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Abstract:   

In this paper, the innovative random stochastic frontier model is used to estimate 

the technical efficiency of UK airports. These airports are ranked according to 

their total productivity for the period 2000-2005 and homogenous and 

heterogeneous variables in the cost function are disentangled, which leads us to 

advise the implementation of common policies as well as policies by segments. 

Economic implications arising from the study are also considered. 
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1. Introduction 

This paper explores the use of random technical efficiency as an instrument for 

assessing the technical efficiency of UK airports, combining operational and financial 

data. The random frontier model allows for heterogeneity in the data and is considered 

the most promising state-of-the-art modelling available by which to analyse cost 

functions (Greene, 2003, 2004, 2005). The advantage of this method over alternative 

models is twofold. First, it allows for the error term to combine different statistical 
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distributions. Second, it uses random parameters; i.e., parameters that describe factors 

not linked to observed features on the cost function. This type of estimation 

disentangles the explanatory variables to determine which of them must be treated in a 

homogeneous way and which are heterogeneous and must be managed by segments. 

The efficiency of airports is of interest in contemporary economics, because of their 

increasing strategic importance in the movement of people and cargo in the globalised 

world (Oum and Yu, 2004).  Efficiency has been the focus of much recent research (see 

Pels et al., 2001, 2003; Oum and Yu, 2004; Yoshida, 2004; Yoshida and Fujimoto, 

2004; Fung, Wan, Hui and Law, 2007; Barros, 2008). Moreover, the increased 

competition among airlines resulting from deregulation and liberalisation has placed 

airports in a much more competitive environment. As a result, airports are now under 

pressure to upgrade their efficiency relative to their competitors. Benchmarking analysis 

is one of the ways to drive airports towards the frontier of best practices (De Borger, 

Kerstens and Costa, 2002). 

Previous research on airports has been conducted by several authors using either 

data envelopment analysis (DEA), such as Gillen and Lall (1997), Parker (1999), Pels, 

Nijkamp and Rietveld (2001, 2003), Adler and Berechman (2001), Fernandes and 

Pacheco (2002), Barros and Sampaio (2004) and Murillo-Melchor (1999), or the 

homogeneous stochastic frontier model (Pels et al., 2001, 2003; Oum and Yu, 2004; 

Yoshida, 2004; Yoshida and Fujimoto, 2004; Fung, Wan, Hui and Law, 2007; Barros, 

2008). However, the stochastic frontier model used in these papers is the homogenous 

frontier model, which assumes all units as homogenous. Therefore, the present research 

is innovative in the context of airports. 

The paper is organised as follows: section 2 describes the institutional setting; 

section 3 surveys the literature on the topic; section 4 presents the methodological 
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framework; section 5 explains the method; section 6 displays the data; section 7 

presents the results; section 8 discusses the findings; and finally, section 9 concludes. 

 

2. Institutional Setting 

British airports are owned and managed by one of three distinct entities, BAA 

(British Airports Authority), Manchester Airports PLC and TBI PLC.  

BAA is the owner and operator of seven British airports and operator of several airports 

in Italy and the USA, making it one of the world’s largest transport-sector companies. It 

also owns British Airline. BAA was established by the passing of the Airport Authority 

Act 1966, to take responsibility for four state-owned airports. In 1986, under Margaret 

Thatcher’s policy to privatise government-owned assets, BAA was transformed into a 

PLC and has achieved expansion beyond the UK. This includes the acquisition of retail 

contracts at Boston Logan International Airport and Baltimore-Washington 

International Thurgood Marshall Airport (through subsidiary BAA USA, Inc.), and a 

total management contract with the City of Indianapolis to run the Indianapolis 

International Airport (as BAA Indianapolis, Inc.). In July 2006, BAA was taken over by 

a consortium led by the Spanish transportation group, Grupo Ferrovial. As a result, the 

company was delisted from the London Stock Exchange (where it had previously been 

part of the FTSE100 index) and the company name was subsequently changed from 

BAA plc to BAA Limited. 

Manchester Airports PLC, formed in 1986, manages several English city airports and is 

characterised by being a public limited company owned by local authorities. Following 

the purchase of a majority shareholding in Humberside Airport in 1999 and the 

acquisition of East Midlands Airport and Bournemouth Airport in 2001, the company 
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was restructured to create the Manchester Airport Group. Although Manchester Airport 

Group is registered as a public limited company, its shares are not quoted or for sale on 

the Stock Exchange. Manchester City Council has a majority shareholding (55%) with 

each of nine other councils holding 5% each. 

TBI PLC is the owner of three regional airports in England, Wales and Northern 

Ireland. In 2004, TBI was acquired by a Spanish enterprise owned by AENA, the 

company that manages Spanish airports, and Abertis, a Spanish construction company.  

The company has also expanded into international airport management under contract. 

 Table 1 depicts some characteristics of these companies in relation to UK airports. This 

ownership status contributes to the competition among airports. The competition itself 

is fuelled by the steady increase in passengers and flights, which is both a cause and 

effect of the competition between the traditional national flag carrier airlines and the 

new wave of low-cost carriers. London’s airports (Heathrow, Gatwick, Stansted, Luton 

and London City Airport) accounted for 62% of the total traffic in 2005.  

 

U.K. airports have been the subject of research by Parker (1999), who analyses 

the performance of the British Airports Authority before and after privatisation with 

data from the financial reports for the period 1979/80-1995/96, using a CCR-DEA 

model and a BCC-DEA model. In addition, Jessop (2008) analyses the performance of 

UK airports with a block model.  
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Table 1: Characteristics of the U.K. Airports in the Analysis (2005)  

No. Airport Total Passenger 
arrivals (000) 

Number of 
equivalent 
employees 

Owned by 
BAA  

Owned by 
Manchester 
Airports plc 

Owned by TBI 
plc 

 

1 Heathrow 67673 4052 1 0 0 
2 Gatwick 32013 1877 1 0 0 
3 Stansted 21268 1036 1 0 0 
4 

Southampton  1561 188 1 0 0 
5 Glasgow  8620 445 1 0 0 
6 Edinburgh  8057 406 1 0 0 
7 Aberdeen  2699 233 1 0 0 
8 

Manchester  21324 1221 0 1 0 
9 

Bournemouth 502 123 0 1 0 
10 

Humberside 533 146 0 1 0 
11 

Nottingham  4436 259 0 1 0 
12 

Birmingham  8774 691 0 0 0 
13 

Newcastle  4749 332 0 0 0 
14 Belfast  3543 205 0 0 1 
15 Cardiff  1536 92 0 0 1 
16 Luton  7532 430 0 0 1 
17 Blackpool  348 102 0 0 0 
18 Bristol  3718 200 0 0 0 
19 Durham  844 142 0 0 0 
20 Exeter  671 271 0 0 0 
21 Highlands  952 309 0 0 0 
22 Leeds  2450 243 0 0 0 
23 Liverpool  3458 352 0 0 0 
24 

Biggin Hill 20 58 0 0 0 
25 London City 1685 216 0 0 0 
26 Norwich  447 204 0 0 0 
27 Southend 4 48 0 0 0 

  Mean 1420997 514 0.259 0.148 0.111 

  Median 556032 243       

  Standard 
Deviation 

2667912 814       
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Note: airports not belonging to BAA, Manchester or TBI are independent city airports 
 

 

3.  Literature Survey 

While there is extensive literature on benchmarking applied to a diverse range of 

economic fields, the scarcity of studies regarding European airports bears testimony to 

the fact that this is a relatively under-researched topic (Humphreys and Francis, 2002; 

Humphreys, Francis and Fry (2002), Graham, 2005).  

In Table 2, we present the models, inputs and outputs used in the various papers. 

 

Table 2: Research into Airport Efficiency 
 

Papers Method Units Inputs Outputs 
Gillen and Lall (1997) DEA-BCC 

model and a  
Tobit model 

21 US 
airports  

i) Terminal services model: 
1) Number of runways 
2)Number of gates 
3)Terminal area 
4)Number of baggage 
collection belts 
5) Number of public parking 
spots 
ii) Movement model: 
1)Airport area 
2)Number of runways 
3) Runway area 
4) Number of employees 

i)Terminal services model:  
1)Number of passengers 
2)Pounds of cargo 
ii) Movements model 
1)Air carrier movements 
2)Commuter movements  

Parker (1999) DEA-BCC and 
CCR models 

32 U.K. 
regulated 
airports, 
1979/1980 to 
1995/1996. In 
a second 
model, 22 
airports are 
analysed 
from 1988/89 
to 1996/97  

1) Number of employees, 2) 
Capital input estimated as an 
annual rental based on a real 
rate of return of 8% each year 
applied to net capital stock, 
3) Other inputs defined as the 
residual of total operating 
costs.  

1) Turnover, 2) Passengers 
handled, 3) Cargo and mail 
business 

Murillo-Melchor 
(1999) 

DEA-Malmquist 33 Spanish 
civil airports, 
1992 to 1994

1) Number of workers, 2) 
Accumulated capital stock 
proxied by amortisation, 3) 
Intermediate expenses 

Number of passengers 
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Gillen and Lall (2001) DEA-Malmquist 22 major US 
airports, 1989 
to 1993 

i) Terminal services model: 
1) Number of runways, 2) 
Number of gates, 3) Terminal 
area, 4) Number of 
employees, 5) Number of 
baggage collection belts, 6) 
Number of public parking 
places. 
ii) Movement model: 
 1) Airport area, 2) Number 
of runways, 3) Runway area, 
4) Number of employees 

i) Terminal services model: 
1) Number of passengers,  
2) Number of pounds. 
ii) Movement model:  
1) Air carrier movements, 2) 
Commuter movements.  

Pels, Nijkamp and 
Rietveld (2001)* 

DEA-BCC 
model. 

34 European 
airports, 1995 
to 1997 

1) Terminal size in square 
meters, 2) Number of aircraft 
parking positions at the 
terminal, 3) Number of 
remote aircraft parking 
positions, 4) Number of 
check-in desks, 5) Number of 
baggage claims. 

i) Terminal model: 1) 
Number of passengers. 
ii) Movement model: 1) 
Aircraft transport 
movements. 

Pels, Nijkamp and 
Rietveld (2001)* 

Stochastic 
frontier model. 

34 European 
airports, 1995 
to 1997 

1) Constant, 2) Number of 
baggage claim units, 3) 
Number of parking positions 
at the terminal, 4) Number of 
remote parking positions. 

i) Terminal model: 1) 
Number of passengers. 
ii) Movement model: 1) 
Aircraft transport 
movements. 

Adler and Berechman 
(2001) 

DEA-BCC with 
Principal 
Component 
Analysis. 

26 European 
airports 

1) Passenger terminals, 
runways, 2) Distance to city 
centres, 3) Minimum 
connecting times in minutes.

1)Principal components 
obtained from a questionnaire 
on airlines. 

Martin and Román 
(2001) 

DEA-CCR 
DEA-BCC 

Spanish 
airports, 
1997. 

1)labor 
2)capital 
3)material 

1)Passengers 
2)Cargo 
3)ATM 

Martín-Cejas (2002) Translog cost 
frontier model  

40 Spanish 
airports, 
1996-1997 

 WLU, labour price and 
capital price. 

total cost 

Fernandes and 
Pacheco (2002) 

DEA. 16 Brazilian 
airports, 1998

1) Airport surface area in m2, 
2) Departure lounge in m2, 3) 
Number of check-in counters, 
4) Curb frontage in meters, 5) 
Number of vehicle parking 
spaces, 6) Baggage claim 
area in m2.  

Domestic passengers. 

Pels, Nijkamp and 
Rietveld (2003)** 

DEA-BCC 
model. 

33 European 
airports, 1995 
to 1997 

i) Terminal model: 1) Airport 
surface area, 2) Number of 
aircraft parking positions at 
terminal, 3) Number of 
remote aircraft parking 
positions, 4) Number of 

i) Terminal model: 1) Annual 
number of domestic and 
international movements 
ii) Movement model: 1) 
Annual number of domestic 
and international passengers.
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runways; 5) Dummy z 
variables for slot-coordinated 
airports and 6) Dummy z 
variable for time restrictions.
ii) Movement model: 1) 
Number of check-in-desks, 2) 
Number of baggage claim 
units; 3) Annual number of 
domestic and international 
movements. 
 

Pels, Nijkamp and 
Rietveld (2003)** 

Stochastic 
frontier model 

As above. As above.  As above. 
 

Sarkis (2000) Several DEA 
models, 
including the 
CCR and BCC 
models. 

43 US 
airports from 
1990-1994. 

1) Operating costs, 2) 
Employees, 3) Gates, 4) 
Runways. 

1) Operating revenues, 2) 
Aircraft movements, 3) 
General aviation, 4) Total 
passengers, 5) Total freight.  

Sarkis and Talluri 
(2004) 

DEA-CCR and 
cross-efficiency 
DEA model from 
Doyle and Green 
(1994) 

43 US 
airports from 
1990-1994. 

1)Operating costs, 2) 
Employees, 3) Gates,   
4) Runways. 

1) Operating revenue, 2) 
Aircraft movements, 3) 
General aviation, 4) Total 
passengers, 5) Total freight. 

Barros and Sampaio 
(2004) 

DEA - allocative 
Model. 

10 
Portuguese 
airports 
1990-2000. 

1) Number of employees, 2) 
Capital proxied by the book 
value of physical assets, 3) 
Price of capital, 4) Price of 
labour. 

1) Number of planes, 2) 
Number of passengers, 3) 
General cargo, 4) Mail cargo, 
5) Sales to planes, 6) Sales to 
passengers. 

Yoshida (2004) Endogenous-
Weight method 

43 Japanese 
airports, 
2000. 

1) Runway length, 2) 
Terminal size. 

1) Passenger loading, 2) 
Cargo handling, 3) Aircraft 
movement. 

Yoshida and Fujimoto 
(2004) 

DEA-CCR, 
DEA-BCC and 
Input distance 
function. 

43 Japanese 
airports, 
2000. 

1) Runway length, 2) 
Terminal size, 3) Monetary 
access cost, 4) Time access 
cost, 5) Number of 
employees in terminal 
building. 

1)Passenger loading, 2)cargo 
handling, 3)aircraft 
movement. 

Lin and Hong (2006) DEA-CCR, 
DEA-BCC 
DEA-FDH 

20 major 
world 
airports, 2003

1) number of employees 
2) number of check counters 
3) number of runways 
4) number of parking spaces 
5) number of baggage 
collection belts 
6) number of aprons 
7) number of boarding gages
8) termina area 

1)Number of passengers 
2)cargo 
3) movement 

Barros and Dieke 
(2007) 

Multiple DEA 
models 

31 Italian 
airports, 
2001-2003 

1) Labour cost, 2) Capital 
invested, 3) Operational costs 
excluding wage costs.  

1) Number of planes, 2) 
Number of passengers, 3) 
General cargo. 4) Handling 
receipts, 5) Aeronautical 
sales, 6) Commercial sales. 
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Fung, Wan, Hui and 
Law (2007) 

Malmquist DEA 
model 

25 regional 
Chinese 
airports, 
1995-2004. 

1) Runway length, 2) 
Terminal size. 

1) Passengers handled, 2) 
Cargo handled, 3) Aircraft 
movements. 

Barros (2008)  Homogenous 
stochastic 
frontier model  

10 
Portuguese 
airports, 
1990-2000 

1) Operating costs, 2) Price 
of capital, 3) Price of labour.

1) Sales to planes, 2) Sales to 
passengers, 3) Non-
aeronautical fee. 

Barros and Dieke 
(2008)  

DEA two-stage 
model 

31 Italian 
airports, 
2001-2003 

1) Labour costs 
2) Capital invested 
3) Operational costs 
excluding labour costs. 
Second-stage variables: 
4) Hub 
5) WLU 
6) Private 
7) North. 

1) Number of Planes 
2) Number of Passengers 
3) General Cargo 
4) Handling receipts 
5) Aeronautical sales 
6) Commercial sales. 

* The paper by Pels, Nijkamp and Rietveld (2001) presents two methods for analysing efficiency. We therefore present the paper in 

two separate entrie s in order to explain the techniques. 

** The paper by Pels, Nijkamp and Rietveld (2003) presents two methods for analysing efficiency. We therefore present the paper 

in two rows in order to explain the techniques. 
 

 

We can observe that a conventional approach to the analysis of airports is to 

separate activities into terminals and movements (Gillen and Lall, 2001; Pels, Nijkamp 

and Rietveld, 2001; Pels, Nijkamp and Rietveld, 2003). Several papers compare the 

DEA model with the frontier model (Pels, Nijkamp and Rietveld, 2001; Pels, Nijkamp 

and Rietveld, 2003, Hooper and Hensher, 1997), while others combine principal 

component analysis with a DEA model (Adler and Berechman, 2001). Furthermore, 

others rely on the homogenous stochastic frontier models to analyse airport efficiency 

(Pels, Nijkamp and Rietveld, 2001, 2003). Therefore, our use of the random frontier 

model is innovative in this context.  

 

4. Theoretical Framework 

In this paper, two economic efficiency models are adopted as theoretical 

references. The first of these is the strategic-group theory (Caves and Porter, 1977), 
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which justifies differences in efficiency scores as being due to differences in the 

structural characteristics of units within an industry, which in turn lead to differences in 

performance. In the case of UK airports, units with similar asset configurations pursue 

similar strategies, with similar results in terms of performance (Porter, 1979). While 

different strategic options can be found among the different sectors of an industry, not 

all options are available to each airport due to mobility impediments, causing a spread 

in the efficiency scores of the industry.  

The second theoretical reference is the resource-based theory (Barney, 1991; Rumelt, 

1991; Wernerfelt, 1984), which justifies different efficiency on the grounds of 

heterogeneity of resources and capabilities on which airports base their strategies. These 

resources and capabilities may not be perfectly mobile across the industry, resulting in a 

competitive advantage for the best-performing airport.  

These two theoretical frameworks are rooted in economics (the strategic-group 

theory) and in management (resource-based theory) and are adequate to support 

efficiency analysis, whenever there are variations in the efficiency among the units 

observed. Moreover, both theories have been previous used to support efficiency 

analysis (Warning, 2004; Taymaz, 2005). 

Purchasable assets cannot be considered to represent sources of sustainable 

profits. Indeed, critical resources are not available in the market. Rather, they are built 

and accumulated on the airport’s premises, their non-imitability and non-substitutability 

being dependent on the specific traits of their accumulation process. The difference in 

resources thus results in barriers to imitation (Rumelt, 1991) and in the airport 

managers’ inability to alter their accumulated stock of resources over time. In this 

context, unique assets are seen as exhibiting inherently differentiated levels of 
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efficiency; sustainable profits are ultimately a return on the unique assets owned and 

controlled by the airport (Teece et al., 1997).  

 

5. Method 

The methodological approach adopt here is the stochastic cost econometric 

frontier. The frontier is estimated econometrically and measures the difference between 

the inefficient units and the frontier by the residuals, which are assumed to have two 

components: noise and inefficiency. The general frontier cost function is of the form: 

TNituitv
eitXCitC …=∀…=∀

+
⋅= 1,2,  t ;1,2,  i   ; )(   (1) 

Where Cit represents a scalar cost of the decision-unit i under analysis in the t-th period; 

Xit is a vector of variables including input prices and output descriptors present in the 

cost function. The error term vit is assumed to be i.i.d. and represents the effect of 

random shocks (noise). It is independent of uit, which represents technical inefficiencies 

and is assumed to be positive and to follow a N(0, σu
2 ) distribution. The disturbance uit 

is reflected in a half-normal independent distribution truncated at zero, signifying that 

the cost of each airport must lie on or above its cost frontier, implying that deviations 

from the frontier are caused by factors controlled by the airport management authority. 

The total variance is defined as σ2 = σv
2 + σu

2. The contribution of the different 

elements to the total variation is given by:  σv
2 = σ2 / (1+ λ2) and σu

2 = σ2 λ2 / (1+ λ2); 

where λ = σu
 / σv , which provides an indication of the relative contribution of u and v to 

ε = u + v. Because estimation of equation (1) yields merely the residual ε, rather than u, 

the latter must be calculated indirectly (Greene, 2003). For panel data analysis, Battese 

and Coelli (1988) used the expectation of uit conditioned on the realised value of εit = uit 

+ vit, as an estimator of uit. In other words, E[uit+νit| εit] is the mean productive 
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inefficiency for airport i at time t. But the inefficiency can also be due to the airports’ 

heterogeneity, which implies the use of a random effects model: 

itititiit uvwc ++++= xβ')( 0β    (2) 

where the variables are in logs and w i is a time-invariant specific random term that 

captures individual heterogeneity. A second issue concerns the stochastic specification 

of the inefficiency term u, for which the half-normal distribution is assumed. For the 

likelihood function we follow the approach proposed by Greene (2005), where the 

conditional density of cit given wi is: 

itiitit
itit

iit wcwcf xβ')(  ,   2)|( 0 −+−=
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Where φ  is the standard normal distribution and Φ is the cumulative distribution 

function. Conditioned on wi, the T observations for airport i are independent and their 

joint density is:  
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The log likelihood is then maximised with respect to β0, β, σ, λ and any other parameter 

appearing in the distribution of wi. Even if the integral in expression (5) is intractable, 

the right-hand side of (5) leads us to propose computing the log likelihood by 

simulation. Averaging the expectation over a sufficient number of random draws from 

the distribution of wi will produce a sufficiently accurate estimate of the integral shown 
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in (5) to allow estimation of the parameters (see Gourieroux and Monfort, 1996; Train, 

2003). The simulated log likelihood is then: 

∑ ∏∑
= ==
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where θ includes the parameters of the distribution of wi and wir is the r-th draw for 

observation i. Based on our panel data, Table 4 presents the maximum likelihood 

estimators of model (1), as found in recent studies (see Greene, 2004 and 2005). 

6. Data  

We use a balanced panel comprising twenty-seven UK airports during six years 

from 2000/01 to 2004/05 (162 observations) obtained in Cruickshank, Flannagan and 

Marchant’s Airport Statistics [CRI - Centre For The Study of Regulated Industries, 

University of Bath (several years)]. The variables were transformed as described in 

Table 3, where monetary magnitudes are expressed in £'000 pounds, deflated by the 

GDP deflator and denoted at prices of 2002. 

Table 3: Descriptive Statistics of the Data 
Variable Description Minimum Maximum Mean Standard 

Deviation 

LgCost Logarithm of operational cost in pounds at constant price 
2002=100 6.6685 8.9475 7.4633 0.4104 

LgPL Logarithm of price of workers, measured by dividing 
total wages between the number of workers 4.61378 6.8152 5.7316 0.3782 

LgPK1 Logarithm of price of capital-premises, measured by the 
amortisations divided by the value of the total assets 0.00453 0.3959 0.0689 0.0486 

logPK2 
Logarithm of price of capital-investment, measured by 
the cost of long-term investment divided by the long-
term debt 

0.0252 0.278 0.083 0.012 

LgPassengers Logarithm of the passengers at each airport in pounds at 
constant price 2002=100 5.6367 8.3703 7.2507 0.4537 

LgAircraft Logarithm of the aircraft movements at each airport  1.4313 1.9542 1.7216 0.0988 

 
 

The specification of the cost function follows microeconomic theory (Varian, 1987). 

The costs are regressed in input prices and output descriptors. The empirical 

specification of the cost function is the translog. We have chosen a flexible functional 
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form in order to avoid imposing unnecessary a priori restrictions on the technologies to 

be estimated. Each explanatory variable is divided by its geometric mean. In this way, 

the translog can be considered as an approximation to an unknown function and the first 

order coefficients can be interpreted as the production elasticities evaluated at the 

sample geometric mean. We also include both a time trend and a squared time trend in 

order to obtain some temporal changes. The equation to estimate is: 
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where y is the output measured as points, w denotes input price, t is a time 

trend, v is a random error which reflects the statistical noise and is assumed to follow a 

normal distribution centred at zero, while u reflects inefficiency and is assumed to 

follow a half-normal distribution. Each explanatory variable was divided by its 

geometric mean. In this way, the translog can be considered as an approximation to an 

unknown function and the first order coefficients can be interpreted as the production 

elasticities evaluated at the sample geometric mean. We also included a time trend and a 

squared time trend in order to get some temporal changes. Therefore the equation to 

estimate is: 

Table 4: Stochastic panel cost frontier (Dependent Variable: Log Cost) 

Variables Translog  
Non-Random 

Frontier Model 

Translog random 
Frontier model 

Non-random parameters Coefficient   (t-ratio) Coefficient  (t-ratio) 
Constant  0.555   (0.528) 0.342   (0.127) 
Trend  2.302   (5.012)* 1.021   (3.219)* 
Trend2 -0.287   (-4.361)* -0.158   (-4.218)* 
LogPL  0.515   (1.812) 0.532    (4.329)* 
Log PK1 0.210   (3.219) 0.212   (3.294)* 
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LogPK2  0.248   (5.186)* 0.148   (4.218)* 
LogPassengers 0.488   (7.894)*  
LogAircraft  -0.104   (-1.167)  
(logPL)2 0.016  (1.577) 0.345    (5.318)* 
(LogPK1)2 0.563  (2.218) 0.018   (3.892)* 
(LogPK2)2 1.218  (1.215) 0.967    (3.321)* 
(Log Passengers)2 0.053  (2.031) 0.067  (5.321)* 
(Log Aircraft)2 -0.078  (-2.129) -0.021   (-2.167) 
Trend*log PL 0.267   (3.178)* 0.124    (3.289)* 
Trend*logPK1 0.056  (0.021) 0.002   (1.005) 
Trend*logPK2 0.078  (0.127) 0.021   (0.032) 
Trend*logPassengers 0.564  (2.563) 0.218   (3.656)* 
Trend*logAircraft -0.035  (-0.127) -0.021   (-0.023) 
LogPL*logPK1 0.127  (2.563) 0.041   (1.027) 
LogPL*logPK2 0.189  (1.028) 0.039   (0.219) 
LogPL*logPassengers -0.559  (-4.089)* -0.008   (-0.789) 
logPL*logAircraft 0.437  (2.960) 0.032  (1.673) 
Log PK1*logPK2 0.128  (1.027) 0.025  (3.218)ª 
LogPK1*logPassengers 0.053  (2.125) 0.026   (3.142)* 
LogPK1*LogAircraft 0.095  (1.219) 0.071   (3.219)* 
LogPK2*logPassengers 0.053..(1.214) 0.019   (0.218) 
LogPK2*logAircraft 0.026  (0.278) 0.004   (0.021 
Log Passengers*log Aircraft -0.301  (-8.262)* -0.021   (-3.218)* 
BAA 0.346   (2.184)* 0.218   (3.672)* 
Manchester 0.147   (0.963) 0.128    (3.218)* 
TBI 0.310   (1.009) 0.289   (3.210)* 

Mean for Random Parameters 
LgPassengers  0.478   (3.219)* 
LgAircraft − -0.052    (-3.937)* 

Scale Parameters for Distribution of Random Parameters 
LgPasseng − 0.984    (4.218)* 
LgPasseng − 0.021   (3.219)* 
Statistics of the model   
σ = (σV

2 + σU
2)½ 0.507   (9.112)* 0.318    (5.219)* 

λ = σU / σV 0.772   (3.012)* 0.248   (3.218)* 
Log likelihood -116.289 -116.521 
Chi Square  
Degrees of freedom 
Probability 

132.214 
3 

0.000 

141.210 
3 

0.000 
Observations 162 162 
t-statistics in parentheses (* indicates that the parameter is significant at 1% level). 

Table 4 presents the results obtained for the stochastic frontier, using GAUSS and 

assuming a half-normal distribution specification for the cost function frontier. 
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Regularity conditions require the cost function to be linearly homogeneous, non-

decreasing and concave in input prices (Cornes, 1992).  

Turning to the number of observations and exogenous variables, we use the translog 

model with a half-normal distribution, a choice that is supported by the data analysis. 

Having estimated two rival models, the homogeneous and heterogeneous translog 

frontier models and heterogenous frontier model, we apply the likelihood test and 

conclude that the heterogeneous frontier is the most adequate functional form. In 

addition, we computed the Chi-square statistic for general model specification, which 

also advocates using the heterogeneous frontier. 

Finally, in order to differentiate between the frontier model and the cost 

function, we consider the sigma square and the lambda of the cost frontier model. They 

are statistically significant, meaning that the traditional cost function is unable to 

capture adequately all the dimensions of the data. Furthermore, the random cost 

function fits the data well, since both the R2 and the overall F-statistic (of the initial 

OLS used to obtain the starting values for the maximum-likelihood estimation) are 

higher than the standard cost function. Lambda is positive and statistically significant in 

the stochastic inefficiency effects, and the coefficients have the expected signs.  

The variables have the expected signs since all price elasticities are positive. 

Moreover, instead imposing homogeneity in prices we have tested it. Therefore we 

accept the hypothesis that the cost function is homogeneous in prices for both models. It 

can be seen that the labor elasticity is 0.532. Cost increases along the trend and 

decreases with the square trend and moreover, increases significantly with the price of 

labour, the price of capital-premises, the price of capital-investments and passengers. 

The cost decreases with aircraft. Moreover, passengers and aircraft are heterogeneous 

statistically significant variables. The statistically significant random parameters vary 
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along the sample. The identification of the mean values of random parameters implies 

taking into account heterogeneity when implementing cost control measures.  

7. Efficiency Scores 

The motivation and scope of this paper derive from the fact that random frontier 

models generally succeed at describing the costs structure of UK airports. In particular, 

our analysis suggests that homogenous frontier models should be abandoned since they 

do not capture relevant aspects of the examined context. On the contrary, random 

frontier models allow the homogenous and heterogeneous variables to be disentangled.  

Based on the new frontier, the alternative ranking is shown in Table 5, which 

reports the cost average cost efficiency for each airport across the sample. The cost 

efficiency is defined as the ratio between the minimum cost and the actual cost, 

implying that it takes values between 0 and 1. Hence, the closer to 1 is the ratio, the 

more efficient the airport is. Given that the dependent variable has been transformed in 

logarithms, we compute: 

)ûexp(EC −=     (8) 

where the estimated value of the inefficiency ( û ) is separated from the random error 

term ( v̂ ), using the Jondrow et al. (1982) formula. 

Table 5: Average Cost Efficiency 

 Homogeneous 
Translog 

Frontier model  

Heterogenous or 
random Frontier 

model 

 

Obs 
Airports 

Efficiency 
Scores 

Airports Efficiency 
Scores 

1 Manchester  1 Luton  1 
2 Norwich  0.997412 Newcastle  0.943234 
3 Aberdeen  0.905293 Leeds  0.82459 
4 Highlands  0.806273 Liverpool  0.82163 
5 Bournemouth 0.741081 Southampton  0.793113 
6 Glasgow  0.664058 Nottingham  0.777509 
7 Edinburgh  0.629182 Glasgow  0.728814 
8 Heathrow 0.619693 Durham  0.699758 
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9 Southampton  0.580381 Edinburgh  0.693839 
10 Stansted 0.514696 Aberdeen  0.692494 
11 Biggin Hill 0.495779 Bristol 0.645951 
12 Humberside 0.457946 Belfast  0.644606 
13 Exeter  0.400579 Cardiff  0.616626 
14 London City 0.377534 Blackpool  0.60452 
15 Gatwick 0.366874 Bournemouth 0.563627 
16 Liverpool  0.347218 Stansted 0.559322 
17 Luton  0.292624 Humberside 0.558515 
18 Belfast  0.288681 Birmingham  0.539144 
19 Newcastle  0.259474 Southend 0.514662 
20 Birmingham  0.258734 Exeter  0.513048 
21 Leeds  0.221948 Biggin Hill 0.507398 
22 Cardiff  0.221086 London City 0.469465 
23 Durham  0.202662 Highlands  0.455206 
24 Bristol  0.197178 Norwich  0.446059 
25 Nottingham  0.150964 Manchester  0.442023 
26 Blackpool  0.150225 Gatwick 0.435297 
27 Southend 0.146651 Heathrow 0.417867 
 Mean 0.455342 Mean 0.626234 

 

The results displayed in Table 5 demonstrate that each of the frontier specifications 

produce different scores, with the homogenous frontier model displaying a higher level 

of relative efficiency. The average efficiency is 0.62 on the random or heterogenous 

frontier but only 0.45 in the homogenous frontier. A comparison of both models reveals 

that the homogeneous scores present larger variances than those computed from the 

heterogeneous frontier, which signifies that heterogeneity in variables contaminates the 

scores.  

It can be observed that taking into account heterogeneity, the rankings change and the 

best practice is achieved by a small UK airport, Luton, which is a TBI airports 

specialised in low cost airlines. Moreover, the four top positions are achieved by the 

independent city airports, while the weakest position is achieved for the most important 

UK airports, Heathrow, Gatwick and Manchester. 

 

8. Discussion 
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This article has proposed a simple framework for the comparative evaluation of 

UK airports and the rationalization of their operational activities. The analysis was 

carried out through implementation of a Random or heterogenous stochastic frontier 

model, which allows for the incorporation of multiple inputs and outputs in determining 

the relative efficiencies and the inclusion of heterogeneity in the data.  

The main policy implication of the findings of the present analysis is that 

heterogeneity must be considered a major issue in the UK airports. Accordingly, public 

policies towards airports should take into account such heterogeneity. For instance, the 

authorities could implement policies by segments defined by passengers and aircraft 

with the aim of regulating aircraft and passenger movements in the UK airports. The 

planned “open skies” between the USA and the UK is one such policy, since it will have 

an adverse effect on London’s airports and be more beneficial to other British airports. 

Understandably, BAA is now blocking the accord. New slots allocation in congested 

airports is another policy move. Airport capacity is expressed in slots (i.e. an expression 

of capacity representing the permission given to a carrier to operate an air service at a 

slot-controlled airport on a specific date and time for the purpose of landing and take-

off) and is allocated within the framework of voluntary guidelines developed and 

evolved over the years by IATA. Slot allocation in European Union airports falls within 

the scope of the European Union Single Market, thus being subject to a common 

regulatory framework under European Council Regulation. Under the congestion 

pricing strategy (Madas and Zografos, 2008), historic slot rights will be abandoned and 

a congestion-based scheme with fees varying with congestion throughout the day will 

be set by an administrative authority. Each carrier could operate at any time or slot by 

paying the corresponding scarcity rent (i.e., congestion fee). During recent years, the 

European Commission (1993, 2001, 2004) has pursued a radical revision of the existing 
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slot allocation regime, aiming to deal with the scarcity of airport capacity. However, 

IATA regulation 95/93 denies the use of market-based mechanisms to allocate slots. 

The European Commission proposes several market-based slot allocation mechanisms 

(Madas and Zagrafos, 2008). This will be a natural area for cluster regulation, using 

different market–based slot allocation mechanisms based on the characteristics of the 

UK airports.  

Relative to results of the model, the cost increases alongside with the trend, 

which hints that there are not technological improvements during the period to drive the 

costs down? However, costs increases at decreasing rate. Moreover, the cost 

significantly increases homogenously with price of labour, price of capital-premises and 

capital-investment. It also rises with passengers and aircrafts, but in a random way. The 

significant random parameters vary along the sample. The identification of the mean 

values of random parameters implies having into account the heterogeneity when 

implementing policies for cost control.  

What is the rationality of this result? This is an intuitive result, since airports are not 

homogenous. There are small and large and medium sized airport. These visible 

characteristics translate into different performances obtained in the market, resulting in 

different clusters within the market. These clusters are distinguished from each other 

based on the passenger and aircraft. This result also signifies that other inputs are 

relatively homogenous on the labour and capital. With regard to labour and capital, this 

means that competition over resources drives the market and translates into 

homogenous dynamics in the labour and capital market.  

How can we explain the efficiency rankings? This is an endogenous result of the model, 

which can be explained by congestions and other managerial problems that the bigger 

airports are facing in contemporary world which affect their performance. 
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In comparison with the previous literature in this area, our research overcomes 

the bias towards DEA models in studies on airports. Relative to the stochastic frontier 

model, all published papers have adopted models using homogenous frontiers and no 

clear comparisons can be made. The comparison between homogenous and 

heterogeneous frontier models is undertaken in the present research, concluding that 

heterogeneity better captures the cost structure of the UK airports, based on the log 

likelihood test. Possibly, the main limitation of the present research relates to the data 

span, which is, to some extent, short for econometric purposes. The prevalence of DEA 

models in this research field exhibits the problem of the short data span at European 

level. Therefore, a larger data set is needed to confirm the validity of the present results.  

The main limitations of the present research are related to the short data span. 

Since the data set is short, the conclusions are limited. In order to generalise, a larger 

panel data set would be necessary. Future extensions of the present research include the 

analysis of the effects of competition, regulation and the Spanish presence on the 

efficiency of airports in the UK, Oum, Adler and Yu (2006). 

 

9. Conclusion 

Common policies can be defined for UK airports based on the average values of 

the homogeneous variables, whereas segmented policies may be prescribed to account 

for heterogeneous variables. Given that the scale parameters of heterogeneous variables 

are statistically significant, we recognise such heterogeneity, which entails managerial 

insights and policy implications.  

More research is needed to confirm the present conclusions. 
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