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Abstract

For a time-continuous discrete-state Markov process as model for rating tran-

sitions, we study the time-stationarity by means of a likelihood ratio test.

For multiple Markov process data from a multiplicative intensity model,

maximum likelihood parameter estimates can be represented as martingale

transform of the processes counting transitions between the rating states.

As a consequence, the profile partial likelihood ratio is asymptotically χ2-

distributed. An internal rating data set reveals highly significant instation-

arity.
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1 Introduction

The homogenous Markov process with stationary transitions intensities re-

mains to be the staring point for rating migration modelling (Bluhm et al.,

2002, pg. 197ff). The mounting evidence for non-Markovian property - e.g.

due to significant dependence on regressors - is rich, see Lando and Skødeberg

(2002); Altman and Kao (1992); Bangia et al. (2002); Frydman and Schuer-

man (March 2007). For estimation of non-markovian transition intensities

see e.g. Meira-Machado et al. (2006). More recently, evidence for the inho-

mogeneity, i.e. the instationarity of the transition intensities, has appeared

(Kiefer and Larson (2007); Weißbach et al. (2008)). For estimation of in-

stationary transition intensities see e.g. Weißbach (2006). Here we study a

likelihood ratio test for stationarity on basis of multiple Markov processes,

i.e. for panel data of debtors. In case of only one transitory state an ap-

proximation of the alternative parameter space can be found, for instance,

with Laguerre polynomials in Kiefer (1985). Here, with several transitory

rating states, the unknown hazard rates in the alternative are approximated

by step-functions. Piecewise constant hazards occurs in Bayesian duration

time Lancaster (2004). The goodness-of-fit aspect of the constant hazard rate

requires a profile likelihood, being of current interest (Murphy and van der

Vaart (2000)).

Time-dependence of the intensities can be interpreted as continuous-time

generalization of time-variability in Markov dependence of the Markov chain.

In this sense, the paper is an extension of test for stationary dependence in

discrete time Markov chains by Anderson and Goodman (1957).

The partial profile likelihood ratio is asymptotically χ2-distributed due to

the asymptotic normality of the maximum likelihood (ML) estimates for the

piece-wise constant hazard rates. For globally constant hazard rates Albert

(1962) established the maximum likelihood generator for the time-continuous
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finite-state Markov process. The normality of our estimate results from its

representation as a martingale transform. The main building block is the

martingale that arises by compensating the processes that count transitions

between the rating states. Finally, a martingale limit theorem by Rebolledo

(1980) applies. Certain extent of the proof is to study the predictable covari-

ation process with Lenglart’s inequality.

Our application is credit risk, and in detail stationarity of rating transition

intensities in an internal rating system. Further application is conceivable,

for instance, in labor market dynamics.

2 Model

We consider Markov processes X = {Xt, t ∈ [0, T ]} defined on a probability

space (Ω,F, P ) with the set of states K = {1, . . . , k} (e.g. rating classes)

where state k is an absorbing state (e.g. bankruptcy). We denote Xt as the

state of an individual at time t after certain origin. The process is determined

by the transition matrices

P (s, t) = (phj(s, t))h,j∈K ∈ Rk×k; s, t ∈ [0, T ], s ≤ t.

where the transition probabilities phj(s, t) = P (Xt = j | Xs = h) ∀h, j ∈ K

give the conditional probability for a transition from state h to j within the

time period s till t. Denote by mh(t) the probability of state h at time t. The

infinitesimal generator of the process is defined by the transition intensities

qhj(t) = lim
u→0+

phj(t, t+ u)

u
.

Stationarity denotes the situation where those intensities are constant over

time. In this case, the transition matrices can be represented as a matrix

exponential of Q = (qhj)h,j∈K . It holds that pkj(s, t) = qkj(t) = 0 with j 6= k.
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Our model, encompassing stationarity, are piecewise constant intensities.

Definition 2.1 Let the intensities on [0, T ] with the change-points tl, l =

1, . . . , b− 1 and t0 = 0, tb = T be

qhj(t) = 1[0,t1)(t)qhj +
b∑
l=2

1[tl−1,tl)(t)(qhj + δhjl)

with qhj > 0 and δhjl ∈ (−qhj,∞), l = 2, . . . , b.

The fragmentation of the parameter space may be chosen differently for dif-

ferent rating class combinations. For the ease of clarity, here only equal

spacing is considered.

The data are transition histories Xi = {X i
t , t ∈ [0, T ]} for each of the

i = 1, . . . , n individuals in a sample. We observe a panel continuously in

time Compared to the analysis of all transition histories X1, . . . ,Xn, there

is no loss of information when using the vector of initial ratings X1
0 , . . . , X

n
0

together with the processes

Nhj(t) = #{s ∈ [0, t], i = 1, . . . , n|X i
s− = h,X i

s = j}, t ∈ [0, T ], j 6= h

counting the number of transitions from state h to j until time t in the entire

sample. Additionally, the processes Yh(t) denote the number of individuals

in state h at time t. For large samples, this is a clear reduction in the number

of random processes. The data situation is depicted in Figure 1.

There are only two further assumptions:

(A1) We assume for fixed t

Yh(t)

n

P−→ mh(t).

(A2) The counting processes must follow a multiplicative intensity model,

i.e. have intensity process

λhj(t) = Yh(t)qhj(t), h, j ∈ K, j 6= h.
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Figure 1: Four Markov processes and counting process N34(t)

As usual in the analysis of durations, only a partial likelihood can be evalu-

ated (see Andersen et al., 1993, equation 2.7.4”)

log(L) =

∫ t1

0

∑
j 6=h

log(Yh(t)) + log(qhj) dNhj(t)

+
b∑
l=2

∫ tl

tl−1

∑
j 6=h

log(Yh(t)) + log(qhj + δhjl)dNhj(t) (1)

−
∑
j 6=h

[∫ t1

0

Yh(t)qhjdt+
b∑
l=2

∫ tl

tl−1

Yh(t)(qhj + δhjl)dt

]

where
∑

j 6=h =
∑k−1

h=1

∑k
j=1
j 6=h

.

In order to test on stationarity of the intensities, the null hypothesis can

be formulated as

H0 : δhj2 = . . . = δhjb = 0 ∀j 6= h, h, j ∈ K, (2)

with the alternative

H1 : ∃ δhjl 6= 0. (3)
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3 Results

Our aim is to construct a likelihood ratio test on stationarity in a multiplica-

tive intensity model. Statistics of the likelihood ratio are usually asymptot-

ically χ2 distributed under certain regularity conditions. In our case there

are two obstacles. First there is certainly right censoring at time T , so only

a partial likelihood can be used, additionally, transition histories may be

lost to follow-up. Also, the qhj are nuisance parameters, requiring a profile

likelihood.

Denote the partial likelihood ratio by

∆ =
L((q̂hj)h,j∈K,j 6=h)

L((˜̂qhj, δ̂hjl)h,j∈K,j 6=h,l=2,...,b)
, (4)

where q̂hj are the ML-estimates in the case of stationarity and ˜̂qhj resp. δ̂hjl

are the ML-estimates in case of a piecewise stationary process with (b-1)

change-points.

In the following theorems we are able to show, that the asymptotic dis-

tribution of the test statistic still remains χ2.

Theorem 1 For a sample of Markov processes with intensity as in Defini-

tion 2.1, let assumptions (A1) and (A2) be fulfilled. Then the partial ML-

estimators of the parameters are asymptotically normal distributed

√
n

 ˜̂qhj − qhj0
δ̂hjl − δhjl0


j 6=h,h,j∈K,l=2,...,b

d→ N
(
0,Σ−1

)
,

where qhj0 and δhjl0 denote the true parameters.

The representation and estimation of Σ is described later. Clearly, the

asymptotic normality of the estimate vector maybe used to construct confi-

dence ellipsoids for the parameter vector, resulting in confidence sets for the

rating transition probabilities comparable to Christensen et al. (2004). For
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instance, confidence sets for the δi can be used for inclusion rules in order to

answer not only the equality hypothesis (3) but also the equivalence hypoth-

esis (see Munk and Weißbach (1999)). Additionally, Wald and score tests

can be derived with the asymptotic normality. However, as the Wald test is

not scale-invariant and the score test lacks power, we construct a likelihood

ratio test.

Corollary 2 Under the assumptions of Theorem 1 it holds

−2 log(∆)
n→∞∼ χ2

(b−1)(k−1)2 .

As expected, the degrees of freedom depend on the number of change-points

(b− 1), and additionally on the number of states k in the model.

After we know that the test statistic of the likelihood ratio is χ2 dis-

tributed, we aim at its explicit form. With explicit expressions of the ML-

estimates the test statistic is computable.

Theorem 3 The ML-estimate in (4) under the null hypothesis (2) has the

following representation

q̂hj =
Nhj(T )∫ T

0
Yh(t)dt

.

Under the alternative (3) one obtains

˜̂qhj =
Nhj(t

−
1 )∫ t1

0
Yh(t)dt

.

With the definition q̂hjl =
Nhj(t

−
l )−Nhj(t−l−1)∫ tl
tl−1

Yh(t)dt
, l = 2, . . . , b it holds

δ̂hjl = q̂hjl − ˜̂qhj, l = 2, . . . , b.

As a consequence, −2 log(∆) has the form

−2
∑
j 6=h

[
Nhj(t

−
1 ) log

(
q̂hj
˜̂qhj

)
+

b∑
l=2

(Nhj(t
−
l )−Nhj(t

−
l−1)) log

(
q̂hj
q̂hjl

)]
. (5)
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As one can see, ˜̂qhj only depends on the number of transitions from h to j and

the number of individuals in state h until time t1. The similar behavior can

be observed with the q̂hjl. They only depend on the transitions and number

of individuals in state h between time tl−1 and tl. The estimates are only

derived by the transition counts and duration times one obtains if defining

time tl−1 as starting point 0 and tl as the end of a study.

4 Proofs

The score statistic, evaluated at the true parameters, is a martingale trans-

form. The vector of parameter estimates is asymptotically normal, see The-

orem 1, almost immediately implying the test statistic −2 log ∆ to follow a

χ2-distribution, see Theorem 2. Explicit formulae for parameter estimates

and the likelihood ratio of Theorem 3 facilitate applications.

4.1 Proof of Theorem 1

The normality of the estimates results from the necessary condition for the

ML property. The partial derivatives of the log-likelihood are equal to zero,

hence, the leading term in a Taylor-expansion, the score statistic, equals

(minus) the residual terms. The linear expansion of the classical case, is

replaced by a quadratic. But at first we need some prerequisites,

Note that for all h ∈ K
1

n

∫ tj

ti

Yh(t)dt ≤
n(tj − ti)

n
= tj − ti, i, j = 0, . . . , b, i < j. (6)

Lemma 4.1 The matrix A with

A =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0

0 · · · 0 An


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Figure 2: Environment of q0 and δ0

where

Ai =

ai + ci ai

ai ai

 , ai, ci > 0,

is positive definite.

Proof: It is necessary that all eigenvalues e of A are positive. With some

matrix algebra one can show det(A− eI) =
∏n

i=1 det(Ai − eI). Therefore, it

suffices to prove that the Ai have positive eigenvalues. Then eij = (2ai +

ci)/2±
√

(2ai + ci)2/4− aici > 0, j = 1, 2 with ai, ci > 0. �

Lemma 4.2 For q ∈ (0,∞) and δ ∈ (−q,∞), there exist, for all true param-

eters q0 and δ0, ξ1, ξ2 > 0 so that the neighborhood Θq
0 = [q0−ξ1,∞) ⊂ (0,∞)

and Θδ
0 = [δ0 − ξ2,∞) ⊂ (−q0 + ξ1,∞).

Proof: This is based on the openness of the parameter space see Figure 2.

�
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For simplification we now restrict, for the meantime, to the case of only

one change-point, namely

λhj(t) = 1[0,t1)(t)qhjYh(t) + 1[t1,T ](t)(qhj + δhj)Yh(t), h, j ∈ K, j 6= h.(7)

Lemma 4.3 The first to third partial derivatives of the intensity process (7)

and the log-intensity process with respect to the parameters qhj and δhj exist

and are continuous. Additionally, the first to third partial derivatives of the

log-likelihood (1) exist.

Proof : The first partial derivatives of the intensity process have the form

∂λhj(t)

∂qhj
= Yh(t) and

∂λhj(t)

∂δhj
= 1[t1,T ](t)Yh(t).

The first to third derivatives with respect to any other δil or qil, i, l = 1, .., k

exist and equal zero. The first to third derivative of the log-intensity process

also exists, because qhj > 0 and qhj + δhj > 0 (see Definition 2.1). The third

derivatives result to

∂3 log(λhj(t))

∂q3
hj

=
2 1[0,t1)(t)

q3
hj

+
2 1[t1,T ](t)

(qhj + δhj)3
(8)

and

∂3 log(λhj(t))

∂δ3
hj

=
2 1[t1,T ](t)

(qhj + δhj)3
. (9)

They are obviously continuous in qhj and δhj. The mixed second and third

derivatives with respect to δhj and qhj obtain the same form as the second

and third derivatives with respect to δhj. It is also easy to show that the first

three derivatives of the log-likelihood exist and are continuous in qhj and

δhj because the log-likelihood (1) is an additive composition of the intensity

processes. �
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Now we derive the asymptotic distribution of the ML-estimators. The Taylor

series expansions of the score statistics U i
T (θ̂) = ∂ logL

∂θi

∣∣∣
θ=θ̂

around the true

parameters qhj0 and δhj0 are:

0 =
1√
n
U i
T (θ̂) =

1√
n
U i
T (θ0)−

2(k−1)2∑
l=1

√
n(θ̂l − θl0)

1

n
IilT (θ0)

+

2(k−1)2∑
l=1

√
n(θ̂l − θl0)

1

2n

2(k−1)2∑
m=1

(θ̂m − θm0)Rilm
T (θ∗)

(10)

where

θ =

qhj
δhj


j 6=h,h,j∈K

∈ R2(k−1)2 (11)

denotes the parameter vector, and θ̂ its ML-estimates. Here IT (θ) denotes

minus the Hesse matrix, and Rilm
T (θ) the third partial derivatives of the log-

likelihood, while θ∗ is on the line segment between θ̂ and the true parameter

θ0. If we want to apply Billingsley (1961, Theorem 10.1), 1
n
IilT (θ0), in the

linear term, must converge to a covariance matrix. The quadratic term must

be asymptotically negligible.

The constant term 1√
n
U i
T (θ0) is a local square integrable martingale, as

a function of T , and normality can be studied with the martingale central

limit theorem (Rebolledo, 1980; Andersen et al., 1993, Theorem II.5.1). To

this end, two properties must be shown. First, its covariation processes must

converge in probability to a covariance matrix. The covariation processes

mainly depend on the partial derivatives of the intensity processes.

Lemma 4.4 Let δhj0 and qhj0 be the true parameters. For θil ∈ {{qil} ∪

{δil}, i, l ∈ K, i 6= k} and θxy ∈ {{qxy} ∪ {δxy}, x, y ∈ K, x 6= y}, without the

case where i, x = h and l, y = j, it holds

1
n

∫ T
0

∂ log(λhj(t))

∂θil
|qhj0,δhj0

∂ log(λhj(t))

∂θxy
|qhj0,δhj0λhj(t, qhj0, δhj0)dt

= 0. (12)
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The only covariances that do not vanish are

1

n

∫ T

t1

1[t1,T ](t)Yh(t)

(qhj0 + δhj0)
dt

P−→
∫ T

t1

mh(t)

qhj0 + δhj0
dt =: ahj > 0 (13)

and

1

n

∫ t1

0

1[0,t1)Yh(t)

qhj0
dt

P−→
∫ t1

0

mh(t)

qhj0
dt =: chj > 0. (14)

Hence, the covariance matrix Σ has on the diagonal matrices described by

Σhj =

ahj + chj ahj

ahj ahj

 , ahj, chj > 0,

with h ∈ K, j ∈ K, j 6= h. All other entries equal zero, and the Σ is positive

definite.

Proof : Equation (12) is clear. The convergence in (13) and (14) follow with

(A1) and Helland (1983). Therefore, the covariation processes converge to

a finite function. It also applies, with Lemma 4.1, that Σ is positive definite.�

Second, we need to prove the Lindeberg condition.

Lemma 4.5 For any ε > 0 and j 6= h ∈ K it holds

1

n

∫ t1

0

Yh(t)

qhj0
dt1(ε,∞)

(∣∣∣∣ 1√
nqhj0

∣∣∣∣) P−→ 0

and

1

n

∫ T

t1

Yh(t)

(qhj0 + δhj0)
dt1(ε,∞)

(∣∣∣∣ 1√
n(qhj0 + δhj0)

∣∣∣∣) P−→ 0,

as n converges to ∞.

Proof : This follows with (6) and

lim
n→∞

1(ε,∞)

(∣∣∣∣ 1√
nqhj0

∣∣∣∣) = lim
n→∞

1(ε,∞)

(∣∣∣∣ 1√
n(qhj0 + δhj0)

∣∣∣∣) = 0.
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�

Lemma 4.4 and 4.5 now imply that 1√
n
U i
T (θ0) is normal distributed with

mean 0 and covariance matrix Σ.

After the constant term we now come to the linear term of the Taylor ex-

pansion (10).

Lemma 4.6 1
n
IilT (θ0) converges to Σ, as n→∞.

Proof : One is able to write the entries of 1
n
IilT (θ0), i.e. minus the Fisher

information matrix, as a sum of the term of the left side of (12) and

− 1

n

∫ T

0

∑
j 6=h

∂2

∂θiθl
log λhj(s, θ0)dMhj(s), (15)

where Mhj(t) = Nhj(t) −
∫ t

0
λhj(s)ds. The first term converges to the en-

tries of Σ because of Lemma 4.4. The second term, depending on the true

parameters, represents a local square integrable martingale and converges in

probability to zero. We can show this with its variation process

1

n

∫ t1

0

∑
j 6=h

qhj0Yh(t)

q4
hj0

dt+
1

n

∫ T

t1

∑
j 6=h

(qhj0 + δhj0)Yh(t)

(qhj0 + δhj0)4
dt

≤
∑
j 6=h

t1
q3
hj0

+
∑
j 6=h

T − t1
(qhj0 + δhj0)3

<∞,

converging to a finite quantity and Lenglart’s inequality (see Lenglart, 1977).

�

With the following, we can prove that 1
n
Rilm
T (θ∗) is bounded in probabil-

ity by a constant M , hence, the quadratic term in the Taylor expansion

vanishes as n converges to ∞.

The third partial derivatives of the log likelihood with respect to qhj

13



(divided by n) have the form

1

n

∫ t1

0

2

q3
hj

dNhj(t) +
1

n

∫ T

t1

2

(qhj + δhj)3
dNhj(t). (16)

The third partial derivatives with respect to δhj or mixed partial derivatives

of both are represented by only the second term.

Lemma 4.7 There exist neighborhoods Θq
hj0 and Θδ

hj0 around the true pa-

rameters and a predictable process Hhjn(t) not depending on qhj and δhj with

sup
qhj∈Θqhj0

∣∣∣∣∣∂3 log(λhj(t))

∂q3
hj

∣∣∣∣∣ ≤ Hhjn(t),

sup
δhj∈Θδhj0

∣∣∣∣∣∂3 log(λhj(t))

∂δ3
hj

∣∣∣∣∣ ≤ Hhjn(t).

(17)

And it holds that

1

n

∫ T

0

∑
j 6=h

Hhjn(t)λhj(t, qhj0, δhj0)dt <∞. (18)

Proof : It exists with Lemma 4.2 for all qhj0 and δhj0 a (ξqhj, ξ
δ
hj) > 0 with

Θq
hj0 = [qhj0− ξqhj,∞) ⊂ (0,∞) and Θδ

hj0 = [δhj0− ξδhj,∞) ⊂ (−qhj0 + ξqhj,∞)

∀j 6= h, h, j ∈ K. Define

Hhjn(t) =
2 1[0,t1)(t)

(qhj0 − ξqhj)3
+

2 1[t1,T ](t)

(qhj0 − ξqhj + δhj0 − ξδhj)3
.

For all qhj ∈ Θq
hj0 and δhj ∈ Θδ

hj0, with (8) and (9) one obtains (17). As all

mixed derivatives equal the third derivative with respect to δhj or zero, their

supremum is less or equal Hhjn(t) as well. Now it holds with (6)

1

n

∫ T

0

∑
j 6=h

Hhjn(t)λhj(t, qhj0, δhj0)dt (19)

≤
∑
j 6=h

(
2t1qhj0

(qhj0 − ξqhj)3
+

2(T − t1)(qhj0 + δhj0)

(qhj0 − ξqhj + δhj0 − ξδhj)3

)
<∞.

�

14



Lemma 4.8 With Lemma 4.7, (16) also converges to a deterministic M <

∞.

Proof : First, (16) is less or equal to the integral over Hhjn with respect to

dNhj(t). This integral is the optional variation process and (19) the pre-

dictable variation process of the same martingale. The asymptotic equality

(and hence the boundedness of (16)) follows by the martingale central limit

theorem, if we can show that∑
j 6=h

2qhj0
(qhj0 − ξqhj)3

1/n

∫ t1

0

Yh(t)dt1(ε,∞)

(√
2

n(qhj0 − ξqhj)3

)

+
∑
j 6=h

2(qhj0 + δhj0)

(qhj0 − ξqhj + δhj0 − ξδhj)3
1/n

∫ T

t1

Yh(t)dt

1(ε,∞)

(√
2

n(qhj0 − ξqhj + δhj0 − ξδhj)3

)
converges for n → ∞ to 0. This holds because of the same argument as in

the proof of Lemma 4.5. �

Because 1
n
U i
T (θ0)

P→ 0 and Lemmata 4.6 and 4.8 the ML-estimate θ̂ exists

and is consistent.

With (10) and Lemma 4.8 it holds:

2(k−1)2∑
l=1

√
n(θ̂l − θl0)

1

n
IilT (θ0)− 1√

n
U i
T (θ0)

≤ 1

2
M

2(k−1)2∑
m=1

(θ̂m − θm0)

2(k−1)2∑
l=1

√
n(θ̂l − θl0).

Now it follows with Lemma 4.6:∣∣∣∣ 1√
n
UT (θ0)− Σ

√
n(θ̂ − θ0)

∣∣∣∣ ≤ εn|
√
n(θ̂ − θ0)|

where

εn =
2(k − 1)2

2
M

2(k−1)2∑
m=1

|θ̂m − θm0|
n→∞→ 0
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because of the consistency of θ̂. Here |.| denotes the absolute norm.

This has the form

|un − vn| ≤ εn|Σ−1vn|.

With a similar proof as to Billingsley (1961, Theorem 10.1), the normality

of the score statistic implies now the normality of the ML-estimates.

As θ̂ converges to θ0, Lemma 4.6 ensures that 1
n
IT (θ̂) is a consistent

estimate of Σ. The proof for (b − 1) > 1 is analogous to that for only one

change-point and is omitted here for the sake of brevity.

4.2 Proof of Corollary 2

For the proof of Theorem 1 the order of δhj and qhj in parameter θ (see (11))

was necessary for Lemma 4.4. Here another order will be convenient. Let

ϑ̂ = (δ̂, ˜̂q) be the unrestricted ML-estimator, where the vector δ̂ includes all

δ̂hj and ˜̂q all ˜̂qhj (in case of b − 1 = 1), and ϑ̂0 = (0, q̂), where q̂ includes all

q̂hj. We want to show that

−2 log
L(ϑ̂0)

L(ϑ̂)

n→∞∼ χ2
(b−1)(k−1)2 .

With Theorem 1 we have thatδ̂ − δ
˜̂q − q

 d→ N

0,Γ−1 =

 Γδ Γδ,q

Γq,δ Γq

 (20)

where Γ is a rearrangement of Σ. Now under H0 : ϑ = (0, q) with standard

arguments of the profile likelihood ratio

−2 log
L(ϑ̂0)

L(ϑ̂)

.
= (δ̂ − δ)(Γδ)−1(δ̂ − δ).

Together with equation (20) we find that −2 log ∆ is χ2 distributed. We

obtain (k−1)2 degrees of freedom for (b−1) = 1 change-point since dim(δ) =

(k − 1)2 because of the defaulting class k. With (b − 1) > 1 we achieve the

same result with (b− 1)(k − 1)2 degrees of freedom.
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4.3 Proof of Theorem 3

In order to obtain the partial ML-estimators and the explicit test statistic,

we need the first derivatives with respect to qhj and δhjl. They result to

∂ log(L)

∂qhj
=

Nhj(t
−
1 )

qhj
+

b∑
l=2

Nhj(tl)−Nhj(t
−
l−1)

qhj + δhjl
−
∫ T

0

Yh(t)dt,

∂ log(L)

∂δhjl
=

Nhj(tl)−Nhj(t
−
l−1)

qhj + δhjl
−
∫ T

t1

Yh(t)dt.

In the case of stationary intensities where δhjl = 0 ∀j 6= h h, j ∈ K, l =

2, . . . , b you obtain, by equating with zero and solving the resulting equation,

the partial ML-estimators of Albert (1962)

q̂hj =
Nhj(T )∫ T

0
Yh(t)dt

.

With piecewise constant intensities the partial ML-estimators are

˜̂qhj =
Nhj(t

−
1 )∫ t1

0
Yh(t)dt

q̂hjl =
Nhj(t

−
l )−Nhj(t

−
l−1)∫ tl

tl−1
Yh(t)dt

l = 2, . . . , b

δ̂hjl = q̂hjl − ˜̂qhj l = 2, . . . , b.

Now we obtain the partial likelihood ratio

∆ =
L((q̂hj)h,j∈K,j 6=h)

L((˜̂qhj, δ̂hjl)h,j∈K,j 6=h,l=2,...,b)

=
∏

t∈[0,t1)

∏
j 6=h

(
q̂hj
˜̂qhj

)∆Nhj(t) b∏
l=2

∏
t∈[tl−1,tl]

∏
j 6=h

(
q̂hj

˜̂qhj + δ̂hjl

)∆Nhj(t)

and the test statistic −2 log(∆) equals

−2
∑
j 6=h

[
Nhj(t

−
1 ) log

(
q̂hj
˜̂qhj

)
+

b∑
l=2

(Nhj(t
−
l )−Nhj(t

−
l−1)) log

(
q̂hj

˜̂qhj + δ̂hjl

)]
.
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5 Application

Their capital ratio is important for banks. It is dependent on the rating tran-

sitions of the portfolio counterparts in two ways. Economically, it is sensitive

to changes in portfolio risk Kleff and Weber (2008). Legally, the capital is

a function of the transition probabilities, especially for the transition to de-

fault, and may be estimated with internal default data (see Basel Committee

on Banking Supervision, 2004, paragraph 461ff).

WestLB AG granted access to an internal system of credit-ratings with

8 non-default rating classes and one default class. Rating histories of 3, 699

counterparts were observed over seven years from 1.1.1997 until 31.12.2003.

Internal rating starts at credit origination, dampening the expected impact

of calendar time - via the business cycle - (see Bangia et al., 2002). The

transition histories may assumed to be independent or at least to fulfill as-

sumptions (A1) and (A2).

The nonparametric Johansen-Aalen estimates of the transition matrix

P̂ (s, t) for different off-sets present an indication for the instationary behavior

of rating transitions, e.g. P̂ (0, t) and P̂ (1, t) being both theoretically equal

for a stationary process. Figure 3 shows the dissimilarity for the rating

combinations p̂34(0, t) and p̂34(1, t).

Simultaneous inference for all rating combinations corrects for spurious

effect. The simultaneous test for stationarity of rating transitions, based on

the test statistic −2 log(∆), however, is only asymptotical due to Corrollary

2. A Monte Carlo simulation can serve to assess its finite sample properties

under the conditions of the data at hand. We studied the type I error using

the generator estimated with q̂hj of Theorem 3 (as in Casjens et al., 2007).

At a nominal significance level of 5% the actual size for a sample size of 7000

rating histories was found to be 0.75%. This means, the test is considerably

conservative, causing interpretation problems, when the test does not reject.
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Figure 3: Nonparametric estimates: t-years transition probability at origin

(black line) and after one year (grey line)

Table 1: Likelihood ratio test for stationarity of internal rating transitions.

The number of b ranges between 2 and 7

b 2 3 4 5 6 7

−2 log(∆) 93.9 125.9 289.3 345.8 447.3 626.2

p-value 0.009 0.535 < 0.001 < 0.001 < 0.001 < 0.001

In simulations for the type II error we found that, for doubling the hazard

over the seven years, the power achieves virtually 100% for around n=1000

processes. For a linear - exponentiated Weibull - hazard function the results

were similar.

Ultimately, we are interested in testing the null of stationarity (2), at the

significance level α = 0.05, against the alternative of transition intensities

with structural breaks (3). We consider different equidistant partitions 0 =

t0 ≤ t1 ≤ t2 ≤ . . . ≤ tb = 7 of the time interval [0, 7]. The maximum number

of breaks is six, yielding seven one-year intervals.
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The striking small p-values (see Table 1), except for b = 3, prove that

rating transition intensities in this rating system are not stationary. Time

since origination does influence rating transition probabilities significantly.

A argumentation of the result for b = 3 is local inconsistency of likelihood

ratio tests. The construction of the test (5) implies that local instationarity

within an interval of the alternative cannot be discovered by the test. A

possible reason is the non-monotony of some of the intensities. In a simplified

situation, Weißbach and Dette (2007) proposed a globally consistent test that

will detect any alternative. From a practical point of view, this deficiency is

accounted for here by processing our test on different partitions.
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