Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator

U-Hang Ki, Hiroyuki Kurihara, Setsuo Nagai and Ryoichi Takagi

Abstract. Let M be a real hypersurface of a complex space form with almost contact metric structure (ϕ, ξ, η, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $\tilde{R}_\xi = R(\cdot, \xi)\xi$ is ξ-parallel. In particular, we prove that the condition $\nabla_\xi R_\xi = 0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space $P_n\mathbb{C}$ or a complex hyperbolic space $H_n\mathbb{C}$ when $R_\xi S = SR_\xi$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

1. Introduction

Let $(M_n(c), J, \tilde{g})$ be a complex n-dimensional complex space form with Kähler structure (J, \tilde{g}) of constant holomorphic sectional curvature $4c$ and let M be an orientable real hypersurface in $M_n(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from (J, \tilde{g}).

In 1970’s, the fourth author [17], [18] classified the homogeneous real hypersurfaces of $P_n\mathbb{C}$ into six types. On the other hand, Cecil and Ryan [3] extensively studied a Hopf hypersurface, which is realized as tubes over certain submanifolds in $P_n\mathbb{C}$, by using its focal map. By making use of those results and the mentioned work of the fourth author, Kimura [11] proved

2000 Mathematics Subject Classification. Primary 53B20; Secondary 53C15, 53C25.

Key words and phrases. complex space form, Hopf hypersurface, structure Jacobi operator, Ricci tensor.
the local classification theorem for Hopf hypersurfaces of $P_n\mathbb{C}$ whose all principal curvatures are constant. For the case a complex hyperbolic space $H_n\mathbb{C}$, Berndt [1] proved the classification theorem for Hopf hypersurfaces whose all principal curvatures are constant. Among the several types of real hypersurfaces appeared in Takagi’s list or Berndt’s list, a particular type of tubes over totally geodesic $P_k\mathbb{C}$ or $H_k\mathbb{C}$ ($0 \leq k \leq n-1$) adding a horosphere in $H_n\mathbb{C}$, which is called type A, has a lot of nice geometric properties. For example, Okumura [13] (resp. Montiel and Romero [12]) showed that a real hypersurface in $P_n\mathbb{C}$ (resp. $H_n\mathbb{C}$) is locally congruent to one of real hypersurfaces of type A if and only if the Reeb flow ξ is isometric or equivalently the structure operator ϕ commutes with the shape operator A.

It is known that there are no real hypersurfaces with parallel Ricci tensors in a nonflat complex space form (see [7], [10]). This result says that there does not exist locally symmetric real hypersurfaces in a nonflat complex space form. The structure Jacobi operator $R_\xi = R(\cdot, \xi)\xi$ has a fundamental role in contact geometry. Cho and the first author start the study on real hypersurfaces in a complex space form by using the operator R_ξ in [5] and [6]. Recently Ortega, Pérez and Santos [15] have proved that there are no real hypersurfaces in a complex projective space $P_n\mathbb{C}$, $n \geq 3$ with parallel structure Jacobi operator $\nabla R_\xi = 0$. More generally, such a result has been extended by [16]. Moreover some works have studied several conditions on the structure Jacobi operator R_ξ and given some results on the classification of real hypersurfaces of type A in complex space form ([5],[6],[8],[12] and [13]). One of them, Cho and the first author proved the following:

Theorem 1.1 (Cho and Ki [6]). Let M be a real hypersurface of $M_n(c)$, $c \neq 0$ which satisfies $\nabla_\xi R_\xi = 0$ and at the same time $R_\xi A = AR_\xi$. Then M is a Hopf hypersurface in $M_n(c)$. Further, M is locally congruent to one of the following hypersurfaces:

(1) In cases that $M_n(c) = P_n\mathbb{C}$ with $\eta(A\xi) \neq 0$,

(A1) a geodesic hypersphere of radius r, where $0 < r < \pi/2$ and $r \neq \pi/4$;

(A2) a tube of radius r over a totally geodesic $P_k\mathbb{C}$ ($1 \leq k \leq n-2$), where $0 < r < \pi/2$ and $r \neq \pi/4$.

(2) In cases $M_n(c) = H_n \mathbb{C}$,

(A0) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$;

(A2) a tube over a totally geodesic $H_k \mathbb{C}$ ($1 \leq k \leq n-2$).

In a continuing work [8] they proved the following:

Theorem 1.2 (Ki and Liu [8]). Let M be a real hypersurface of $M_n(c)$, $c \neq 0$ which satisfies $\nabla_\xi R_\xi = 0$ and at the same time $R_\xi S = SR_\xi$. Then M is the same types as those in Theorem 1.1 provided that $\eta(A_\xi)^2 + 3c \neq 0$, where S denotes the Ricci tensor of M.

In this paper we improve Theorem 1.2. Our main result appear in Theorem 5.1.

All manifolds in this paper are assumed to be connected and of class C^∞ and the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface of a nonflat complex space form $M_n(c)$, $c \neq 0$ and C be a unit normal vector on M. By $\bar{\nabla}$ we denote the Levi-Civita connection with respect to the Kähler metric \bar{g}. Then the Gauss and Weingarten formulas are given respectively by

$$\bar{\nabla}_X Y = \nabla_X Y + g(AX, Y)C, \quad \bar{\nabla}_X C = -AX$$

for any vector fields X and Y on M, where g denotes the Riemannian metric of M induced from \bar{g} and A is the shape operator of M in $M_n(c)$. For any vector field X tangent to M, we put

$$JX = \phi X + \eta(X)C, \quad JC = -\xi,$$

where J is the almost complex structure of $M_n(c)$. Then we may see that M induces an almost contact metric structure (ϕ, ξ, η, g), namely

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$
for any vector fields X and Y on M.

Since J is parallel, we verify, using the Gauss and Weingarten formulas, that

\begin{equation}
\nabla_X \xi = \phi AX, \tag{2.1}
\end{equation}

\begin{equation}
(\nabla_X \phi) Y = \eta(Y) AX - g(AX, Y) \xi. \tag{2.2}
\end{equation}

Since the ambient space is of constant holomorphic sectional curvature $4c$, we have the following Gauss and Codazzi equations respectively:

\begin{equation}
R(X, Y) Z = c\{g(Y, Z) X - g(X, Z) Y + g(\phi Y, Z) \phi X - g(\phi X, Z) \phi Y
- 2g(\phi X, Y) \phi Z\} + g(AY, Z) AX - g(AX, Z) AY, \tag{2.3}
\end{equation}

\begin{equation}
(\nabla_X A) Y - (\nabla_Y A) X = c\{\eta(X) \phi Y - \eta(Y) \phi X - 2g(\phi X, Y) \xi\} \tag{2.4}
\end{equation}

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature tensor of M.

In the sequel, to write our formulas in convention forms, we denote by

\begin{equation}
\alpha = \eta(A \xi), \quad \beta = \eta(A^2 \xi), \quad \gamma = \eta(A^3 \xi) \quad \text{and for a function } f \text{ we denote by } \nabla f \text{ the gradient vector field of } f.
\end{equation}

If we put $U = \nabla_\xi \xi$, then U is orthogonal to the structure vector ξ. From (2.1), we get

\begin{equation}
\phi U = -A \xi + \alpha \xi, \tag{2.5}
\end{equation}

which enables us to $g(U, U) = \beta - \alpha^2$. If we put

\begin{equation}
A \xi = \alpha \xi + \mu W, \tag{2.6}
\end{equation}

where W is a unit vector field orthogonal to ξ. Then we get $U = \mu \phi W$, which shows that W is also orthogonal to U. Further we have

\begin{equation}
\mu^2 = \beta - \alpha^2. \tag{2.7}
\end{equation}

Thus we see that ξ is a principal curvature vector, that is $A \xi = \alpha \xi$ if and only if $\beta - \alpha^2 = 0$.

In this paper, we basically use the technical computations with the orthogonal triplet $\{\xi, U, W\}$ and their associated scalars α, β and μ.

Because of (2.1), (2.5) and (2.6), it is seen that

\begin{equation}
g(\nabla_X \xi, U) = \mu g(AW, X) \tag{2.8}
\end{equation}
and
\[\mu g(\nabla_X W, \xi) = g(AU, X) \] (2.9)

for any vector field \(X \) on \(M \).

Differentiating (2.5) covariantly along \(M \) and making use of (2.1) and (2.2), we find
\[(\nabla_X A)\xi = -\phi \nabla_X U + g(AU + \nabla \alpha, X) \xi - A\phi AX + \alpha \phi AX \] (2.10)

which enables us to obtain
\[(\nabla_\xi A)\xi = 2AU + \nabla \alpha, \] (2.11)

where we have used (2.4). From (2.1) and (2.10), it is verified that
\[\nabla_\xi U = 3\phi AU + \alpha A\xi - \beta \xi + \phi \nabla \alpha. \] (2.12)

The curvature equation (2.3) gives the structure Jacobi operator \(R_\xi \):
\[R_\xi(X) = R(X, \xi)\xi = c\{X - \eta(X)\xi\} + \alpha AX - \eta(AX)A\xi \] (2.13)

for any vector field \(X \) on \(M \).

We shall denote the Ricci tensor of type (1,1) by \(S \). Then it follows from (2.3) that
\[SX = c\{(2n + 1)X - 3\eta(X)\xi\} + hAX - A^2X, \] (2.14)

which implies
\[S\xi = 2c(n - 1)\xi + hA\xi - A^2\xi, \] (2.15)

where \(h = \text{Tr}A \). From (2.13) and (2.14), we have
\[(R_\xi S - SR_\xi)(X) = -\eta(AX)A^3\xi + \eta(A^3X)A\xi - \eta(A^2X)(hA\xi - c\xi) \]
\[+ \{h\eta(AX) - c\eta(X)\}A^2\xi - ch\{\eta(AX)\xi - \eta(X)A\xi\}. \] (2.16)
3. Real hypersurfaces satisfying $\nabla_\xi R_\xi = 0$ and $R_\xi S = SR_\xi$

We set $\Omega = \{ p \in M; \mu(p) \neq 0 \}$ and suppose that Ω is non-empty, that is, ξ is not a principal curvature vector on M. Hereafter, unless otherwise stated, we discuss our arguments on the open subset Ω of M.

Differentiating (2.13) covariantly, we obtain

$$g((\nabla_\xi R_\xi)Y, Z) = g(\nabla_\xi (R_\xi Y) - R_\xi (\nabla_\xi Y), Z)$$

$$= -c\{\eta(Z)g(\nabla_X \xi, Y) + \eta(Y)g(\nabla_X \xi, Z)\} + (X\alpha)g(AY, Z) + \alpha g((\nabla_X A)Y, Z)$$

$$- \eta(AZ)\{g((\nabla_X A)\xi, Y) + g(A\phi A\xi, Y)\}$$

$$- \eta(AY)\{g((\nabla_X A)\xi, Z) + g(A\phi A\xi, Z)\},$$

which together with (2.11) yields

$$g(\nabla_\xi R_\xi)Y, Z) = -c\{u(Y)\eta(Z) + u(Z)\eta(Y)\} + (\xi\alpha)g(AY, Z)$$

$$+ \alpha g((\nabla_\xi A)Y, Z) - \eta(AZ)\{3g(AU, Y) + Y\alpha\}$$

$$- \eta(AY)\{3g(AU, Z) + Z\alpha\},$$

where u is a 1-form dual to U with respect to g, that is $u(X) = g(U, X)$.

At first we assume that $\nabla_\xi R_\xi = 0$. Then we have from (3.1)

$$\alpha(\nabla_\xi A)X + (\xi\alpha)AX = c\{u(X)\xi + \eta(X)U\} + \eta(AX)(3AU + \nabla\alpha)$$

$$+ \{3g(AU, X) + X\alpha\}A\xi.$$}

If we put $X = \xi$ in this and make use of (2.11), we find

$$\alpha AU + cU = 0,$$}

which shows that $\alpha \neq 0$ on Ω.

If we differentiate (3.3) covariantly along Ω, and use itself again, then we obtain

$$-c(X\alpha)U + \alpha^2(\nabla_X A)U + \alpha^2 A\nabla_X U + c\alpha \nabla_X U = 0,$$}

which, together with (2.4) and (2.5), implies that

$$c\{Y\alpha)u(X) - (X\alpha)u(Y)\} + c\alpha^2 \mu\{\eta(X)w(Y) - \eta(Y)w(X)\}$$

$$+ \alpha^2 \{g(A\nabla U, Y) - g(A\nabla Y, U)\} + c\alpha du(X, Y) = 0,$$
where \(w \) is a dual 1-form of \(W \) with respect to \(g \), that is \(w(X) = g(W, X) \).
Here, \(du \) is the exterior derivative of a 1-form \(u \) given by
\[
du(X, Y) = Y(u(X)) - X(u(Y)) - u([X, Y]).
\]
If we replace \(X \) by \(U \) in (3.5), then it follows that
\[
c\{\mu^2\nabla_\alpha - (U\alpha)U\} + \alpha^2 A\nabla_U U + \alpha\nabla_U U = 0,
\]
(3.6)
because \(U \) and \(W \) are mutually orthogonal. Combining (2.10) to (3.2) and using (2.4), we obtain
\[
\alpha^2 \phi \nabla_X U = \alpha^2 (X\alpha)\xi - \alpha\mu u(X)\xi + \alpha(\xi\alpha)AX + \alpha^2 \phi X
\]
\[
- \eta(AX)(\alpha\nabla \alpha - 3c U) - \{\alpha(X\alpha) - 3cu(X)\} A\xi
\]
\[
- \alpha\xi u(X) + \eta(U\xi U) - \alpha^2 A\phi AX + \alpha^3 \phi AX.
\]
Applying \(\phi \) to this and using (2.8), we have
\[
\alpha^2 \nabla_X U + \alpha^2 \mu g(AX, X)\xi - \alpha\eta(AX)\phi \nabla \alpha
\]
\[
= - \alpha(\xi\alpha)\phi AX + \alpha^2 \{X - \eta(X)\xi\} + 3c\mu\eta(AX)W + \alpha(X\alpha)U
\]
\[
- 3cu(X)U + \alpha^2 AX - \alpha\mu\eta(X)W - \alpha^3 \eta(AX)\xi + \alpha^2 \phi A\phi AX.
\]
(3.7)
Putting \(X = U \) in this and using (2.5), (2.6) and (3.3), we get
\[
\alpha^2 \nabla_U U = -c\mu(\xi\alpha)W + \{\alpha(U\alpha) - 3c\mu^2\} U + c\mu \alpha \phi AW.
\]
(3.8)
If we replace \(X \) by \(\xi \) in (3.5) and take account of (3.2), then we obtain
\[
c\alpha\mu^2 \xi + \{\alpha(U\alpha) - 3c\mu^2\} A\xi + \alpha^2 A(\nabla_\xi U) + \alpha\nabla_\xi U = 0.
\]
By the way, using (2.12) and (3.3), we see that
\[
\alpha \nabla_\xi U = 3c\mu W + \alpha^2 A\xi - \alpha\beta \xi + \alpha\phi \nabla \alpha.
\]
From two equations, it follows that
\[
\alpha A\phi \nabla \alpha + c\phi \nabla \alpha + (U\alpha)A\xi + \mu(\alpha^2 + 3c)\{AW - \mu\xi - \frac{1}{\alpha}(\mu^2 - c)W\} = 0,
\]
(3.9)
where we have used (2.6).
Now, differentiating (2.6) covariantly and using (2.1) and (2.4), we find
\[
(\nabla_{\xi}A)X - c\varphi X + A\varphi AX = (X\alpha)\xi + \alpha\varphi AX + (X\mu)W + \mu\nabla X W,
\]
which together with (3.2) implies that
\[
\mu\alpha\nabla X W = \alpha A\varphi AX - \alpha^2\varphi AX - \alpha\varphi X - (\xi\alpha)AX
+ c\{u(X)\xi + \eta(X)U\} + \eta(AX)(3AU + \nabla\alpha) + \{3g(AU, X) + X\alpha\}A\xi - \alpha(X\alpha)\xi - \alpha(X\mu)W.
\]

Further, we assume that
\[
R_{\xi}SX = SR_{\xi}X
\]
for any vector field \(X\). Then (2.16) becomes
\[
\eta(AX)A^3\xi - \eta(A^3X)A\xi + \eta(A^2X)(hA\xi - c\xi)
- \{h\eta(AX) - c\eta(X)\}A^2\xi + ch\{\eta(AX)\xi - \eta(X)A\xi\} = 0,
\]
which shows that
\[
\alpha A^3\xi = (\alpha h - c)A^2\xi + (\gamma - \beta h + ch)A\xi + c(\beta - h\alpha)\xi,
\]
Combining above equations, we obtain
\[
A^2\xi = \rho A\xi + (\beta - \rho\alpha)\xi,
\]
where we have put \(\mu^2\rho = \gamma - \beta\alpha\) and \(\mu^2(\beta - \rho\alpha) = \beta^2 - \alpha\gamma\) on \(\Omega\). Using the last two equations, we can write (3.12) as
\[
\mu(\rho - h)(\beta - \rho\alpha - c)(\eta(X)W - w(X)\xi) = 0,
\]
where we have used (2.6).

Remark 1. \(\beta - \rho\alpha - c \neq 0\) on \(\Omega\).

Indeed, if not, then (3.13) reformed as \(A^2\xi = \rho A\xi + c\xi\) on this subset. From this and (2.13) we verify that \(R_{\xi}A = AR_{\xi}\) on the set. According to Theorem 1.1, it is seen that \(\Omega = \emptyset\) because \(\nabla_{\xi}R_{\xi} = 0\) was assumed. Therefore \(\beta - \rho\alpha - c \neq 0\) everywhere on \(\Omega\).
From (2.6), (2.7) and (3.13) we see that $AW = \mu \xi + (\rho - \alpha)W$ on Ω. If we put $g(AW, W) =: \lambda$, then we have

$$AW = \mu \xi + \lambda W. \quad (3.15)$$

Further, we have

$$h = \alpha + \lambda \quad (3.16)$$

by virtue of (3.14) and Remark 1.

Using (2.7) and (3.15), the equation (3.9) is deformed as

$$\alpha A\phi \nabla \alpha + c\phi \nabla \alpha + (U\alpha)A\xi + \frac{1}{\alpha} \mu(\alpha^2 + 3c)(\rho\alpha + c - \beta)W = 0.$$

Taking an inner prodct W to this and making use of (3.15), we obtain

$$(-\beta + \rho\alpha + c)\{\alpha(U\alpha) - \mu^2(\alpha^2 + 3c)\} = 0,$$

which shows that

$$\alpha(U\alpha) = \mu^2(\alpha^2 + 3c) \quad (3.17)$$

because of Remark 1.

Because of (3.3), (3.8), (3.15) and (3.17), we see from (3.6)

$$\alpha \mu \nabla \alpha = \alpha \mu(\xi \alpha) \xi + (\lambda \alpha + c)(\xi \alpha)W + (\alpha^2 + 3c)\mu U,$$

which tells us that

$$\mu \alpha(W\alpha) = (\lambda \alpha + c)\xi \alpha. \quad (3.18)$$

Combining above two equations, it is clear that

$$\alpha \nabla \alpha = \alpha(\xi \alpha) \xi + \alpha(W\alpha)W + (\alpha^2 + 3c)U. \quad (3.19)$$

Now, differentiating (3.15) covariantly, and using (2.1), we find

$$(\nabla_X A)W + A\nabla_X W = (X\mu)\xi + \mu\phi AX + (X\lambda)W + \lambda\nabla_X W, \quad (3.20)$$

which implies that

$$g((\nabla_X A)W, W) = \frac{2c}{\alpha} u(X) + X\lambda, \quad (3.21)$$

$$\mu(\nabla_\xi A)W = (\lambda - \alpha)AU - cU + \mu \nabla \mu, \quad (3.22)$$
where we have used (2.4), (2.9) and (3.3).

If we put \(X = \mu W \) in (3.2) and take account of (2.7), (3.3) and (3.22), then we obtain

\[
\alpha \left(\frac{1}{2} \alpha \nabla \beta - \beta \nabla \alpha \right) + c(3\mu^2 - \lambda \alpha) U = -\mu \alpha (\xi \alpha) AW + \mu \alpha (W \alpha)A \xi,
\]

which together with (2.6), (3.15) and (3.18) yields

\[
\alpha^2 \nabla \beta - \beta \nabla \alpha^2 + 2c(3\mu^2 - \lambda \alpha) U = (\xi \alpha)\{(\lambda \alpha + 2c)A \xi - c \alpha \xi \}.
\]

(3.23)

From (2.7) we have

\[
\alpha \mu \nabla \mu = \alpha \left(\frac{1}{2} \nabla \beta - \alpha \nabla \alpha \right).
\]

Substituting (3.19) and (3.23) into this, and making use of (2.6), (3.13) and (3.18), we obtain

\[
\frac{1}{2} \alpha^2 \nabla \mu^2 = \alpha(\alpha \mu^2 + c\lambda) U + \xi \alpha\{(\lambda \alpha + 2c)A \xi - c \alpha \xi \}.
\]

(3.24)

Now, we prove

Lemma 1. \(\xi \alpha = W \alpha = 0 \) on \(\Omega \).

Proof. The equation (3.24) is rewritten as

\[
\frac{1}{2} \alpha^2(Y \mu^2) = \alpha(\alpha \mu^2 + c\lambda) u(Y) + (\xi \alpha)\{(\lambda \alpha + 2c)\eta(AY) - c \alpha \eta(Y)\}.
\]

Differentiating this with respect to a vector field \(X \), and taking the skew-symmetric parts for \(X \) and \(Y \), we eventually have

\[
0 = \{\alpha(X \alpha) + \alpha^2 u(X)\}(Y \mu^2) - \{\alpha(Y \alpha) + \alpha^2 u(X)\}(X \mu^2)
- (X \alpha)\{2\alpha \mu^2 u(Y) + c\lambda u(Y) + \lambda \alpha \eta(AY) - c \alpha \eta(Y)\}
+ (Y \alpha)\{2\alpha \mu^2 u(X) + c\lambda u(X) + \lambda \alpha \eta(AX) - c \alpha \eta(X)\}
- (X \alpha)\{c \alpha u(Y) + \alpha \epsilon \eta(AY)\} + (Y \lambda)\{c \alpha u(X) + \alpha \epsilon \eta(AX)\}
- (X \epsilon)\{(\lambda \alpha + 2c)\eta(AY) - c \alpha \eta(Y)\}
+ (Y \alpha)\{(\lambda \alpha + 2c)\eta(AX) - c \alpha \eta(X)\}
- 2\alpha(\alpha \mu^2 + c\lambda)\mu u(X, Y) - 2(\lambda \alpha + 3c)d \eta(X, Y)
- 2\epsilon \mu(\lambda \alpha + 2c)d \eta(X, Y),
\]

(3.25)
where we have put \(\varepsilon := \xi \alpha \). Putting \(X = U \) and \(Y = \alpha \xi \) in this equation and making use of (3.3), we find

\[
0 = \alpha^2(\xi \mu^2)((U \alpha) + \alpha \mu^2) - \alpha^2 \varepsilon U \mu^2 - (U \alpha)(2 \alpha \mu^4 + c \lambda \mu^2) \\
- \alpha^2 \varepsilon (-\alpha \lambda + c) - 4 \alpha \mu^2 (U \lambda) + \alpha^4 \varepsilon (\xi \lambda) - \alpha^2 (U \varepsilon)(\mu \alpha + c) \\
- 2 \alpha(\alpha \mu^2 + c \lambda) du(U, \alpha \xi) - \varepsilon \alpha(\lambda \alpha + 3 c) d\eta(U, \alpha \xi) \\
- \varepsilon \alpha(\lambda \alpha + 2 c) dw(U, \alpha \xi)
\]

Putting \(X = U \) and \(Y = \alpha \xi \) in this equation and making use of (3.3), we find

\[
0 = \alpha^2(\xi \mu^2)((U \alpha) + \alpha \mu^2) - \alpha^2 \varepsilon U \mu^2 - (U \alpha)(2 \alpha \mu^4 + c \lambda \mu^2) \\
- \alpha^2 \varepsilon (-\alpha \lambda + c) - 4 \alpha \mu^2 (U \lambda) + \alpha^4 \varepsilon (\xi \lambda) - \alpha^2 (U \varepsilon)(\mu \alpha + c) \\
- 2 \alpha(\alpha \mu^2 + c \lambda) du(U, \alpha \xi) - \varepsilon \alpha(\lambda \alpha + 3 c) d\eta(U, \alpha \xi) \\
- \varepsilon \alpha(\lambda \alpha + 2 c) dw(U, \alpha \xi)
\]

on \(\Omega_0 \), where we have used (3.17) and (3.24).

On the other hand, from (3.23) we get

\[
\alpha^2 (X \beta) - \beta (X \alpha^2) + 2 c (3 \mu^2 - \lambda \alpha) u(X) = 2 \varepsilon \{ \alpha (\lambda \alpha - \mu^2) \eta(X) + c \eta(A X) \}.
\]

Using the same method as that used to derive (3.26), we can deduce from this equation the following

\[
2 \alpha^3 (U \lambda) + \frac{2 \alpha^2}{\varepsilon} (\lambda \alpha - \mu^2 + c) (U \varepsilon) - \frac{2 \alpha^2 \mu^2}{\varepsilon} (\xi \lambda)
\]

\[
= - 12 c \mu^2 (\lambda \alpha + c) + 4 \alpha \mu^2 (\alpha \mu^2 + c \lambda) + 2 \mu^2 (4 \alpha^2 + 4 c + \mu^2) (\alpha^2 + 3 c) \\
- 2 \alpha \mu^2 (4 \alpha \beta + 12 \alpha c + 3 c \lambda) - 2 c (3 \mu^2 - \lambda \alpha) (\lambda \alpha + c) \\
+ 2 \alpha^2 \mu^2 (\lambda \alpha - \mu^2 + c) + 6 c \mu^2
\]

on \(\Omega_0 \). From (3.21), (3.22) and (3.24), we get

\[
\xi \lambda = W \mu = \frac{\varepsilon}{\alpha^2} (\lambda \alpha + 2 c),
\]
which together with (3.26) implies that
\[
2\alpha^3(U\lambda) = 4\mu^2(\lambda\alpha + c)(2\alpha^2 + 3c) - 4\alpha\mu^2(\alpha\mu^2 + c\lambda)
+ 2\mu^2(\alpha^2 + 3c)(-\lambda\alpha + c) + 2\alpha\mu^2(2\alpha\mu^2 + c\lambda)
+ 2\alpha(\lambda\alpha + c)(\alpha\mu^2 + c\lambda) + 2\alpha^2\mu^2(\lambda\alpha + 3c) + 3\epsilon\mu^2(\lambda\alpha + 2c)
\]

From (3.27), (3.28) and the above equation, it follows that
\[
\frac{\alpha^2}{\epsilon}(U\varepsilon) = (2\alpha^2 - 3c)\mu^2 + (\lambda\alpha + c)(4\alpha^2 + 15c)
- (4\alpha^2 + \lambda\alpha + 3c)(\alpha^2 + 3c)
+ \alpha^2(\lambda\alpha + 15c + 4\alpha^2) + 3c^2 - 3ca\lambda,
\]
on \Omega_0.

Now, we know from (3.19)
\[
Y\alpha = \varepsilon\eta(Y) + (W\alpha)w(Y) + \frac{1}{\alpha}(\alpha^2 + 3c)u(Y).
\]

In the same way as above, it is, using (3.30), verified that
\[
0 = \varepsilon\{(X\alpha)\eta(Y) - (Y\alpha)\eta(X)\}
+ \alpha\{(X\varepsilon)\eta(Y) - (Y\varepsilon)\eta(X)\}
+ (W\alpha)\{(X\alpha)w(Y) - (Y\alpha)w(X)\}
+ \alpha\{X(W\alpha)w(Y) - Y(W\alpha)w(X)\}
+ 2\alpha\{(X\alpha)u(Y) - (Y\alpha)u(X)\}
+ 2\alpha\varepsilon\eta(X,Y) + 2\alpha(W\alpha)dw(X,Y) + 2(\alpha^2 + 3c)du(X,Y).
\]

Putting \(X = U\) and \(Y = \xi\) in this and using (2.9) and (3.3), we find
\[
0 = \varepsilon(U\alpha) + \alpha(U\varepsilon) - 2\alpha(\xi\alpha)\mu^2 + 2\alpha\varepsilon\eta(U,\xi)
+ 2\alpha(W\alpha)dw(U,\xi) + 2(\alpha^2 + 3c)du(U,\xi),
\]
which together with (3.17) and (3.18) implies that
\[
\frac{\alpha^2}{\epsilon}(U\varepsilon) = (\alpha^2 + 6c)(\lambda\alpha + c) + \mu^2(2\alpha^2 - 3c),
\]
on \Omega_0. Substituting this into (3.29), we find on \Omega_0
\[
(\alpha\lambda + c)(\alpha^2 + c) = 0.
\]
Since $\xi\alpha \neq 0$ on Ω_0, we get $\alpha^2 + c \neq 0$ which shows that

$$\alpha \lambda + c = 0. \quad (3.31)$$

So we have $W\alpha = 0$ by virtue of (3.18). Thus (3.19) is reduced to

$$\alpha \nabla \alpha = \alpha \varepsilon \xi + (\alpha^2 + 3c)U.$$

Using the same method as that used to derive (3.25) from (3.24), we can derive from this the following

$$X(\alpha \varepsilon \eta(Y)) - Y(\alpha \varepsilon \eta(X)) + 2\alpha(X\alpha)u(Y) - 2\alpha(Y\alpha)u(X)$$

$$+ \alpha \varepsilon g((\phi A + A\phi)X, Y) + (\alpha^2 + 3c)(g(\nabla XU, Y) - g(\nabla YU, X)) = 0. \quad (3.32)$$

Now, we can take a orthonormal basis $\{e_0 = \xi, e_1 = (1/\mu)U, e_2, \ldots, e_n, \phi e_1 = (1/\mu)\phi U, \phi e_2, \ldots, \phi e_n\}$. Putting $X = \phi e_i$ and $Y = e_i$ and summing up for $i = 0, \ldots, n$, we have $\alpha = h$ on Ω_0, which together with (3.16), implies that $\lambda = 0$. This contradicts (3.31).

4. Lemmas

In the following, we will continue our discussions on Ω in M which satisfies $\nabla \xi R_\xi = 0$ and at the same time $R_\xi S = SR_\xi$. Then (3.19) and (3.24) are reduced respectively to

$$\alpha \nabla \alpha = (\alpha^2 + 3c)U, \quad (4.1)$$

$$\alpha \mu \nabla \mu = (\alpha \mu^2 + c\lambda)U \quad (4.2)$$

by virtue of Lemma 1. Using these, we can write (3.7) and (3.10) as the followings respectively.

$$\nabla_X U = \alpha AX + cX - (\mu^2 + c)\eta(X)\xi - \mu \lambda w(X)\xi$$

$$- \frac{c}{\alpha} \mu \eta(X)W + u(X)U + \phi A\phi AX - \eta(AX)A\xi, \quad (4.3)$$

$$\mu \alpha \nabla_X W = -2cu(X)\xi + \{\alpha \eta(AX) + c\eta(X)\}U - \frac{c}{\mu} \lambda u(X)W$$

$$+ \alpha A\phi AX - \alpha^2 \phi AX - c\alpha \phi X. \quad (4.4)$$
By taking the skew-symmetric part of \(g(A \nabla_X U, Y) \), we see, using (4.3), that
\[
g(A \nabla_X U, Y) - g(A \nabla_Y U, X) = \mu c \left(1 + \frac{\lambda}{\alpha} \right) (\eta(Y) w(X) - \eta(X) w(Y)).
\]
Substituting (4.1) and the last equation into (3.5), we find
\[
\begin{align*}
du(X, Y) &= \mu \lambda (\eta(Y) w(X) - \eta(X) w(Y)).
\end{align*}
\] (4.5)

Putting \(X = W \) in (4.4) and making use of (3.3) and (3.15), we get
\[
\alpha \mu \nabla_W W = \left\{ \mu^2 - c - \lambda \left(\alpha + \frac{c}{\alpha} \right) \right\} U.
\] (4.6)

Lemma 2. \(\alpha^2 + 3c = 0 \) on \(\Omega \).

Proof. Since we have \(\varepsilon = 0 \), (3.32) becomes
\[
(\alpha^2 + 3c) du(X, Y) = 0,
\]
which connected to (4.5) yields \(\lambda (\alpha^2 + 3c) = 0 \).

Now, we suppose that \(\alpha^2 + 3c \neq 0 \) on \(\Omega \), and then we restrict the arguments on such place. Then we have \(\lambda = 0 \). Thus, by putting \(X = W \) in (3.20) and using (3.15) and (4.2), we have
\[
(\nabla_W A) W + A \nabla_W W = 0.
\]
We also have from (3.21) \((\nabla_W A) W = (2c/\alpha) U \) because of (2.4). So we have
\[
2cU + \alpha A \nabla_W W = 0.
\]
This, connected with (4.6) implies that \(\mu^2 + c = 0 \) by virtue of (3.3) and \(\lambda = 0 \). Therefore \(\mu \) is constant on this subset, a contradiction because of (4.2). Thus we arrive at the conclusion. \(\square \)

By the same method as in the proof of Lemma 2, we verify from (4.2) that
\[
c \{ (X \lambda) u(Y) - (Y \lambda) u(X) \} + (\alpha \mu^2 + c \lambda) du(X, Y) = 0,
\]
where we have used Lemma 2. Replacing \(Y \) by \(U \) in this and making use of (4.5), we find \(\mu^2 (X \lambda) = (U \lambda) u(X) \). Hence above equation becomes
\[
(\alpha \mu^2 + c \lambda) du(X, Y) = 0,
\]
which together with (4.5) yields
\[
\alpha \mu^2 + c \lambda = 0.
\] (4.7)
Thus μ is constant because of (4.2). So we see that λ so dose by virtue of Lemma 2. Using (4.7) and Lemma 2, we can write (4.6) as

$$\lambda \nabla_W W = (\alpha - \lambda) U.$$ \hspace{1cm} (4.8)

λ being constant, we verify, using (2.4) and (3.21), that $(\nabla_W A)W = (2c/\alpha)U$. If we put $X = W$ in (3.20) and take account of this, then we obtain

$$A \nabla_W W - \lambda \nabla_W W = \left(\lambda - \frac{2c}{\alpha}\right) U,$$

where we have used λ and μ are constant. From this and (4.8) it is seen that

$$6\lambda - \alpha = 0.$$ \hspace{1cm} (4.9)

Combining (4.7) to (4.9) we have

Lemma 3. $6\mu^2 + c = 0$ on Ω.

Using (4.9), Lemma 2 and Lemma 3, we can write (4.4) as

$$\mu \nabla_X W = \mu \{u(X) W + w(X) U\} - \frac{2c}{\alpha} \{u(X) \xi + \eta(X) U\}$$

$$+ A\phi AX - \alpha \phi AX - c\phi X,$$

which implies that

$$\mu dw(X, Y) = 2g(A\phi AX, Y) - \alpha g((\phi A - A\phi) X, Y) - 2cg(\phi X, Y).$$ \hspace{1cm} (4.11)

If we replace X by ξ or U, then we have respectively

$$\nabla_\xi W = 0, \quad \nabla_U W = -\frac{c}{\alpha} \mu \xi$$ \hspace{1cm} (4.12)

by virtue of (3.3), (4.7) and Lemma 2.

From (4.5) and Lemma 3, we see that $\nabla_U U = 0$. Putting $X = U$ in (3.4), we verify, using this and Lemma 2, that

$$(\nabla_U A) U = 0.$$ \hspace{1cm} (4.13)

On the other hand, (3.2) turns out to be

$$(\nabla_\xi A) X = \frac{c}{\alpha} \{u(X) \xi + \eta(X) U\} + \eta(AX) U + u(X) A \xi,$$ \hspace{1cm} (4.14)

by virtue of (3.3) and Lemma 2, which implies

$$(\nabla_\xi A) W = \mu U.$$ \hspace{1cm} (4.15)
5. The proof of Main theorem

We continue our arguments under the same hypotheses of the section 4. Now we prove

Theorem 5.1. Let M be a real hypersurface of a complex space form $M_n(c)$, $c \neq 0$ whose Ricci tensor S commutes with R_ξ, namely $R_\xi S = SR_\xi$. Then M satisfies $\nabla_\xi R_\xi = 0$ if and only if M is locally congruent to one of the following:

(I) in case that $M_n(c) = P_n\mathbb{C}$ with $\eta(A\xi) \neq 0$,

(A1) a geodesic hypersphere of radius r, where $0 < r < \pi/2$ and $r \neq \pi/4$,

(A2) a tube of radius r over a totally geodesic $P_k\mathbb{C}$ ($1 \leq k \leq n-2$), where $0 < r < \pi/2$ and $r \neq \pi/4$;

(II) in case that $M_n(c) = H_n\mathbb{C}$,

(A0) a horosphere,

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1}\mathbb{C}$,

(A2) a tube over a totally geodesic $H_k\mathbb{C}$ ($1 \leq k \leq n-2$).

Proof. Differentiating (4.10) covariantly and using (2.1) and (2.2), we find

$$\mu \nabla_Y \nabla_X W = \mu \{ Y(u(X))W + u(X)\nabla_Y W + Y(w(X))U + \eta(X)\nabla_Y U \}
- \frac{2c}{\alpha} \{ Y(u(X))\xi + u(X)\nabla_Y \xi + Y(\eta(X))U + \eta(X)\nabla_Y U \}
+ \nabla_Y (A\phi AX) - \alpha \nabla_Y (\phi AX) - c\nabla_Y (\phi X).$$

If we take the skew-symmetric part of X and Y, and put $X = \xi$ and $Y = U$, we have

$$\alpha^2 \nabla_W W = 6c U,$$

where we have used (2.3), (3.3) and $\nabla_U U = 0$. From (4.8) we have $\lambda = -\alpha$, which contradicts (4.9).

Therefore we conclude that $\Omega = \emptyset$, that is, $A\xi = \alpha\xi$ on M. So we see in addition that α is constant on M (see [9]). Thus, from (3.2) we verify that $\alpha \nabla_\xi A = 0$. Accordingly, we have $\alpha(A\phi - \phi A) = 0$ by virtue of (2.1) and (2.4). Here, we note the case $\alpha = 0$ corresponds to the case of tube of
radius $\pi/4$ in $P_n(\mathbb{C})$ (see [3]). But, in the case of $H_n(\mathbb{C})$ it is known that α never vanishes for Hopf hypersurfaces (cf. [1]). Due to Okumura’s work or Montiel and Romero’s work stated in the Introduction, we complete the proof.

Finally we prove

Corollary 1. Let M be a real hypersurface in a nonflat complex space form $M_n(c)$ which satisfies $\nabla_\xi R_\xi = 0$ and at the same time $S_\xi = g(S_\xi, \xi)\xi$. Then M is the same type as those stated in Theorem 1.1.

Proof. By (2.15) we have $g(S_\xi, \xi) = h\alpha - \beta + 2c(n - 1)$. From this and our assumption $S_\xi = g(S_\xi, \xi)\xi$ we see that $A^2_\xi = hA_\xi + (\beta - h\alpha)\xi$ and hence $A^3_\xi = (h^2 + \beta - h\alpha)A_\xi + h(\beta - h\alpha)\xi$. Substituting these into (2.16), we obtain $R_\xi S = SR_\xi$. This completes the proof.

References

Characterizations of real hypersurfaces of type A in a complex space form

U-Hang Ki
Department of Mathematics
Kyungpook National University
Daegu 702-701, KOREA
E-mail address : uhangki2005@yahoo.co.kr

Hiroyuki Kurihara
Department of Computer and Media Science
Saitama Junior College
Hanasaki-ebashi, Kazo, Saitama 347-8503, JAPAN
E-mail address : kurihara@sjc.ac.jp
Current address
Department of Liberal Arts and Engineering Siences
Hachinohe National College of Technology
Hachinohe, Aomori 039-1192, JAPAN
E-mail address : kurihara-g@hachinohe-ct.ac.jp

Setsuo Nagai
Department of Mathematics
Faculty of Science
University of Toyama
Toyama 930-8555, JAPAN
E-mail address : snagai@sci.u-toyama.ac.jp

Ryoichi Takagi
Department of Mathematics and Informatics
Chiba University
Chiba 263-8522, JAPAN
E-mail address : takagi@math.s.chiba-u.ac.jp
Current address
4-2859-51 Ohnomachi, Ichikawa, Chiba 272-0872, JAPAN

(Received May 19, 2008)