)) xab (A.11)

πUb = (wa − τsb) xba+ (wb − τ (1− sb)) xbb (A.12)

Calculating the Cournot-Nash equilibrium quantities gives 7 to 10.
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In the case of the mixed network of Figure 3-a, the derived demand of the input

in location 0 is

xaa =

Z 1

0

qa (r) dr (A.13)

where qa (r) is again given by 3. The derived demand of the input in location 1 is

given by

xab+xbb =

Z 1

0

qb (r) dr (A.14)

where qb (r) is again given by 4. Inverting the derived demand functions, we obtain

wa = 1− 2 xaa− xab− xbb−1
2
t (A.15)

wb = 1− xaa−2 xab−2 xbb−1
2
t (A.16)

The upstream profit functions are

πUa = (wa − τsa) xaa+ (wb − τ (1− sa)) xab (A.17)

πUb = (wb − τ (1− sb)) xbb (A.18)

The Cournot-Nash equilibrium is given by 11 to 13.

Appendix B: The equilibrium of locations.

For each network structure, it is easy to plug the Nash equilibrium quantities

of input defined in proposition 1 into the profit functions of the upstream firms,

and obtain the profits as a function of the locations sa and sb. It can easily be

concluded that the profit is a strictly convex function of the firm’s own location,

so that the maximum profit is attained at a boundary point of [0, 1]. Hence, the

location game can be solved as a finite game where each upstream firm has a
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strategy set {0, 1}.
In the case of the partitioned network of Figure 1, the profits of the upstream

firms in locations 0 and 1 are respectively:

πUa (0, 1) = πUb (0, 1) =
1

50
t2 − 2

25
t+

2

25
(B.1)

πUa (0, 0) = πUb (1, 1) =
4

75
τ − 2

25
t− 2

75
tτ +

1

50
t2 +

2

225
τ2 +

2

25
(B.2)

πUb (0, 0) = πUa (1, 1) =
8

75
tτ − 16

75
τ − 2

25
t+

1

50
t2 +

32

225
τ2 +

2

25
(B.3)

πUa (1, 0) = πUb (1, 0) =
2

25
tτ − 4

25
τ − 2

25
t+

1

50
t2 +

2

25
τ2 +

2

25
(B.4)

It is easy to conclude that sa = 0 is a dominating strategy for firm Ua and

sb = 1 is a dominating strategy for firm Ub.

In the case of the connected network of Figure 2, the upstream firms’ payoffs

as a function of their locations are

πUa (0, 1) = πUb (0, 1) =
1

27
tτ − 2

27
τ − 2

27
t+

1

54
t2 +

14

27
τ2 +

2

27
(B.5)

πUa (0, 0) = πUb (0, 0) =
1

27
tτ − 2

27
τ − 2

27
t+

1

54
t2 +

2

27
τ2 +

2

27
(B.6)

πUa (1, 1) = πUb (1, 1) = πUa (0, 0) = πUb (0, 0) (B.7)

πUa (1, 0) = πUb (1, 0) = πUa (0, 1) = πUb (0, 1) (B.8)

It is easily seen that this game has two Nash equilibria (0, 1) and (1, 0).

In the case of the mixed structure depicted in Figure 3-a, the payoff functions
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are

πUa (0, 0) =
1

72
tτ − 1

36
τ − 7

72
t+

7

288
t2 +

7

72
τ2 +

7

72
(B.9)

πUb (0, 0) =
1

18
tτ − 1

9
τ − 1

18
t+

1

72
t2 +

1

18
τ2 +

1

18
(B.10)

πUa (1, 1) =
1

12
tτ − 1

6
τ − 7

72
t+

7

288
t2 +

1

6
τ2 +

7

72
(B.11)

πUb (1, 1) =
1

72
t2 − 1

18
t+

1

18
(B.12)

πUa (0, 1) =
5

72
tτ − 5

36
τ − 7

72
t+

7

288
t2 +

19

72
τ2 +

7

72
(B.13)

πUb (0, 1) =
1

9
τ − 1

18
t− 1

18
tτ +

1

72
t2 +

1

18
τ2 +

1

18
(B.14)

πUa (1, 0) =
1

36
tτ − 1

18
τ − 7

72
t+

7

288
t2 +

2

9
τ2 +

7

72
(B.15)

πUb (1, 0) =
1

9
tτ − 2

9
τ − 1

18
t+

1

72
t2 +

2

9
τ2 +

1

18
(B.16)

From B.9 to B.16, it can easily be concluded that this game has a unique Nash

equilibrium sa = 0 and sb = 1, provided that condition 14 is met.
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Firm Da Firm Db
0 1

Firm Ua Firm Ub

Figure 1: Partitioned network
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Figure 1:
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Firm Da Firm Db
0 1

Firm Ua Firm Ub

Figure 2: Connected network

0 1

Figure 2:
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