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Abstract

For a time-continuous discrete-state Markov process as model for rating tran-
sitions, we study the time-stationarity by means of a likelihood ratio test.
For multiple Markov process data from a multiplicative intensity model,
maximum likelihood parameter estimates can be represented as martingale
transform of the processes counting transitions between the rating states.
As a consequence, the profile partial likelihood ratio is asymptotically -
distributed. An internal rating data set reveals highly significant instation-

arity.
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1 Introduction

The homogenous Markov process with stationary transitions intensities re-
mains to be the staring point for rating migration modelling (Bluhm et al.,
2002, pg. 197ff). The mounting evidence for non-Markovian property - e.g.
due to significant dependence on regressors - is rich, see Lando and Skgdeberg
(2002); Altman and Kao (1992); Bangia et al. (2002); Frydman and Schuer-
man (March 2007). For estimation of non-markovian transition intensities
see e.g. Meira-Machado et al. (2006). More recently, evidence for the inho-
mogeneity, i.e. the instationarity of the transition intensities, has appeared
(Kiefer and Larson (2007); Weilbach et al. (2008)). For estimation of in-
stationary transition intensities see e.g. Weiflbach (2006). Here we study a
likelihood ratio test for stationarity on basis of multiple Markov processes,
i.e. for panel data of debtors. In case of only one transitory state an ap-
proximation of the alternative parameter space can be found, for instance,
with Laguerre polynomials in Kiefer (1985). Here, with several transitory
rating states, the unknown hazard rates in the alternative are approximated
by step-functions. Piecewise constant hazards occurs in Bayesian duration
time Lancaster (2004). The goodness-of-fit aspect of the constant hazard rate
requires a profile likelihood, being of current interest (Murphy and van der
Vaart (2000)).

Time-dependence of the intensities can be interpreted as continuous-time
generalization of time-variability in Markov dependence of the Markov chain.
In this sense, the paper is an extension of test for stationary dependence in
discrete time Markov chains by Anderson and Goodman (1957).

The partial profile likelihood ratio is asymptotically y?-distributed due to
the asymptotic normality of the maximum likelihood (ML) estimates for the
piece-wise constant hazard rates. For globally constant hazard rates Albert

(1962) established the maximum likelihood generator for the time-continuous



finite-state Markov process. The normality of our estimate results from its
representation as a martingale transform. The main building block is the
martingale that arises by compensating the processes that count transitions
between the rating states. Finally, a martingale limit theorem by Rebolledo
(1980) applies. Certain extent of the proof is to study the predictable covari-
ation process with Lenglart’s inequality.

Our application is credit risk, and in detail stationarity of rating transition
intensities in an internal rating system. Further application is conceivable,

for instance, in labor market dynamics.

2 Model

We consider Markov processes X = {X;,t € [0,T]} defined on a probability
space (£, 5, P) with the set of states K = {1,...,k} (e.g. rating classes)
where state k is an absorbing state (e.g. bankruptcy). We denote X, as the
state of an individual at time ¢ after certain origin. The process is determined

by the transition matrices
P(s,t) = (pni(s,1))njex € R¥F: st €0,T],s <t

where the transition probabilities py;(s,t) = P(X; =j | Xs = h)Vh,j € K
give the conditional probability for a transition from state h to j within the
time period s till ¢. Denote by my(t) the probability of state h at time ¢. The
infinitesimal generator of the process is defined by the transition intensities

. pri(t,t+u)
() = lim ——=.
Qh]( ) ui%lJr u
Stationarity denotes the situation where those intensities are constant over
time. In this case, the transition matrices can be represented as a matrix

exponential of Q) = (qu;)njer. It holds that py;(s,t) = qx;(t) = 0 with j # k.



Our model, encompassing stationarity, are piecewise constant intensities.

Definition 2.1 Let the intensities on [0, T]| with the change-points t;, | =
1,....0—=1andty =0, t, =T be

b
i) = Tioany (s + > Loy 1) (0) (G + Ong)
1=2
with qn; > 0 and opj € (—qn;,00), 1 =2,...,b.

The fragmentation of the parameter space may be chosen differently for dif-
ferent rating class combinations. For the ease of clarity, here only equal
spacing is considered.

The data are transition histories X; = {X},t € [0,T]} for each of the
¢t = 1,...,n individuals in a sample. We observe a panel continuously in
time Compared to the analysis of all transition histories Xy, ...,X,,, there
is no loss of information when using the vector of initial ratings X¢, ..., X7

together with the processes
Nyj(t) =#{s€[0,t],i=1,....,n|X'_=h, X! =3}, t€[0,T],j #h

counting the number of transitions from state h to 7 until time ¢ in the entire
sample. Additionally, the processes Y}, (t) denote the number of individuals
in state h at time ¢. For large samples, this is a clear reduction in the number
of random processes. The data situation is depicted in Figure 1.

There are only two further assumptions:

(A1) We assume for fixed ¢

5 P,

n

(A2) The counting processes must follow a multiplicative intensity model,

i.e. have intensity process

Mii(8) = Ya(O)ans (1), hoj € K. j # h.
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Figure 1: Four Markov processes and counting process Nay(?)

As usual in the analysis of durations, only a partial likelihood can be evalu-

ated (see Andersen et al., 1993, equation 2.7.47)

log(L) = / S log(Vi(t)) + 1og(ans) dNas(t

0 J#h

s / S log(Vlt) + log(ans + d)dNis(®) (1)
- Yo (t)qnydt + Y () (qn; —I—(Shﬂ)dt]
([ om 5 [

k-1 k
where Zj;ﬁh = thl ZJ;;IL
J

In order to test on stationarity of the intensities, the null hypothesis can

be formulated as
HoZ(Sth:...:5hjb:0Vj7éh,h,jEK, (2)
with the alternative

Hy =3 8, # 0. (3)



3 Results

Our aim is to construct a likelihood ratio test on stationarity in a multiplica-
tive intensity model. Statistics of the likelihood ratio are usually asymptot-
ically x? distributed under certain regularity conditions. In our case there
are two obstacles. First there is certainly right censoring at time 7', so only
a partial likelihood can be used, additionally, transition histories may be
lost to follow-up. Also, the gp; are nuisance parameters, requiring a profile
likelihood.

Denote the partial likelihood ratio by

A — L({@ns)nsercizn) ()

L((Gng Onji)njer jxhizs. b)

where §p,; are the ML-estimates in the case of stationarity and éhj resp. Shﬂ
are the ML-estimates in case of a piecewise stationary process with (b-1)
change-points.

In the following theorems we are able to show, that the asymptotic dis-

tribution of the test statistic still remains y2.

Theorem 1 For a sample of Markov processes with intensity as in Defini-
tion 2.1, let assumptions (A1) and (A2) be fulfilled. Then the partial ML-
estimators of the parameters are asymptotically normal distributed

f]hj — 4rjo 4 N (07 2_1) ’
Onjt = Onjto j#hhJEK I=2,....b

where qnjo and 00 denote the true parameters.

The representation and estimation of X is described later. Clearly, the
asymptotic normality of the estimate vector maybe used to construct confi-
dence ellipsoids for the parameter vector, resulting in confidence sets for the

rating transition probabilities comparable to Christensen et al. (2004). For



instance, confidence sets for the 9; can be used for inclusion rules in order to
answer not only the equality hypothesis (3) but also the equivalence hypoth-
esis (see Munk and Weilbach (1999)). Additionally, Wald and score tests
can be derived with the asymptotic normality. However, as the Wald test is
not scale-invariant and the score test lacks power, we construct a likelihood

ratio test.
Corollary 2 Under the assumptions of Theorem 1 it holds

—21og(A) "~ XG1y k12

As expected, the degrees of freedom depend on the number of change-points
(b — 1), and additionally on the number of states k in the model.

After we know that the test statistic of the likelihood ratio is x? dis-
tributed, we aim at its explicit form. With explicit expressions of the ML-

estimates the test statistic is computable.

Theorem 3 The ML-estimate in (4) under the null hypothesis (2) has the
following representation
i = ()

S R A/

Under the alternative (3) one obtains

i = Nuj(tr)
! [ Ya(t)dt

N (8 )—Nij (8 1)
t
Jol Yty

With the definition G = l=2,...,bit holds

Onji = thjl_q:hj, [=2,...,b

As a consequence, —21log(A) has the form

=N [tht;) log (q—) 3 (Nasty) — Nt 1)) log (q—)] G

j#h Qnj —2 Qnji



As one can see, q:hj only depends on the number of transitions from h to 5 and
the number of individuals in state A until time ¢;. The similar behavior can
be observed with the gp;. They only depend on the transitions and number
of individuals in state h between time t;_; and t;. The estimates are only
derived by the transition counts and duration times one obtains if defining

time t;_; as starting point 0 and ¢; as the end of a study.

4 Proofs

The score statistic, evaluated at the true parameters, is a martingale trans-
form. The vector of parameter estimates is asymptotically normal, see The-
orem 1, almost immediately implying the test statistic —2log A to follow a
x2-distribution, see Theorem 2. Explicit formulae for parameter estimates

and the likelihood ratio of Theorem 3 facilitate applications.

4.1 Proof of Theorem 1

The normality of the estimates results from the necessary condition for the
ML property. The partial derivatives of the log-likelihood are equal to zero,
hence, the leading term in a Taylor-expansion, the score statistic, equals
(minus) the residual terms. The linear expansion of the classical case, is

replaced by a quadratic. But at first we need some prerequisites,

Note that for all h € K

%/t;jyh(t)dtngtj—% i,7=0,...,bi <j. (6)
Lemma 4.1 The matriz A with
A, 0 -+ 0
10 A
E 0
0 0 A,
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Figure 2: Environment of ¢y and 4y
where
a; -+ C;, Q;
Ai - , Q;, C; > 0,
a; a;

s positive definite.

Proof: 1t is necessary that all eigenvalues e of A are positive. With some
matrix algebra one can show det(A — el) = [[;_, det(A; — el). Therefore, it
suffices to prove that the A; have positive eigenvalues. Then e;; = (2a; +

¢i)/2 £/ (2a; + ¢;)2 /4 — a;c; > 0, j=1,2 with a;,¢; > 0. O

Lemma 4.2 Forq € (0,00) and d € (—q,00), there exist, for all true param-
eters qo and 6o, &1,&2 > 0 so that the neighborhood OF = [go— &1, 00) C (0, 00)
and ©4 = [0y — &, 00) C (—qo + &1, 00).

Proof: This is based on the openness of the parameter space see Figure 2.

g



For simplification we now restrict, for the meantime, to the case of only

one change-point, namely

Anj () = Ljoan) (O)an;Yu(t) + Ly () (ans + 0n3)Ya(t), h,j € K, j # h(7)

Lemma 4.3 The first to third partial derivatives of the intensity process (7)
and the log-intensity process with respect to the parameters qn; and 0p; exist
and are continuous. Additionally, the first to third partial derivatives of the

log-likelihood (1) eist.

Proof: The first partial derivatives of the intensity process have the form

OAn;(t)
LAV Ve

Do, n(t) and
OApj(t)

85]}1] = ]l[tl7T] (t)Yh(t)

The first to third derivatives with respect to any other d; or ¢;, 7,1 =1,...k
exist and equal zero. The first to third derivative of the log-intensity process
also exists, because g;; > 0 and gp,; + d5; > 0 (see Definition 2.1). The third

derivatives result to

83 10%()%](75)) . 2 ]l[O,tl)(t) 2 ]l[tl,T] (t)
3 = T+ 3 (8)
9y, i (qnj + Onj)
and
Olog(My(t) _ 2 Ljnm(t) )
90} (qnj + 0ny)?

They are obviously continuous in g; and d5;. The mixed second and third
derivatives with respect to d,; and g; obtain the same form as the second
and third derivatives with respect to d,. It is also easy to show that the first
three derivatives of the log-likelihood exist and are continuous in gp; and
dp; because the log-likelihood (1) is an additive composition of the intensity

processes. Il

10



Now we derive the asymptotic distribution of the ML-estimators. The Taylor

Odlog L

series expansions of the score statistics Up(0) = “5¢

_around the true
0=0

parameters gpjo and dpjo are:

2(k—1)?
]_ i A
O:ﬁUT(e) :TUT () — Z Vil = b JT(GO)
(10)
2(k—1)2 1 2(k—1)?
~ _ L A . ilm ([ n*
+ lzl V(0 ‘9“))271 mZ: (O — Omo) BT (07)
where
g — [ e 217 (11)
5hj

j#hhjeK
denotes the parameter vector, and 0 its ML-estimates. Here J7(0) denotes
minus the Hesse matrix, and RZ™(6) the third partial derivatives of the log-
likelihood, while 6* is on the line segment between 6 and the true parameter
0p. If we want to apply Billingsley (1961, Theorem 10.1), 1”“(90) in the
linear term, must converge to a covariance matrix. The quadratic term must
be asymptotically negligible.

The constant term \%U}(GO) is a local square integrable martingale, as
a function of T, and normality can be studied with the martingale central
limit theorem (Rebolledo, 1980; Andersen et al., 1993, Theorem I1.5.1). To
this end, two properties must be shown. First, its covariation processes must
converge in probability to a covariance matrix. The covariation processes

mainly depend on the partial derivatives of the intensity processes.

Lemma 4.4 Let 050 and gnjo be the true parameters. For 6y € {{qu} U
[0uboisl € i £ K} and Oy € {{an} U (B} 2,y € K, # g}, without the

case where 1,x = h and [,y = 7, it holds

T dlog(An;(t)) Olog(An;(t))
2 Jo Tt |th0,5hj0—agzy lanjo.6n50 An (t Qnjos Ongo)dt

~0. (12)

11



The only covariances that do not vanish are

1 (71 Y5 (1 T t
—/ Lun®OY®) ), P, / _mall) a; >0 (13)
n Jy,  (Ghjo + Onjo) 4 Qrjo + Onjo

and

1 t1 ]]_ Y t t1 t
1 / Loan¥alt) p P [Mmml®) L (14)
0

n dn;jo o 4njo

Hence, the covariance matriz ¥ has on the diagonal matrices described by

> - Cth + Chj ahj
hj = ; apj, ch; > 0,

ahj ahj

with h € K,7 € K, j# h. All other entries equal zero, and the ¥ is positive
definite.

Proof: Equation (12) is clear. The convergence in (13) and (14) follow with
(A1) and Helland (1983). Therefore, the covariation processes converge to

a finite function. It also applies, with Lemma 4.1, that X is positive definite.[]

Second, we need to prove the Lindeberg condition.

Lemma 4.5 For anye >0 and j # h € K it holds

l/tl Yh(t>dt]l( ) (’—1 ) L 0
n.Jo  qnjo =% Lo

)Lo,

and

YT
n e (anjo +0mg0) =\ Valgnjo + Ongo)

as n converges to oo.

Proof: This follows with (6) and

)-o

1 1
oo &) <‘ V1njo ) s ) <‘ vVi(anjo + Onjo)

12



Lemma 4.4 and 4.5 now imply that \/LEU}(QO) is normal distributed with

mean 0 and covariance matrix Y.

After the constant term we now come to the linear term of the Taylor ex-

pansion (10).
Lemma 4.6 %’335(90) converges to X, as n — 00.

Proof: One is able to write the entries of £J#(6y), i.e. minus the Fisher

information matrix, as a sum of the term of the left side of (12) and
__/ Za log An; (5, 60)d My (5), (15)

where My;(t) = Np;(t) fo Anj(s)ds. The first term converges to the en-
tries of ¥ because of Lemma 4.4. The second term, depending on the true
parameters, represents a local square integrable martingale and converges in
probability to zero. We can show this with its variation process

1/ ZQhJOYh g+t / Z (qnjo + Onjo)Ya(t )dt
n Jo (qnjo + Onjo)*

o i
tl T_tl

P Thjo n (qnjo + Onjo)?

< < 00,

converging to a finite quantity and Lenglart’s inequality (see Lenglart, 1977).
O

With the following, we can prove that +R¥™(6*) is bounded in probabil-
ity by a constant M, hence, the quadratic term in the Taylor expansion
vanishes as n converges to co.

The third partial derivatives of the log likelihood with respect to gy,

13



(divided by n) have the form

1/t1 2 4N, (t)+1/T 2 Nt (16)
- = dN,,; — S —) N Y
nto a; n Sy (ang +0n)%

The third partial derivatives with respect to d5; or mixed partial derivatives

of both are represented by only the second term.

Lemma 4.7 There exist neighborhoods @%jo and @ij() around the true pa-

rameters and a predictable process Hpj,(t) not depending on qn; and 05, with

3 log(\p:(t
sup % < Hpjn(t),
qh]'EGZjO qh] (17)
03 log(\p,:(t
sup —gg?’}w( ) < Hpjn(t).
5}1]'6@?“-0 hj
And it holds that
17T
—/ Zthn(t))\hj(tath076hj0)dt < 0. (18)
Jo

Proof: It exists with Lemma 4.2 for all g;o and 0y a (ggj,g,ij) > 0 with
9?@ = [qnjo —€Zj7 00) C (0,00) and 923-0 = [5hj0_§2j7 00) C (—qnjo +€Zj, 0)
Vj # h,h,j € K. Define

2 ]l[ovtl)(t) + 2 ]l[thT] <t>

Hyn(t) = .
nnlf) (gnjo — &1;)%  (qnjo — &4 + dnjo — &p,)°

For all g; € O, and d,; € O3, with (8) and (9) one obtains (17). As all
mixed derivatives equal the third derivative with respect to d; or zero, their

supremum is less or equal Hyj,(t) as well. Now it holds with (6)

1 T
E/ Zthn(t))\hj(t>tho,5hj0)dt (19)

0 j#n

Z ( 2t1qnjo n 2(T — t1)(qnjo + Onjo) ) <

“Zh (gnjo — &1;)%  (anjo — &ij + Onjo — $2j)3

IN

14



Lemma 4.8 With Lemma 4.7, (16) also converges to a deterministic M <

0.

Proof: First, (16) is less or equal to the integral over Hj;, with respect to
dNp;(t). This integral is the optional variation process and (19) the pre-
dictable variation process of the same martingale. The asymptotic equality
(and hence the boundedness of (16)) follows by the martingale central limit

theorem, if we can show that

2qnj0 i 2
Z (qnjo — 52]')3 1/n/0 YlE)diL e o (\/”(th‘o - ng)?’)

Jj#h
2(qnjo + On; T
@0 ¥ 0n0) / i (t)dt
j#h (tho - £h] + (5th - gh‘]) t1

2
Tieoo
(52 <\/n(tho — &y + Onjo — fij)3)

converges for n — oo to 0. This holds because of the same argument as in

_|_

the proof of Lemma 4.5. 0

Because U () L 0 and Lemmata 4.6 and 4.8 the ML-estimate 6 exists
and is consistent.

With (10) and Lemma 4.8 it holds:

2(k—1)2 1
> Vnlh - 910)5327{(00) -
=1

1

2(k—1)?
1

2(k—1)?
1 A R
< oM mzl (O = Omo) > V/1(B — Oip).

=

Now it follows with Lemma 4.6:

'LUT(QO) — 2vn(0 — 6y)

\/ﬁ §€n|ﬂ<é_90)‘

where

(k—1)?
2 k - 1 2 ? A n—oo
5n:uM > " 1fm = Omol "= 0

m=1

15



because of the consistency of 6. Here |.| denotes the absolute norm.
This has the form

U, — V| < en|S 0.

With a similar proof as to Billingsley (1961, Theorem 10.1), the normality
of the score statistic implies now the normality of the ML-estimates.
As 0 converges to ¢y, Lemma 4.6 ensures that %JT(é) 1s a consistent

estimate of ¥. The proof for (b — 1) > 1 is analogous to that for only one

change-point and is omitted here for the sake of brevity.

4.2 Proof of Corollary 2

For the proof of Theorem 1 the order of d5; and gp,; in parameter 6 (see (11))
was necessary for Lemma 4.4. Here another order will be convenient. Let
0= (5, q) be the unrestricted ML-estimator, where the vector 6 includes all
Opj and g all gy; (in case of b — 1 = 1), and 9y = (0, §), where § includes all
dnj- We want to show that

L(éo) n—oo
—2log = ~ X%b—l)(k—1)2'

L()

With Theorem 1 we have that

6—6\ 4 ) |
SN0t = (20)
—q et 14

K

where I' is a rearrangement of ¥. Now under H, : ¥ = (0,q) with standard

arguments of the profile likelihood ratio

~

—OL( )ﬁA_ N-1(5 _
21gL(1§) (0 —6)(T°)" (0 — ).

Together with equation (20) we find that —2log A is x? distributed. We
obtain (k—1)? degrees of freedom for (b—1) = 1 change-point since dim(d) =
(k — 1)% because of the defaulting class k. With (b — 1) > 1 we achieve the

same result with (b — 1)(k — 1)? degrees of freedom.

16



4.3 Proof of Theorem 3

In order to obtain the partial ML-estimators and the explicit test statistic,

we need the first derivatives with respect to gn; and 5. They result to

b _
N (t) — Nyt T
alog(L) _ Nh_j tl + z : h.] l h]( l—l) _/ Yh(t)dt,
0

Iqn; = Qnj + Onji
log(L Nyi(t) — Ny (t T

a Og( ) — h]( l) h]( l—l) _/ Yh(t)dt
Odnji qnj + Onji th

In the case of stationary intensities where 05,5, = 0 Vj # h h,j € K,l =
2,...,byou obtain, by equating with zero and solving the resulting equation,

the partial ML-estimators of Albert (1962)

_ Ny (1)
R AG

With piecewise constant intensities the partial ML-estimators are

Ghyj

i = Ny (11)
’ [ va(t)dt
Ny (t;7) — Ny (t
Qnji = 21 ltl) GIUSY =2,...,b
f) Ya(t)dt
Shjl = Gnji — Qnj l=2,...,b.

Now we obtain the partial likelihood ratio

A = _ L(Sdhj)h,jeK,j;éh)

- I H() ()

tef0,t1) j#h \Thi 1=2 t€[t;_1,t;] j#h dnj + Onji

and the test statistic —2log(A) equals

b .
_22 [Nha (t7) log (qw) + Z(Nhj(tz_) — Nij(t,_1)) log (L>] :

j#h qnj =2 Gnj + Onji

17



5 Application

Their capital ratio is important for banks. It is dependent on the rating tran-
sitions of the portfolio counterparts in two ways. Economically, it is sensitive
to changes in portfolio risk Kleff and Weber (2008). Legally, the capital is
a function of the transition probabilities, especially for the transition to de-
fault, and may be estimated with internal default data (see Basel Committee
on Banking Supervision, 2004, paragraph 461ff).

WestLB AG granted access to an internal system of credit-ratings with
8 non-default rating classes and one default class. Rating histories of 3,699
counterparts were observed over seven years from 1.1.1997 until 31.12.2003.
Internal rating starts at credit origination, dampening the expected impact
of calendar time - via the business cycle - (see Bangia et al., 2002). The
transition histories may assumed to be independent or at least to fulfill as-
sumptions (A1) and (A2).

The nonparametric Johansen-Aalen estimates of the transition matrix
P (s,t) for different off-sets present an indication for the instationary behavior
of rating transitions, e.g. P(0,¢) and P(1,¢) being both theoretically equal
for a stationary process. Figure 3 shows the dissimilarity for the rating
combinations ps4(0,¢) and psa(1,1).

Simultaneous inference for all rating combinations corrects for spurious
effect. The simultaneous test for stationarity of rating transitions, based on
the test statistic —2log(A), however, is only asymptotical due to Corrollary
2. A Monte Carlo simulation can serve to assess its finite sample properties
under the conditions of the data at hand. We studied the type I error using
the generator estimated with ¢p; of Theorem 3 (as in Casjens et al., 2007).
At a nominal significance level of 5% the actual size for a sample size of 7000
rating histories was found to be 0.75%. This means, the test is considerably

conservative, causing interpretation problems, when the test does not reject.
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Figure 3: Nonparametric estimates: t-years transition probability at origin

(black line) and after one year (grey line)

Table 1: Likelihood ratio test for stationarity of internal rating transitions.

The number of b ranges between 2 and 7

b 2 3 4 5 6 7

—2log(A) 939 1259  289.3 345.8 447.3 626.2
p-value  0.009 0.535 < 0.001 <0.001 <0.001 <0.001

In simulations for the type II error we found that, for doubling the hazard
over the seven years, the power achieves virtually 100% for around n=1000
processes. For a linear - exponentiated Weibull - hazard function the results
were similar.

Ultimately, we are interested in testing the null of stationarity (2), at the
significance level a = 0.05, against the alternative of transition intensities
with structural breaks (3). We consider different equidistant partitions 0 =
to <ty <ty <...<t,="7of the time interval [0,7]. The maximum number

of breaks is six, yielding seven one-year intervals.
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The striking small p-values (see Table 1), except for b = 3, prove that
rating transition intensities in this rating system are not stationary. Time
since origination does influence rating transition probabilities significantly.

A argumentation of the result for b = 3 is local inconsistency of likelihood
ratio tests. The construction of the test (5) implies that local instationarity
within an interval of the alternative cannot be discovered by the test. A
possible reason is the non-monotony of some of the intensities. In a simplified
situation, Weifibach and Dette (2007) proposed a globally consistent test that
will detect any alternative. From a practical point of view, this deficiency is

accounted for here by processing our test on different partitions.
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