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Abstract 

This paper analyses the duration of flight delays at Spanish airports. To do so, several 

hazard models are adopted to take into account the delays observed. The results show 

that the most important factors are certain airport characteristics and contextual 

characteristics. The policy implications are derived. 
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1. Introduction 

This paper analyses the delays affecting flights at Spanish airports during the 

period 2004-2006, using several hazard models. Congestion in airports is a theme that 

has attracted researchers over a number of decades (Levine, 1969; Fisher, 1989; 

Forsyght, 1997; Odoni, 2001; Brueckner, 2002; De Neufville and Odoni, 2003; Hensher 

and Puckett, 2007; Madas and Zografos, 2008). The research referred to is, for the most 

part conceptual, aiming to design congestion pricing strategies. Capacity at congested 
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airports is expressed in slots (i.e., an expression of capacity representing the permission 

given to a carrier to operate an air service at a slot-controlled airport on a specific date 

and time for the purpose of landing and take-off) and is allocated within the framework 

of voluntary guidelines developed and evolved over the years by IATA. Slot allocation 

in European Union airports falls within the scope of the European Union Single Market, 

thus being subject to a common regulatory framework under European Council 

Regulation. Under the congestion pricing strategy (Madas and Zografos, 2008),  

planned to come into force in 2010, historic slot rights will be abandoned and a 

congestion-based scheme, with fees varying according to the extent of congestion 

throughout the day, will be set by an administrative authority and each carrier could 

operate at any time or slot by paying the corresponding scarcity rent (i.e., congestion 

fee). In recent years, the European Commission (1993, 2001, 2004) has pursued a 

radical revision of the existing slot-allocation regime, aiming to alleviate the increasing 

scarcity of airport capacity. However, IATA regulation 95/93 denies the use of market-

based mechanisms to allocate slots. The Union Commission proposes several market-

based slot allocation mechanisms (Madas and Zagrafos, 2008). This paper contributes to 

filling the void, analysing congestion at Spanish airports from the perspective of flight 

delays. 

 

The particular motivations for the present research are as follows. First, with the 

rapid, spectacular expansion of air travel, the public awareness and experience of 

congestion at airports concomitantly increases. Therefore, this phenomenon merits 

urgent investigation. Second, while research on airport congestion focuses on slot 

allocation, there are delays to flights which result from congestion that is not only 

determined by aircraft and passenger numbers, but by other airport characteristics. 
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Therefore, it is important to investigate the covariates that explain airport delays, such 

those analysed in the present study, Barros, Cavaignac and Peypoch (2008). Finally, 

unobserved heterogeneity has been a subject of concern and analysis in many recent 

works such as Chesher (1984) and Chesher and Santos Silva (2002), neglecting which is 

likely to lead to inconsistent parameter estimates or, more importantly, inconsistent 

fitted parameters. From an econometric perspective, there are two types of 

heterogeneity: that which is related to observed variables of airports, is described as 

observed heterogeneity, and that which cannot be related to the observed variables, 

which is known as unobserved heterogeneity. The former is captured by entering the 

relevant variable in the survival model, while the latter is captured by entering random 

parameters in that model. Thus, the aim of this research is twofold: first to analyse flight 

delays at Spanish airports and second, to take into account the nature of the 

heterogeneity in the delays analysed. 

 

The remainder of the paper is organised as follows. Section 2 presents the 

contextual setting, followed by a brief literature review in Section 3. Section 4 describes 

the theoretical framework, while Section 5 explains the methodology and empirical 

specification. The data and estimation results are presented in Section 6. The results are 

discussed in Section 7. Finally, policy implications and our conclusions are presented in 

section 8. 

 

2. Contextual setting 

Spanish airports are currently managed by a public company (officially, a Public 

Business Entity), known as AENA (Aeropuertos y Navegación Aérea), which belongs 

to Spain’s Ministry for Development. AENA is one of the largest and most advanced 
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ANSP (air navigation service providers) in the world. It is among the top five providers 

of air navigation in Europe. It is one of the top 50 Spanish companies and among the 

world’s leading air transport companies. In addition to its management of all Spanish 

airports AENA is expanding into Europe and in the Americas. It has bought a 10% 

stake in TBI, a British airport management company (Barros, 2008b), which has 

enabled its entry into Sweden. In the Americas, AENA has a presence in the USA, 

Mexico, Colombia and Bolivia and Cuba. In 2006, AENA International directly 

operated 16 airports in Mexico, Colombia and Cuba, with traffic totalling around 26 

million passengers and through its participation in TBI, also indirectly managed 11 

airports in the United Kingdom, Sweden, the USA, Bolivia and Costa Rica, with 22 

million passengers. AENA’s seven control centres serviced 1,923,557 air movements in 

2006 and its annual investments totalled €1,822 million in 2006. 

 

Prior to the creation of AENA in 1990, data on Spanish airports was more easily 

available. Consequently, we find a number of papers analysing these airports in the two 

previous decades. For example, Murillo-Melchor (1999) analysed the productivity of 44 

Spanish airports with a Malmquist DEA model (Malmquist, 1953), based on data from 

1992-1994. Martin and Roman (2001) analysed 37 Spanish airports with a DEA-BCC 

model (Banker, Charnes and Cooper, 1984). Martin and Roman (2006, 2007) analysed 

37 Spanish airports with alternative DEA models (Cross-efficiency, Sexton, Silkman 

and Hogan (1986), Doyle and Green (1994); Super-Efficiency, Andersen and Petersen 

(1993) and virtual efficiency). The present research adds to this research, adopting a 

survival model to analyse flight delays at Spanish airports, in a context in which data 

disclosure by AENA is scarce. 
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Table 1 presents some characteristics of the airports analysed, based in data obtained in 

several data sources (see data and results section). 

  

Table 1. Characteristics of Spanish Airports, 2006 

Id Airport 
Runway 

area 
(Meters 2) 

Capacity 
(passengers/h

our) 

Check–in 
Counters 

(units) 

Average 
conditional 

delay per-flight 
(minutes) 

Average 
unconditional 

delay per-flight
(minutes) 

1 A Coruña 1940 1150 10 17.55 2.481 
2 Albacete 2700 220 4 29.22 0.986 
3 Alicante 3000 5400 42 19.98 2.995 
4 Almeria 3200 2200 17 19.71 2.419 
5 Asturias 2200 1950 11 18.77 2.520 
6 Badajoz 2850 320 4 15.76 1.149 
7 Barcelona 8552 8500 143 19.41 2.535 
8 Bilbao 4600 3600 36 19.35 2.373 
9 Cordoba 1380 140 1 49.15 1.430 
10 El Hierro 1250 266 5 15.38 0.090 
11 Fuerteventura 3400 3700 34 18.07 1.615 
12 Girona-Costa Brava 2400 2450 18 20.75 1.585 
13 Gran Canaria 3100 12560 86 17.38 0.926 
14 Granada-Jaen 2990 1150 12 20.43 2.234 
15 Ibiza 2800 4000 48 19.74 2.410 
16 Jerez 2300 1650 13 18.05 1.919 
17 La Gomera 1500 760 5 11.29 0.055 
18 La Palma 2200 1400 13 18.05 0.640 
19 Lanzarote 2400 5360 49 20.31 2.719 
20 Leon 2100 250 3 15.53 1.963 
21 Logroño 2000 611 5 19.43 3.479 
22 Madrid Barajas 15450 18000 484 20.20 2.625 
23 Malaga 3200 4500 85 17.28 0.573 
24 Melilla 1428 960 4 20.49 2.720 
25 Menorca 2350 2600 21 18.31 2.470 
26 Murcia 2300 2600 18 18.28 2.254 
27 Palma de Mallorca 6570 12200 204 20.51 2.155 
28 Pamplona 2207 500 4 30.55 0.522 
29 Reus 2455 1400 8 17.33 2.370 
30 Salamanca 2500 400 4 17.61 2.260 
31 San Sebastian 1754 500 6 18.76 1.745 
32 Santander 2320 1025 8 21.72 1.310 
33 Santiago 3200 2500 19 19.47 1.500 
34 Zaragoza 6718 1050 6 17.80 0.819 
35 Seville 3360 3250 42 19.32 1.755 
36 Tenerife North 3400 4370 37 19.42 1.951 
37 Tenerife South 3200 5700 87 17.53 1.935 
38 Valencia 3200 3210 42 18.78 2.359 
39 Valladolid 3000 800 8 21.80 1.262 
40 Vigo 2400 1680 12 17.55 2.481 
41 Vitoria 3500 1020 7 29.22 0.986 
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3253.02 3070.78 40.61 20.13 1.683 
2700.00 1680.00 13.00 19.32 1.951 

Mean 
Median 

Std. Dev. 2417.06 3750.55 81.82 5.80 1.018 
 

 

From the table, it can observed that the average conditional delay per flight in 

the Spanish airports is 20.13 minutes, but this value varies from a minimum of 11.29 

minutes at La Gomera Airport to a maximum of 49.5 minutes at Cordoba Airport. With 

such a wide range in the amounts of time lost, it is of interest to investigate the 

covariates that explain these delays. However, unconditional delays are, on average, 

1.688 minutes, ranging from a minimum of 0.055 minutes at La Gomera airport and a 

maximum of 3.479 minutes at Logroño Airport. 

 

3. Literature review 

To the best of our knowledge, no previous paper has analysed flight delays at 

airports (Humphreys and Francis, 2002). There is some tradition of analysing 

empirically the technical efficiency and productivity at airports (Barros, 2008a; Barros 

and Dieke, 2008; Barros and Dieke, 2007; Gillen and Lall, 2001; Pels, Nijkamp and 

Rietveld, 2001; Pels, Nijkamp and Rietveld, 2003; Hooper and Hensher, 1997). In 

addition, there is the earlier-mentioned tradition of analysing airport congestion 

conceptually (Levine, 1969); Fisher, 1989; Forsyth, 1997); Odoni, 2001; Brueckner, 

2002; De Neufville and Odoni, 2003; Hensher and Puckett, 2007; Madas and Zografos, 

2008), but with no focus on flight delays. However, survival models in transportation 

abound. For example, Nam and Mannering (2000) apply a survival model to highway 

incidents; Chen and Niemeier (2005) propose a mass point survival model to analyse 

vehicle survival rates; Lee and Timmermans (2007) propose another latent class 

survival model. Other papers have examined individual behaviour in transportation. For 
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example, Lin, Chen and Niemeier (2008) apply the Weibull survival model to analyse 

vehicle replacement. 

 

The present paper contributes to this literature with alternative survival models to 

measure flight delays. 

4. Theoretical Framework 

The focus of this paper is on the delays of flights at Spanish airports. To this end, 

the hypotheses that will be tested in the empirical part of our paper are as follows: 

 

H1: Certain structural characteristics of airports explain the flight delays, such as the 

number and length of runways and the approximation capacity. The more and the 

longer the runways, and the greater the approximation capacity, the shorter the 

delays. Runways have previously been used as a variable in airport studies by 

Sarkis (2000) and Sarkis and Talluri (2004).  

 

H2:  Internal characteristics of airports, such as the number of baggage belts, the 

number of check-in counters and the number of boarding gates, have an effect on 

the reduction of delays at the airport (Gillen and Lall, 1997, 2001).  

 

H3:   The traffic in the airport, measured by the number of passengers, the number of 

planes and the cargo traffic, contributes to the airport congestion and thus, to 

delays (Pels, Nijkamp and Rietveld, 2001). 
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H4: The airport’s environmental context, including the population in the airport’s 

vicinity and the GDP in that surrounding area, contributes to congestion and thus, 

to delays (Graham, 2005).  

 

H5: A hub is the term applied to an airport that plays a centralising distribution role 

for international passenger and cargo traffic in transit to surrounding regions. 

Therefore, hubs may experience greater congestion levels, which may cause a 

ripple effect of delays across regions, countries and even continents (Barros and 

Dieke, 2007, 2008). 

 

H6: Certain attributes of an airport, such as its customs and immigration procedures, 

the number of car-parking places and its infrastructural transport links to and from 

the urban centres served (e.g. railway or underground), may be a contributory 

factor in the delays (Gillen and Lall, 1997).  

 

5. Research Design 

In our study of flight delays at Spanish airports, the event we seek to explain is 

the delay duration, by means of a survival or hazard model (Cox and Oakes, 1984; 

Allison, 1984; Yamaguchi, 1991; Hosmer and Lemeshow, 1999; Kalbfleisch and 

Prentice, 2002; Cleeves, Gould and Gutierrez, 2002). Survival analysis, also known as 

duration models, is a branch of statistics which deals with death in biological organisms 

and failure in mechanical systems. This topic is called reliability theory or reliability 

analysis in engineering. The duration of an event is the time elapsed until a certain event 

occurs, or is completed. The length of a flight delay is an example of a duration event. 

The use of survival models to model duration is based on the fact that the error 
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distribution in this context, by necessity, must be skewed to the right (Hosmer and 

Lemeshow, 1999). In particular, time, as a dependent variable, is strictly positive and 

therefore, the use of the traditional Gaussian distribution is not adequate to capture the 

characteristics of the time variable. Moreover, in trials, censoring occurs when an 

individual participant in the initial phase of the study subsequently disappears. Survival 

analysis can adequately accommodate the loss of observations when censoring occurs. 

Traditional regression models are inadequate  for such an issue. Thus, survival models, 

such as the Cox model and the Weibull model, have emerged (Hosmer and Lemeshow, 

1999). The dependent variable of interest is the average number of minutes of flight 

delays in each year, which is regressed against covariates.  

Three issues must be addressed when analysing survival models: 1) 

identification of the data set (i.e., cross-section vs. panel data); 2) censoring of the data; 

and 3) heterogeneity of the population analysed. With regard to the first issue, the 

present study adopted a panel data approach. Therefore, time-variant modelling is 

adopted (Wooldridge, 2002).  

In terms of censoring, the data used in the present study is uncensored because 

the delays were observed at the end of the year. A survival time is described as censored 

when there is a follow-up time but the event has not yet occurred or is not known to 

have occurred. For example, if the delay is being studied at the airport and the delayed 

flight has not yet departed by the time the observation is concluded, then the start of the 

delay is observed, but the end-time would be censored. If an airport for some reason is 

eliminated from a study before the end of the study period, then the follow-up time of 

the flight or flights concerned would also be considered to be censored, since the end-

time is unobserved. In view of the fact that our data only comprises the total durations 

of flight delays, the length of all delays is fully determined. With regard to the third 
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issue, ignoring heterogeneity results in asymptotic parameter underestimating (Cameron 

and Triverdi, 2005). 

 

Normally, let T be a continuous non-negative, random variable that measures the 

passage of time, and let t denote a particular realisation (duration) of this variable 

(Allison, P.D., 1984). The distribution of the duration is F(T)=Pr[T≤ t] and the 

corresponding density function is f(t)=dF(t)/dt. Duration analysis is particularly 

concerned with the “survival function”: S(t) =[1-F(t)]=Pr[T > t] and the “hazard 

function” λ(t)=f(t)/S(t). The hazard function is the rate at which spells will be 

completed at duration t, conditional upon having lasted that long. The functions F, f, S 

and λ simply provide alternative means of characterising the distribution of T.  

It can be shown that λ(t)=-[dlogeS(t)/dt], and one important role of the hazard 

function is that it provides a basis for defining ´duration dependence`. The underlying 

random variable is said to exhibit positive (negative) duration dependence at some time 

t*, if [dλ(t)/dt]>0 (<0). Positive (negative) duration dependence implies that the 

probability that a spell is about to end increases (decreases) with an increase in the spell 

length. We begin by estimating a Cox survival model. Let h[t|Z(t)] be the hazard rate at 

time t for a failure with covariate vector Z(t); the basic Cox model is as follows (Klein 

and Moeschberger, 2003): 

0 exp[ Th t t h t t[ Z( )] ( ) Z( )]= ⋅ β = 0
=1

exp[
y

k k
k

h t Z t⋅ β∑( ) ( )]  

where h0(t) is the baseline hazard rate function. The use of a proportional hazard model 

means that the hazard rate of a subject is proportional to its baseline hazard rate h0(t), 

which is the basic assumption of Cox’s model. In the model, β is the coefficient vector 



 11

and Z(t) = [Z1(t), Z2(t), . . . ,Zy (t)]T is the covariate vector. Zi(t), i = 1,2, . . ., y, is a time-

dependent covariate if its value varies with time. 

Assuming that there are no ties between the event times, the parameters are 

estimated by the partial likelihood function, given by:  

1
( )

( )( )
( )

i

i

Tn
i
T

i j
j R t

exp ZL
exp Z

δ

=
∈

 
 β β =  

β 
  

∏
∑

 

whereδ  is a censoring indicator equal to one if observed and zero if censored 

and Y is a risk indicator which is equal to one if the individual is at risk in the current 

event and zero otherwise.  

An assumption of the proportional hazard model is that the hazard function for 

an individual (i.e., observation in the analysis) depends on the values of the covariates 

and the value of the baseline hazard. Given two airports with particular values for the 

covariates, the ratio of the estimated hazards over time will be constant; hence the name 

of the method: the proportional hazard model. The validity of this assumption may be 

questionable, particularly when there is unobserved heterogeneity in the model. 

Therefore, the impact of the covariate may be dependent on time. There are tests to 

verify whether the proportional assumption is fulfilled. In this paper, the Schoenfeld test 

is adopted and the null hypothesis is that the proportional hazard is correct. The P-value 

of 0.0312 indicated that there was statistical evidence against the null hypothesis that 

the proportional hazards assumption was correct. Therefore, we adopted a parametric 

specification: the Weibull model (Box-Steffensmeier Reiter and Zorn, 2003). In the 

Weibull model, the baseline is defined by: 
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1
0 1 1( ) ( ) kk k k kh t t t t −

− −− = − αα  

where the time-dependent parameter, kα  is estimated separately for each event.  

All models are estimated through maximum likelihood (Allison, 1984; Cox and 

Oakes, 1984; Yamaguchi, 1991). 

 

6. Data and Findings 

The data used to study the determinants of flight delays at Spanish airports 

covers the years 2005-2007. The data was obtained in several sources: First, from the 

AENA website (http://www.AENA.es). Second, airport characteristics from the airports 

web sites. Third, contextual airport characteristics obtained from Spanish regional 

statistics (AENA, 2007). Finally, data on the delays was obtained from the Central 

Office for Delay Analysis (CODA), a service of Eurocontrol 

(http://www.eurocontrol.int/eatm/public/standard_page/coda.html). 

Table 2 presents the characteristics of the data used in the analysis. 

 
Table 2. Characteristics of the Variables 

Variable Description Type Min. Max. Mean 
Std. 
Dev. 

Delay1 Average unconditional delay 
Dependent 

variable 0.044 4.199 1.755 0.867 

Delay2 
Average conditional delay in 
minutes in airport in the year 

Dependent 
variable 

14.385 40.748 19.110 3.049 

logRunarea 
Log Runway area in metres 

(lenght×widt) 
Variable testing 

hypothesis 1 
10.532 13.739 11.791 0.553 

Apron Airport ramp number of stands 
Variable testing 

hypothesis 1 1 263 25.846 42.578 

Bag Number of baggage belts 
Variable testing 

hypothesis 2 0 53 6.273 8.441 

Check Number of check-in counters 
Variable testing 

hypothesis 2 
1 484 40.794 77.203 

Gate Number of boarding gates 
Variable testing 

hypothesis 2 
1 230 16.726 36.128 

Log Pax Log Number of passengers 
Variable testing 

hypothesis 3 
9.771 17.633 13.965 1.978 
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Planes Number of planes 
Variable testing 

hypothesis 3 
1.185 483.284 55.302 87.883 

Traffic Cargo traffic in tons 
Variable testing 

hypothesis 3 
0 333137 15654 52913 

logPopulation 
Log Population in the airport 

vicinity 
Variable testing 

hypothesis 4 
0.188 15.620 12.542 3.007 

logGDP 
Log Gross Domestic Product in 

the airport vicinity 
Variable testing 

hypothesis 4 
12.124 18.890 16.123 1.325 

Hub 
Dummy variable which is 1 for 

airports functioning as hubs 
Variable testing 

hypothesis 5 
0 1 0.153 0.362 

Customs 
Dummy variable which is one 

for airports with customs 
Variable testing 

hypothesis 6 
0 1 0.846 0.362 

Parking 
Number of parking places in the 

airport 
Variable testing 

hypothesis 6 
60 17900 1791 3194 

Train 
Dummy variable which is one 
for airports with railway access 

Variable testing 
hypothesis 6 

0 1 0.051 0.221 

 

The dependent variable is the average yearly delay of flights at Spanish airports, 

measured in minutes. There are two measures of delay: the unconditional average delay 

(Delay 1) takes into account all flights operating at the airport, while the average 

conditional delay (Delay 2) considers only the delayed flights. The estimated 

coefficients are always in the proportional-hazard metric. There are 39 airports in the 

data, which provide 120 observations. The frequency of events is shown in Table 3.                                     

Table 3. Event Frequency 
No. of events 25 44 43 4 4           

Delay1 
(minutes) 

1 2 3 4 5           

No. of Events 1 5 8 20 38 25 7 4 3 1 1 1 1 1 1 
Delay2 

(minutes) 
14 15 16 17 18 19 20 21 22 23 25 26 27 30 40 

 
The results of the model estimation for unconditional and conditional delays are 

presented in Tables 4 and 5, respectively. Model 1 (M1) is the Cox base model. 

However, this model is not supported by the Schoenfeld test (Schoenfeld, 1981). Model 

2 is the Cox time-accelerated model. (M2) is the Weibull model accelerated model. 

Frailty and heterogeneity are synonymous in survival models. Unobserved 
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heterogeneity may be group heterogeneity or shared heterogeneity. Group heterogeneity 

is specific to a “family” of airports or to a single airport observed in the three-year span. 

This is within heterogeneity. Shared heterogeneity is a latent common effect between all 

airports. Therefore, Model 3 (M3) is the Weibull accelerated model with gamma 

distributed frailty (group heterogeneity). Model 4 (M4) is the Weibull accelerated model 

with gamma frailty and shared frailty (shared heterogeneity). These two latter models 

allow for unobserved heterogeneity, (Cleves, Gould and Gutierrez, 2002).  

 

Table 4. Estimation Results: dependent variable, Delay1 (unconditional delays)(1) 

 M1 M2 M3 M4 
Variable Coef. s.e. Coef s.e. Coef s.e.(2) Coef s.e.(2) 

logRunarea -0.215 0.312 -0.324 0.236 -0.412 0.017 -0.031 0.026 
Apron -0.037 0.531 -0.145 0.328 -0.084 0.135 -0.123 0.036 
Bag -0.024 0.036 -0.036 0.034 -0.121 0.116 -0.012 0.195 

Check -0.012 0.047 -0.025 0.034 -0.042 0.217 -0.025 0.054 
Gate -0.016 0.321 -0.037 0.265 -0.043 0.218 -0.024 0.259 

Log Pax 0.015 0.384 0.048 0.146 0.075 0.217 0.048 0.319 
Planes 0.136 0.218 0.014 0.453 0.016 0.155 0.026 0.219 
Traffic 0.001 0.126 0.002 0.125 0.115 0.126 0.121 0.518 

logPopulation 0.113 0.375 0.045 0.372 0.043 0.038 0.116 0.383 
logGDP -0.126 0.127 -0.341 0.126 -0.218 0.219 -0.287 0.237 

Hub 0.217 0.135 0.529 0.058 0.419 0.216 0.507 0.200 
Customs 0.024 0.114 0.121 0.286 0.134 0.219 0.285 0.521 
Parking 0.001 0.038 0.002 0.2136 0.027 0.514 0.021 0.584 
Train 0.984 0.235 0.538 0.052 0.716 0.217 0.845 0.483 

Constant     0.176 0.318 0.321 0.218 
Ln P   0.984 0.034 1.021 0.034 1.078 0.067 
Theta     0.012 0.006 0.051 0.032 

LL -86.32  -98.21  -120.52  -145.12  
(1) – All models were estimated in Stata 9 
LL - Log Likelihood 
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Table 5: Estimation Results: dependent variable Delay2 (conditional delays)(1) 
 M1 M2 M3 M4 
Variable Coef. s.e. Coef s.e. Coef s.e.(2) Coef s.e.(2) 
logRunarea -1.728 0.919 -1.694 0.835 -1.009 0.144 -1.027 0.038 
Apron -0.163 0.738 -0.162 0.554 -0.131 0.320 -0.125 0.062 
Bag -0.038 0.194 -0.062 0.159 -0.017 0.016 -0.023 0.219 
Check -0.043 0.052 -0.062 0.047 -0.048 0.154 -0.038 0.027 
Gate -0.019 0.121 -0.048 0.107 -0.059 0.109 -0.027 0.218 
Log Pax 0.099 0.179 0.059 0.205 0.080 0.534 0.073 0.234 
Planes 0.015 0.043 0.023 0.300 0.023 0.122 0.031 0.128 
Traffic 0.001 0.002 0.003 0.007 0.118 0.139 0.122 0.217 
logPopulation 0.181 0.126 0.190 0.076 0.075 0.195 0.126 0.245 
logGDP -0.585 0.036 -0.673 0.340 -0.235 0.409 -0.328 0.139 
Hub 0.890 0.082 0.770 0.068 0.723 0.162 0.612 0.214 
Customs 0.095 0.082 0.217 0.826 0.317 0.144 0.372 0.031 
Parking 0.001 0.003 0.001 0.003 0.031 0.320 0.012 0.851 
Train 1.738 0.045 0.983 0.037 0.817 0.016 0.917 0.734 
Constant     1.356 0.176 1.124 0.132 
Ln P   1.741 0.779 1.741 0.0006 1.760 0.092 
Theta     0.038 0.00001 0.042 0.090 
LL -94.54  -95.32  -110.24  -121.32  
 (1) – All models were estimated in Stata 9 
LL - Log Likelihood 
 

In all four of the models, the results are quite similar in their main effects. Given 

the model specification, a positive value for the parameters implies that the flight delay 

increases with increasing values in the respective variable. A negative value for the 

parameters implies a negative relationship. The results across the four models 

demonstrate that the parameters have the same signs. 

 

The observed differences between unconditional delays and conditional delays is 

that the value of the parameters in the unconditional delay model is smaller than that 

observed in the conditional delay model, reflecting the smaller variablitity in the 

unconditional delays. Moreover, the variables have the same signs and are for the most 

part statistically significant in both models. A variable that is significant in 

unconditional delays, i.e., bag, becomes statistically insignificant in the conditional 
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model. Furthermore, another statistically significant variable in the conditional delay 

model, GDP, becomes statistically insignificant in the unconditional model. 

 

On the basis of the log likelihood statistic and the statistical significance of the 

theta variable, the Weibull model with heterogeneity provides the superior fit to the data 

in both specifications. The rationale for this result is that heterogeneity represents 

characteristics that influence the conditional probability of flight delays in different 

airports which are not measured or observed and therefore, not taken into account in the 

measurement errors of the variables (Chesher, 1984; Chesher and Santos-Silva, 2002). 

Heterogeneous behaviour is commonly observed in units. Therefore, not to take it into 

account is likely to lead to inconsistent parameter estimates or more importantly, 

inconsistent fitted-choice probabilities. In the present study, this implies that different 

airports can have different delay durations. The variance of unobserved individual 

specific parameters induces correlation across the alternatives in the airport 

characteristics and thus, survival models with heterogeneity are required. Based on the 

log likelihood of Model 4, it is concluded that shared frailty has a higher statistical 

representation than group frailty in both specifications. This may result from the fact 

that almost all the airports in the data are distinct, despite being managed by the same 

enterprise. This distinctiveness may reflect the various market conditions in Spain, with 

some regions specialising in tourism and attracting immense numbers of travellers in 

the summer; large urban connurbations, such as Madrid and Barcelona, with 

consistently high passenger turnovers throughout the year and other smaller, regional 

airports with a less intense traffic.  
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7. Discussion 

Survival modelling has been shown to be a useful technique for the purpose of 

this research. Several duration or survival models were presented for comparative 

purposes. These consisted of the Cox model, the parametric Weibull model, a Weibull 

model that accounts for individual player heterogeneity and finally, a Weibull model 

that accounts for group heterogeneity and shared heterogeneity. Shared heterogeneity 

takes into account the different nature of Spanish airports. This last model was found to 

perform best in terms of its explanatory capability in both model specifications: 

unconditional delay and conditional delay. The models’ results indicate that flight 

delays at Spanish airports are related positively and with statistical significance to the 

number of passengers, number of planes, the cargo traffic, population in the vicinity and 

being a hub airport. Delays are negatively related and with statistical significance to 

runways, capacity of approximation, number of gates, and GDP. This latter variable is 

statistically insignificant in the unconditional delay model. Moreover, bags is 

statistically significant and positive in unconditional delays. The results support the 

majority of the hypotheses and are broadly intuitive, signifying that flight delays at 

Spanish airports are explained by covariates such as airport infrastructures, the aiport’s 

environmental context and the passenger and cargo traffic.  

 

Relative to the hypotheses, as expected, the results for Runway and apron 

(approximation capacity) validate Hypothesis 1 in both unconditional and conditional 

delays. The greater the runway and the approximation capacity, the lower the delay 

times observed. This is an intuitive result. Moreover, the quality and quantity of airport 

passenger-processing equipment, such as baggage belts, check-in counters and boarding 

gates, can decrease the delays, validating Hypothesis 2 in both unconditional and 
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conditional delays. However, baggage belt is not statistically significant in either 

specification, while gates is statistically significant in unconditional delays, but not 

statistically significant in conditional delays. This signifies that adequate airport 

passenger-processing equipment serves to facilitate the through-flow of traffic. 

Furthermore, the airport traffic measured by the number of passengers, number of 

planes and cargo explains the delays, validating Hypothesis 3, again in both 

specifications. This is also an intuitive finding. In addition, the environmental context of 

the airport’s vicinity, measured by population and GDP, affects the delays. Population 

affects delays positively increasing them, while the effect of GDP is negative. 

Therefore, Hypothesis 4 is not validated.  

 

Relative to Hypothesis 5, hubs are found to increase delays, which is also an 

intuitive result. Since hubs attract relatively large amounts of traffic, they operate under 

more pressuring conditions and therefore, tend to have delays, validating the fifth 

hypothesis. Finally, airport characteristics, such as customs, car parks and rail links, 

affect delays positively, but are statistically insignificant. Therefore, Hypothesis 6 is not 

validated. 

 

 

 

8. Summary, Implications and Conclusions 

In this paper, we have analysed airport congestion and resulting delays from a 

duration analysis perspective. This novel approach considers a number of potential 

explanatory variables. The covariates include data on the airport infrastructure (i.e. 

runway area, apron capacity) and facilities (baggage belts, check-in counters and 
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boarding gates) as well as environmental variables (operations, passengers and cargo, 

population, GDP, etc). 

The approach has been applied to data on Spanish airports. A number of 

hypotheses have been tested. In terms of policy implications, the results suggest that the 

solution to the problem of delays to flights at airports will require investment in 

infrastructure and support facilities. 

The overall policy implication arsing from our research is that slot allocation 

alone will not eliminate congestion at airports. The management of the entire site 

(runways, number of stands, bagagge belts, check-in counters, boarding gates) and their 

integration with the traffic is needed in order to control and overcome congestion. In 

addition, increased and advanced computerisation of check-in procedures and baggage-

handling would do much to alleviating this growing problem.  Moreover, the 

environmental context is somewhat important and continuous investment is needed to 

maintain the competitiveness of airports, relative to their  national and international 

rivals. The management of all airports by  a sole company may actually be a 

contributory factor to congestion in the Spanish airport netweork. Conversely, 

competition could serve to attenuate the problem (Bel and Fageda, 2008).  

However, there is no simple “more is better” approach that will ease airport 

congestion. It is vital, in addition to the above recommendations, to increase 

productivity in all sectors of the processing operation, by means of computerisation, in 

order to maximise the efficiency of through-flows of passenger and cargo traffic. To fail 

to do so will be to guarantee that the air-travel system will eventually grind to a halt, 

due to the ever-increasing weight of numbers of consumers, taking longer and longer to 

board their flights, disembark on landing and leave the destination airport. 
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With regard to comparison of our findings with previous research, as mentioned 

above, there is no similar published paper with which this paper can be compared. 

This paper has two main limitations related to the data set. First, the data span is 

relatively short. Second, the sample procedure adopted was restricted to sole Spanish 

airports, thus the conclusions are limited. The limitations of the paper suggest directions 

for new research. 

Hence, more investigation is needed to confirm the present results. 

References 

 
AENA (2007) Spanish airports and tourism, 2007, AENA.  

Allison, P.D. (1984) Event History Analysis, Beverly Hills, CA: Sage 

Andersen, P. and Petersen, N. C. (1993) A Procedure for Ranking Efficiency Units in 

Data Envelopment Analysis. Management Science 39, 1261-1264 

Barros, C.P. (2008a) Technical change and productivity growth in airports: A case 

study. Transportation Research, Part A. (forthcoming) 

Barros, C.P. ( 2008b) Technical Efficiency of UK airports. Working Paper 

Barros, C.P.; Cavaignac, L. and Peypoch, N. (2008) A Non Parametric Test on 

Congestion. Working paper 

Barros, C.P. and Dieke, P.U.C. (2007). Performance Evaluation of Italian Airports with 

Data Envelopment Analysis. Journal of Air Transport Management, 13, 184-191 

Barros, C.P. and Dieke, P.U.C. (2008) Measuring the Economic Efficiency of Airports:  

A Simar-Wilson Methodology Analysis. Transportation Research Part E (forthcoming) 

Banker, R.D., Charnes, A. and Cooper, W. W. (1984) Some Models for Estimating 

Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 

30, 1078-1092 



 21

Bel, G. and Fageda, X. (2008) Preventing competition because of 'solidarity': rhetoric 

and reality of airport investments in Spain. Applied Economics (forthcoming). 

Box-Steffensmeier, J.; Reiter, D. and Zorn, C. (2003) Non-proportional hazard and 

event history in international relations: The Journal of Conflict Resolution, 47:33-53 

Brueckner, J.K. (2002) Internationalisation of airport congestion. Journal of Air 

Transport Management, 8, 3, 141-147 

Cameron A.C. and Trivedi, P.K. (2005) Microeconometrics: Methods and Applications. 

Cambridge, USA, Cambridge University Press 

Chen, C. and Niemeier, D. (2005) A mass point vehicle scrappage model. 

Transportation Research Part B, 39, 401-415 

Chesher, A. (1984) Testing for Neglected Heterogeneity. Econometrica, 52: 865-872 

Chesher, A. and Santos-Silva, J. (2002) Taste Variation in Discrete Choice 

Models.Review of Economic Studies, 69:147-68 

Cleves, M.A., Gould, W. and Gutierrez, R. (2002) An Introduction to Survival Analysis 

Using STATA, College Station, TX: Stata Press 

Cox, D.R. and Oakes, D. (1984) Analysis of Survival Data. London, UK: Chapman and 

Hall/CRC Press 

De Neufville, R. and Odoni, A.R. (2003) Airport Systems Planning. Management and 

Design, McGraw-Hill, New York 

Doyle, J. and Green, R. (1994) Efficiency and Cross-Efficiency in DEA: Derivations, 

Meanings and Uses. Journal of the Operational Research Society 45, 567-578 

European Commission. (1993) European Council Regulation nº 95/93 of January 

1993on Common Rules for the Allocation of Slots at Community Airport. Official 

Journal of the European Union, Brussels, Belgium, L 014, pp. 0001-0006 

European Commission (2001) Proposal for a Regulation of the European Parliament 

and of the Council amending Council Regulation no. 95/93 of January 1993 on 



 22

Common Rules for the Allocation of Slots at Community Airport. COM (2001) 335 

Final, Brussels, Belgium 

European Commission (2004) Regulation no. 793/2004 of the European Parliament and 

of the Council of 21 April Amending Council Regulation n0. 95/93 on Common Rules 

for the Allocation of Slots at Community Airports. Official Journal of the European 

Union, Brussels, Belgium, L. 138, pp. 50-60 

Fisher, J.B. (1989) Managing demand to reduce airport congestion and delays. 

Transportation Research Record (TTR), Transportation Research Board (TRB), 

National Research Council, Washington, DC, n. 1218, pp.1-10 

Forsyth, P. (1997) Price regulation of airports: principles with Australian applications. 

Transportation Research Part E: Logistics and Transportation Review, 33, 4, 297-309 

Gillen, D. and Lall, A. (1997) Developing measures of airport productivity and 

performance: an application of data envelopment analysis, Transportation Research E, 

33, 4, 261-273 

Gillen, D. and Lall, A. (2001) Developing Measures of Airport Productivity and 

Performance: An Application of Data Envelopment Analysis. Transportation Research, 

Part E, 33, 261-273 

Graham, A. (2005) Airport Benchmarking: A Review of the Current Situation. 

Benchmarking: An International Journal, 12, 99-111 

Hensher, D.A. and Puckett, S.M. (2007) Congestion and variable user charging as an 

effective travel demand management instrument. Transportation Research Part A, 41, 

7, 615-626 

Hooper, P.G. and Hensher, D. A. (1997) Measuring Total Factor Productivity of 

Airports: An Index Number Approach. Transportation Research, Part E. Logistics and 

Transportation Review, 33, 249-59 

Hosmer , D.W. and Lemeshow, S. (1999). Applied Survival Analysis: Regression 

Modeling of Time to Event Data. New York, John Wiley 



 23

Humphreys, I. and Francis, G. (2002) Performance Measurement: A Review of 

Airports. International Journal of Transport Management, 1, 79-85 

Kalbfleisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time 

Data, 2nd ed., New York: John Wiley and Sons 

Klein, J.P. and Moeschberger, M.L. (2003). Survival Analysis: Techniques for censored 

and truncated data. (2nd edition). Springer-Verlag, N.Y 

Lee, B. and Timmermans, H.J.P. (2007) A latent class accelerated hazard model of 

activity episode durations. Transportation Research Part B, 41, 426-447 

Levine, M.E. (1969) Landing fees and the airport congested problem. Journal of Law 

and Economics, 12, 79-108 

Lin, J.; Chen, C. and Niemeier, D.A. (2008) An analysis of long term emissions benefits 

of government vehicle fleet replacement plan in Northern Illinois. Transportation, 35, 

219-235 

Madas, M.A. and Zografos, K.G. (2008) Airport capacity vs. demand: Mismatch or 

Mismanagement? Transportation Research Part A, 42, 1, 203-226 

Malmquist, S. (1953) Index Numbers and Indifference Surfaces, Trabajos de 

Estadística, 4: 209-42 

Martin, J.C. and Roman, C. (2001) An application of DEA to measure the efficiency of 

Spanish airports prior to privatization, Journal of Air Transport Management, 7 149-

157 

Martin, J.C. and Roman, C. (2006) A Benchmarking Analysis of Spanish Commercial 

Airports. A Comparison Between SMOP and DEA Ranking Methods, Network Spatial 

Economics, 6, 111-134 

Martin, J.C. and Roman, C. (2007) Political opportunists and mavericks? A typology of 

Spanish Airports”, International Journal if Transport Economics, XXXIV, 2, 247-271 



 24

Murillo-Melchor, C. (1999) An analysis of technical efficiency and productivity 

changes in Spanish airports using The Malmquist index. International Journal of 

Transport Economics 26, 2, 271–292 

Nam, D. and Mannering, F. (2000) An exploratory hazard based analysis of highway 

incident duration. Transportation Research Part A, 34, 85-102 

Odoni, A. R. (2001) Congestion pricing for airports and for en route airspace. In 

Bianco, L., Dell’Olmo, P. and Odoni. A.R. (edits) New Concepts and Methods in Air 

Traffic Management. Transportation Analysis Series. Springer-Verlag, Berlin 

Pels, E., Nijkamp, P. and Rietveld, P. (2001) Relative efficiency of European airports, 

Transport Policy, 8, 183-192 

Pels, E., Nijkamp, P. and Rietveld, P. (2003) Inefficiencies and scale economics of 

European airport operations”, Transportation Research Part E, 39, 341-361 

Sarkis, J., 2000. An analysis of the operational efficiency of major airports in the United 

States, Journal of Operations Management, 18, 335-351 

Sarkis, J. and Talluri, S. (2004). Performance based clustering for benchmarking US 

airports, Transportation Research Part A, 38, 329-346 

Schoenfeld, D. (1981). The asymptotic properties of nonparametric tests for comparing 

survival distributions. Biometrica, 68, 316-319 

Sexton, T.R., Silkman, R. H. and Hogan, A. (1986). Data Envelopment Analysis: 

Critique and Extension. In: Silkman, R.H. (Ed.) Measuring Efficiency: An Assessment 

of Data Envelopment Analysis. Jossey-Bass, San Francisco, pp 73-105 

Wooldridge, J. M. (2002) Econometric Analysis of Cross Section and Panel Data, MIT 

press. 

Yamaguchi, K. (1991) Event History Analysis, Newbury Park, CA: Sage 


