
 

 

1 

The Geometry of Crashes  
- A Measure of the Dynamics of Stock Market Crises 

 

Tanya Araújo
(1)
 and Francisco Louçã 

(2) 

Departamento de Economia, ISEG, Technical University of Lisbon 

 Research Unit on Complexity in Economics (UECE) 
(1)
 tanya@iseg.utl.pt   

(2)
 flouc@iseg.utl.pt  

07-Jul-2005 

Abstract 

This paper investigates the dynamics of stocks in the S&P500 index for the last 30 

years. Using a stochastic geometry technique, we investigate the evolution of the market 

space and define a new measure for that purpose, which is a robust index of the dynamics 

of the market structure and provides information on the intensity and the sectoral impact 

of the crises. With this measure, we analyze the effects of some extreme phenomena on 

the geometry of the market. Nine crashes between 1987 and 2001 are compared by 

looking at the way they modify the shape of the manifold that describes the S&P500 

market space. These crises are identified as (a) structural, (b) general and (c) local. 
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1 Introduction 
 

In 1999, R. Mantegna [1] defined a distance metric based on correlation coefficients 

between the log-price difference of a pair of market securities. This metric allows for 

determining a distance between stocks evolving in time in a synchronous fashion. Since 

the metric was further discussed by Mantegna and Stanley [2] in the book that coined the 

term “Econophysics”, it has been applied in a considerable number of research works 

([3]-[11]). The fact that the metric is a properly defined distance gives a meaning to 

geometric notions in the study of the market. As Mantegna did when the distance was 

first introduced [1], many papers using the metric follow a topological approach.  

Provided that a distance between stocks exists, it is sufficient to form an 

additional hypothesis on the topological space of the stocks (as for example, choosing the 

subdominant ultrametric space, which is obtained from the minimal-spanning tree that 

links the stocks [2]) in order to end up with a connectivity pattern for the stocks. In so 

doing, one can naturally move away from a situation in which all the stocks were 

connected to a network of stocks, in which the connectivity pattern was endogenously 

determined. From the topological point of view, it opens a large set of promising 

possibilities to explore.  
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Using Mantegna’s metric we followed a different perspective. In a previous 

contribution [12] we developed a method for the reconstruction of an economic space. By 

using a stochastic geometry technique, we proved that economic spaces are low-

dimensional entities and that this low-dimensionality is caused by the small proportion of 

systematic information present in correlations among stocks. Using our reconstruction 

method we found that part of the correlation contribution is virtually indistinguishable 

from random data.  

In the present paper, we investigated the hypothesis that market spaces uniformly 

contract during crashes along their effective dimensions and concluded that, otherwise, 

some crashes may act differently on specific directions, causing interesting changes in the 

shape of the market space. In order to capture that distortion effect, the evolution of the 

market space is verified as it is reconstructed under a moving window over an interval of 

16 days. A structure index is then used to compute the lack of uniformity among the 

market effective dimensions. As a consequence, we are able to characterize the structures 

that emerge in relevant historical periods and to identify the economic sectors that are 

associated to important changes in the leading directions of the evolving market space. 

It is empirically observed that both during expansion and normal periods the 

market tends toward randomness whereas in the disturbed periods its structure is 

reinforced, not only in the topological sense (as revealed by the clustering measures) but 

also in the geometrical sense, considering distortions of form. From this observation we 

propose a new measure of the dynamics of the market structure, which captures that 

distortion effect in the shape of the market space. 

Some other authors also discussed the existence of a dynamic pattern during 

market's crashes ([10], [14]-[20]).  Sornette and his co-authors successfully demonstrated 

that some dynamic patterns can often be found in preceding events. For several extreme 

phenomena, they found evidence of incoming instabilities in the precursory patterns of 

time trajectories of market data (as price, volume and volatility variables). Among their 

main contributions, there is an issue that appears to be crucial for understanding the 

behavior of the market: the identification of distinct signature for endogenous and 

exogenous shocks originating crashes. In particular, they proved a systematic association 

of large events with positive feedback processes. Later in the paper we shall address that 

issue while applying our structure index to discriminate distinct processes at work in the 

S&P500 stock market. 

The identification of economic sectors as clusters of stocks with a similar 

economic dynamics was discussed in references [8] to [11]. In reference [9], 

Gopikrishnan et al. used techniques that are related to the metric we use, although with a 

different perspective. Diagonalizing the correlation matrix, they have tried to identify 

particular eigenvectors with the traditional industrial sectors. In our analysis the effective 

dimensions of a market space may not correspond to economic sectors. We argue that the 

lack of uniformity among the effective dimensions reveals the existence of a dynamic 

pattern (which we empirically verify that correspond to crashes). To evaluate the impact 

of those extreme phenomena in different economic sectors (and the sectoral dynamics 

among different crashes), we compute the index of market structure for different market 

spaces, each of them comprising stocks that belong to a specific economic sector. 
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In sections 2 and 3 the method is explained in detail and it is applied to a set of 

companies that are or have been in the S&P500 index. In section 4 we discuss the results 

obtained for specific sectors and the role of those sectors in some important market 

crashes. Finally, a summary and conclusions are presented. 

 

2 Method 
 

The idea is simply stated in the following terms: 

1) Pick a representative set of N stocks and their historical data of returns over some 

time interval.  

2) Using an appropriate metric, compute the matrix of distances between the N 

stocks.  

3) From the matrix of distances compute the coordinates for the N stocks in an 

Euclidean space of dimension D ≤ N-1. 

4) Apply the standard analysis of reduction of the coordinates to the center of mass 

and compute the eigenvectors of the inertial tensor. 

5) Apply the same technique to random data with the same mean and variance.  

6) Compare the eigenvalues in (4) with those in (5) and identify the directions for 

which the eigenvalues are significantly different as being the market characteristic 

dimensions. 

7) From the eigenvalues of order smaller than the number of characteristic 

dimensions, compute the difference between eigenvalues in (4) with those in (5). 

The normalized sum of those differences is the index S, which measures the 

evolution of the distortion effect in the shape of the market space. 

 

For both random and actual data, the sorted eigenvalues, from large to small, decrease 

with their order. In the random case, the amount of decrease is linear in the order number, 

proving that the directions are being extracted from a spherical configuration. The display 

of a uniform and smooth decrease in the values of the sorted eigenvalues is characteristic 

of random cases and is also experimentally observed when the market space is built from 

historical data corresponding to a period of business as usual. 

Considering for the lack of uniformity among the market effective dimensions we 

are able to characterize the extent to which crashes act differently on specific directions, 

causing changes in the shape of the market space. Looking for relevant distortions in the 

shape of the S&P500 market space through the last 30 years, we found that amongst the 

highest values of the index are those computed in some important dates, as 19
th
 October 

1987, 11
th
 September 2001 and 27

th
 October 1997.  

In addition to the geometrical analysis of the whole S&P500 market space, our 

measure is applied to sets of stocks that belong to specific economic sectors. Results 

show that some crashes act differently on specific sectors and that the deviation from 

random behavior may be limited to a few days after the day of the crash and also to a 

small number of sector-oriented groups of stocks. Accordingly to these characteristics, 

crises are identified as (a) structural, (b) general and (c) local. 
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3. Measures 

 

From the returns )(kr  for each stock 

 

 

(1) 

 

a normalized vector  

 

 

 (2) 

 

 

 

is defined, where n is the number of components (number of time labels) in the vector 

)(kρ . With this vector one defines the distance between the stocks k and l by the 

Euclidian distance of the normalized vectors.  

 

(3) 

 

as proposed in [1], with ijC  being the correlation coefficient of the returns )(ir , )( jr . 

The fact that ijd  is a properly defined distance gives a meaning to geometric notions and 

geometric tools in the study of the market. 

Given that set of distances between points, the question now is reduced to an 

embedding problem: one asks what is the smallest manifold that contains the set. If the 

proportion of systematic information present in correlations between stocks is small, then 

the corresponding manifold will be a low-dimensional entity. The following stochastic 

geometry technique was used for this purpose. 

3.1 The stochastic geometry technique 
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Rkxky −= )()(         (4) 

and the inertial tensor 

)()( kykyT j

k

iij ∑=         (5) 

is diagonalized to obtain the set of normalized eigenvectors { ii e,λ }. The eigenvectors 

ie define the characteristic directions of the set of stocks. The characteristic directions 

correspond to the eigenvalues ( iλ ) that are clearly different from those obtained from 

random data. They define a reduced subspace of dimension d, which carries the 

systematic information related to the market correlated structure [12]. 

 

3.2 Index of the market structure 

 

Since the largest d eigenvalues define the effective dimensionality of the economic space, 

we compute S as: 

 

 

(6) 

 

 

where λt(1), λt(2), ..., λt(d) are the largest d eigenvalues of the market space and λ'(1), 

λ'(2), ... λ'(d) are the largest d eigenvalues obtained from random data over the same time 

window and with the same mean and variance. 

Vilela Mendes proposed in [13] an index that quantifies the effect of some 

structure-generating mechanisms in dynamical models, based on the fact that a structure 

in a collective system acquires a characteristic length larger than that of the individual 

components of the system. We develop this strategy for the definition of our structure 

index S: as the dynamics of systems develop a structure-generating mechanism, the index 

S measures the normalized difference between the characteristic length of those structures 

and the characteristic length of the individual components of the system. This is a 

geometrical approach to define and to measure emergence. 

In portfolio optimization models, when the systematic and unsystematic 

contributions to the portfolio risk are distinguished, the former is associated to the 

correlation between stocks (collective structure) and the later to the individual variances 

of each stock [12]. Consequently, when S is applied to the market space, the eigenvalues 

obtained in the random case (λ'(i)) may be taken as reference values that represent the 

characteristic length with which each leading direction contributes to the shape of a 

market whose components were correlated at random. These eigenvalues correspond to 

the characteristic length of the individual (isolated) components of the market. On the 

other hand, the eigenvalues obtained from actual data λt(i) represent the characteristic 
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length of each structure emerging from the dynamics of the market, that is, associated to 

each leading directions of the market space.  

 

4 Results and Discussion 

 
Results were computed in relation to actual daily returns data as well as to random data 

with the same mean and variance.  

 

4.1 The S&P500 effective dimensions 

 
The first set of actual data consists in 249 stocks present in S&P500 from July 1973 to 

March 2003, considering all the surviving firms for the whole period. Part of the ordered 

eigenvalue distributions obtained from actual data and random data is shown in Fig.1. 

  

 
Figure 1: S&P500 249-stocks: decrease of the largest 25 eigenvalues 

 

The plots in Fig.1 represent the largest 25 eigenvalues obtained for the first set of 

actual data. The largest 25 eigenvalues are compared to the largest 25 eigenvalues 

obtained from random data. Given the decrease obtained from the 7
th
 eigenvalue, we 

conclude that the market structure is essentially confined to a 6-dimensional subspace. 

This proves that this subspace captures the structure of the deterministic correlations that 

are driving the market and that the remainder of the market space may be considered, for 

the current purpose, as being generated by random fluctuations.  
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To test the robustness of this conclusion, we have divided the data in two 

chronologically successive batches (the first consisting in daily data from July 1973 to 

March 1988, while the second batch includes data from March 1988 to March 2003) and 

performed the same operations. In spite of the changes in the market through time, in 

both cases the behavior of the eigenvalues distribution is very much the same.  

Apart from statistical fluctuations, the reconstructed spaces exhibit a reasonable 

degree of stability, confirming that the number of characteristic dimensions of the 

S&P500 market space is six. Considering this result, our analysis of the S&P500 market 

shape is based on 6-dimensional subspaces. The question now is to assess the extent to 

which the occurrence of extreme phenomena modifies the shape of this subspace and the 

pattern of behavior of firms and sectors. 

 

4.2 The dynamics of crashes 
 

As extreme phenomena are dated events and as we look for their consequences in 

the distributions of the 6 leading directions, the geometry of the historical data is defined 

considering short periods. In this sense, instead of the large time intervals that defined the 

reconstruction of the S&P500 space as in [12], we adopted a 16-days window as the 

chosen time interval and computed the index of structure with the time window centered 

at several different dates.  
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Figure 2: S&P500 deviation from randomness at different dates,  

comparing crises and a business-as-usual day (6th May 1997) 
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The plots in Figure 2 show some of these dates, namely the crashes of 19
th
 

October 1987, the Black Monday, 11
th
 September 2001 and 27

th
 October 1997, the 

Second Black Monday. The second plot in this figure shows an unimportant date: May 6, 

1997, as suggested in reference [11], was a typical normal day in the US stock market.  

The plots in figure 2 show λ(i) (with i=1,…,6) obtained from the S&P500 market 

space at four different dates. It is obvious that the values of S obtained for the first and 
the second Black Mondays and for 11

th
 September 2001 are high, as there is a great 

difference in the decrease of the first six eigenvalues computed from actual and random 

data.  

On the contrary, when the same calculation is performed around a typical normal 

date, the results show that, comparing actual data with random data, there is a quite small 

difference in the decrease of the first six eigenvalues, which is still another piece of 

evidence for the robustness of our method.  

The geometrical changes in the shape of the market space describe the structural 

evolution of the characteristic dimensions. As previously indicated, the normal periods 

qualitatively tend to randomness while the disturbed periods will tend away from 

randomness. 

A less detailed but more extensive result is presented in Fig.3, where the plot 

shows the daily values of S for the 30 years period. We used a time moving window of 16 

days on a market space including the 249 stocks, i.e. all firms surviving through the 

whole period. The eight highest values of S are marked on the plot.   
 

The highest peaks are identified and correspond to the following crashes: 

 

1. October 1987 

2. October 1989 

3. October 1997 

4. October 1998 

5. April 1999 

6. Dec.2000/Jan.2001 

7. April 2001 

8. September 2001 

 

The ranking of the crashes according to the measure of S and its explanation is as 

follows: 

 

1. October 1987: Black Monday. 

2. December 2000-Jan.2001: Argentinean Financial crisis (Argentina and Turkey 

bond market sell-off). 

3. October 1989: the US stock market falls almost 7%. 

4. September 2001: attack to the Twin Towers. 

5. April 1999: Nikkei Crash (Japan). 

6. March/April 2001: according to the NBER a recession began in the US in March 

2001. 

7. October 1998: Russian Crash. 

8. October 1997: Asian Crash, the Second Black Monday. 
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Figure 3: the evolution of the index S, measuring the evolution of the S&P500 structure 

 

It is quite obvious from Fig 3 that we have two periods of crises, clustering in 

1987-1989 and in 1997-2001: the nature of these periods is discussed below. It should 

also be considered that some of the events in the list refer to crises in emergent market 

countries, with considerable effects on the dynamics of the world economy; others refer 

to the effect of different factors.  Indeed, the nature of the triggering factors widely 

varies. The 1987 crash is well researched and corresponds to a major malfunctioning of 

the financial system. As Wright points out [21], the Dow Jones suffered a major loss of 

22,61% the 19
th
 October 1987, whereas the losses were 12,82% the 28

th
 October 1929 

and 11,73% the 29
th
. Considering the 55 days around the trough, the cumulated loss was 

of 39,6% in 1929 and of 36,1% in 1987.  

Having identified the events corresponding to the eight highest values (peaks) of S 

in the last 30 years (Fig.3), we reconsidered our data investigating the periods around 

each peak. Besides providing a more accurate view of the evolution, it allows for a better 

measurement since at each window we consider a larger number of companies in the 

S&P500. For the purpose of comparison, the first plot in Fig.4 shows the behavior of S in 

the nearby of the highest peak compared to the values of S around a typical normal day in 

the US stock market.  
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Figure 4: The Black Monday and a day of business-as-usual 

 

Considering shorter spans of time, we could include larger sets of stocks for each 

period; consequently, all the entrant firms at each period can be taken into our picture. 

This procedure highlighted the importance of another crash, which was previously hidden 

by our selection of the thirty years’ survivors. In fact, when the window used for scanning 

through our data is 40 days, the highest peaks (SMax= max{St}  ti ≤ t ≤ ti+40 ) organize in 

the following order (Table 1):  

 
Ranking Date (T) SMax Number of Stocks 

included 

1 October 1987 31.6 312 

2 Dec.2000/January 2001 14.2 426 

3 October 1989 10 330 

4 April 2001 7.7 426 

5 April 2000 (NASDAQ) 7.6 424 

6 April 1999 7.2 417 

7 October 1997 6.3 408 

8 October 1998 5.8 414 

9 September 2001 5.5 426 
Table 1: Ranking of the crises according to the values of SMax 

 

Unsurprisingly, the highest peak corresponds to the Black Monday, being not only 

the larger one but also the long-lasting crisis. The most interesting change in the ranking 

of crashes concerns the appearance of the NASDAQ collapse in April 2000, which was 

hidden by the fact that some emerging firms in the nineties were not considered in our 
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previous data set since they did not exist for the whole (30 years) period. Yet, when they 

are considered, the real picture of a turbulent market appears very clearly: it was in the 

Information Technology and Telecommunication sector that most speculation and stock 

activity concentrated in the late nineties, during the Internet bubble, and the NASDAQ 

crash marks its end. This crash proves the dimension of this speculative process. The 

NASDAQ attained its highest peak by early March 2000, and then its all-time highest 

loss by April (35% of loss in relation to the peak the previous month). 

The different crises are compared in the next figures (Figs.5 and 6). They classify 

in three groups: (a) a structural crisis, (b) general crises, and (c) local crises. Local crises 

are shorter and less intense (6 to 9 in our ranking), general crises are longer and more 

intense (2 to 5 in our ranking), whereas a structural crisis (1 in our ranking) is deeper and 

more prolonged. According to the values obtained by SMax, local crises attain maxima of 

around 6, general crises from 7 to 15, and the structural crisis more than 30 (Fig.4). 

A second criterion for the distinction among these types of crises is the rate of 

decay of the values of SMax. For the cases of local crises, these values decrease rather 

quickly after the peak (plus the 16-days moving window), proving that the structure-

generating behavior is short living after the days of the crash.  
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Figure 5: Local crises 
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Figure 6: General crises 

 

A third characteristic distinguishing between local and general crises is presented 

in the next section, where sectoral dynamics is taken into account. Local crises tend to 

concentrate in some specific sectors; in contrast, general crises tend to exhibit a pattern of 

perturbation in all sectors (as Fig. 9 shows). 

 

4.3 Compared sectoral dynamics 

 
When, instead of the whole set of stocks, we consider sub-sets including the stocks of 

firms belonging to the same economic sector 
1
 and compute the index of market structure 

for each of these sub-sets, evidence for some interesting properties emerges.  

In a previous paper and using several topological indexes [12], we verified that in 

periods of expansion, sector-oriented sub-sets are characterized by a smaller average 

distance between stocks. The average behavior of companies belonging to the same 

economic sector is more synchronous than the behavior of the overall market taken as a 

whole: in the jungle of the crisis, tribes of firms act together. Now we analyze sectoral 

dynamics by considering the consequences of crashes on the leading directions of nine 

sector-oriented market spaces, being each of them restricted to stocks in one of the 

following sectors: Energy, Materials, Industry, Consumer Discretionary, Consumer 

Staples, Health Care, Financials, Information Technology and Utilities. 

                                                 
1 Detailed structures of sectors and other information from Global Industry Classification Standard 

(GICS®), available at  http://www.standardandpoors.com/, referenced in June, 2005. 
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In Figs.7 to 9, the histograms show the value of SMax obtained from those nine 

different market spaces, all of them built on the same time period, which is indicated in 

the title of the plots. The results show the remarkable impact of the Asian crisis in the 

Financial sector and the strong effect of the attack to the Twin Towers on the Materials 

and Industrial sectors. 

Again, there is an obvious difference between what we classify as local and as 

general crises. A third characteristic distinguishing between local and general crises is 

obvious from the graphs. Local crises tend to concentrate in some specific sectors 

(financial companies for the Asian Crash, industrial, materials and financial companies 

for the case of the reaction to the 11
th
 September). In contrast, general crises tend to 

exhibit a pattern of perturbation in all sectors (as Fig. 9 shows). 
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Figure 7: Asian Crash 
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Figure 8: September 11th 
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The plot in Fig.9 shows the extraordinarily unique character of the 1987 Black Monday: 

this is the only case of a crash provoking a similar dynamics in all major sectors, whereas 

in all other crises the dynamics and time pattern of the main sectors is clearly divergent.  
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Figure 9: Black Monday 

 

Finally, we compare the sectoral dynamics among different crashes, taking the examples 

of Materials and Financials. Because in the Black Monday crisis the index S reaches very 

high values in all sectors, this crisis was intentionally excluded from the plots in Fig.10. 
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Figure 10: Materials and Financials dynamics 
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The following table summarizes the sectoral pattern of the crashes, indicating the sectors 

leading the structural change: 

 

Date Leading Sectors 

October 1987 Black Monday All 
January 2001 Argentinean Crisis Financials 
October 1989 US stock market Consumer Staples/Financials 

September 2001  Twin Towers Industrials/Materials/Financials 

April 2000 NASDAQ Information Technology (IT) 

October 1998 Russian Crash Energy/Utilities 

April 1999 Nikkei Crash Consumer Discretionary 

April 2001 US recession Energy/IT 

October 1997 Asian Crash Financials 
Table 2: description of the sectors dominating each crash 

 

From the above results, one notices that the Financials sector is the sector that most 

frequently appears as a leading sector. Its appearance as the leading sector of both the 

Argentinean and the Asian crises is in accordance with the appropriate expectations, since 

each of these crises corresponds to a major malfunctioning of the financial system. 

Another encouraging result refers to the Information Technology leadership at the 

NASDAQ crisis, settling the end of the Internet Bubble of the second half of the nineties. 

Back to the geometrical tale of our index, a 3 dimensional look at the market 

space that evolves from October 1989 to September 2001 and comprises on average 80 

Financial stocks (the lower plot in Fig.10), would reveal a manifold that: (i) starts from a 

elliptical form (in 1989), (ii) acquires prominences in a particular direction at the 1997 

Asian Crash, and (iii) turns back to a close-to-spherical form until the Argentinean 

Financial crisis in December 2000. After a partial shape recovery, a new relevant 

distortion will arrive in September, 2001.  

A smoother dynamics characterizes the market space built from stocks in the 

Materials sector along the same time period (1989 to 2001). Accordingly to the results 

presented above (the upper plot in Fig.10), the only relevant shape distortion of that 

market space is the one taking place in 11
th
 September, 2001; when the structure index S 

reaches a value three times higher than the highest value obtained so far for the Materials 

market space. 

 

4 Conclusions 

 

A stochastic geometry technique proved to be useful for the purpose of describing and 

interpreting the evolution and changes in the dynamics of a market. Furthermore, the 

index S, as defined in this paper, allowed for a useful taxonomy of the nine major stock 

market crises occurring in the last thirty years. Three types of crises were considered: 

local, general and structural crises. We classified these crashes according to the 

maximum values of S, but three other operative criteria were useful to describe these 

differences: (1) the decay time of the effects of the crash is reduced in the case of local 

crises; (2) general crises concentrate on several sectors; (3) the structural crisis involves 

all sectors under a similar time pattern. The measure of SMax proved to be useful and 

capable of discriminating among the distinct processes at work in the stock market.
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 As the index S captures the lack of uniformity among the market effective 

dimensions, we are able to characterize the extent to which crashes act differently on 

specific directions, causing changes in the shape of the market space. Looking for 

relevant distortions in the shape of the S&P500 market space through the last 30 years, 

we identified the events corresponding to crises in emergent market countries, with 

considerable effects on the dynamics of the world economy. Others events that were also 

identified refer to the effect of different factors, showing that, the nature of the triggering 

factors widely varies. 

 The identification of the characteristics of each crisis allows for their 

differentiation. Local crises were imposed either by disarrangements of national stock 

markets from emerging economies (Russia, Asia) and global players (Japan) or by purely 

exogenous factors (the 11
th
 September attack). The crash provoked by exogenous factors 

is less consequential and is rapidly superseded. Instead, general crises followed another 

pattern: they are deeper, longer and involve a large number of sectors. The Argentinean 

crises (December 2000-January 2001) and the following NASDAQ crisis (April 2000) 

and the US recession (April 2001) initiated or followed the end of the Internet Bubble of 

the second half of the nineties.  

The Black Monday (1987) was the deeper and the longest of all the crashes as 

well as the more general, since it involved all economic sectors. The data suggest that 

another structural crisis may be at work in the clustering of six crashes between April 

1997 and September 2001. 

Finally, the predictive character of our structure index is to be explored in future 

work. 
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