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ABSTRACT

Talented students compete fiercely for seats at Boston and New York exam schools. These schools
are characterized by high levels of peer achievement and a demanding curriculum tailored to each
district's highest achievers. While exam school students do very well in school, the question of whether
an exam school education adds value relative to a regular public education remains open. We estimate
the causal effect of exam school attendance using a regression-discontinuity design, reporting both
parametric and non- parametric estimates. The outcomes studied here include scores on state standardized
achievement tests, PSAT and SAT participation and scores, and AP scores. Our estimates show little
effect of exam school offers on most students' achievement. We use two-stage least squares to convert
reduced form estimates of the effects of exam school offers into estimates of peer and tracking effects,
arguing that these appear to be unimportant in this context. Finally, we explore the external validity
of RD estimates, arguing that as best we can tell, there is little effect of an exam school education on
achievement even for the highest-ability marginal applicants and for applicants to the right of admissions
cutoffs. On the other hand, a Boston exam school education seems to have a modest effect on high
school English scores for minority applicants. A small group of 9th grade applicants also appears to
do better on SAT Reasoning. These localized gains notwithstanding, the intense competition for exam
school seats does not appear to be justified by improved learning for a broad set of students.
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1 Introduction

The Boston and New York City public school systems include a handful of highly selective

exam schools. Unlike most other American public schools, exam schools screen applicants on

the basis of a competitive admissions test. Boston’s exam school flagship, the Boston Latin

School, is the oldest high school in the country; New York’s venerable Bronx High School of

Science and Stuyvesant High School also have storied histories. Just as many American high

school seniors work and compete to gain admission to the country’s most selective colleges and

universities, younger students and parents in a few cities aspire to win coveted seats at top

exam schools.1

Fewer than half of Boston applicants win a seat to one of three exam schools, and less than

a sixth of exam school applicants are offered a seat at the three original exam schools in New

York. Because exam school offers are test-based, exam school students have significantly higher

test scores than do typical public school students. The pre-application math and English scores

of students offered a seat at one of the least competitive Boston and New York exam schools

are on the order of 0.5-0.7 standard deviations (hereafter, σ) higher than the scores of those

who apply but not offered.2 Differences in baseline performance between applicants at the most

competitive exam school and those in regular public schools are even more impressive, at over

1.5σ for Boston 7th graders and over 1.25σ for New York 9th graders.

At first blush, the intense competition for an exam school education is understandable. By

any measure, exam school students are well ahead of virtually all other public school students.

It is easy to see why many parents dream of placing their children in such a school. At the

same time, it’s also clear that at least some of the achievement advantage associated with exam

school attendance reflects the schools’ admissions policies and is not caused by attendance per

se. After all, exam school students are a highly select group, a fact that must influence naive

comparisons between exam school students and anyone else.

The purpose of this paper is to evaluate the causal effects of exam school attendance on

applicant achievement as measured by standardized tests. We use a regression discontinuity

(RD) research design that, if successful, eliminates the selection bias that contaminates naive

comparisons. Our strategy in a nutshell is to compare the scores of exam school applicants

who barely clear the admissions cutoff to the scores of those who fall just below. Those who

1Boston and New York exam schools claim a long list of distinguished alumni, including 11 Nobel laureates,
five signers of the Declaration of Independence, and a few dozen distinguished economists, including Robert
Fogel, Jerry Green, Jesse Shapiro (Stuyvesant); Claudia Goldin (Bronx Science); and Gary Chamberlain and
Charles Manski (Boston Latin School). Other American cities with similarly selective public high schools include
Chicago, San Francisco, and Washington.

2Pre-application scores come from 4th grade for 7th grade applicants, and from 8th grade math and 7th
grade English for 9th grade applicants. We refer to these pre-application scores as baseline scores.
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clear the cutoff are more likely to attend an exam school (and attend for longer) than those

who fall below the cutoff, though some in the latter group also eventually succeed in gaining

admission. A dummy for clearing the admissions cutoff is therefore an instrument for exam

school attendance in a fuzzy RD setup.

Before turning to the details of the empirical analysis, it’s worth asking what exam school

attendance means for an admitted student. First, exam school students study with peers who

have similarly high levels of ability. If peer effects are important, this alone should boost

achievement. Second, the exam school curriculum is meant to challenge the highly able exam

school population. Finally, some exam schools have resources and facilities typically unavailable

at other public schools, such as modern science labs and well-equipped athletic facilities. The

resource advantage is not entirely clear, however, since many exam schools operate with class

sizes substantially larger than are typical of the schools in their host district. It’s also common

for exam schools to have an older, perhaps more experienced teaching staff, though exam school

teaching assignments are usually considered a perquisite associated with seniority alone and not

necessarily teaching quality (Stern, 2003). The exam school estimates reported here, therefore,

seem most likely to be informative about a combination of peer and tracking effects on high-

achieving public school students. This observation motivates us to construct instruments for

the length of time exposed to an exam school curriculum and average levels of peer achievement,

two potentially endogenous mediating variables for which there is a strong exam-school-offer

first stage.

Our results offer little evidence of an achievement gain for those admitted to an exam

school; most of the estimates can be interpreted as reasonably precise zeros, with a smattering

of significant effects, both positive and negative. In other words, in spite of their exposure to

much higher-achieving peers and a more challenging curriculum, marginal students admitted

to exam schools generally do no better on a variety of standardized tests. For the most part,

this finding carries over to subgroups of minorities and women, though we find some evidence

of an exam school achievement boost on high school English tests for minority applicants in

Boston. Results for minorities are of special interest given the history of litigation around

minority admissions. Our analysis of College Board outcomes also uncovers a small subset of

admitted applicants who appear to earn higher SAT scores than they otherwise would have.

One explanation for the absence of broad exam school achievement gains is the local nature

of RD: marginal applicants may be ill-positioned to benefit from an exam school education.

At the same time, estimation for these applicants are of considerable scientific and policy

interest. For one thing, applicants close to admissions cutoffs are still relatively high achievers,

with measured ability far above that of most other urban public school students. Although

education research often focuses on interventions meant to serve students in the lower tail of
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the ability distribution, the education production function for high achievers should also be of

interest. Moreover, on the policy side, most commonly proposed innovations affecting exam

school access, such as new campuses, earlier admissions grades, and strengthened minority or

socioeconomic preferences, are likely to affect students near current admissions cutoffs. It’s also

worth noting that our applicant sample spans a wide range of ability. For example, in 2009,

Boston Latin students had SAT scores ranked among the top five schools in the state (634 in

math and 616 in Reading). At the other end, O’Bryant students have average SAT scores below

the state mean (972 on the Reasoning test at O’Bryant vs. 1031 statewide), though still well

above the Boston Public Schools (BPS) average (894 on the Reasoning test).

Although the local nature of RD estimates does not diminish our interest in them, the

external validity of these estimates is still of considerable interest. A final contribution of our

work is a systematic exploration of external validity. First, we exploit the fact that many of

the applicants who are marginal on the exam school admissions test have exceptionally high

scores on other tests. RD estimates for students who are in the upper half and upper quartile of

the baseline test score distribution (a test that precedes the entrance examination) are broadly

in line with the estimates for the entire population near admission cutoffs. We also report

estimates from two econometric modeling strategies intended to extrapolate causal effects for

applicants who are away from admissions cutoffs; both approaches fail to uncover any evidence

that the results for marginal applicants are unusual.

The next section describes Boston and New York exam schools in more detail and briefly

reviews related literature. Section 3 discusses Boston data and descriptive statistics, while

Section 4 lays out our discontinuity-based estimation framework. Section 5 presents the main

analysis for Boston. We begin with Boston because Massachusetts state achievement scores -

centrally and anonymously graded math and English tests for multiple grades - appear to be

more reliable than New York’s Regents exams, which have a locally graded component and

reflect the subject mix chosen by examinees. We also use the Boston data to look at effects

on PSAT, SAT, and Advanced Placement exams. The Boston results include 2SLS estimates

of peer and time-in-school effects and estimates for various subgroups Section 6 summarizes a

parallel set of results for the effect of New York City’s exam schools on Regents exams. The

paper concludes in Section 7.

2 Boston and New York Exam Schools

Boston has three exam schools, each spanning grades 7-12. The best-known is the Boston

Latin School, which enrolls about 2,400 students. Often described as the crown jewel of Boston’s

public school system, Boston Latin School was named a top 20 U.S. high school in the inaugural
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2007 U.S. News & World Report school rankings. Founded in 1635, the Boston Latin School is

America’s first public school and the oldest still open (Goldin and Katz, 2008).3 The Boston

Latin School is a model for other exam schools. Imitators include the Brooklyn Latin School,

recently opened in New York (Jan, 2006). The second oldest Boston exam school is Boston

Latin Academy, formerly the Girls’ Latin School. Opened in 1877, Latin Academy first admitted

boys in 1972 and currently enrolls about 1,700 students. The John D. O’Bryant High School

of Mathematics and Science (formerly Boston Technical High) is Boston’s third exam school;

O’Bryant opened in 1893 and currently enrolls about 1,200 students.

New York’s three original academic exam schools are Stuyvesant High School, Bronx High

School of Science, and Brooklyn Technical High School, each spanning grades 9-12. The New

York exam schools were established in the first half of the 20th century and share a number of

features with Boston’s exam schools. For example, Stuyvesant and Bronx Science are members

of the Newsweek list of elite public high schools and all three have appeared in the U.S. News

& World Report rankings. Stuyvesant enrolls just over 3,000 students, Bronx Science enrolls

2,600-2,800 students, and Brooklyn Technical has about 4,500 students. In 2002, three new

exam schools opened in New York: the High School for Math, Science and Engineering at City

College, the High School of American Studies at Lehman College, and Queens High School

for the Sciences at York College. In 2005, Staten Island Technical High School converted to

exam status, while the Brooklyn Latin School opened in 2006. The admissions process for

these new schools is the same as for the three original exam schools, but we omit them from

our study because they are not as well established as the traditional exam schools, and some

have unusual characteristics (e.g., small enrollment). Finally, we’ve structured the New York

analysis to parallel that for Boston.4

A defining feature of an exam school education is exposure to high-achieving peers. The

difference between the average pre-application achievement of students enrolled at the Boston

Latin School and those enrolled at a traditional Boston school, reported in Table 1, is over two

standard deviations for math and about 1.75σ for English. Although the other two Boston

exam schools are not as selective as Boston Latin, peer achievement gaps at O’Bryant and

Latin Academy are still substantial (more than 1.0σ for math and English at O’Bryant, and

over 1.25σ at Latin Academy). Students at the three New York City exam schools also have

much higher pre-application scores than students at traditional public high schools. Students

enrolled at Brooklyn Technical are roughly 1.5σ ahead of the New York average in both math

3Boston Latin School was established one year before Harvard College. Local lore has it that Harvard was
founded to give graduates of Latin a place to continue their studies.

4Estimates including New York’s new exam schools are similar to those generated by the three-school sample.
Other selective New York public schools include the Fiorello H. LaGuardia High School, which focuses on visual
and performing arts and admits students by audition, and Hunter College High School, which uses a unique
admissions procedure and is not operated by the New York Department of Education.
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and English, while the Stuyvesant score advantage is more than two standard deviations (shown

in Table 9).

The challenging nature of an exam school curriculum can be gauged by the number of ad-

vanced placement (AP) courses. Katnani (2010) reports that Stuyvesant offers thirty-seven AP

courses, while Boston Latin School offers 23. Stuyvesant boasts the the highest number of AP

test-takers in the country, as well as the most scoring at least 3 or higher on AP tests, typically

the minimum required for college credit (Saulny, 2005). In addition to AP courses, exam schools

offer other advanced courses and academic experiences. At Bronx Science, for example, stu-

dents have the opportunity to do research with local scientists. Bronx Science and Stuyvesant

send many finalists to the Intel (formerly, Westinghouse) Science Talent Search. Many exam

school students compete in the American Mathematics Contest and similar achievement-driven

face-offs.

Along with their rich menu of course offerings, exam schools typically impose high grad-

uation standards. Boston Latin students take four years of Latin and give declamations in

grades 7-10. O’Bryant students enroll in six years of math. The New York exam schools offer

advanced diplomas based on academic and extra-curricular work beyond that required for New

York State Regents diploma.

Some exam schools have endowments and raise money for special projects. These extra

resources are used for college scholarships, faculty training, and facilities. Each year, the

Boston Latin School Association contributes about $700,000 to the school’s annual budget from

an endowment of about $15 million. The Brooklyn Technical Alumni Foundation completed

a fundraising campaign of $10 million for the school in 2005. These funds went to a robotics

laboratory, library improvements, and a gym, among other things (Steinberg, 1998a). The

alumni associations of Stuyvesant and Bronx Science made similar large pledges (Steinberg,

1998b). Katnani (2010) reports that the Harry V. Keefe Library-Media Center at the Boston

Latin School, named after a three-million-dollar alumni donor, is “the most advanced school

library in the world.”

Course offerings and facility upgrades notwithstanding, exam schools look somewhat worse

than traditional public schools in comparisons of class size. The average student-to-teacher

ratio at the Boston Latin School is 22, compared to a district-wide average of 12 for middle

schools and 15 for high schools, a comparison also documented in Table 1. In New York, the

exam student-to-teacher ratio is roughly 31, compared to about 27 district-wide.5

Like other public school teachers in New York and Boston, exam school teachers are members

of the local bargaining unit, and exam school staffing decisions are proscribed by the union

contract in force. Teaching and administrative assignments at New York’s exam schools attract

5These numbers are computed using data from the 2007-08 New York State School Report Cards.
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scrutiny because exam school jobs are considered highly desirable (see, e.g., Stern (2003) and

Kugel (2005)). In practice, the exam school teaching staff is more senior and more likely to

be defined as highly qualified according to state certification standards. At New York’s exam

schools, 44% of teachers are age 48 or older, compared to about 30% at other non-exam schools.6

Likewise, the Boston exam school teaching staff is substantially more senior than that at other

BPS schools.

The proportion of minority applicants admitted to exam schools has often been a lightning

rod for controversy. Under Boston’s court-mandated 1970s desegregation plan, Federal Judge

Arthur Garrity ordered that “at least 35% of each of the entering classes at Boston Latin School,

Boston Latin Academy and Boston Technical High in September 1975 shall be composed of

black and Hispanic students.” This policy maintained the proportion of black and Hispanic

students at roughly 35% for many years. Racial preferences in Boston exam school admissions

were first challenged in 1996. Following a series of court proceedings, Boston exam school

admissions have been purely exam and GPA-based since 1999 (Boston Public Schools, 2007).7

In the 1960s, civil rights groups argued that New York’s exam school admissions test is

biased against black and Puerto Rican applicants. These challenges ultimately led to the 1972

Hecht-Calandra Act, a state law guaranteeing that exam school admissions be based solely

on a competitive exam. To boost minority enrollment, the New York public school district

runs the Specialized High School Institute (SHSI), a five-week summer training program for

economically disadvantaged students enrolled in grades 6-8.

Related Work

As far as we know, ours is one of two RD analyses of achievement effects at highly selective

U.S. exam schools. In independent work, Dobbie and Fryer (2011b) examine the impact of New

York City’s exam schools on longer term academic outcomes; their analysis shows no impact on

college enrollment and quality. Selective high schools have also been studied elsewhere. Pop-

Eleches and Urquiola (2010) estimate the effects of attending selective high schools in Romania,

where the admissions process is similar to that used by Boston’s exam schools. Selective

Romanian high schools appear to boost scores on the high-stakes Romanian Baccalaureate

test. Jackson (2010) similarly reports large score gains for those attending a selective school

in Trinidad and Tobago. On the other hand, despite the huge peer advantage enjoyed by

selective school students in the UK, Clarke (2008) uses RD to show that these schools generate

modest score gains at most. Likewise, using admissions lotteries to analyze the consequences

6These averages are weighted by number of teachers per school as of October 2008, tabulated from the file
used by Rockoff and Herrmann (2010).

7Although preferences officially ended in 1999, the race of 7th grade applicants does not appear to influence
school assignment by 1997, the year after the 1996 challenge.
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of selective middle school attendance in China, Zhang (2010) finds no achievement gains for

students randomly offered seats at a selective school.

A number of American studies overlap with ours as well. The closest is probably Bui,

Craig, and Imberman (2011), who report RD estimates of the the impact of gifted and talented

(GT) services on student outcomes in regular public schools in a large urban district, as well

as lottery-based estimates of the effects of attendance at a GT magnet school in this district.

They find little GT impact. Likewise, Cullen, Jacob, and Levitt (2006) use admissions lotteries

to show that randomly assigned opportunities to transfer to higher-scoring high schools in

Chicago do not appear to boost scores. Chicago magnet schools are not exam schools, though

Chicago now has nine of these. In a related paper, Cullen and Jacob (2008) estimate the

effects of attendance at Chicago GT programs in public elementary schools and similarly find

no achievement effects.

Elite education is perhaps more pervasive in American higher education than at the sec-

ondary level. Dale and Krueger (2002) compare students who applied to and were rejected by

comparable sets of colleges. Perhaps surprisingly, this comparison shows no earnings advantage

for those who went to more selective schools, with the possible exceptions of minority and first-

generation college applicants in more recent data (Dale and Krueger, 2011). In contrast with

the Dale and Krueger results, Hoekstra (2009) reports that graduates of a state university’s

(relatively selective) flagship campus earn more later on than those who went elsewhere.

Finally, a large literature looks at peer effects in educational settings. Examples include

Angrist and Lang (2004), Hoxby and Weingarth (2006), and Lavy, Silva, and Weinhardt (2009).

Findings in the education peer effects literature are mixed and not easily summarized. It seems

fair to say, however, that the potential for omitted variables bias in naive estimates motivates

much of the econometric agenda in this context. Economists have also studied tracking. A

recent randomized evaluation from Kenya looks at tracking as well as peer effects, finding gains

from the former but little evidence of the latter (Duflo, Dupas, and Kremer, 2011).

3 Boston Data and Descriptive Statistics

We obtained registration and demographic information for Boston Public School (BPS) students

from 1997-2009. BPS registration data is used to determine whether and for how many years a

student was enrolled at a Boston exam school. Demographic information in the BPS file includes

race, sex, subsidized lunch status, limited English proficiency status, and special education

status.

BPS demographic and registration information were merged with Massachusetts Compre-

hensive Assessment System (MCAS) scores using the BPS student ID. MCAS test are adminis-
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tered each spring, typically in grades 3-8 and 10. The MCAS database contains raw scores for

math, English Language Arts (ELA), Writing, and Science. The current testing regime covers

math and English in grade 7, 8, and 10 (in earlier years, there were fewer tests). Baseline

(i.e., pre-application) scores for grade 7 applicants are from 4th grade MCAS exams. Baseline

English scores for 9th grade applicants come from 8th grade math and 7th grade English (the

8th grade English exam was introduced in 2006). We lose some applicants with missing baseline

scores. For the purposes of our analysis, scores were standardized by subject, grade, and year

to have mean zero and unit variance in the BPS student population.

Our analysis file combines the student registration and MCAS files with the BPS exam school

applicant file. This file contains applicants’ BPS ID, grade, year, sending school, ranking of

exam schools, Independent Schools Entrance Exam (ISEE) test schools, and each exam school’s

ranking of applicants.

The study sample includes BPS-enrolled students who applied for exam school seats in 7th

grade from 1997-2008 or in 9th grade from 2001-2007. We focus on applicants enrolled in BPS

at the time of application because we’re interested in how an exam school education compares to

a traditional BPS education. Private school applicants are much more likely to remain outside

the BPS district and hence out of our sample if they fail to get an exam school offer (about

45% of Boston exam school applicants come from private schools). The 10% of applicants who

apply to transfer from one exam school to another are also omitted. The data appendix gives

a detailed explanation of our analysis file, along with more information on test and application

timing.

3.1 Student Characteristics

Non-exam BPS students are mostly minority and poor enough to qualify for a subsidized lunch.

Black and Hispanic students are somewhat under-represented among exam school applicants

and students, but most exam school applicants are also poor. These statistics are reported in

Table 2, which compares the demographic characteristics and baseline test scores of non-exam

school BPS students with those of the exam school applicant sample.8

Not surprisingly, there are few special education students in an exam school, though many

exam school applicants and students are classified as limited English proficient. Exam school

applicants are clearly a self-selected group, with markedly higher baseline scores than other

BPS students. For example, grade 7 applicants’ 4th grade math scores are almost 0.8σ higher

than those of a typical BPS student. Offered students are even more positively selected, with

a score gap of 1.4σ in math and 1.3σ in English. Similarly large gaps emerge for 9th graders.

8The sample here includes 6th and 8th graders who were enrolled in BPS and applying for admission in 7th
and 9th grade. Data for grade 7 cover 1997-2008; data for grade 9 cover 2001-2007.
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Finally, note that there are many more exam school seats in grade 7 than grade 9. As a

result, the probability an applicant is offered a seat is much lower for 9th grade applicants.

3.2 Descriptive Estimates

To set the stage for the RD estimates, we begin with a descriptive regression analysis of the

relation between the standardized MCAS scores of student i tested in year t, denoted by yit,

and measures of exam school exposure. Specifically, we report ordinary least squares (OLS)

estimates of equations like

yit = αt +
∑

j

δjdij + γ′Xi + ρMit + λ′Ii + εit, (1)

fit to the sample of exam school applicants. Here, αt is a test year effect, δj is a control for the

student application cohort (interaction of year and grade), and Xi is a vector of demographic

variables that includes gender, race, and free lunch status. (Students with missing demographics

are omitted.) The exam school mediator, Mit, is captured either by a dummy for exam school

enrollment following the application year; by the number of years a student was enrolled in

an exam school from application date to test date; or, motivated by the fact that exam school

enrollment is associated with exposure to high-achieving peers, by the average baseline score

of peers in the year after application. Some specifications also include Ii, a vector of four ISEE

scores from verbal, quantitative, reading, and math subtests. The estimates were computed in

samples pooling 7th and 9th grade applicants and all available MCAS test outcomes for each

applicant.9

Models without ISEE controls generate large positive coefficients for each measure of exam

school exposure. For example, the enrollment estimate for math reported in column (1) of Table

3 is nearly 1.0σ, while that reported in column (7) for ELA is 0.8σ. The corresponding per-year

estimates are 0.36σ and 0.31σ. Models for peer means generate estimates of about 0.6σ for

both math and ELA. Not surprisingly given the nature of exam-school selection, the inclusion

of ISEE score controls in equation (1) reduces the estimated exam school exposure coefficients

considerably. Estimates for enrollment and exam years with ISEE controls fall to about a third

of the size of estimates without ISEE controls. The decline in peer mean coefficients with ISEE

controls is even larger, though even when estimated with controls, the estimated peer effects

are still substantial and statistically significant at 0.1− 0.15σ.

The sensitivity of exam school mediator coefficients to the inclusion of ISEE controls high-

lights the fact that a good part of the apparent exam school advantage reflects positive selection

9The standard errors here and elsewhere are clustered by enrollment school and test year (and by student
when there are multiple test outcomes per student).
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bias. On the other hand, even conditional on ISEE controls, exam school exposure is highly

positively correlated with student achievement. In the next section, we turn to a RD framework

to determine whether this correlation is causal.

4 Boston RD Framework

4.1 The Boston Admissions Process

Boston residents interested in an exam school seat take the ISEE in the fall of the school year

before they would like to transfer. 7th grade applicants are typically transferring out of their

current middle school, while 9th grade applicants are picking a new high school and typically

participate in the regular high school matching process, as well as the exam school process.

Exam school applicants also submit an authorized GPA report that winter, based on grades

through the most recent fall term. Finally, exam school applicants are required to rank up to

three exam schools on the application form. The exam school composite score is a weighted

average of applicants’ math and English GPA, along with scores on the four parts of the ISEE

(verbal, quantitative, reading, and math).

For the purposes of the analysis here, composite scores were standardized separately for

each school using the sample of applicants to that school, generating ranking variable Rik for

student i, specific to school k. A smaller value of Rik indicates that the student has a higher

composite score and is more likely to gain admission. We focus on those applying for seats in

the 7th and 9th grades (O’Bryant also accepts a handful of 10th graders).

Applicants are ranked only for schools to which they’ve applied, so applicants with the same

GPA and ISEE scores might be ranked somewhat differently at different schools depending on

where they fall in each school’s applicant pool. Exam school assignment is then based on

the student-proposing deferred acceptance algorithm (see, e.g., Pathak (2011) for a formal

description) which generates a cutoff, Ck, the largest rank to obtain an offer for each school.

For the purposes of our figures and empirical work, we scaled school-specific composite ranks

according to:

rik = 100× Rik − Ck

maxj∈Ik
{Rjk} −minj∈Ik

{Rjk}
,

where Ik are students who ranked school k. Scaled school-specific ranks provide a running

variable that equals zero at the cutoff for school k, with positive values indicating students who

applied to and qualified for admission at that school.
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4.2 Discontinuities in offers, enrollment, and peers

The exam school admissions process generates large discontinuities in the relation between rik

and the probability of an exam school offer, with somewhat more modest though still substantial

jumps in enrollment. This can be seen in Figures 1-3 for 7th grade applicants. Panels in the

figures cover a scaled rank interval of [-20,+20] for each of the three Boston exam schools.

Applicants outside the 20-unit band are either far below or well beyond the relevant cutoffs.

Plotted points are conditional means for all applicants in a one-unit binwidth similar to the

empirical conditional mean functions reported in Lee, Moretti, and Butler (2004).

The figures also show smoothed conditional mean functions allowing for jumps at each

cutoff. Specifically, for school k, data in the Boston window were used to construct local linear

regression (LLR) estimates of Ê[yi|rik], where yi is the dependent variable and rik is the running

variable. The LLR smoother uses the edge kernel:

K(uik) = 1|uik|≤1(1− |uik|),

where uik = rik

h
and h is the bandwidth. In a RD context, LLR has been shown to produce

estimates with good properties at boundary points (Hahn, Todd, and van der Klaauw (2001)

and Porter (2003)). The bandwidth used here is a version of that proposed by Imbens and

Kalyanaraman (2010) (hereafter, IK) who derive optimal bandwidths for sharp RD using a

mean square-error loss function with a regularization adjustment. The jump in the conditional

mean function at the cutoff is the IK sharp RD estimate of the effect of an offer at a particular

school.10

Figure 1 captures key elements of the relation between running variables and school-specific

enrollment rates. In each panel, the dark line plots the offer rate at the school for which the

panel is labeled, while the dotted line is the probability of an offer at other exam schools. For

example, the leftmost panel in Figure 1 shows that students who score just above the O’Bryant

cutoff obtain an offer at the O’Bryant school with near certainty. But O’Bryant applicants who

ranked another exam school ahead of O’Bryant may be offered a seat at this school instead.

Hence, the O’Bryant panel also shows an increasing probability of admission to other exam

schools as we move right from the O’Bryant cutoff. The center panel, for Latin Academy,

shows very high probabilities of receiving an exam school offer (in this case, from O’Bryant)

for those to the left of, but close to, the Latin Academy cutoff. Finally, almost everyone to the

left of the Latin School cutoff gets an offer from another exam school, while to the right of the

Latin School cutoff, offer rates at Latin School jump from 0 to about 0.75.

10As with the estimates discussed below, the sample used for to estimate smoothed lines in the plots in-
cludes only applicants within 10 units of each school-specific cutoff, though the plot window is wider. IK
implementation is discussed in detail in the next section.
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Figure 2 plots the relation between scaled ranks and exam school enrollment instead of offers.

Applicants scoring just above admissions cutoffs are much more likely to enroll in a given school

than are those just below the cutoffs. On the other hand, enrollment rates at other schools

also change around each school-specific cutoff. Figure 3 puts these pieces together by plotting

jumps in the probability of enrollment in any exam school around each school-specific cutoff

(this is the sum of the dark and dotted lines in Figure 2). Exam school enrollment jumps at

the O’Bryant and Latin Academy cutoffs, but changes little at the Latin School cutoff because

those to the left are very likely to enroll in either O’Bryant or Latin Academy.

Much like the relation for enrollment, Figure 4 shows that students with normalized

composite-score ranks that clear school-specific cutoffs spend more time enrolled in exam

schools. Although some applicants to the left of the O’Bryant cutoff eventually accumulate

enrollment years by applying again in grade 9, those to the right of the O’Bryant cutoff spend

about two years more in exam schools than those to the left. The discontinuity in exam school

years is less pronounced at the Latin Academy cutoff, and there is no jump in years at the

Latin School cutoff. This reflects the fact that students who come close to, but fail to clear, the

Latin Academy and Latin School cutoffs, almost certainly get offers at the next school down

in the Boston exam school hierarchy.11

An important component of the exam school experience is exposure to other high-achieving

students. Figures 5 and 6 document this by plotting the average baseline score of peers for

applicants on either side of admissions cutoffs.12 Baseline peer means jump by about half a

standard deviation at each admissions cutoff. This implies that (conditional on applying to

an exam school) peers at Latin Academy are ahead of non-exam BPS peers by a full standard

deviation, while peers at Latin School are ahead of non-exam BPS peers by about 1.5σ. It’s

also worth nothing that the lower deciles of the baseline peer score distribution jump by a

roughly similar amount. This implies that even if marginal admits are tracked within schools

(so that they study primarily with the lower tail of the exam school enrolled population), the

peer quality to which they are exposed nevertheless jumps at the cutoff.

Although not shown here, offer and enrollment patterns for grade 9 applicants are similar

to those shown here for grade 7 applicants. The grade 9 sample is much smaller, however,

especially for Boston Latin Academy and Boston Latin School, which together account for only

a quarter of 9th grade seats. Enrollment and peer discontinuities in the O’Bryant 9th grade

sample look much like those for O’Bryant’s 7th graders.

11Note that the total years variable plotted in this figure reflects the maximum exam school exposure available
to the applicant cohorts in our data. For instance, 7th grade applicants who applied in 2006 will have spent at
most two years in an exam school by the time we see them tested at the end of 8th grade, while our sampling
window closes before we get a chance to see them tested in 10th.

12The peer mean score is the average baseline score of same-grade peers in the school in which an applicant
enrolled in the year following the year of exam-school application.

12



5 Boston RD Estimates

5.1 Econometric Framework and Reduced Form Estimates

We constructed parametric and non-parametric RD estimates of the effect of an exam school

offer using the normalized composite score as the running variable. We refer to this initial set

of estimates as “reduced form” because they capture the effect of an exam school offer, without

adjustment for the relationship between offers and enrollment or other mediating variables. The

Boston empirical work is limited to sets of applicants with school-specific running variables in

the interval [-10,+10]. Applicants outside this “Boston window” are well below or well above

the relevant cutoffs. At the same time, the [-10,+10] window is wide enough to allow for

reasonably precise inference using Boston applicant data.

The parametric estimating equation for applicants to school k is

yitk = αtk +
∑

j

δjkdij + (1−Dik)f0k(rik) +Dikf1k(rik) + ρkDik + ηitk, (2)

where the variable Dik is an indicator for rik ≥ 0 and the coefficient of interest is ρk. Equation

(2) controls for test year effects at school k, denoted αtk, and for the year and grade of appli-

cation, indicated by dummies, dij. Effects of the running variable at school k are controlled by

a pair of third-order polynomials that differ on either side of the cutoff, specifically

fjk(rik) = πjkrik + ξjkr
2
ik + ψjkr

3
ik; j = 0, 1. (3)

The reduced form estimates generated by this set-up reflect the fact that applicants to

school k typically apply to more than one school and are likely to have (or to lose) other

exam school options as distance from a given cutoff grows. For example, highly qualified

Latin Academy applicants also qualify for admission to Latin School. Looking in the other

direction, while many applicants to Latin Academy also qualify for admission to O’Bryant,

poorly qualified applicants to Latin Academy do not. In small neighborhoods around each

cutoff, confounding from other offers disappears, but in the empirical Boston window nearby

cutoffs determine counterfactual outcomes and are a potential source of nonlinearity in the

relation between running variables and outcomes. In principle, the IK procedure adjusts for

the additional nonlinearity by shortening the bandwidth. The possibility that the resulting

bandwidth straddles multiple cutoffs, however, raises the question of how we should interpret

the resulting estimates.

Figure 7 presents a stylized representation of the Boston admissions process that sheds some

light on the nature of the causal effects captured by equation (2). The bottom of the figure
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sketches own-school and other-school offers for Latin Academy applicants. At the cutoff, Latin

Academy offers naturally jump, but as we move to the right, Latin School offers are made, while

moving to the left, O’Bryant offers fall away. The changing pattern of offers is reflected in the

reduced form relation between achievement and the Latin Academy running variable. Near

the Latin Academy cutoff, reduced form estimates capture the effects of a Latin Academy offer

(only) on students who would also qualify for O’Bryant. In practice, however, even the non-

parametric estimation strategy borrows information that that is close to and sometimes beyond

the next cutoff up or down. Therefore, the reduced form effect of Latin Academy offers captures

an average causal effect generated by the difference in outcomes between applicants who qualify

for admission to Latin Academy, some of whom also qualify at Latin School, and applicants who

don’t qualify for Latin Academy, most, but not all of whom qualified for O’Bryant. Although

not sketched in the figure, it should be clear that the same sort of mixing occurs to the left of

the Latin School cutoff and to the right of the O’Bryant cutoff.

Following the discussion of reduced form estimates, we use 2SLS to simplify the interpreta-

tion of reduced form estimates by assigning reduced form effects to specific channels, such as

peer means, that are manipulated at all cutoffs in some measure.

Non-parametric RD

Non-parametric estimates differ from parametric in three ways. First, they narrow the Boston

window when the optimal data-driven IK bandwidth falls below 10.13 Second, the non-

parametric estimates use a tent-shaped edge kernel centered at admissions cutoffs instead of

the uniform kernel implicit in parametric estimation. Finally, non-parametric models control

for linear functions of the running variable only. We can write the non-parametric estimating

equation as

yitk = αtk +
∑

j

δjkdij + γ0k(1−Dik)rik + γ1kDikrik + ρkDik + ηitk,

= αtk +
∑

j

δjkdij + γ0krik + γ∗kDikrik + ρkDik + ηitk (4)

for each of the three schools indexed by k. Non-parametric RD estimates come from a kernel-

weighted least square fit of equation (4).

Figures 8-11 show non-parametric RD reduced forms for middle school (7th and 8th grade)

and high school (10th grade) math and English. Dots in the plots are averages in a one-unit

binwidth, while lines are from the local linear smoother using IK bandwidth as before. Jumps

in smoothed scores at admissions cutoffs are the IK sharp regression discontinuity estimates of

13The IK bandwidths for Table 4 range from about 8 to 24.
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the effects of qualifying for an exam school offer on test scores. Except perhaps for 10th grade

English, the plots offer little evidence of marked discontinuities in MCAS scores at any of the

three admissions cutoffs.

Not surprisingly, the single-school reduced form estimates, reported in Table 4, tell the same

story as the figures. Few of these estimates are significantly different from zero and some of

the significant effects at Latin School are negative (for example, Latin School effects on 10th

grade math and middle school English). Most of the estimates are small and some are precise

enough to support a conclusion of no effect.

Stacking Schools

In an effort to increase precision, we also constructed estimates pooling applicants to all three of

Boston’s exam schools. The pooled estimating equations are essentially the same as equations

(2) and (4), but with a single offer effect, ρ. Because the pooled model is saturated with a full

set of main effects and interactions for school-specific subsamples, we can think of the estimate

of ρ in this stack as a variance-of-treatment-weighted average of school-specific estimates.14

Note that some students apply to more than one school and a given student may contribute

up to three observations, even for a single outcome. Our inference framework takes account of

this by clustering by student.15

Paralleling the pattern shown in the Boston reduced form figures, the estimated reduced-

form offer effects from the stacked models, reported in columns labeled “All Schools” in Table

4, are mostly small, with few significantly different from zero. One substantial and significant

positive effect, for 10th grade English scores, seems to stand out as it appears at individual

schools, and in both parametric and non-parametric estimates. On the other hand, this positive

finding is partly offset by a marginally significant negative effect on 7th and 8th grade English,

so that when all scores are stacked and pooled the overall estimated impact is close to zero

(scores are stacked in much the same way that schools are stacked). Two other marginally

significant IK estimates for math are also negative, as is the estimate for 7th grade ELA.

Importantly, the combination of school- and score-pooling generates precise estimates, with

standard errors on the order of 0.028 for both math and ELA.

Appendix A reports results from an exploration of possible threats to a causal interpreta-

tion of the reduced form estimates in Table 4. Specifically we look for differential attrition (i.e.,

missing score data) to the right and left of exam school cutoffs and for discontinuities in co-

14Variance-weighting is a property of models with saturated regression controls; see, e.g., Angrist (1998). Not
quite literally in this case, however, since the model here is not fully non-parametric.

15An alternative stacking scheme partitions applicants according to the school they are most likely to get
into. For most applicants, however, this is the O’Bryant school. As a result, the resulting stacked estimates
look much like the O’Bryant estimates.

15



variates. There is some evidence that receipt of an exam school offer makes attrition somewhat

less likely, but the gaps are small and unlikely to impart substantial selection bias in estimates

that ignore them. A few covariate contrasts also pop up as significantly different from zero, but

the spotty nature of these gaps, and the fact that the parametric and non-parametric findings

are similar, support the notion that our controlled comparisons to the left and right of exam

school admissions cutoffs are indeed a good experiment.

A related threat to validity comes from the possibility that marginal students switch out

of exam schools at an unusually high rate. If school switching is harmful, excess switching

might account for findings showing little in the way of score gains. As it turns out, however,

exam school applicants who clear admissions cutoffs are more likely to stay at an assigned

school through grade 12 than are traditional BPS students. This partly reflects the high rate

of student turnover in Boston high schools – overall enrollment persistence in BPS first-choice

high schools is only about 0.32 – a mobility pattern typical of American inner-city schools. The

probability that a traditional BPS 7th grader in the Boston window enrolls in the same school

as a senior is about 0.51; for 9th graders in the Boston window (mostly applying to O’Bryant),

the re-enrollment rate falls to 0.44. Exam school offers increase enrollment persistence by 0.11

for 7th grade applicants and by 0.17 for 9th grade applicants.16 This increase weighs against

the view that unusually high exit rates from exam schools account for the findings reported

here.

5.2 Estimates for Minorities and by Sex

Our interest in exam school effects on minority applicants is motivated in part by the contentious

debate over minority representation in these schools. Is the fight over minority representation

justified by evidence of achievement gains for minorities? In an investigation of the earnings

consequences of attendance at selective colleges and universities, Dale and Krueger (2002, 2011)

find no overall effect. At the same time, the Dale and Krueger estimates show some evidence

of gains for minority applicants. The influential book-length analysis of minority admissions

preferences at selective colleges and universities by Bowen and Bok (2000) also marshals a

variety of evidence in support of the same point.

Our estimates for black and Hispanic applicants to exam schools, also reported in Table 5,

are in line with the full-sample findings for math and middle-school ELA scores. On the other

hand, consistent with the full-sample results for 10th grade ELA, an exam school education

seems especially likely to boost 10th grade English scores for blacks and Hispanics, with an

estimated effect of 0.17σ. In fact, the full-sample ELA results appear to be driven primarily by

16These estimates come from a parametric reduced form analysis similar to that used to construct the covariate
balance and attrition estimates in the appendix.
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the minority impact, since the corresponding IK estimate for non-minorities is 0.07σ (se=0.042).

Our investigation of differences in student achievement by gender is motivated by long-

standing academic interest in gender gaps in achievement. For instance, Ellison and Swanson

(2010) document a substantial male advantage in elite high school math contests. The estimates

in Table 5, however, show that exam schools have little effect on math scores for boys as well

as girls, while effects on English are similar.

5.3 2SLS (Fuzzy RD) Estimates of Mediating Causal Effects

Exam school offers might affect achievement in a number of ways, most immediately through

exam school enrollment. We can also think of exam school offer effects as being mediated

by time spent attending an exam school, a measure of the intensity of educational tracking.

Finally, we consider the possibility that the most important mediator for exam school offers is

peer achievement.

Our investigation of exam school mediators uses exam school offers as instruments for me-

diating variables in a fuzzy RD analysis. This allows us to explore, for example, what the

combination of a strong peer mean first stage and a small reduced form impact implies about

the size of peer effects. Although we can’t say for sure whether any single mediator satisfies

an IV exclusion restriction, the bias from failures of the exclusion seems likely to be positive,

so the resulting IV estimates can be thought of as providing an upper bound on one-at-a-time

causal effects. Also relevant is the precision of the 2SLS estimates: among other things, this

tells us whether we can reject positive peer effects of the size reported elsewhere.

Fuzzy RD is implemented here using two-stage least squares (2SLS). The 2SLS setup par-

allels that used for pooled reduced form estimation (pooling applicant grades and test years,

as well as schools). Because the non-parametric analysis generates somewhat more precise es-

timates than the parametric, we focus here on IK estimates for the pooled sample. The second

stage equation in this context is similar to the stacked reduced form based on equation (4),

except that the three own-school cutoff dummies are excluded and used as instruments for me-

diating variables, Mit. To economize on notation, we write the 2SLS second stage by subsuming

all controls, including year of test, grade, and application effects, and own- and other-school

running variable controls, in a vector Xitk with conformable coefficient vector Γk. We can then

write the second stage equation as

yitk = Γ′kXitk + θMit + εitk, (5)

where Mit is the endogenous variable to be instrumented and θ is the causal effect of interest.

The corresponding first stage equations include these same controls using three own-school offer
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dummies as instruments, one for each set of applicants, stacked as when estimating equation (4).

In principle, three instruments is enough to estimate the effects of three endogenous variables at

the same time, but in practice this doesn’t produce informative results. As a result, we estimate

the effects of mediating variables one at a time. The mediators considered here are either an

enrollment dummy (“in exam school the school year after application date”), years enrolled

in an exam school between application and test date, and the applicant’s baseline peer mean

as experienced in the school year following exam school application. In an effort to increase

precision, we also computed 2SLS estimates adding interactions between offer dummies and

application cohort (year and grade).17

Applicants with a score above the O’Bryant cutoff are 73 percentage points more likely

to enroll in an exam school and have spent about 1.5 more years at an exam school by the

time they take an MCAS test. These and other first stage estimates are reported in Table 6.

The first stage effects of the Latin Academy exam cutoff indicators on enrollment and years

at an exam school are smaller than the O’Bryant effects because many who just miss a Latin

Academy offer end up in O’Bryant. The corresponding first stage estimates for a Latin School

offer are small and not significantly different from zero, a consequence of the fact that almost

all near misses at the Latin School end up at Latin Academy.

2SLS estimates of the effect of exam school enrollment or years of attendance are small, with

none significantly different from zero (estimates for math are negative). The addition of cohort

interactions to the instrument list generates only slight precision gains, but the estimates are

reasonably precise either way. It’s especially noteworthy that these estimates are precise enough

to be statistically distinguishable from the corresponding OLS estimates in Table 3, whether

the latter are estimated in models with or without ISEE controls. Compare, for example, the

2SLS estimates of the effect of exam years on math (−0.024 with standard error of 0.033), to

the OLS estimate of 0.088 with standard error 0.016 in a model with ISEE controls.

The first stage estimates reveal large and precisely estimated impacts of exam school offers

on applicants’ peer achievement. O’Bryant offers increase average baseline peer scores by over

two-thirds of a standard deviation, while the gain is about 0.4σ at the Latin Academy cutoff, and

0.53− 0.63σ at the Latin School cutoff. Consistent with the reduced form estimates, however,

the 2SLS estimates show no significant effects of peer achievement on applicant achievement.

An important piece of information in this context is the precision of the 2SLS estimates of

peer effects, which come out significantly different from the large positive OLS estimates in

Table 3. The estimated peer-effect zeros in Table 6 are also significantly different from many of

the positive education peer effects reported elsewhere as well; see, e.g., Sacerdote (2001), who

17Paralleling the reduced form setup, the own-school cutoff is an instrument for mediators in the sample of
applicants from that school, while other school cutoffs are included as controls.
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estimates college freshman GPA peer effects on the order of 0.12.

The Wrong Pond

Our investigation of peer effects is motivated by econometric research predicated on the hypoth-

esis that better peers boost achievement. At the same time, a parallel literature originating in

educational psychology explores the apparently contradictory hypothesis that high-achieving

peers are demoralizing and reduce achievement, at least for those not as strong. Marsh, Ches-

sor, Craven, and Roche (1995) and Bui, Craig, and Imberman (2011) reference this “Big Fish

Little Pond Effect” (BFLPE) as a possible explanation for the failure to find achievement gains

in gifted and talented programs. Here, BFLPE might explain the mostly weak effects of an

exam school education since marginal admitted applicants, though positively selected relative

to where they’re coming from, will typically not be at the top of an exam school class.

The flip side of the peer first stage documented in Table 6 is indeed a decline in students’

percentile rank among peers. This is documented in Figures 12 and 13, which plot applicants

position in the baseline math and English score distributions. The plots show sharp drops at

admissions cutoffs, essentially the mirror image of the peer first stage reported in Table 6. On

the other hand, while applicants just above the cutoff at the O’Bryant school necessarily have

the lowest ISEE/GPA composite score among all those offered an O’Bryant seat, their baseline

scores place them in the middle of the baseline distribution among those offered a seat. This is

a decline from about the 75th percentile of the baseline test score among non-offered peers. The

baseline score ranking of marginal Latin Academy and Latin School applicants fall similarly

though somewhat less sharply over a range in the middle of the relevant distributions.

We investigate BFLPE more formally by allowing for interactions between exam school

enrollment and the difference between applicant achievement and those of peers at the targeted

exam school. The idea here is to check the BFLPE prediction that students who enroll in

exam schools where they can expect to be substantially weaker than classmates gain less or

lose more than those with baseline achievement at the peer mean or better. To formalize this,

let bi denote applicant i’s baseline score and b̄(i)k be the the peer mean at an applicant’s target

exam school. The potential peer gap at the applicant’s target school is

gik = (bi − b̄(i)k).

Adding peer gap interactions to a second-stage equation that captures causal effects of exam

school enrollment, Eit, we have

yitk = Γ′kXitk + θ0Eit + θ1Eitgik + εitk, (6)
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with two endogenous variables: Eit (exam school enrollment) and Eitgik (exam school enroll-

ment interacted with the potential peer gap). The instruments in this case are offer cutoff

indicators, Dik, and the cutoff indicator times the potential peer gap, Dikgik.

We estimated equation (6) in the pooled sample of 7th and 9th grade applicants with stacked

schools and pooled MCAS test outcomes. This generates 2SLS estimates of θ1 of about −0.078

(se = 0.078) for math and −0.119 (se = 0.080) for ELA.18 The fact that the impact of exam

school enrollment seems to be decreasing in the gap between an applicant’s baseline ability and

that of his peers at the targeted schools suggests the BFLPE mechanism plays little or no role

in mediating the overall exam school impacts reported here.

5.4 External Validity

RD non-parametrically identifies causal effects for those near treatment cutoffs. How limiting

is this? In the Boston exam school context, it seems worth emphasizing that the three cutoffs

in our sample cover a wide range of ability. Among 7th grade applicants, the O’Bryant cutoff

falls near the median of the ISEE distribution while the Latin School cutoff reaches the 75th

quantile. Among 9th grade applicants, the O’Bryant cutoff falls near the 60th quantile, the

Latin Academy cutoff is near the 87th quantile, and the Latin School cutoff reaches the 92nd

quantile. It’s impressive that the effects of clearing these widely spaced thresholds are similar.

This robustness notwithstanding, we’d also like to say something about how an exam school

education affects achievement for unusually high achievers, even within the exam school pop-

ulation. We briefly explore two approaches to this question, the first based on covariates and

the second an extrapolation using functional form.

High Achievers

To further explore consistency across quantiles of the applicant ability distribution, we exploit

the fact any single test is necessarily a noisy measure of ability. Although we can’t construct

(non-parametric) RD estimates for, say, O’Bryant students with ISEE scores in the upper tail

of the score distribution, we can look separately at subsamples of students with especially high

baseline MCAS scores. Some in the high-baseline group are ultra-high achievers who landed in

a marginal ISEE group by chance.

The average baseline score for students in the upper half of the baseline MCAS distribution

hovers around 1.2− 1.4σ in both math and English. Importantly, MCAS scores remain infor-

mative even for these high achievers: no more than one third top out in the sense of testing

18These are IK estimates in models that control for a potential peer gap main effect scores. Models swapping
the potential peer gap with baseline scores generate virtually identical results since the leave-one-out peer mean
is essentially a linear combination of the complete peer mean and the individual baseline score.
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at the Advanced (highest) MCAS proficiency level. Likewise, MCAS remains informative even

for applicants in the upper baseline MCAS quartile. It’s therefore of interest to see what RD

estimates of exam school applicants look like for students with such high baseline MCAS scores,

an inquiry made possible by the fact that some of these high-baseline applicants have ISEE

scores close to admissions cutoffs.

Perhaps surprisingly, RD estimates for applicants in the upper half and upper quartile of

the baseline score distribution come out essentially similar to those for the full sample. These

results, reported in columns 1-4 of Table 7, are mostly negative with few significantly different

from zero. The exception again is a significant positive effect for 10th grade ELA. At the same

time, the sample of high achievers generates a significant negative estimate of effects on middle

school ELA – an effect of roughly the same magnitude as the positive ELA estimate for 10th

graders. Thus, even in a sample of ultra high (baseline) achievers, there is little evidence of a

consistent exam school boost.

Extrapolation Away from Cutoffs

The previous analysis looks at students with high baseline values, but says nothing about

effects for applicants with ISEE scores above admissions cutoffs. Perhaps the ISEE has score

special significance. For example, once admitted to an exam school, students may be tracked

(perhaps implicitly) on the basis of their ISEE scores. Moreover, in ongoing theoretical work,

Ellison (2011) argues that in school systems that sort by ability across campuses, the optimal

design has no discontinuity in score levels at admissions cutoffs, though we should see the score

gradient get steeper for those admitted to a more challenging program. We’d therefore like to

say something about treatment effects to the right of exam school admissions cutoffs.

Parametric RD identifies causal effects along the entire support of the running variable, an

important feature of the parametric approach noted by Angrist and Pischke (2009). To see this,

begin by letting E[y0i|ri] and E[y1i|ri] denote the conditional expectation functions (CEFs)

for potential outcomes indexed against treatment assignment {yji; j = 0, 1} and conditional on

the running variable (here we suppress the application school subscript, k.) Modeling both of

these CEFs with pth-order polynomials, we have

E[y0i|ri] = α + β01ri + β02r
2
i + ...+ β0pr

p
i ,

E[y1i|ri] = α + ρ+ β11ri + β12r
2
i + ...+ β1pr

p
i .

Since Di is a deterministic function of ri, we can write

E[yi|ri] = E[y0i|ri] + E[y1i − y0i|ri]Di.
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Finally, substituting polynomials for conditional expectations, we have

yi = α + β01ri + β02r
2
i + ...+ β0pr

p
i (8)

+ρdi + β∗1diri + β∗2diri
2 + ...+ β∗pdiri

p + ηi,

where β∗1 = β11 − β01, β
∗
2 = β12 − β02, and β∗p = β1p − β0p and the error term, ηi, is the CEF

residual, yi − E[yi|ri]. The treatment effect at ri = c > 0 is

τ(c) ≡ E[y1i − y0i|ri = c] = ρ+ β∗1c+ β∗2c
2 + ...+ β∗pc

p,

while the treatment effect at the cutoff is just ρ.

Figure 14 illustrates the extrapolation implicit in parametric estimates of causal effects

away from the cutoff. We observe E[y0i|ri] to the left of the cutoff and E[y1i|ri] to the right.

But identification of treatment effects at ri = c > 0 requires knowledge of E[y0i|ri = c]. A

parametric model for E[y0i|ri] constructs the missing counterfactual mean of y0i to the right of

the cutoff by extrapolating E[y0i|ri] from the left, generating the parametric estimand labeled

τA(c) in the figure.

The problem with parametric extrapolation is that the parametric model may be incorrect.

Suppose, for example, that the mean of y0i to the right of the cutoff is described by the upper

dotted line to the right of the cutoff in Figure 14. Then the causal effect at c is τB(c). An inter-

esting question in this context is whether effects away from the cutoff are non-parametrically

identified. In other words, given an infinitely large sample, could we tell whether τA(c) or τB(c)

is the right answer? Without constraining the behavior of the underlying CEF in some way,

the answer is no, even if we impose smoothness on the underlying functions. As suggested by

the figure, whatever shape a continuously differentiable E[y0i|ri] takes to the left of the cutoff,

there are many continuously differentiable pieces (continuous at the cutoff) consistent with this

to the right. This suggests that continuous differentiability alone is not strong enough to allow

us to extrapolate E[y0i|ri] from left to right.

Stronger regularity assumptions restricting the behavior of E[y0i|ri] buy more in the way

of identification. Suppose we’re prepared to assume that E[y0i|ri] is an analytic function over

the interval we’re concerned with, that is, from the cutoff through the intended extrapolation

point. This means that on this interval, the function can be written as a power series or,

equivalently, that a Taylor approximation converges to it. We can then imagine improving the

approximation to the left of the cutoff to the point where we eventually learn what E[y0i|ri = c]

is up to any desired level of accuracy. It seems reasonable to presume, however, that in practice

the quality of a profligate approximation is likely to be limited. As an empirical matter, it

makes sense to settle for some low-order polynomial such as the cubic used here. (And, in any

22



case, the question of whether the underlying CEF is analytic seems hard to assess.)

Recently, Dong and Lewbel (2011) propose a derivative-based approach to RD extrapolation

in the neighborhood of the cutoff, beginning with the observation that given continuous differ-

entiability of the underlying CEFs, the derivative of the treatment effect at the cutoff, τ ′(0),

is non-parametrically identified.19 Dong and Lewbel use this fact to motivate an approximate

treatment effect

τ(c) ≈ τ(0) + τ ′(0) · c,

interpreting this as the effect were the cutoff to be moved by a small amount. Let g1(ri) and

g0(ri) denote the continuously differentiable CEFs for potential outcomes. With cutoff at zero,

the treatment effect moving the cutoff to the right is

E[y1i − y0i|ri = c] = g1(c)− g0(c).

Dong and Lewbel’s “move-the-cutoff” extrapolation uses derivatives to approximate both g1(c)

and g0(c). Here, we use a similar local derivative argument to approximate the treatment effect

for someone with ri = c for small c when the cutoff is fixed at zero. Move-the-cutoff and away-

from-the-cutoff effects are the same when the location of the cutoff has no impact on potential

outcomes.

Our extrapolation exploits the fact that we only need to impute g0(c); g1(c) is non-

parametrically identified. We therefore impute effects away from the cutoff using the fact

that g0(c) ≈ g0(0) + g′0(0) · c. The idea behind this is rendered in Figure 14 as the vertical

distance falling from E[y1i|ri = c] to the line tangent to E[y0i|ri = 0]. This approximation

distinguishes between possible counterfactuals according to where g0(ri) is headed in a small

neighborhood of the cutoff. Of course, two functions might have the same first derivative and

yet be headed in different directions. In that case, we could look to higher-order derivatives to

tell them apart, though the payoff to additional approximation terms falls off quickly, since the

rate at which non-parametric estimates of derivatives converge falls with the order of differenti-

ation (Stone, 1982). Derivate-based approximation is not guaranteed to answer the substantive

question of interest in our context, which is whether treatment effects increase as the running

variable increases. On the other hand, we might indeed be interested in what happens just

to the right of the cutoff, which in this case means not being among the very last applicants

admitted to an exam school.

We constructed non-parametric estimates of g1(c) by local linear regression with bandwidth

centered at c. The imputed g0(c) was constructed from local linear estimates of the slope and

19The identification argument here is similar to that invoked for non-parametric identification of the treatment
effect itself; see, e.g., Li and Racine (2007).
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intercept in a bandwidth-determined neighborhood just to the left of the cutoff, as implemented

earlier for RD estimates at the cutoff. The imputed treatment effect at c can be obtained from

these pieces in one go by kernel-weighted estimation of equation (4). In this case, however,

although we want the estimates to the left to be constructed at the cutoff as before, estimates

to the right use a weighting scheme centered at the extrapolation point, c. This is accomplished

by using a kernel that recenters to the right:

K(ũik) = 1|ũik|≤1(1− |ũik|),

where ũik = rik−Dic
h

and h is the bandwidth.

Parametric extrapolation results for c = 1 and c = 5 for a sample combining applicants for

all three schools are reported in columns (5) and (6) of Table 7.20 These estimates show no

evidence of a positive treatment effect for higher scoring students, though the extrapolation

5 units out is very imprecise. Dong-Lewbel extrapolation produces precisely estimated zeros

for extrapolated math effects one unit to the right of the cutoff, as can be seen in column (7).

Non-parametric extrapolation of ELA effects generates results similar to those at the cutoff,

showing a significant negative effects on middle school math and a signficant positive effect on

10th grade reading. The similarity of the non-parametrically extrapolated estimates to those

at the cutoff is a consequence of the small interaction terms generated by IK estimation of the

reduced form. The estimated interactions appear in column (8), which reports IK estimates of

the slope change at the cutoff.

5.5 Other Boston Outcomes

PSAT and SAT Scores

MCAS scores are measures of achievement that, with the exception of the 10th grade test that

also serves an as an exit exam, are only indirectly linked to ultimate educational attainment.

We also look at additional test outcomes that are highly correlated with MCAS scores, but may

be more important.21 The first of these is the Preliminary SAT/National Merit Scholarship

Qualifying Test (PSAT/NMSQT), which serves as a warmup for the SAT and is used in the

National Merit scholarship program; the second is the SAT Reasoning Test itself (formerly, the

Scholastic Aptitude Test).

20As in the earlier reduced form All-Schools estimates, the specification allows school-specific running variable
effects, but the cutoff main effect and the interactions between the cutoff and the running variable terms are
restricted to be the same across schools.

21The correlation between 10th grade MCAS Math and PSAT or SAT is about 0.7; the correlation for English
is similar. These estimates come from models with the same controls as in Table 3 (without ISEE scores).
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SAT and PSAT tests are usually taken towards the end of high school, so scores are un-

available for the youngest applicant cohorts in our sample (appendix Table C2 lists included

cohorts). In March 2005, the College Board added a writing section to the SAT. Since the writ-

ing section does not appear in earlier years, we focus on the sum of Critical Reading (Verbal)

and Mathematics scores, also known as the SAT Reasoning score. As with MCAS outcomes,

SAT and PSAT are standardized to have mean zero and unit variance among all test-takers in

a given year.22

The average PSAT score for applicants in the Boston window (Critical Reading and Math)

is 91.3, while the average SAT score is 1019. These can be compared with 2010 national average

PSAT and SAT scores of 94 and 1017.

Consistent with the MCAS results discussed above, Figures 15 and 16 show no apparent

discontinuity in either PSAT or SAT scores for students near admissions cutoffs. The points

plotted in these two figures are necessarily for students who took the PSAT or SAT. We report

reduced form offer effects for the probability of taking tests as well as for scores conditional on

taking. These results are reported in Table 8 for both tests.

Exam school offers increase the likelihood of taking the PSAT by about five percentage

points overall, with the boost coming mostly near the O’Bryant cutoff. PSAT scores among

takers appear to be mostly unaffected by exam school offers. For a subsample of black and

Hispanic applicants, the impact on PSAT participation is 0.08 (se = 0.03). Increased PSAT-

taking does not seem to have had much of an effect on SAT-taking, where the estimates are

almost all small and insignificant. Selection bias in the sample of test takers seems likely to be

second order, especially for SATs.

As with the MCAS, the SAT results here offer little in the evidence of consistent score gains.

The estimated SAT score effects point to a gain for 9th grade applicants SAT scores, emerging

most strongly at the Latin Academy and Latin School. 9th grade applicants are a minority of

the exam school population; when pooled with the sample of 7th grade applicants, this effect

fades considerably. Likewise, estimates for black and Hispanic students suggest an SAT boost

in 9th grade at two schools (0.31 with se=0.13 at Latin Academy and 0.17 with se=0.08 at

Latin School), but the overall SAT effect for minority students is 0.04, with se=0.04.

AP Tests

Motivated by the prevalence of AP courses in the Boston exam school curriculum, we estimated

exam school effects on AP taking and AP scores. As with the PSAT/SAT analysis, younger

cohorts are excluded since these tests are usually taken in grades 11-12 (again, appendix Table

C2 gives details).

22We use the first score recorded in the Boston Public Schools SAT and PSAT files.
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AP tests are scored on a scale of 1-5 and some colleges grant credit for some AP subjects

in which an applicant scores at least 3 or 4. At the high end, Latin School students take an

average of three to four AP exams. At the same time, Figure 17 shows little evidence of a

jump in the number of tests taken at any exam school cutoff. Figure 18 looks at the sum of

AP scores, awarding zeros for tests not taken. This figure also offers no evidence that exam

schools increase AP success rates.

The estimates that go with Figures 17 and 18 appear in Table 9. Here we look at sums

and scores for all AP exams, as well as for a subset of the most popular exams, defined as

those taken by at least 500 students in our BPS score file. This restriction narrows the set of

exams to include subjects like math, science, english, history, and economics, but omits music

and art.23 Overall there is little impact on the number of AP exams taken. In the analysis of

effects on popular tests, a positive effect on the sum of scores for O’Bryant 7th grade applicants

is offset by negative effects at the other two schools. On balance, therefore, it seems unlikely

that exam school enrollment improves AP-related outcomes. Results for black and Hispanic

applicants support a similar conclusion in this case.

6 New York Estimates

Results for New York are presented here in a format much like that used for Boston, though more

briefly. We focus on the three oldest academic New York exam schools: Brooklyn Technical,

Bronx Science, and Stuyvesant.

Data from New York City comes from three sources: enrollment and registration files con-

taining demographic information and attendance records; application and assignment files; and

the Regents exam file. Our analysis covers four 9th grade applicant cohorts (from 2004-2007),

with follow up test score information through 2009. The data appendix explains how these files

were processed in detail.

6.1 New York Admissions

The New York exam school admissions process is simpler than the Boston process because

selection is based solely on performance on the Specialized High School Achievement Test

(SHSAT), whereas Boston schools rely on school-specific composites. New York 8th graders

interested in an exam school seat take the SHSAT and submit an application listing school

preferences (we omit a handful of 9th grade applicants). Students are ordered by SHSAT

23Tests with at least 500 takers are Calculus AB/BC, Statistics, Biology, Chemistry, Physics B/C, English
Language and Composition, English Literature and Composition, European History, US Government and Pol-
itics, US History, Microeconomics, and Macroeconomics.
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scores. Seats are then allocated down this ranking, with the top scorer getting his first choice,

the second highest scorer get his most preferred choice among schools with remaining seats,

and so on.24

As in Boston, we standardized and centered the running variable for each school. Let Ck

denote the minimum rank score needed for a seat at school k and let Ri denote the rank of

student i. Stuyvesant is the most competitive exam school, so the minimum score needed to

obtain an offer exceeds the minimum at Bronx Science and Brooklyn Technical. We construct

a school-specific running variable as

rik = 100× Ri − Ck

maxj∈Ik
{Rj} −minj∈Ik

{Rj}
,

where Ik are students who ranked school k. These normalized running variables equal zero

at each cutoff, with positive values indicating those who obtain an offer. Also as in Boston,

applicants can qualify for placement at one school, but rank a less competitive school first

and get an offer at that school instead. Note that New York admissions are based on a single

underlying running variable, while school-specific running variables in Boston are correlated

but distinct. New York cutoffs are typically separated by six standardized rank units using the

formula above.

The descriptive statistics in Table 10 show that New York exam school applicants are

positively selected relative to the population of New York 8th graders. Applicants’ baseline

scores exceed those of other 8th graders by about 0.7 − 0.8σ, while the score gap for offered

students is 1.7−1.8σ. Exam school applicants reflect the New York public school population in

that a substantial fraction are eligible for a subsidized lunch. In contrast to Boston, however,

only about 15% of New York’s offered students are black or Hispanic.

In (unreported) OLS models paralleling those used to construct the estimates in Table 3,

exam school exposure in New York is associated with a large achievement advantage, whether

exposure is measured by enrollment, exam years, or peer means. Most of these estimates remain

substantial even after controlling for SHSAT scores. For example, in models without SHSAT

controls, the peer mean coefficient for Advanced Math is 0.47σ. This falls to 0.17σ with a linear

control for SHSAT scores, still a large and precisely estimated effect.

24The NYC exam school assignment mechanism is a serial dictatorship with students ordered by the admis-
sions test score. Though exam school assignment is a distinct process, students apply for exam schools at the
same time they rank regular New York high schools, and may receive offers from both. Abdulkadiroğlu, Pathak,
and Roth (2009) describe how exam school admissions interacts with admissions at regular high schools.
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6.2 RD Plots and Estimates

The estimation window for each of the New York schools is set at [+5,−5]. The New York

window is narrower than the Boston window of +/-10 because there are many more New York

applicants, so the sample is much larger than Boston’s even in a window half the size, and

because trimming at five greatly mitigates problems of interpretation due to confounding from

nearby admissions cutoffs (as described in Figure 7). As noted above, cutoffs are separated by

about six standardized units - the separation in this case is clearer than for Boston because

New York admissions rely on a single underlying running variable.

Figure 19 shows how New York offers are related to the running variable. Although the

estimation sample is five units wide in each direction, the plot window runs for 10 units to

show behavior outside the window. The dots in Figure 19 plot averages in half-unit bins, while

the fitted lines in the plots are IK estimates using the bandwidth generated in the estimation

sample. Own-school offers jump at each cutoff, but five or six points to the right of the Brooklyn

Tech and Bronx Science cutoffs, offers at the next school up replace those at the target schools.

(Offers at other schools remain positive just to the right of the Bronx Science cutoff because

some Bronx Science applicants who qualify for admission there ranked Brooklyn Tech first,

perhaps because they live in the neighborhood.)

Offers at each exam school lead to enrollment at that school, though the offer-to-enrollment

conversion rate differs across schools. This pattern is documented in Figure 20. Enrollment

jumps at the Brooklyn Tech and Bronx Science cutoffs are lower than the corresponding offer

jumps, though both enrollment jumps remain substantial. The Stuyvesant enrollment jump is

about as large as the offer jump, implying that nearly all offered a seat at Stuyvesant enroll

there. This pattern is mirrored in a plot of average years of exam school exposure against the

New York running variables, shown in Figure 21.25

New York has considerable school choice, with other selective schools outside the set of

traditional exam schools. Admission to one of these schools is nevertheless associated with a

sharp jump in peer achievement, as can be seen in Figures 22-23. The average baseline math

and English score of peers increases by about 0.5σ for math and 0.4σ for English near the

Brooklyn Tech cutoff. The jump is smaller for Bronx Science and Stuyvesant, though still

substantial at about 0.2σ.

Although New York exam school exposure jumps at admissions cutoffs, there is little ev-

idence of a corresponding discontinuity in achievement. This is apparent in Figures 24 and

25, which plot performance on the Advanced Math and English components of the New York

Regents exam against the standardized New York running variables. These results are con-

25Exposure is capped at two or three years for the last two applicant cohorts since our registration files end
before these students finish high school.
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firmed in Table 11, which reports parametric and IK reduced-form estimates of offer effects

on Advanced Math and English as well as for other Regents test outcomes. The estimated

equations are like equations (2) and (4) for applicants in the [−5,+5] interval.26

The New York estimates are precise enough to rule out even modest score gains. For

example, the IK estimate of the effect on English in the stacked sample is 0.01σ, with a standard

error also around 0.01. The few significant pooled estimates in Table 11 are negative.

Using models and estimation procedure similar to those used to construct 2SLS estimates

of mediating effects for Boston, we computed 2SLS estimates of the effects of enrollment, exam

years, and baseline peer means on student achievement for New York. These results, along

with the associated first stage estimates, are reported in Table 12. Just as in Boston, offers at

the first two NYC exam schools increase enrollment and time spent at an exam school, though

first-stage enrollment effects are not significantly different from zero at Stuyvesant. Admission

to any of these three schools generates a substantial jump in peer achievement, as much as half

a standard deviation at Brooklyn Tech. As in Boston, however, the 2SLS estimates of peer and

other mediating effects come out close to zero.

Estimates for subgroups of minorities and by sex in New York appear in Appendix Table

B3. Unlike Boston, New York’s exam schools do not appear to boost Regents achievement

for blacks and Hispanics. Moreover, neither boys nor girls appear to score higher because of

exam school attendance. The models with baseline interactions and extrapolations away from

cutoffs are in Appendix Table B4. Few of the estimates for high achievers are significantly

different from zero and most are negative, in line with the Boston findings. The results from

the extrapolation are also mostly zeroes, though they are less precise further away from the

cutoff.

6.3 Pooling Boston and New York

To maximize precision, we used the combined Boston and New York samples to construct pooled

2SLS estimates of mediating effects. The models here parallel those used to construct the single-

city stacked estimates, with a full set of covariate interactions for each city included as controls.

The multi-city results appear in Table 13, again reported for two sets of instruments. Pooling

indeed generates a precision gain relative to the single-city 2SLS estimates, and reinforces the

main findings showing no overall peer or other mediating effects. The most precisely estimated

effects of exam years come with standard errors of 0.02, while the corresponding peer effects

have estimated standard errors on the order of 0.03.

26The IK bandwidth in the Table 11 estimates ranges from 3-11.
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7 Summary and Conclusions

The results reported here show only scattered test score gains due to an exam school education,

even for students with relatively high baseline scores. Because the exam school experience is

associated with exposure to high-achieving peers and a decline in the relative standing of

successful applicants in comparison to peers, these results weigh against the importance of peer

effects in the education production function. The outcome that appears to be most strengthened

by exam school attendance is the 10th grade ELA score, a result that appears to be driven

by gains for minorities. We also find evidence of SAT score gains for a subset of 9th grade

applicants, but not enough to boost SAT scores significantly overall. The high achievers in our

samples clearly have good outcomes, but most of these students would have done well without

the benefit of an exam school education.

It’s interesting to contrast the results reported here with those from recent studies of Boston

and New York charter schools using quasi-experimental research designs. Abdulkadiroğlu,

Angrist, Dynarski, Kane, and Pathak (2011) and Dobbie and Fryer (2011a) show substantial

gains from attendance at charter schools that embrace the No Excuses pedagogical model.

Many of these schools serve exceptionally low achievers. Moreover, the relationship between

baseline ability and treatment effects within the urban charter population appears to be negative

(Angrist, Dynarski, Kane, Pathak, and Walters, 2010; Angrist, Pathak, and Walters, 2011).

The results reported here, showing evidence of achievement gains for minorities, are therefore

broadly consistent with the charter findings. The comparison between No Excuses charters

and exam schools also suggests that the scope for improvement in learning may be wider at

the low end of the ability distribution than at the top. Together, these findings weigh against

the view expressed recently by Cunha and Heckman (2007), among others, that “... returns to

adolescent education for the most disadvantaged and less able are lower than the returns for

the more advantaged” (page 33).

Of course, test scores are only part of the picture. It seems likely, for example, that the

Boston Latin School improves students’ knowledge of Latin. The many clubs and activities at

some exam schools may, perhaps, expose students to ideas and concepts not easily captured

by achievement tests. The certification that comes with an exam school education might open

doors at elite colleges and universities though Dobbie and Fryer’s (2011b) recent analysis of

college matriculation and enrollment for New York city exam school students weighs against

this possibility. In any case, if there are other later life gains, our estimates suggest they operate

through channels other than increased cognitive achievement.

Finally, our results are relevant to the broader debate on the impacts of school choice as

expressed in analyses by Hoxby (2003), Hsieh and Urquiola (2006), Rothstein (2006), MacLeod

and Urquiola (2009), among others. The heavy rates of oversubscription for exam schools
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together with the lack of broad achievement effects suggests that parents either mistakenly

equate good peers with high value added, or that they value exam schools for reasons other

than their impact on learning. Both of these scenarios reduce the likelihood that parental choice

has strong demand-side effects on the production of human capital in schools.
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Middle School High School Middle School High School
(1) (2) (3) (4) (5) (6) (7)

Baseline Peer Mean in Math ‐0.251 ‐0.346 1.508 1.345 0.850 1.159 1.864
Baseline Peer Mean in English ‐0.252 ‐0.274 1.371 1.096 0.731 1.050 1.565

Student/Teacher ratio 12.4 15.2 21.3 21.1 19.6 21.2 22.0
Teachers licensed to teach assignment 87.7% 89.2% 96.3% 96.6% 97.4% 95.9% 96.4%
Core academic teachers identified as highly qualified 84.7% 85.0% 94.0% 93.9% 92.7% 93.8% 94.7%
Teachers above age 40 46.6% 47.4% 54.4% 55.3% 63.4% 51.7% 52.9%
Teachers above age 48 31.9% 35.3% 42.0% 43.0% 51.3% 38.3% 41.2%
Teachers above age 56 11.8% 13.8% 21.4% 22.1% 27.1% 18.7% 21.3%

Number of teachers 46.1 63.1 91.5 89.0 64.5 79.0 110.3
Total number of teachers in core academic areas 37.9 51.7 77.4 76.1 55.7 64.7 95.2
Number of schools 47 40 3 3 1 1 1

Table 1. Boston School Characteristics

O'Bryant Latin Academy Latin School
Traditional Boston Schools Exam Schools

Notes: This table shows student weighted average characteristics of teachers and schools using data posted on the Mass DOE website at http://profiles.doe.mass.edu/ 
state_report/teacherdata.aspx. Peer baseline means are enrollment‐weighted scores on 4th grade MCAS Math and English for middle school covering Fall 2000 to Fall 
2008 for middle school and middle school MCAS scores covering years Fall 2002 to Fall 2008 for high school.   Teachers licensed in teaching assignment is the percent of 
teachers who are licensed with Provisional, Initial, or Professional licensure to teach in the area(s) in which they are teaching.  Core classes taught by highly qualified 
teachers is the percent of core academic classes (defined as English, reading or language arts, mathematics, science, foreign languages, civics and government, economics, 
arts, history, and geography) taught by highly qualified teachers (defined as teachers not only holding a Massachusetts teaching license, but also demonstrating subject 
matter competency in the areas they teach). All teacher characteristics are from Fall 2003 to Fall 2008, except information on core academic teachers which is from Fall 
2003‐2006 and teacher age which is only available from Fall 2007‐2008.  Middle schools include all schools with positive enrollment in at least one of grades 6, 7, and 8.  
High schools include all schools with positive enrollment in at least one of grades 9, 10, 11, and 12. 



All Exam Offered Enrolled All Exam Offered Enrolled
Boston Applicants Students Students Boston Applicants Students Students
(1) (2) (3) (4) (5) (6) (7) (8)

Female 0.479 0.536 0.559 0.562 0.476 0.540 0.614 0.602
Black 0.478 0.386 0.245 0.239 0.505 0.493 0.361 0.367
Hispanic 0.301 0.199 0.158 0.149 0.331 0.243 0.233 0.215
Free Lunch 0.725 0.717 0.630 0.626 0.762 0.805 0.783 0.799
LEP‡ 0.201 0.139 0.110 0.110 0.181 0.130 0.117 0.133
SPED¥ 0.232 0.045 0.009 0.009 0.250 0.079 0.019 0.015
N 61,161 13,730 6,418 5,652 30,484 5,540 1,461 1,095

Math ‐0.017 0.758 1.399 1.436 ‐0.313 0.227 1.036 1.058
English ‐0.020 0.725 1.286 1.315 ‐0.246 0.275 0.835 0.824
N 37,780 9,423 4,577 4,055 27,505 5,461 1,436 1,081

‡ LEP only available beginning in year 1998.
¥ SPED only available for years 1998‐2004.
* Baseline scores available from 2000 onward for 6th grade and from 2002 onward for grade 8.

A. Demographics

B. Baseline Scores*

Table 2. Boston Descriptive Statistics
7th Grade 9th Grade

Notes: This table reports sample means for 1997‐2008. The All Boston sample includes 6th and 8th grade students in Boston public 
schools who had not previously enrolled in any exam school.  Exam Applicants are students with a valid application; offered students are 
applicants who receive an offer at any exam school; enrolled students are applicants who enrolled at any exam school in the following 
school year.  Baseline Math and English scores for 7th grade applicants are from 4th grade.  Baseline scores for 9th grade applicants are 
from middle school.   LEP means Limited English Proficient.  SPED means Special Education.  N is the number of observations with at least 
one non‐missing value for the variable listed.  



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Enrollment 0.990*** 0.272*** 0.788*** 0.247***

(0.049) (0.032) (0.043) (0.028)
Exam Years 0.361*** 0.088*** 0.314*** 0.121***

(0.012) (0.016) (0.012) (0.010)
Peer Mean 0.610*** 0.110*** 0.558*** 0.154***

(0.015) (0.021) (0.014) (0.023)
N 24349 24368 20650 24349 24368 20650 22737 22750 21453 22737 22750 21453

ISEE Controls NO NO NO YES YES YES NO NO NO YES YES YES

* significant at 10%; ** significant at 5%; *** significant at 1%

Table 3. Boston OLS Estimates for Enrollment, Years in Exam School, and Peer Means
Math English

Notes: This tables reports first‐stage estimates for three measures of exam school exposure.  Enrollment is an indicator of enrollment at an exam school in the year 
following application; exam years is the number of years enrolled at an exam school prior to test; peer mean is the average baseline score of peers in the year following 
application.   Models control for application cohort and grade, test year, and demographics (race, gender, free lunch). ISEE controls are raw scores from the verbal, 
quantitative, reading, and math sections of the test. Robust standard errors, clustered on year and school at the time of testing, are shown in parentheses.



Latin Latin All Latin Latin All
Application Test O'Bryant Academy School Schools O'Bryant Academy School Schools
Grade Grade (1) (2) (3) (4) (5) (6) (7) (8)

7th 7th and 8th ‐0.121 ‐0.029 ‐0.038 ‐0.062 ‐0.091 ‐0.037 ‐0.026 ‐0.049
(0.115) (0.114) (0.112) (0.061) (0.069) (0.065) (0.072) (0.036)
2779 2856 2610 8245 2590 2856 2537 7983

7th and 9th 10th 0.015 ‐0.031 ‐0.059 ‐0.024 0.051 ‐0.035 ‐0.063* ‐0.011
(0.099) (0.078) (0.065) (0.043) (0.055) (0.044) (0.035) (0.027)
1876 1822 1606 5304 1876 1803 1474 5153

7th and 9th 7th, 8th, and 10th ‐0.065 ‐0.030 ‐0.046 ‐0.047 ‐0.030 ‐0.036 ‐0.038 ‐0.035
(0.086) (0.085) (0.076) (0.046) (0.051) (0.045) (0.052) (0.027)
4655 4678 4216 13549 4466 4659 4011 13136

7th 7th and 8th  ‐0.186* ‐0.079 ‐0.125 ‐0.129*** ‐0.091 ‐0.023 ‐0.115** ‐0.079**
(0.107) (0.079) (0.085) (0.050) (0.061) (0.052) (0.046) (0.031)
2505 2549 2257 7311 2087 1992 2173 6252

7th and 9th 10th 0.037 0.216* 0.058 0.103* 0.133** 0.206*** 0.045 0.130***
(0.104) (0.121) (0.086) (0.061) (0.060) (0.058) (0.064) (0.036)
1879 1825 1609 5313 1879 1633 1543 5055

7th and 9th 7th, 8th, and 10th ‐0.088 0.046 ‐0.049 ‐0.030 0.025 0.091* ‐0.045 0.022
(0.074) (0.079) (0.072) (0.044) (0.043) (0.047) (0.046) (0.028)
4384 4374 3866 12624 3966 3625 3716 11307

* significant at 10%; ** significant at 5%; *** significant at 1%

Table 4. Boston Reduced Form Estimates ‐ MCAS Math and English
Parametric Estimates Non‐parametric (IK) Estimates

B. English

A. Math

Notes:  This table reports estimates of the effects of exam school offers on MCAS scores.  The sample covers students within 10 standardized 
units of offer cutoffs.  Parametric models include a cubic function of the running variable, allowed to differ on either side of offer cutoffs.  Non‐
parametric estimates use the edge kernel, with bandwidth computed following Imbens and Kalyanaraman (2010).   Optimal bandwidths were 
computed separately for each school.  Robust standard errors, clustered on year and school are shown in parentheses.  Standard errors for all 
schools estimates and for those pooling outcomes also cluster on student.  The number of observations is reported below  standard errors. 



Application Test Black Hispanic
Black or 
Hispanic

Not Black or 
Hispanic Men Women

Grade Grade (1) (2) (3) (4) (5) (6)

7th 7th and 8th ‐0.014 ‐0.137* ‐0.078 ‐0.032 ‐0.016 ‐0.060
(0.065) (0.077) (0.052) (0.047) (0.059) (0.049)
2363 1569 3759 3410 3386 4547

7th and 9th 10th ‐0.031 ‐0.040 ‐0.031 ‐0.018 0.052 ‐0.051
(0.051) (0.070) (0.049) (0.034) (0.035) (0.036)
1588 1001 2495 2281 2165 2990

7th and 9th 7th,  8th, and 10th ‐0.021 ‐0.098* ‐0.059 ‐0.026 0.014 ‐0.057
(0.047) (0.057) (0.039) (0.033) (0.042) (0.036)
3951 2570 6254 5691 5551 7537

7th 7th and 8th ‐0.026 ‐0.143** ‐0.059 ‐0.083** ‐0.058 ‐0.079*
(0.047) (0.070) (0.043) (0.042) (0.052) (0.041)
2187 1431 3548 3144 2780 3829

7th and 9th 10th 0.192*** 0.117 0.173*** 0.070* 0.144*** 0.109***
(0.053) (0.080) (0.046) (0.042) (0.051) (0.042)
1560 962 2673 2355 2027 3028

7th and 9th 7th,  8th, and 10th 0.065 ‐0.048 0.045 ‐0.017 0.028 0.005
(0.042) (0.062) (0.038) (0.036) (0.042) (0.037)
3747 2393 6221 5499 4807 6857

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports reduced form estimates for minorities and by sex. The table shows non‐parametric estimates with bandwidth 
computed as in the all schools model in Table 4.

Table 5. Boston Reduced Form Estimates for Subgroups
By Race By Sex

A. Math

B. English



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Enrollment ‐0.050 0.053 ‐0.010 0.032
(0.069) (0.058) (0.066) (0.057)

Exam Years ‐0.024 0.026 0.003 0.018
(0.033) (0.031) (0.032) (0.030)

Peer Mean ‐0.089* ‐0.001 ‐0.040 0.001
(0.049) (0.052) (0.043) (0.046)

O'Bryant 0.730*** 1.530*** 0.753*** 0.737*** 1.403*** 0.687***
(0.064) (0.125) (0.073) (0.068) (0.127) (0.070)

Latin Academy 0.118** 0.219* 0.388*** 0.142** 0.227 0.378***
(0.057) (0.128) (0.085) (0.062) (0.143) (0.079)

Latin School 0.032 0.072 0.628*** 0.022 0.045 0.534***
(0.022) (0.053) (0.093) (0.022) (0.058) (0.080)

N 13130 13136 11116 11305 11307 10604 13130 13136 11116 11305 11307 10604

* significant at 10%; ** significant at 5%; *** significant at 1%

Instrument: Offer Indicators

First Stage Estimates

Table 6. Boston 2SLS Estimates for Enrollment, Years in Exam School, and Peer Means

Math English Math English

2SLS Estimates 2SLS Estimates

Instrument: Offer Indicators x Application Cohort

Notes: This table reports two‐stage least squares (2SLS) estimates of the effects of exam school enrollment, years spent in exam school, and mean baseline peer achievement 
on MCAS scores.  The table shows non‐parametric estimates using the reduced form bandwidths computed for Table 4.  Excluded instruments for columns 1‐6 are three offer 
dummies. Columns 7‐12 show the results of adding cohort interactions to the instrument list.  



Application Test Baseline Mean Estimates Baseline Mean Estimates
1 unit away 
from cutoff

5 units away 
from cutoff

1 unit away 
from cutoff Derivative

Grade Grade (1) (2) (3) (4) (5) (6) (7) (8)

7th 7th and 8th 1.445 ‐0.104** 2.045 ‐0.040 ‐0.143 ‐0.740 ‐0.049 0.001
(0.050) (0.087) (0.107) (0.646) (0.039) (0.007)

3768 3831 1723 1742 8245 8245 7983 7983

7th and 9th 10th 1.334 ‐0.007 1.779 ‐0.020 ‐0.058 ‐0.352 ‐0.016 ‐0.006
(0.028) (0.031) (0.072) (0.430) (0.028) (0.006)

3469 3163 1935 1948 5304 5304 5153 5153

7th and 9th 7th,  8th, and 10th 1.392 ‐0.060* 1.904 ‐0.029 ‐0.109 ‐0.586 ‐0.036 ‐0.001
(0.032) (0.047) (0.079) (0.465) (0.029) (0.006)

7237 6994 3658 3690 13549 13549 13136 13136

7th 7th and 8th 1.336 ‐0.095*** 1.758 ‐0.114** ‐0.166** ‐0.677 ‐0.075** 0.004
(0.036) (0.058) (0.081) (0.487) (0.033) (0.007)

4159 3767 1922 1752 7311 7311 6252 6252

7th and 9th 10th 1.200 0.074* 1.501 0.087** 0.023 ‐0.619 0.130*** 0.000
(0.039) (0.043) (0.089) (0.475) (0.038) (0.005)

3206 3065 1770 1568 5313 5313 5055 5055

7th and 9th 7th,  8th, and 10th 1.277 ‐0.013 1.635 ‐0.022 ‐0.085 ‐0.657* 0.022 0.001
(0.033) (0.046) (0.068) (0.380) (0.030) (0.004)

7365 6832 3692 3320 12624 12624 11307 11307

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports reduced form estimates for students with high baseline scores and for applicants away from admission cutoffs.  Baseline means and the proportion of 
applicants at an advanced level are computed for those who belong to at least one discontinuity sample. Conditional on baseline are non‐parametric estimates with bandwidth 
computed as in the all schools model in Table 4.  Parametric extrapolation estimates use the parametric model to form counterfactuals 1 and 5 units from the cutoff.  Non‐
parametric estimates are based on approximations of the derivative of the treatment effect at the cutoff.

A. Math

B. English

Table 7. Boston Estimates for High Achievers and Away from Admission Cutoffs
Conditional on Baseline Extrapolation

Baseline in Upper Half Baseline in Upper Quartile Parametric Non‐parametric (IK)



Latin Latin All Latin Latin All
Application O'Bryant Academy School Schools O'Bryant Academy School Schools
Grade (1) (2) (3) (4) (5) (6) (7) (8)

7th 0.101** 0.103** ‐0.072 0.050* 0.048 ‐0.075 0.021 0.001
(0.051) (0.048) (0.049) (0.030) (0.074) (0.060) (0.067) (0.036)
1366 1348 1164 3878 917 965 890 2772

9th 0.116** ‐0.008 0.113 0.073** ‐0.100 0.205*** 0.036 0.036
(0.056) (0.053) (0.071) (0.034) (0.104) (0.068) (0.120) (0.055)
889 701 442 2032 478 376 328 1182

7th and 9th 0.107*** 0.069* ‐0.034 0.058** 0.004 0.007 0.025 0.011
(0.038) (0.037) (0.041) (0.023) (0.059) (0.050) (0.063) (0.032)
2255 2049 1606 5910 1395 1341 1218 3954

7th 0.060 0.111** 0.026 0.067** 0.091 ‐0.107* 0.111 0.020
(0.054) (0.052) (0.052) (0.031) (0.085) (0.057) (0.083) (0.042)
1349 1354 1207 3910 623 855 860 2338

9th 0.040 ‐0.065 0.019 0.003 0.017 0.360*** 0.189** 0.139**
(0.064) (0.069) (0.078) (0.039) (0.083) (0.111) (0.081) (0.056)
859 716 533 2108 550 318 299 1167

7th and 9th 0.052 0.057 0.024 0.046* 0.052 0.001 0.129* 0.059*
(0.041) (0.042) (0.043) (0.025) (0.063) (0.043) (0.069) (0.035)
2208 2070 1740 6018 1173 1173 1159 3505

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports estimates of the effects of exam school offers on PSAT and SAT test taking and scores.  Outcome‐
specific non‐parametric estimates, bandwidths, and standard errors were computed as for Table 4.  

Table 8. Boston Reduced Form Estimates ‐ PSAT and SAT Scores
Probability Tested Test Score for Takers

A. PSAT

B. SAT



Latin Latin All Latin Latin All
Application O'Bryant Academy School Schools O'Bryant Academy School Schools
Grade (1) (2) (3) (4) (5) (6) (7) (8)

7th 0.180 ‐0.099 0.205 0.110 1.049*** ‐0.205 0.573 0.562**
(0.149) (0.233) (0.176) (0.091) (0.359) (0.671) (0.491) (0.266)
864 787 898 2549 864 724 868 2456

9th ‐0.127 0.100 ‐0.103 ‐0.057 ‐0.004 0.849 ‐0.181 0.188
(0.262) (0.318) (0.367) (0.142) (0.605) (1.086) (1.232) (0.392)
626 391 370 1387 509 342 342 1193

7th and 9th 0.065 ‐0.033 0.120 0.055 0.710* 0.126 0.378 0.450**
(0.162) (0.207) (0.178) (0.084) (0.365) (0.560) (0.487) (0.227)
1490 1178 1268 3936 1373 1066 1210 3649

7th 0.108 ‐0.105 0.020 0.022 0.690** ‐0.458 0.073 0.209
(0.131) (0.212) (0.157) (0.074) (0.287) (0.585) (0.452) (0.196)
864 699 867 2430 864 652 859 2375

9th ‐0.285 0.141 ‐0.353 ‐0.171 ‐0.435 0.901 ‐0.602 ‐0.105
(0.248) (0.288) (0.320) (0.138) (0.518) (1.009) (0.961) (0.363)
580 444 401 1425 482 363 402 1247

7th and 9th ‐0.035 ‐0.009 ‐0.093 ‐0.046 0.351 0.026 ‐0.134 0.110
(0.146) (0.183) (0.161) (0.076) (0.291) (0.527) (0.434) (0.176)
1444 1143 1268 3855 1346 1015 1261 3622

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports estimates of effects of exam school offers on AP test taking and scores. Tests with 500+ or more 
takers are Calculus AB/BC, Statistics, Biology, Chemistry, Physics B/C, English Language and Composition, English Literature 
and Composition, European History, US Government and Politics, US History, Microeconomics, and Macroeconomics.   
Outcome‐specific non‐parametric estimates, bandwidths, and standard errors were computed as for Table 4.  

Number of Exams
Table 9. Boston Reduced Form Estimates ‐ AP Exams

Sum of Scores

A. All Exams

B. Exams with 500+ Takers



All Exam Offered Enrolled Brooklyn Bronx
NYC Applicants Students Students Tech Science Stuyvesant
(1) (2) (3) (4) (5) (6) (7)

Female 0.487 0.503 0.456 0.426 0.415 0.443 0.429
Black 0.336 0.299 0.078 0.076 0.133 0.040 0.019
Hispanic 0.377 0.248 0.073 0.067 0.089 0.070 0.030
Free Lunch# 0.667 0.685 0.671 0.681 0.664 0.682 0.706
LEP 0.125 0.039 0.004 0.005 0.007 0.003 0.003
SPED 0.089 0.006 0.000 0.000 0.000 0.000 0.000
N 453233 84539 11914 9364 4255 2405 2704

Math ‐0.004 0.779 1.780 1.802 1.619 1.771 2.119
English ‐0.005 0.709 1.714 1.667 1.426 1.666 2.047
N 349817 82527 11841 9312 4231 2397 2684

Table 10. Descriptive Statistics for NYC Exam School Applicants
Any Exam Enrolled in

A. Demographics

B. Baseline Scores

# For applicants in 2004 and 2005, free lunch status is from school year 2004‐2005 (after assignment), 
while for applicants in 2006 and 2007, free lunch status is from school year 2004‐2005 and 2005‐2006 
(before assignment).

Notes: This table reports sample means for 2004‐2007.  The All NYC sample includes 8th graders in NYC 
public schools. Exam applicants are students who applied to Brooklyn Tech, Bronx Science, or Stuyvesant. 
Offered students are applicants offered a seat at any of these schools. Enrolled students are applicants 
who register at one of these schools in the year following application.  Baseline scores are from 8th grade 
NYSED Math and Reading. LEP means Limited English Proficient.  SPED means Special Education.



Brooklyn Tech Bronx Science Stuyvesant All Schools Brooklyn Tech Bronx Science Stuyvesant All Schools
(1) (2) (3) (4) (5) (6) (7) (8)

Math  0.083 ‐0.096* ‐0.056 ‐0.021 0.012 ‐0.129*** ‐0.037 ‐0.056***
(0.064) (0.056) (0.039) (0.029) (0.040) (0.033) (0.038) (0.018)
4264 3746 3800 11810 3743 3746 3417 10906

Advanced Math ‐0.029 ‐0.024 ‐0.030 ‐0.028 0.000 ‐0.059 ‐0.022 ‐0.025
(0.080) (0.072) (0.050) (0.044) (0.044) (0.040) (0.027) (0.021)
5619 5524 6584 17727 5619 5524 6584 17727

English 0.028 ‐0.035 ‐0.028 ‐0.013 0.051 ‐0.018 ‐0.005 0.013
(0.057) (0.043) (0.030) (0.025) (0.039) (0.023) (0.022) (0.014)
4950 4581 5150 14681 4950 4217 5150 14317

Global History ‐0.085 ‐0.025 ‐0.008 ‐0.036 ‐0.072** ‐0.017 0.009 ‐0.025
(0.053) (0.042) (0.038) (0.025) (0.035) (0.028) (0.025) (0.015)
6277 5925 6863 19065 4757 4699 5222 14678

US History ‐0.070* ‐0.012 0.038 ‐0.011 ‐0.053** ‐0.017 0.038 ‐0.007
(0.038) (0.032) (0.036) (0.023) (0.024) (0.026) (0.023) (0.016)
4440 4281 4987 13708 2808 4148 3797 10753

Living Environment ‐0.06 0.092** ‐0.072** ‐0.015 ‐0.080*** 0.057** ‐0.031 ‐0.025**
(0.041) (0.039) (0.033) (0.021) (0.022) (0.024) (0.020) (0.012)
5801 5508 6276 17585 5801 5508 6276 17585

*significant at 10%; **significant at 5%; ***significant at 1%

Table 11. NYC Reduced Form Estimates ‐ Regents Exams
Parametric Estimates Non‐parametric (IK) Estimates

Notes: This table reports estimates of the effect of exam school offers on New York Regents scores.  The sample includes applicants 5 standardized units from the 
cutoff.  Model parameterizations and estimation procedures are the same as for Boston.  Math scores are from Regents Math A (Elementary Algebra and Planar 
Geometry) or Integrated Algebra I.  Advanced Math scores are from Regents Math B (Intermediate Algebra and Trigonometry) or Geometry.  The table reports robust 
standard errors, clustered on year and school of test, in parentheses.  Standard errors are also clustered on student when schools are stacked.  Sample sizes for each 
outcome are reported below the standard errors.



(1) (2) (3) (4) (5) (6)

Enrollment ‐0.073 0.071
(0.082) (0.070)

Exam Years ‐0.027 0.028
(0.038) (0.029)

Peer Mean ‐0.038 0.066
(0.061) (0.052)

Brooklyn Tech 0.401*** 0.967*** 0.559*** 0.406*** 0.901*** 0.523***
(0.075) (0.156) (0.064) (0.090) (0.221) (0.057)

Bronx Science 0.325*** 0.629*** 0.177*** 0.304*** 0.785*** 0.155**
(0.114) (0.217) (0.068) (0.114) (0.296) (0.073)

Stuyvesant 0.087 0.104 0.272*** 0.067 0.118 0.258***
(0.074) (0.131) (0.076) (0.081) (0.197) (0.095)

N

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports 2SLS estimates of the effect of exam school enrollment, years in exam 
school, and peer achievement on Regents scores.  Advanced Math scores are from  Regents Math B 
(Intermediate Algebra and Trigonometry)  or Geometry.   Peer means are from 8th grade NYSED tests.  
The table shows non‐parametric estimates using the same bandwidths as for the reduced form 
estimates in Table 11.  Robust standard errors clustered by year and school of test, and by student, 
are shown in parenthesis. 

Table 12. New York 2SLS Estimates for Enrollment, Years in Exam School, and Peer Means
Advanced Math English

2SLS

First Stage

17727 14317



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Enrollment ‐0.059 0.059 ‐0.022 0.038
(0.053) (0.044) (0.051) (0.042)

Exam Years ‐0.025 0.027 ‐0.008 0.016
(0.025) (0.021) (0.025) (0.021)

Peer Mean ‐0.070* 0.025 ‐0.030 0.027
(0.038) (0.037) (0.036) (0.034)

O'Bryant 0.730*** 1.530*** 0.753*** 0.737*** 1.403*** 0.687***
(0.064) (0.125) (0.073) (0.068) (0.127) (0.070)

Latin Academy 0.118** 0.219* 0.388*** 0.142** 0.227 0.378***
(0.057) (0.128) (0.085) (0.062) (0.143) (0.079)

Latin School 0.032 0.072 0.628*** 0.022 0.045 0.534***
(0.022) (0.053) (0.093) (0.022) (0.058) (0.080)

Brooklyn Tech 0.401*** 0.967*** 0.559*** 0.406*** 0.901*** 0.523***
(0.075) (0.156) (0.064) (0.090) (0.221) (0.057)

Bronx Science 0.325*** 0.629*** 0.177*** 0.304*** 0.785*** 0.155**
(0.114) (0.217) (0.068) (0.114) (0.296) (0.073)

Stuyvesant 0.087 0.104 0.272*** 0.067 0.118 0.258***
(0.074) (0.131) (0.076) (0.081) (0.197) (0.095)

N 30857 30863 28843 25622 25624 24921 30857 30863 28843 25622 25624 24921

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports two‐stage least squares (2SLS) estimates of the effects of exam school enrollment, years spent in exam school, and mean baseline peer achievement on 
MCAS scores in a sample combining Boston and New York.  Boston scores are from MCAS Math and English tests for all grades tested;  NYC scores are  Advanced Math (Regents Math 
B or Geometry) and Regents English. The table shows non‐parametric estimates using bandwidths computed one city at a time.   Excluded instruments for columns 1‐6 are three offer 
dummies. Columns 7‐12 show the results of adding cohort interactions to the instrument list.  

Instrument: Offer Indicators x Application Cohort Indicators

2SLS Estimates

First Stage Estimates

Table 13. Boston and New York: 2SLS Estimates for Enrollment, Years in Exam School, and Peer Means
Instrument: Offer Indicators

Math English Math English
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Figure 1. Offers at Each Boston Exam School for 7th Grade Applicants (1997-2008)
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Figure 2. Enrollment at Each Boston Exam School for 7th Grade Applicants (1997-2008)



0
.2

.4
.6

.8
1

−20 −10 0 10 20

O’Bryant

0
.2

.4
.6

.8
1

−20 −10 0 10 20

Latin Academy

0
.2

.4
.6

.8
1

−20 −10 0 10 20

Latin School

Figure 3. Enrollment at Any Boston Exam School for 7th Grade Applicants (1997-2008)
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Figure 4. Years at Any Boston Exam School for 7th Grade Applicants (1997-2008)
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Figure 5. Average Baseline Math Scores of Peers for 7th Grade Applicants (1997-2008) in Boston
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Figure 6. Average Baseline English Scores of Peers for 7th Grade Applicants (1997-2008) in Boston
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Figure 7. Reduced Form at Boston Latin Academy and Enrollment with Three Running Variables
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Figure 8. 7th (2006-2009) and 8th (1999-2009) Grade Math Scores for 7th Grade Applicants (1997-2007 / 2005-2008) in Boston
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Figure 9. 7th (2001-2009) and 8th (2006-2009) Grade English Scores for 7th Grade Applicants (2000-2008 / 2004-2007) in Boston
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Figure 10. 10th Grade Math (2003-2009) Scores for 7th (1999-2005) and 9th (2001-2007) Grade Applicants in Boston
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Figure 11. 10th Grade English (2003-2009) Scores for 7th (1999-2005) and 9th (2001-2007) Grade Applicants in Boston
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Figure 12. Rank in Baseline Math for 7th Grade Applicants (1997-2008) in Boston
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Figure 13. Rank in Baseline English for 7th Grade Applicants (1997-2008) in Boston
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Figure 14. Parametric and Non-parametric Extrapolation Above Cutoff
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Figure 15. PSAT Scores for 7th (2000-2005) and 9th (2002-2007) Grade Applicants in Boston
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Figure 16. SAT Scores for 7th (2000-2005) and 9th (2001-2006) Grade Applicants in Boston
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Figure 17. Number of AP Classes for 7th (1999-2004) and 9th (2001-2006) Grade Applicants in Boston



0
2

4
6

8
10

12
14

16

−20 −10 0 10 20

O’Bryant

0
2

4
6

8
10

12
14

16

−20 −10 0 10 20

Latin Academy

0
2

4
6

8
10

12
14

16

−20 −10 0 10 20

Latin School

Figure 18. Sum of AP Scores for 7th (1999-2004) and 9th (2001-2006) Grade Applicants in Boston
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Figure 19. Offers at Each NYC Exam School for 9th Grade Applicants (2004-2007)
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Figure 20. Enrollment at Each NYC Exam School for 9th Grade Applicants (2004-2007)
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Figure 21. Years at Any Exam School for 9th Grade Applicants (2004-2007)
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Figure 22. Average Baseline Math Score of Peers for 9th Grade Applicants (2004-2007) in NYC
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Figure 23. Average Baseline English Score of Peers for 9th Grade Applicants (2004-2007) in NYC
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Figure 24. Advanced Math Regents Scores for 9th Grade Applicants (2004-2007) in NYC
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Figure 25. English Regents Scores for 9th Grade Applicants (2004-2007) in NYC
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