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BOOTSTRAPPING FREQUENCY DOMAIN TESTS IN
MULTIVARIATE TIME SERIES WITH AN APPLICATION TO

COMPARING SPECTRAL DENSITIES

HOLGER DETTE AND EFSTATHIOS PAPARODITIS

Abstract. We propose a general bootstrap procedure to approximate the null distri-
bution of nonparametric frequency domain tests about the spectral density matrix of a
multivariate time series. Under a set of easy to verify conditions, we establish asymp-
totic validity of the proposed bootstrap procedure. We apply a version of this procedure
together with a new statistic in order to test the hypothesis that the spectral densities
of not necessarily independent time series are equal. The test statistic proposed is based
on a L2-distance between the nonparametrically estimated individual spectral densities
and an overall, ’pooled’ spectral density, the later being obtained using the whole set
of m time series considered. The effects of the dependence between the time series on
the power behavior of the test are investigated. Some simulations are presented and a
real-life data example is discussed.

1. Introduction

The problem of comparing time series or identifying similarities or dissimilarities in time

series data has a long history and arises in several fields, such as economics, marketing,

business, finance, medicine, biology, physics, psychology, zoology, and many others. Var-

ious statistical tools have been used for this purpose including discriminant and cluster

analysis, classification and simple comparisons. Because many important and interest-

ing hypotheses about the multivariate process can be expressed in terms of the spectral

density matrix several author use metrics based on the spectral measure in the con-

text of discrimination and classification [see e.g. Darghai-Nourbary and Laycock (1981),

Shumway (1982), Zhang and Taniguchi (1994), Kakizawa, Shumway, Taniguchi (1998),

Caido, Crato and Peña (2006) among many others]. Cluster and discriminant analysis

are closely related to testing problems for the equality of spectral densities in multivariate

time series data, which has also found considerable interest in the literature. Jenkins
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2 H. DETTE AND E. PAPARODITIS

(1961) was one of the early attempts. De Souza and Thomson (1982) used for this testing

problem an autoregressive model-fitting approach. Coates and Diggle (1986) compare the

spectral densities of two independent time series using periodogram based test statistics

and used this method for analyzing wheat price and British gas data. Swanepoel and van

Wyk (1986) consider two independent stationary autoregressive processes and use differ-

ent test statistics and a parametric, autoregressive bootstrap approach to obtain critical

values. Diggle and Fisher (1991) propose graphical devices to compare periodograms and

apply Kolmogorov-Smirnov or Cramer-von Mises type test statistics for the analysis of

hormonal data. Carmona and Wang (1996) analyzed Lagrangian velocities of drifters at

the surface of the ocean by a comparison of spectra. Guo (1999) considers first order

autoregressions, Timmer et al. (1999) concentrate on spectral peaks and Maharaj (2002)

compares evolutionary spectra of non-stationary processes using randomization tests. A

test for homogeneity of autoregressive processes has been also considered by Gómez and

Drouiche (2002) and applied to the problem of speech detection in noisy environment.

Besides the hypothesis that the spectral densities of the m individual time series (or an

appropriately rescaled version thereof) are identical there are numerous other hypotheses

of interest, which can be characterized by properties of the spectral measure. Typical

examples include the hypothesis of no correlation or no partial correlation between time

series after removing the linear effects of some other time series or the hypothesis of sep-

arability. To mention only few of the approaches proposed, we refer to Taniguchi and

Kondo (1993), Taniguchi et al. (1996), Taniguchi and Kakizawa (2000), Matsuda and

Yajima (2004). Recently Eichler (2008) and Yajima and Matsuda (2008) discussed the

problem of testing non- and semiparametric hypotheses using spectral analysis in a very

general fashion. Following Eichler (2008) we consider a general class of hypotheses in this

context, which contains most of the hypotheses mentioned in the previous paragraph and

can be stated as

(1.1) H0 :

∫ π

−π

‖ϕ(f(λ), λ)‖2dλ = 0 against H1 :

∫ π

−π

‖ϕ(f(λ), λ)‖2dλ > 0,

where f(λ) denotes the spectral density matrix of the underlying (stationary) process,

ϕ(·, ·) is some suitable vector-valued function specifying the particular null hypothesis of

interest and ‖ · ‖ denotes the Euclidean norm.

A test statistic for the general pair of hypotheses (1.1) can be obtained by substituting a

nonparametric estimator f̂(λ) for the spectral density matrix f(λ), that is

(1.2) Sn(ϕ) =

∫ π

−π

‖ϕ(f̂(λ), λ)‖2dλ.

For test statistics like (1.2), a general asymptotic theory has been developed in Eichler

(2008) which enables the approximation of the distribution of Sn(ϕ) under the null and

under local alternatives by appropriate Gaussian distributions. For instance, it has been

shown that under certain regularity conditions and if H0 is true, then an appropriate
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centering sequence µn(ϕ) and a positive constant σ2(ϕ) exist, such that

(1.3) n
√

hSn(ϕ)− µn(ϕ) ⇒ N(0, σ2(ϕ)),

as n →∞ (see Section 2 for details). Here and in the sequel ‘⇒’ stands for weak conver-

gence.

The aim of the present paper is twofold. First and alternatively to the above Gaussian ap-

proximation, a simple frequency domain nonparametric bootstrap procedure is proposed

which can be applied to approximate correctly the distribution of the test statistic Sn(ϕ)

under the null hypothesis. The approach is general enough that enable its applicability

to a wide range of testing problems. The motivation for the development of a bootstrap

proposal lies in the fact that the quality of the large sample Gaussian approximations

for L2-type functionals like those given in (1.2) is very pure [see e.g. Linton and Fan

(2003)]. Furthermore, in many situations the centering sequence µn(ϕ) and the variance

σ2(ϕ) of the limiting Gaussian distribution derived under the null hypothesis, depend in

a complicated way on unknown and not easy to estimate parameters of the underlying

process. The aforementioned concerns make bootstrap approaches an attractive alterna-

tive. Notice that nonparametric frequency domain bootstrap methods for stationary time

series have been proposed and investigated by many authors in the literature; see Hurvich

and Zeger (1987), Franke and Härdle (1992), Dahlhaus and Janas (1996), Paparoditis and

Politis (1999) and Kreiss and Paparoditis (2003). For an overview and a discussion of

the different approaches to bootstrap time series in the frequency domain see Paparoditis

(2000). However, none of these approaches are directly applicable to the testing set-up

considered in this paper. The reason for this lies in the fact that for a bootstrap proce-

dure to be successful in a testing context, it should be able to approximate correctly the

distribution of the test statistic used under the null hypothesis even if the null hypothesis

is not true. This property is important for a good power behavior of a test based on

bootstrap critical values. Furthermore, and additionally to satisfying the null hypothesis,

the cross-correlation structure of the underlying process should be mimicked correctly in

the bootstrap world, since as we will see in the sequel, this affects the validity of the

bootstrap procedure in approximating correctly the distribution of interest. The general

bootstrap procedure proposed in this paper fulfills these requirements, i.e., it succeeds

in generating pseudo-periodogram matrices that mimic correctly all desired properties of

the periodogram matrix of the observed process under validity of the null hypothesis. In

particular we establish a bootstrap central limit theorem under a set of easy to verify

conditions which ensures asymptotic validity of the bootstrap procedure proposed.

The second aim of this paper is to investigate more closely the properties of a test of

equality of the spectral densities of a number m of not necessarily independent time se-

ries. We propose a nonparametric test for such hypothesis by appropriately specifying

the function ϕ(·) and show how the general bootstrap procedure proposed in this paper

can be adapted to this particular testing problem. In the case of independent series the

asymptotic distribution under the null does not depend on any nuisance parameters. Fur-

thermore, we investigate more closely how the (possible) dependence between the time
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series considered affects the distribution of the test statistic and especially the power be-

havior of the test under fixed alternatives. Our research is motivated by the fact that all

approaches mentioned in the first paragraph of this introduction suffer from at least one

of the following three drawbacks: They assume that the time series considered are uncor-

related respectively independent, they impose some parametric, commonly autoregressive

structure on the underlying process class and the analysis is restricted to bivariate pro-

cesses using test statistics generalizations of which to more than two time series are not

straightforward. The testing procedure investigated in this paper overcomes all aforemen-

tioned drawbacks. The approach proposed is based on an evaluation over all frequencies

of the distance between the nonparametrically estimated spectral density of each individ-

ual time series and an estimated, pooled spectral density, the later being obtained using

the whole set of m time series at hand; see (2.2). Finally, we investigate more closely,

both, theoretically and by means of simulations, how the dependence structure between

the time series considered affects the power behavior of the test.

The paper is organized as follows. Section 2 states the main assumptions imposed on

the m-dimensional process considered, introduces the class of test statistics and presents

some illustrative examples. The basic bootstrap procedure and a corresponding consis-

tency result are described in Section 3, which ensures asymptotic validity of the bootstrap

procedure in approximating correctly the distribution of the test statistic of interest under

the null. Section 4 focuses on the problem of testing equality of spectral densities, intro-

duces new test statistic and demonstrates how the general bootstrap procedure proposed

can be adapted to this particular testing problem. The power behavior of the test for

fixed alternatives is investigated and a small simulation study is presented dealing with

the behavior of our test in finite sample situations. Furthermore, a real-life data set is

analyzed which demonstrates the capability of our testing methodology to detect differ-

ences between spectral densities. All proofs are deferred to Section 5.

We finally note that in principle the methods proposed in this paper could be applied to

locally stationary processes, which have found considerable interest in the recent litera-

ture [see Dahlhaus (1997, 2000) among others]. However, rigorous proofs would be very

technical and are deferred to a future research project.

2. Assumptions, test statistic and examples

Suppose that we have n, n ∈ N, observations X1, . . . , Xn of a m-dimensional, zero mean

second order stationary stochastic process {Xt = (X1,t, X2,t, . . . , Xm,t)
′
, t ∈ Z} and that

Assumption 1: The random vectors Xt have real components and are generated by the

equation

Xt =
∞∑

j=−∞
Ψjεt−j,
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where {Ψj = (ψj(r, s))r,s=1,2,...,m, j ∈ Z} is a sequence of matrices the components of which

satisfy ∑
j

|j|1/2|ψj(r, s)| < ∞, r, s = 1, 2, . . . ,m

and {εt , t ∈ Z} are m-dimensional i.i.d. random variables with mean zero, covariance

matrix Σ = E[εtε
′
t] = (σk,l)k,l=1,...,m > 0 and E[ε8

r,t] < ∞, r = 1, 2, . . . , m., where εt =

(ε1,t, ε2,t, . . . , εm,t)
′

Under Assumption 1, the sequence of covariance matrices {Γ(k), k ∈ Z}, Γ(k) = E(XtX
′
t+k),

has absolutely summable components and the spectral density matrix f(λ) = (fr,s(λ))r,s=1,2,...,m,

λ ∈ [−π, π], of the process {Xt, t ∈ Z} exists and is given by

f(λ) =
1

2π

∑

k

Γ(k)e−iλk.

Denote by fr(λ) the spectral density of the r-th component of the m-dimensional process,

that is the r-th element fr,r(λ) on the main diagonal of the matrix f(λ).

The particular null hypothesis of interest and the corresponding test statistic Sn(ϕ) used

are determined by means of a function ϕ : D × [−π, π] → Cr, where D is an open subset

of Cm×m that contains the spectral density matrices. Different hypotheses about the

spectral density matrix lead to different specifications of the function ϕ, but there may

exist different functions ϕ which correspond to the same hypothesis as illustrated in the

following example.

Example 2.1. Let m = 2, i.e., {Xt = (X1,t, X2,t), t ∈ Z} and suppose that we are

interested in testing whether the spectral densities of the two component time series are

identical, that is the composite hypothesis H0 : f1(λ) = f2(λ). Then, the null hypothesis

of interest can be tested by specifying the function ϕ in (1.1) as

(2.1) ϕ1(f(λ), λ) =
f1(λ)

f2(λ)
− 1,

see Eichler (2008), Example 3.9. However, the same hypothesis can be alternatively tested

using the alternative specification

(2.2) ϕ2(f(λ), λ) =
(f1(λ)

w(λ)
− 1,

f2(λ)

w(λ)
− 1

)

of the function ϕ, where w(λ) = (f1(λ) + f2(λ))/2 stands for a pooled spectral density,

which could be considered as nuisance parameter in this context. Both specifications

can be used to test the hypothesis that the spectral densities are equal. Notice that

specification ϕ1(f(λ), λ) is not symmetric in f1 and f2, while ϕ2(·) seems more appealing

because it can be easily generalized to more than two time series and allows for a better

understanding of the behavior of the individual spectral densities by measuring their

deviation from a pooled version thereof.
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Throughout this paper we assume that the function ϕ satisfies the following conditions;

see also Eichler (2008).

Assumption 2:

(i) ϕ(Z, λ) is holomorphic with respect to Z and satisfies ‖ϕ(Z
′
,−λ)‖ = ‖ϕ(Z, λ)‖.

(ii) ϕ(Z, λ) and its first derivative with respect to z = vec(Z), DZϕ(Z, λ) = ∂ϕ(Z, λ)/∂z
′

are piecewise Lipschitz continuous in λ.

(iii) There exists a positive constant η such that for all λ ∈ [−π, π] the ball Bη,λ =

{Z ∈ Cm×m | ‖f(λ)− Z‖ ≤ η} is contained in D and

supλ∈[−π,π] supZ∈Bη,λ
‖ϕ(Z, λ)‖ < ∞.

(iv)
∫ π

−π
‖DZϕ(f(λ), λ)‖dλ > 0.

Consider now the periodogram matrix In(λ) = (In,r,s(λ))r,s=1,2,...,m where

In(λ) = Jn(λ)Jn(λ), and Jn(λ) =
1√
2πn

n∑
t=1

Xte
−iλt.

Here and in the sequel, denotes transposition combined with complex conjugation.

In(λ) is usually calculated at the Fourier frequencies λj = 2πj/n, j = −[(n−1)/2], . . . , [n/2].

We write Ir(λ) for the r-th element Ir,r(λ) on the main diagonal of the matrix In(λ) which

corresponds to the periodogram of the r-th time series Xr,t, t = 1, 2, . . . , n.

For λ ∈ [−π, π] consider the kernel estimator f̂(λ) = (f̂r,s(λ))r,s=1,2,...,m of the spectral

density matrix f(λ) defined by

(2.3) f̂(λ) =
1

n

∑

j∈Z
Kh(λ− λj)In(λj),

where Kh(·) = h−1K(·/h), K is the smoothing kernel and h the smoothing bandwidth.

Assumption 3: K is a bounded, symmetric, Lipschitz continuous and non-negative

kernel with compact support [−π, π] satisfying (2π)−1
∫ π

−π
K(x)dx = 1.

Assumption 4: h → 0 as n →∞ such that h ∼ n−ν for some 1/4 < ν < 1/2.

Notice that the rate at which the bandwidth h is allowed to converge to zero a n → ∞
ensures that the bias in estimating f(λ) vanishes fast enough in order to not affect the

asymptotic distribution of the test statistic (1.2). This rate is identical to the rate used

in Taniguchi and Kondo (1993), Taniguchi et al. (1996) and Taniguchi and Kakizawa

(2000).

Now, a test statistic for the pair of hypotheses (1.1) is obtained by substituting f̂(λ)

in ϕ(f(λ), λ) leading to the test statistic Sn(ϕ) defined in (1.2). Notice that under the

assumptions made, the test statistic Sn(ϕ) can be written as

(2.4) Sn(ϕ) =

∫ π

−π

‖vec(f̂(λ)− f(λ))‖2
Γϕ(λ)dλ + oP (1),
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where ‖x‖A = xAx, Γϕ(λ) = DZϕ(f(λ), λ)DZϕ(f(λ), λ) and

DZϕ(f(λ), λ) =
∂ϕ(Z, λ)

∂vec(Z)

∣∣∣
Z=f(λ)

,

see Eichler (2008), Lemma 3.4 for the derivation of such a result. Furthermore, if H0 is

true, then Theorem 3.5 in the same reference yields the weak convergence (1.3), where

µn(ϕ) =
1

2π
√

h

∫ π

−π

K2(u)du

∫ π

−π

tr[Γϕ(λ)(f
′
(λ)⊗ f(λ))]dλ,

σ2(ϕ) =
1

4π2

∫
(K ∗K)2(y)dy

∫ π

−π

tr
[
Γϕ(λ)(f

′
(λ)⊗ f(λ))

×{Γϕ(λ) + Γ
′
ϕ(−λ)}(f ′(λ)⊗ f(λ))

]
dλ,

and K ∗K denotes the convolution of the kernel K with itself. Note that Eichler (2008)

establishes the weak convergence result (1.3) under a set of conditions on the underlying

stochastic process which are different compared to our Assumption 1.

Example 2.2. Consider the situation discussed in Example 2.1. For the statistic obtained

from the function ϕ1 in (2.1) it follows from Eichler (2008) that

µn1 =
1

π
√

h

∫ π

−π

(1− |f12(λ)|2
f 2(λ)

)dλ ·
∫

K2(x)dx

σ2
1 =

2

π2

∫
(K ∗K)2(x)dx

∫ π

−π

(1− |f12(λ)|2
f 2(λ)

)2dλ

where we use the notation f = f1 = f2.

For the function ϕ2 defined in (2.2) we obtain

DZϕ2(f(λ)) =
2

(f1(λ) + f2(λ))2

(
f2(λ) 0 0 −f1(λ)

−f2(λ) 0 0 f1(λ)

)
,

which gives by a tedious calculation (note that f = f1 = f2)

µn2 =
1

2π
√

h

∫ π

−π

(1− |f12(λ)|2
f 2(λ)

)dλ

∫
K2(x)dx

σ2
2 =

1

2π2

∫ 2π

−2π

(K ∗K)2(y)dy

∫ π

−π

(1− |f12(λ)|2
f 2(λ)

)2dλ.

3. The Bootstrap procedure

The idea underlying the proposed bootstrap is to generate pseudo-periodogram matrices

that satisfy the null hypothesis (1.1) and to approximate the distribution of the cor-

responding test statistic by the distribution of the bootstrap statistic based on these
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pseudo-periodogram matrices. The starting point of our considerations is that for a m-

dimensional process satisfying Assumption 1, the periodogram matrix can be expressed

as

(3.1) In(λj) = Ψ(λj)In,ε(λj)Ψ(λj) + Rn(λj),

where Ψ(λ) =
∑∞

k=−∞ Ψk exp{−iλk}, In,ε(λ) is the periodogram matrix of the i.i.d. series

ε1, ε2, . . . , εn, i.e.,

In,ε(λ) = Jn,ε(λ)Jn,ε(λ), Jn,ε(λ) =
1√
2πn

n∑
t=1

εt exp{−iλt},

and the components Rn,r,s(λ), r, s ∈ {1, 2, . . . , m} of the remainder matrix Rn(λ), satisfy

sup
λ

E|Rn,r,s(λ)|2 = O(n−1) ;

cf. Brockwell and Davis (1991), Prop. 11.7.4. Now, let

f 1/2(λ) = (2π)−1/2Ψ(λ)Σ1/2

and notice that by ignoring Rn(λ) the periodogram matrix can be approximately written

as

(3.2) In(λj) ≈ f 1/2(λj)Un(λj)f
1/2

(λj),

where Un(λ) = 2πΣ−1/2In,ε(λ)Σ−1/2 is 2π-times the periodogram matrix of the i.i.d.

process {et = Σ−1/2εt, t ∈ Z} which has mean zero and covariance matrix the m × m

unit matrix Im. It is well-known that for any number k, k ∈ N, of fixed frequen-

cies 0 ≤ λ1 < λ2 < . . . λk ≤ π, the corresponding set of complex valued random

matrices {Un(λ1), Un(λ2), . . . , Un(λk)} are asymptotically independent, complex Wishart

WC
m(1, Im) distributed if λ 6= 0(modπ) and real Wishart WR

m(1, Im) distributed if λ =

0(modπ); cf. Brockwell and Davis (1991), Prop. 11.7.3. A straightforward approach to

bootstrap in the frequency domain is, therefore, to generate pseudo-periodogram matrices

by replacing f(λ) by the nonparametric (kernel) estimator

f̂(λ) = n−1
∑

j

Kh(λ− λj)In(λj) ,

and Un(λj) by independent draws from an appropriate m-dimensional Wishart distribu-

tion. However, such an approach to generate pseudo-periodogram matrices is not appro-

priate in our set-up. To elaborate on, notice first that application of the bootstrap in

the testing set-up considered in this paper, requires approximation of the distribution of

the test statistic Sn(ϕ) under validity of the null hypothesis even if the null hypothesis

is not true in reality. This requirement on the bootstrap procedure is important for a

good power behavior of the test based on bootstrap critical values. Now, to fulfill this

requirement, the spectral density matrix used to generate the pseudo-periodogram ma-

trices, should satisfy the null hypothesis. This requirement is, however, not necessarily

fulfilled if the nonparametric estimator f̂(λ) is used, because under the assumptions made

we have f̂(λ) → f(λ) in probability, and the limiting spectral density matrix f(λ) does
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not satisfy the null hypothesis if the later is not true.

The idea to develop a valid bootstrap procedure is to use instead of the nonparametric

estimator f̂(λ), a version of it, say f̂T (λ), which satisfies the following requirements.

Condition 1:

(i) f̂T is Hermitian and nonnegative definite.

(ii) f̂T satisfies ϕ(f̂T (λ), λ) = 0 for almost all λ ∈ (−π, π].

(iii) f̂T (λ) converges in probability as n → ∞, and the limit, say fT (λ) satisfies for

almost all λ ∈ (−π, π],

Γϕ,T (λ)
(
f
′
T (λ)⊗ fT (λ)

)
= Γϕ(λ)

(
f
′
(λ)⊗ f(λ)

)
,

Γ
′
ϕ,T (−λ)

(
f
′
T (λ)⊗ fT (λ)

)
= Γ

′
ϕ(−λ)

(
f
′
(λ)⊗ f(λ)

)
,

where Γϕ,T (λ) = DZϕ(fT (λ), λ)DZϕ(fT (λ), λ)

To elaborate on the meaning of the above requirements imposed on the matrix f̂T (λ) to

be used in the bootstrap procedure, notice that (i) ensures that f̂T satisfies basic prop-

erties of a spectral density matrix. Part (ii) of the above condition requires that the

version of the spectral density matrix f̂T used to generate the pseudo-periodogram ma-

trices satisfies the null hypothesis of interest. To understand the intuition behind part

(iii), recall the limiting distribution of Sn(ϕ) under the null hypothesis given in equa-

tion (1.3). Observe that this distribution depends essentially on the function ϕ and the

parameters of the underlying process through the expressions Γϕ(λ)(f
′
(λ) ⊗ f(λ)) and

Γ
′
ϕ(−λ)(f

′
(λ)⊗ f(λ)). Furthermore, it can be shown that the corresponding expressions

for the limiting distribution of the bootstrap statistic are given by Γϕ,T (λ)(f
′
T (λ)⊗fT (λ))

and Γ
′
ϕ,T (−λ)(f

′
T (λ)⊗ fT (λ)) respectively. This implies that for the bootstrap to be suc-

cessful in approximating correctly the distribution of Sn(ϕ) under the null, the expressions

in the bootstrap world should coincide with those in the real world. This is achieved by

requirement (iii) of the above condition. Notice that (iii) does not imply the equality of

f(λ) and fT (λ). Furthermore, Γϕ(λ)) 6= Γ
′
ϕ(−λ) in general.

The bootstrap procedure proposed to approximate the distribution of Sn(ϕ) under the

null hypothesis can now be summarized by the following four steps.

Step 1: Let f̂T (λ) be a nonparametric estimator of f(λ) satisfying Condition 1.

Step 2: Generate I∗n(λj) independent random matrices where

I∗n(λj) ∼ WC
m(1, f̂T (λj)),

if 1 ≤ j < n/2,

I∗n(λj) ∼ WR
m(1, f̂T (λj)),

if j ∈ {0, n/2} and I∗n(λ−j) = (I∗n(λj))
′
for j = 1, 2, ..., n/2.
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Step 3: Motivated by (2.4), calculate

(3.3) S∗n(ϕ) =

∫ π

−π

‖vec(f̂ ∗(λ)− f̂T (λ))‖2
Γ̂ϕ,T (λ)

dλ,

where for λ ∈ (−π, π],

f̂ ∗(λ) =
1

n

∑
j

Kh(λ− λj)I
∗
n(λj),

Γ̂ϕ,T (λ) = DZϕ(f̂T (λ), λ)DZϕ(f̂T (λ), λ) .

Step 4: Approximate the distribution of Zn(ϕ) = (n
√

hSn(ϕ) − µn(ϕ))/σ(ϕ) under the

null by the conditional distribution of Z∗
n(ϕ) = (n

√
hS∗n(ϕ) − µ̂n(ϕ))/σ̂(ϕ) given

the sample Xt, t = 1, 2, . . . , n, where µ̂n(ϕ) and σ̂(ϕ) are obtained by replacing

f(λ) and Γϕ(λ) by f̂T (λ) and Γ̂ϕ,T (λ) respectively in the expressions for µn(ϕ) and

σ(ϕ).

As it is obvious from the above considerations, the crucial point of the above bootstrap

procedure is the determination of the spectral density estimate f̂T (λ) used in the bootstrap

procedure. This determination depends on the specific null hypothesis of interest, i.e., on

the particular specification of the function ϕ considered. Before we continue we present

additional examples in order to demonstrate the general applicability of Condition 1.

Example 3.1. Suppose that ϕ(f(λ), λ) = (fi,j(λ), i, j ∈ {1, 2, . . . , m}, j > i), i.e., that

the null hypothesis is that the m time series are not correlated. In this case f̂T (λ) satisfying

Condition 1 is easily determined as

f̂T (λ) = diag < f̂1(λ), f̂2(λ), . . . , f̂m(λ) > .

If we are interested in testing that two subsets of vector time series XA,t = (X1,t, X2,t, . . . , Xm1,t)
′

and XB,t = (Xm1+1,t, Xm1+2,t, . . . , Xm,t)
′
are uncorrelated, where 1 ≤ m1 < m, then f̂T (λ)

can be determined as

(3.4) f̂T (λ) =

(
f̂A(λ) 0

0 f̂B(λ)

)
,

where for any nonempty set C ⊂ {1, 2, . . . , m}, f̂C(λ) = (f̂i,j(λ))i,j∈C .

Similarly, define i, j ∈ A, i 6= j, κ2
i,j|B(λ) as the partial squared coherency between time

series Xi,t and Xj,t after removing the linear effects of the time series XB,t, i.e.,

κ2
i,j|B = |fi,j|B(λ)|2/(fi,i|B(λ)fj,j|B(λ)),

where fi,j|B(λ) = fi,j(λ)− fi,B(λ)f−1
B (λ)fB,j(λ). Suppose that we are interested in testing

that the partial coherencies κ2
i,j|B(λ) are zero, that is fi,j|B(λ) = 0 for all i, j ∈ A, i 6= j.

Equivalently, this can be stated as fi,j(λ) = fi,B(λ)f−1
B (λ)fB,j(λ). The corresponding

specification of the function ϕ to test this hypothesis is then given by ϕ(f(λ), λ) =



BOOTSTRAPPING FREQUENCY DOMAIN TESTS 11

(fi,j|B(λ)| i, j ∈ A, j > i) and the matrix f̂T (λ) used in the bootstrap procedure is set

equal to

(3.5) f̂T (λ) =

(
f̃A(λ) f̂A,B(λ)

f̂B,A(λ) f̂B(λ)

)
,

where f̂AB(λ) = (f̂i,j(λ))i∈A,j∈B and f̃A(λ) = (f̃i,j(λ))i,j∈A with

f̃i,j(λ) =





f̂i,i(λ) if i = j

f̂i,B(λ)f̂−1
B (λ)f̂B,j(λ) if i 6= j.

A straightforward algebra shows that the specifications of f̂T (λ) given in (3.4) and (3.5)

satisfy all requirements stated in Condition 1. A more involved example on how to apply

the bootstrap procedure proposed and which is related to testing equality of spectral

densities is discussed in the next section.

The following theorem establishes asymptotic validity of the bootstrap procedure, i.e.,

it shows that Kolmogorov’s distance between the distribution of Sn(ϕ) under the null

hypothesis and the distribution of S∗n(ϕ) given the sample X1, X2, . . . , Xn, converges to

zero in probability as n → ∞. As a careful read of the proof of this theorem shows, the

essential assumption needed to establish consistency of the bootstrap is that the matrix

f̂T (λ) used in Step 1 satisfies Condition 1. This implies that to establish validity of the

bootstrap procedure in a particular testing situation that fits into the framework (1.1)

it suffices to prove that the matrix f̂T (λ) used in Step 2 of the bootstrap algorithm to

generate the pseudo-periodogram matrices I∗n(λj) satisfies this condition.

Theorem 3.1. Suppose that Assumptions 1-4 are satisfied and that the matrix f̂T (λ)

fulfills Condition 1. Then, as n →∞,

sup
x∈R

∣∣∣PH0(Zn(ϕ) ≤ x)− P (Z∗
n(ϕ) ≤ x|X1, X2, . . . , Xn)

∣∣∣ → 0,

in probability, where PH0(Zn(ϕ) ≤ ·) denotes the distribution function of Zn(ϕ) under the

assumption that the null hypothesis is true.

As pointed out by a referee it is of some interest to investigate if it is possible to prove that

the proposed bootstrap distribution is a better approximation compared to the asymptotic

normal distribution using Edgeworth expansions. Because such a technical investigation

would be beyond the scope of the present paper we defer it to a future research project.

The complexity of such results is indicated by a recent paper of Linton and Yao (2003)

who derived an Edgeworth expansion for an L2-type statistic in the context of testing for

a parametric form of a regression based on an i.i.d. sample.



12 H. DETTE AND E. PAPARODITIS

4. Testing Equality of Spectral Densities

4.1. Test Statistic. Consider the specific problem of testing

H0 : f1 = f2 = · · · = fm, a.e. in [−π, π],

vs.(4.1)

H1 : fr 6= fs for at least one pair (r, s), r 6= s, and on a set of

frequencies Λ ⊂ [−π, π] with positive Lebesque measure.

Assume that the spectral densities fr(λ) fulfill

Assumption 5: min1≤r≤m inf−π≤λ≤π fr(λ) > 0. Note that this condition implies that

the underlying process is invertible.

Let N = mn and consider the pooled kernel estimator

ŵ(λ) =
1

N

m∑
r=1

∑

j∈Z
Kh(λ− λj)Ir(λj).(4.2)

Standard calculations yield under Assumptions 1, 3 and 4 that

E[ŵ(λ)] =
1

N

m∑
r=1

∑

j∈Z
Kh(λ− λj)(fr(λj) + O(log(n)n−1))

=
1

m

m∑
r=1

fr(λ) + O(h2 + log(n)n−1) → 1

m

m∑
r=1

fr(λ)

and

Var[ŵ(λ)] =
1

m2n2

∑
r1,r2

∑
j1,j2

Kh(λ− λj1)Kh(λ− λj2)Cov(Ir1(λj1), Ir2(λj2))

= O(n−1h−1) → 0.

Thus, ŵ(λ) is a mean square consistent estimator of the pooled spectral density w(λ) =

m−1
∑m

r=1 fr(λ), which could be considered as a nuisance parameter in this context. The

statistic we propose to test hypotheses (4.1) is now given by

(4.3) Tn =
1

m

m∑
r=1

∫ π

−π

( f̂r(λ)

ŵ(λ)
− 1

)2

dλ.

Notice that Tn is a special case of Sn(ϕ) where the function ϕ is specified as ϕ(f(λ), λ) =

(mfj(λ)/
∑m

s=1 fs(λ)−1, )j=1,2,...,m. Tn has a nice interpretation since it is an average of the

L2-distances between each estimated individual spectral density f̂r(·) and the estimated

pooled spectral density ŵ(·).
The limiting distribution of Tn under the null hypothesis is summarized in the following
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proposition which shows precisely how this distribution is affected by the dependence

structure of the underlying process.

Proposition 4.1. Let Assumption 1 and Assumptions 3-5 be satisfied and suppose that

the null hypothesis H0 in (4.1) is true. Then, as n →∞,

N
√

hTn − µn ⇒ N(0, τ 2),

where

µn =
1

2π
√

h

∫
K2(x)dx

m∑
r=1

m∑
s1=1

m∑
s2=1

gr,s1gr,s2

∫ π

−π

κ2
s1,s2

(λ)dλ,

τ 2 =
1

2π2

∫
(K ∗K)2(y)dy

m∑
r1=1

m∑
r2=1

∫ π

−π

( m∑
s1=1

m∑
s2=1

gr1,s1gr2,s2κ
2
s1,s2

(λ)
)2

dλ,

gr,s = (δr,s−m−1) with δr,s Kronecker’s delta, i.e., δr,s = 1 if r = s and δr,s = 0 otherwise,

and

κ2
s1,s2

(λ) = |fs1,s2(λ)|2/(fs1(λ)fs2(λ))

the squared coherency between the component processes {Xs1,t} and {Xs2,t} respectively.

By the above proposition, the limiting distribution of Tn under the null hypothesis de-

pends on the entire cross-correlation structure between the individual components of the

m-dimensional stochastic process {Xt, t ∈ Z} as this is expressed by the squared coheren-

cies κ2
s1,s2

(λ) appearing in the centering sequence µn and the variance τ 2 of the limiting

Gaussian distribution. Note that this distribution is not affected by the intra-individual

autocorrelation structure of each component series; see also Corollary 4.1 below.

In applications it might be computationally more convenient to use instead of Tn the

discretized version

TD,n =
2π

N

m∑
r=1

ν∑
j=−ν

( f̂r(λj)

ŵ(λj)
− 1

)2

.

It is easily seen that under the assumptions made

N
√

hTn − µn = N
√

hTD,n − µn + OP (
√

h) ,

which implies that the discretized statistic TD,n has asymptotically the same distribution

as the statistic Tn.

An interesting special case of the testing problem (4.1) appears if the m time series

considered are uncorrelated. Recall that κ2
s,s(·) ≡ 1, while for s1 6= s2 and {Xs1,t} and

{Xs2,t} uncorrelated processes, κ2
s1,s2

(·) = 0. Furthermore, straightforward algebra yields

m∑
r=1

m∑
s=1

g2
r,s = m− 1 and

m∑
r1=1

m∑
r2=1

( m∑
s=1

gr1,sgr2,s

)2

= m− 1.

These observations lead to the following useful corollary of Proposition 4.1.
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Corollary 4.1. Under the conditions of Proposition 4.1 and if {Xt} consists of m un-

correlated processes, then as n →∞,

N
√

hTn − µ̃n ⇒ N(0, τ̃ 2),

where

µ̃n =
m− 1√

h

∫
K2(x)dx and τ̃ 2 =

m− 1

π

∫
(K ∗K)2(y)dy.

In certain situations it might be of interest to test whether instead of the autocovariance

structure, the autocorrelation structure of the m individual processes is the same, i.e., to

test instead of (4.1) the modified null hypothesis

(4.4) H0 : f1 = c2f2 = · · · = cmfm, a.e. in [−π, π],

where the (unknown) positive real constants cr, r = 2, 3, . . . , m are not all identical. The

above hypothesis allows for the stationary variances of the m component process to be

different, requires however, that all component processes have the same autocorrelation

structure.

For testing hypothesis (4.4) we can proceed as in the construction of the test statistic Tn

but our considerations are now based on the rescaled time series X̃t = Ĉ−1/2Xt where

Ĉ−1/2 is the diagonal matrix Ĉ−1/2 = diag(γ̂1(0)−1/2, γ̂2(0)−1/2, . . . , γ̂m(0)−1/2), γ̂r(0) =

n−1
∑n

t=1(Xr,t −Xr)
2 and Xr = n−1

∑n
t=1 Xr,t. Rescaling by Ĉ−1/2 forces all time series

to have the same sample variance so that possible differences between the corresponding

individual spectral densities are attributed to differences in the autocorrelation structure

of the component processes.

Let Ĩr(λ) be the periodogram of the rth rescaled series X̃r,t, t = 1, 2, . . . , n and denote

by ĝr(λ) the kernel estimator ĝr(λ) = n−1
∑

j Kh(λ − λj)Ĩr(λj). Notice that ĝr(λ) is

a consistent estimator of the rescaled individual spectral density gr(λ) = fr(λ)/γr(0).

Furthermore, let v̂(λ) = m−1
∑m

r=1 ĝr(λ) which is a kernel estimator of the pooled rescaled

spectral density v(λ) = m−1
∑m

r=1 gr(λ). Analogously to (4.3), a useful statistic to test

hypothesis (4.4) is then given by

(4.5) Wn =
1

m

m∑
r=1

∫ π

−π

( ĝr(λ)

v̂(λ)
− 1

)2

dλ.

Let g̃r(λ) be the same kernel estimator as ĝr but based on the rescaled series Xr,t/
√

γr(0),

where γr(0) = Var(Xr,t). Since γ̂r(0) = γr(0)+OP (n−1/2), cf. Brockwell and Davis (1991),

Proposition 7.3.1, we get f̂r(λ) = fr(λ)/γr(0) + OP (n−1/2) which yields

N
√

h Wn − µn = n
√

h

m∑
r=1

∫ π

−π

( g̃r(λ)

ṽ(λ)
− 1

)2

dλ− µn + OP (
√

h)(4.6)
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with ṽ(λ) = m−1
∑m

r=1 g̃r(λ). By equation (4.6) and the fact that the process {C−1/2Xt, t ∈
Z} with C−1/2 = diag(γ

−1/2
1 (0), γ

−1/2
2 (0), . . . , γ

−1/2
m (0)) has the same cross-correlation

structure as {Xt, t ∈ Z}, we immediately get the following result.

Corollary 4.2. Let Assumption 1 and Assumptions 3-5 be satisfied and suppose that H0

in (4.4) is true. Then, as n →∞, N
√

hWn − µn ⇒ N(0, τ 2) where µn and τ 2 are given

in Proposition 4.1.

4.2. Bootstrapping the Test Statistic. To obtain the spectral density matrix f̂T (λ)

to be used in the bootstrap procedure applied to approximate the distribution of Tn

under the null, recall that this matrix should satisfy Condition 1. Part (ii) of this con-

dition requires that f̂T (λ) satisfies the null hypothesis, i.e., the components on the main

diagonal of this matrix should all be equal. Although this requirement can be fulfilled

by simple replacing the elements on the main diagonal of f̂(λ) by the pooled estimator

ŵ(λ), the resulting matrix does not necessarily satisfy part (iii) of the same condition

since such a replacement of the elements on the main diagonal of f̂(λ) affects the co-

herencies, i.e., cross-correlation structure of the m-dimensional process. Recall that by

Proposition 4.1 the parameters of the limiting Gaussian distribution of Tn under the null

are affected by the cross-correlation structure of the underlying m-dimensional stochastic

process. Thus retaining the cross-correlation structure of the observed process is essential

for bootstrap consistency. To elaborate on the dependency of the limiting distribution on

the cross-correlation structure of the underlying process, notice that for the specification

ϕ(f(λ), λ) = (ϕ1, ϕ2, . . . , ϕm)(Z, λ) with ϕk(f(λ), λ) = mfk(λ)/
∑m

s=1 fs(λ)−1 and which

leads to the test statistic (4.3), we have that under validity of the null hypothesis,

∂ϕk(Z, λ)

∂zi,j

∣∣∣
Z=f(λ)

=





(m− 1)(mf1(λ))−1 if i = j = k

−(mf1(λ))−1 if i = j 6= k

0 else.

Hence for this specification of ϕ we have Γϕ(λ) = Γϕ(−λ) = Γ
′
ϕ(λ) and we get by straight-

forward calculations that

tr{Γϕ(λ)(f
′
(λ)⊗ f(λ))} =

m∑
r=1

m∑
s1=1

m∑
s2=1

gr,s1gr,s2

∫ π

−π

κ2
s1,s2

(λ)dλ

which is a function only of the coherencies κ2
s1,s2

(λ); see also Proposition 4.1. Clearly, the

same problem regarding the alternation of the coherence structure appears if the matrix

f̂T (λ) used in the bootstrap procedure is set equal to a diagonal matrix with all diagonal

elements equal to ŵ(λ). Also in this case we have that part (i) and (ii) of Condition 1 are

satisfied but not part (iii).

The idea to obtain a matrix f̂T (λ) which satisfies all requirements of Condition 1 lies in

the following result. Let f(λ) = (fr,s(λ))r,s=1,2,...,m be a spectral density matrix satisfying

Assumption 5 and D(λ) the diagonal matrix defined by

D(λ) = diag(w(λ)f−1
1 (λ), w(λ)f−1

2 (λ), . . . , w(λ)f−1
m (λ)) .
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Consider the matrix fT (λ) = (fr,s,T (λ))r,s=1,2,...,m defined by

(4.7) fT (λ) = D1/2(λ)f(λ)D1/2(λ),

and verify by straightforward calculations that this matrix has the following properties:

(a) fT is a spectral density matrix, and the elements on its main diagonal are all

equal and equal to w(λ) = m−1
∑m

r=1 fr(λ).

(b) κ̃2
r,s(λ) = κ2

r,s(λ) where κ̃2
r,s(λ) = |fr,s,T (λ)|2/(fr,T (λ)fs,T (λ)).

Motivated by the above considerations, the spectral density matrix used in the bootstrap

procedure is set equal to

f̂T (λ) = D̂1/2(λ)f̂(λ)D̂1/2(λ),

where

D̂(λ) = diag(ŵ(λ)f̂−1
1 (λ), ŵ(λ)f̂−1

2 (λ), . . . , ŵ(λ)f̂−1
m (λ)).

Now, let

T ∗
n =

1

m

m∑
r=1

∫ π

−π

( f̂ ∗r (λ)

ŵ∗(λ)
− 1

)2

dλ,

where

f̂ ∗r (λ) =
1

n

∑
j

Kh(λ− λj)I
∗
r (λj),

ŵ∗(λ) = m−1
∑m

r=1 f̂ ∗r (λ) and I∗r (λj) is the r-th element on the main diagonal of the

pseudo-periodogram matrix I∗n(λj). To approximate the distribution of Zn = (N
√

hTn −
µn)/τ under the null, the conditional distribution of Z∗

n = (N
√

hT ∗
n − µ̂n)/τ̂ given the

sample Xt, t = 1, 2, . . . , n is used. Recall that µ̂n and τ̂ are obtained by replacing κ2
s1,s2

(λ)

in µn and in τ =
√

τ 2 by the nonparametric estimator

κ̂2
s1,s2

(λ) =
∣∣∣n−1

∑
j

Kh(λ− λj)Is1,s2(λj)
∣∣∣
2(

f̂s1(λ)f̂s2(λ)
)−1

.

Notice that by property (a) transformation (4.7) produces a spectral density matrix which

satisfies part (i) and (ii) of Condition 1. Furthermore, by property (b), transformation

(4.7) preserves at the same time the cross-correlation structure of the underlying m-

dimensional process, i.e., the coherencies corresponding to the transformed spectral den-

sity matrix fT (λ) are identical to those of the original spectral density matrix f(λ). This

ensures that transformation (4.7) fulfills also part (iii) of Condition 1. Thus and because

this transformation (4.7) satisfies all requirements of Condition 1, the following result

immediately appears.

Proposition 4.2. Suppose that Assumption 1 and Assumptions 3-5 are satisfied. Then,

as n →∞,

sup
x∈R

∣∣∣PH0(Zn ≤ x)− P (Z∗
n ≤ x|X1, X2, . . . , Xn)

∣∣∣ → 0,
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in probability, where PH0(Zn ≤ ·) denotes the distribution function of Zn when the null

hypothesis is true.

Remark 4.1. An asymptotic level α test is obtained comparing the statistic Zn with

the (1 − α)-quantile of the (simulated) distribution of Z∗
n. Note that the test does not

provide any information which densities are different from others. This question is closely

related to the problem of discriminant and clustering analysis [see for example Kakizawa,

Shumway and Taniguchi (1998)] or to a further analysis based on pairwise comparisons.

The introduced bootstrap methodology is general enough to be used in such problems.

For example pairwise comparisons can be performed using the appropriate function ϕ

proposed in Example 2.1 and the corresponding bootstrap in the frequency domain.

Similarly the question where the frequencies differ is not answered by a global test and

to solve problems of this type one could apply a local version of our test as proposed by

Opsomer and Francisco-Fernández (2008) in the context of comparing regression curves.

An alternative approach to localize the differences between the spectral densities is briefly

mentioned in Section 5.1.

4.3. Power Behavior under Fixed Alternatives. In deriving the power properties

of the proposed test, it is important to investigate its behavior under fixed alternatives,

that is for the case where the spectral densities of the underlying m time series are not

equal. Notice that the power behavior of the general test statistic (1.2) for particular

sequences of local alternatives has been investigated by Eichler (2008). The following

theorem establishes the limiting distribution of Tn in the case of fixed alternatives.

Theorem 4.1. Let Assumption 1 and Assumptions 3-5 be satisfied and suppose that the

alternative H1 in (4.1) is true. Then, as n →∞,
√

N{Tn −M2 − bh} ⇒ N(0, τ 2
1 ),

where

M2 =
1

m

m∑
r=1

∫ π

−π

(fr(λ)

w(λ)
− 1

)2

dλ(4.8)

bh =
2√
m

m∑
r=1

∫ π

−π

hr(λ)

w(λ)

[ 1

2π

∫
Kh(λ− x)fr(x)dx− fr(λ)

]
dλ

τ 2
1 =

16π

m

∫ π

−π

{ m∑
r=1

fr(x)

w(x)

(fr(x)

w(x)
− 1

)}2

dx,

and hr(λ) = fr(λ)/w(λ)− 1.

Note that under fixed alternatives asymptotic normality is still valid but with a different

standardization. In particular the rate of convergence is
√

N . The result of Theorem 4.1

can be used for several purposes, which we briefly discuss in the following.
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1) By Theorem 3.1 and Proposition 4.1 an asymptotic level α test for the hypothesis

of equal spectral densities is obtained. It now follows from Theorem 4.1 that the

power of this test can be approximated by

(4.9) P (H0 rejected | H1 is true) ≈ 1− Φ

(
−
√

N(M2 + bn)

τ1

+
µn + τ0zα

τ1

√
Nh

)
.

Note that in principle the power for a fixed alternative could be also approximated

by simulation as proposed in Beran (1986) in the context of i.i.d. observations.

This author suggested to generate bootstrap samples under a fixed alternative

and to calculate critical values from theses samples by a further nested bootstrap

procedure. A proof of the consistency of this concept in the context of a nonpara-

metric null hypothesis or a stationary time series as considered in this paper is

still an open problem.

Moreover, formula (4.9) provides additional information on the behavior of the

power function, which depends (asymptotically) on the particular alternative only

through the three quantities bh, M2 and τ 2
1 .

2) Note that the quantity M2 defined in (4.8) can be interpreted as a measure of

equality between the spectral densities of the m time series considered. From

Theorem 4.1 we obtain

Tn − bh +
τ̂1z1−α√

N

as an upper (asymptotic) (1− α) confidence bound for the parameter M2, where

τ̂ 2
1 is an appropriate (consistent) estimator of the asymptotic variance given in

Theorem 4.1. Such an estimator is obtained, for instance, if fr(x) and w(x) are

replaced by their kernel estimators f̂r(x) and ŵ(x), respectively.

3) A further important application of Theorem 4.1 arises from the fact that in practice

the second order behavior of the m time series will usually never be precisely

identical. The more realistic question in this context is, if the different time series

show approximately the same second order behaviour. Therefore we propose to

investigate the so called precise hypotheses [see Berger and Delampady (1987)]

(4.10) H0 : M2 > ε versus H1 : M2 ≤ ε ,

where M2 is the measure defined by (4.8) and ε > 0 is a prespecified constant for

which die statistician agrees to analyse the data under the additional assumption

of equal spectral densities. An asymptotic α-level test for the hypothesis (4.10) is

obtained by rejecting the null hypothesis, whenever
√

N(Tn − ε− bh) < τ̂1z1−α .

4) Equation (4.9) is important also because it demonstrates how the correlation

structure between the individual series considered, affects the power behavior

of the test. In particular, the cross-correlation structure of the m-dimensional

process enters the (approximative) power function of the test through the term
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(µn + τ0zα)/(τ1

√
Nh) only, which given the level α of the test and the smooth-

ing quantities h and K, it is determined by the coherencies κ2
s1,s2

(·). Now, this

term, although asymptotically negligible because it is of order N−1/2h−1, it may

affect the power of the test in finite sample situations depending on the values of

κ2
s1,s2

(·) and the resulting values of µn and τ0. In particular, given the quantities

fr(·)/w(·) − 1, r = 1, 2, . . . , m, i.e., given the deviations between the individual

spectral densities fr and the overall spectral density w, the power of the test is

the larger (smaller) the smaller (larger) is the quantity (µn + τ0zα)/(τ1

√
Nh); see

Section 5.1 for an illustration of this point.

5. Numerical Examples

5.1. Simulations. To investigate the behavior of our testing procedure in finite sample

situations we have conducted a small Monte Carlo experiment where the test statistic

TD,n proposed as well as the bootstrap procedure used to obtain critical values have been

studied empirically. In this context, observations X1, X2, . . . , Xn have been generated

from the simple bivariate process {Xt = (X1,t, X2,t)
′
, t ∈ Z}, where

X1,t = φX1,t−1 + δX1,t−2 + ε1,t(5.1)

X2,t = φX2,t−1 + ε2,t,

φ = 0.8 and εt = (ε1,t, ε2,t)
′ ∼ N((0, 0)

′
, Σ), with Σ = (σr,s)r,s=1,2, σ1,1 = σ2,2 = 1 and

σ1,2 = ρ ∈ (−1, 1). Different values of δ and ρ have been considered. Notice that ρ

controls the degree of dependence between the two processes (ρ = 0 corresponds to the

case where the two processes are independent) while δ controls the degree of deviation

between the spectral densities of the individual series X1,t and X2,t. In particular, for

δ = 0 the null hypothesis of equal spectral densities is true while for δ 6= 0 we are in the

case where the alternative is true. Recall that causality of Xt requires that δ ∈ (−1, 0.2)

[see Brockwell and Davis (1991), Theorem 11.3.1].

To investigate empirically the size and power behavior of the test TD,n, 500 replications of

the bivariate process (5.1) have been generated for different sample sizes n and different

values of the dependence parameter ρ and the deviation parameter δ. The nonpara-

metric estimators involved in our testing procedure have been calculated using Bartlett-

Priestley’s kernel (see Priestley (1981), p. 448) and different values of the smoothing

bandwidth h. Furthermore, to obtain the critical points of the test using the bootstrap

procedure proposed, 1000 bootstrap replications have been generated. The results ob-

tained for α = 0.05 are reported in Table 1.

Please insert Table 1 here

As Table 1 shows, although the test leads to some over rejection for the smallest sample

size considered, the situation improves rapidly as the time series length n increases with

the test achieving the desired size behavior. This behavior is not surprising since due
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to the allowed dependence between the individual time series, implementation of the

test requires nonparametric, frequency domain estimation of the entire cross-correlation

structure of the underlying m-dimensional process which is a difficult task. Concerning

the power behavior of the test, we observe that the test leads to high rejection rates even

for small differences between the two spectral densities, like those considered in the Monte

Carlo experiment (δ = ±0.1). Interestingly in model (5.1) detecting differences between

the spectral densities under independence (ρ = 0) appears to be more difficult than under

dependence (ρ 6= 0). The explanation for this is given by formula (4.9) of the power

function. Notice that for the particular bivariate process (5.1) considered, it is easily seen

that κ2
s1,s2

(λ) = ρ2 for all λ ∈ [0, π], which by straightforward calculations yields

µn = (1− ρ2)
1√
h

∫
K2(x)dx, and τ 2

0 = (1− ρ2)2 1

π

∫ ( ∫
K(x)K(x + y)dx

)2

dy.

Now, other things being equal, if ρ2 = κ2
s1,s2

(·) = 0, i.e., if the two processes are in-

dependent, then µn and τ 2
0 achieve their maximal value leading to a large value of

(µn + τ0zα)/(τ1

√
Nh) and, consequently, to a drop of power. On the other hand as

ρ2 = κ2
s1,s2

(·) increases, i.e. as the cross-correlation between the two processes becomes

stronger, then µn and τ 2
0 decrease, leading to a lower value of (µn + τ0zα)/(τ1

√
Nh) and,

therefore, to an increase of power.

We next compare the performance of the TD,n test with that of two other tests of equality

of spectral densities, namely

S
(1)
D,n =

2π

N

ν∑
j=−ν

( f̂1(λj)

f̂2(λj)
− 1

)2

and S
(2)
D,n =

2π

N

ν∑
j=−ν

( f̂2(λj)

f̂1(λj)
− 1

)2

.

Notice that S
(1)
D,n is a discretized version of the test proposed by Eichler (2008). We run

several simulations for the three tests using the same testing parameters, the same number

of repetitions and bootstrap replications to those used to obtain the results reported in

Table 1. Table 2 presents the results obtained for the case of n = 256 observations the

quality of which is the same to those obtained using other sample sizes and parameter

constellations.

Please insert Table 2 here

As this table shows, all tests have approximately a similar size behavior. Recall from the

discussion of the results presented in Table 1, that the size behavior of the tests improves

considerably as n increases. Now, compared to the two tests S
(1)
D,n and S

(2)
D,n, the test TD,n

is more stable with respects to its power behavior and its ability to detect differences

between the spectral densities considered. In particular, the tests S
(1)
D,n and S

(2)
D,n show a

different power behavior with the test S
(1)
D,n being better for deviations corresponding to

the case δ = 0.1 and the test S
(2)
D,n being better for the case δ = −0.1. At the same time,

both tests have the lowest power in detecting differences between the spectral densities

for some of the parameter constellations considered. Notice that while the test S
(1)
D,n has
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slightly more power than the test TD,n for the case δ = 0.1, it has much less power than

the same test for δ = −0.1. A similar behavior with different signs occurs for the test

S
(2)
D,n.

5.2. Analysis of grain price data. The data set considered consists of monthly aver-

ages of grain prices for corn, wheat and rye in the United States of America for the period

January 1961 to October 1972. It has been discussed in Ahn and Reinsel (1988) and a

complete description is given in Reinsel (2003). The original three-variate series is shown

in Figure 1. We investigate the question wether the market forces for grain products lead

to different price behavior of corn, wheat and rye. Does the price for corn, for wheat and

for rye evolve differently over time following a different dependence pattern? In terms

of second order properties, this question refers to the question whether the three price

series obey a similar autocovariance structure. To test the hypothesis that the spectral

densities of the three price series are equal we use the discretized statistic TD,n together

with Bartlett-Priestley’s smoothing kernel and the bandwidth h = 0.1 obtained by means

of a cross-validation criterion [Beltrão and Bloomfield (1987)] and applied to the pooled

spectral density estimator ŵ(λ). For this choice of the smoothing parameters the value

of the test statistic is equal to TD,n = 2.005, which compared with the upper 5% critical

point 0.5057 obtained using B = 1000 bootstrap replications, leads to a rejection of the

null hypothesis that the autocovariance structure of the three series is identical. Figure

2a) shows on a log scale, the estimated individual spectral densities together with the

estimated pooled spectral density ŵ(λ).

To get a deeper insight into the reasons leading to the above rejection of the hypothesis of

equal spectral densities, and to investigate more closely were the differences between the

individual spectral densities lie, we consider the statistic Q2
r,n(λj) = (f̂r(λj)/ŵ(λj) − 1)2

calculated for λj = 2πj/n, j = 0, 1, . . . , [n/2]. Notice that Q2
r,n(λj) describes for every

frequency λj, the squared difference between the estimated rth individual spectral density

f̂r(λj) and the pooled spectral density ŵ(λj) and that the test statistic Tn can be approx-

imately written as Tn ≈ 2πm−1n−1
∑m

r=1

∑ν
j=−ν Q2

r,n(λj), ν = [(n−1)/2]. Large values of

Q2
r,n pinpoint, therefore, to frequencies where the spectral density of the rth series deviates

from the pooled spectral density. A plot of the statistic Q2
r,n(λj) for different frequencies

and for each of the three price series considered is given in Figure 2b). To better evaluate

the plots shown we include in the same figure an estimate of the upper 5%-percentage

point of the distribution of the maximum statistic Mn = max1≤r≤m max0≤λj≤π Q2
r,n(λj),

under the hypothesis that all spectral densities are equal. To estimate the upper 5%

percentage-point of this distribution we use the bootstrap procedure described in Sec-

tion 3 to generate B = 1000 replications of M∗
n = max1≤r≤m max0≤λj≤π Q∗2

r,n(λj), where

Q∗2
r,n(λj) = (f̂ ∗r (λj)/ŵ

∗(λj) − 1)2 and f̂ ∗r (λ) and ŵ∗(λ) are defined in Step 3 of the afore-

mentioned bootstrap algorithm.

Please insert Figure 1 and Figure 2 about here
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As Figure 2 shows, the autocovariance structure of corn and ray prices seem to be very

similar and different to that of wheat prices. The differences lie not only in the fact

that wheat prices have a larger variance compared to the other two prices, but also that

the spectral density of wheat prices show a moderate peak at frequency λ = 0.796 which

corresponds to a cyclical component of approximately 8 months and which is not apparent

in corn and rye prices; cf. Figure 2b). It is worth mentioning here, that these findings

are in contrast to what could be expected by a simple inspection of the time series plots

of the three series shown in Figure 1. Such an inspection suggests namely that corn and

wheat prices behave similar and differently to ray prices.

6. Proofs

Proof of Theorem 3.1: For I = i + (j − 1)m and R = r + (l − 1)m with i, j, r, l ∈
{1, 2, . . . , m} we denote by Γ̂ij,rl,T (λ) the (I, R) element of Γ̂ϕ,T (λ) which is given by

Γ̂ij,rl,T (λ) =
(∂ϕ(Z, λ)

∂zij

)(∂ϕ(Z, λ)

∂zrl

)∣∣∣
Z=f̂T (λ)

.

Similarly, denote by Γij,rl,T (λ) the corresponding element of Γϕ,T (λ). Let f̂i,j,T (λ) and

fi,j,T (λ) be the (i, j) elements of f̂T (λ) and fT (λ) respectively and define

(6.1) Y ∗
i,j(λs) = e

′
if̂

1/2
T (λs)(U

∗
s − Im)f̂

1/2
T (λs)ej,

where ek is the m-dimensional vector ek = (0, . . . , 0, 1, 0, . . . , 0)
′
with the “1” appearing in

the k− th position, f̂T (λ) = f̂
1/2
T (λ)f̂

1/2
T (λ), Im is the m×m unit matrix and U∗

s = U∗
n(λs)

are independent, complex Wishart WC
m(1, Im) distributed if λs 6= 0( mod π) and real

Wishart WR
m(1, Im) distributed if λs = 0( mod π). Denote by ∗ expectations with respect

to the bootstrap distribution and notice that for all λs,

(6.2) E∗(Y ∗
i,j(λs)) = 0,

while

(6.3) Cov∗(Y ∗
i,j(λs1), Y

∗
r,l(λs2)) =





0 if s1 6= s2

f̂i,r,T (λs)f̂ j,l,T (λs) if s1 = s2 = s.



BOOTSTRAPPING FREQUENCY DOMAIN TESTS 23

Using the above notation and since E∗(f̂(λ)∗ − f̂T (λ)) = OP (h2) we get

n
√

hS∗n(ϕ) =

√
h

n

m∑

i,j,r,l=1

∑
s1

∑
s2

∫ π

−π

Kh(λ− λs1)Kh(λ− λs2)Γ̂ij,rl,T (λ)dλ

× Y ∗
j,i(λs1)Y

∗
r,l(λs1) + OP (

√
nh2)

=

√
h

n

m∑

i,j,r,l=1

∑
s

∫ π

−π

K2
h(λ− λs)Γ̂ij,rl,T (λ)dλY ∗

j,i(λs)Y
∗
r,l(λs)

+

√
h

n

m∑

i,j,r,l=1

∑
s1,s2
s1 6=s2

∫ π

−π

Kh(λ− λs1)Kh(λ− λs2)Γ̂ij,rl,T (λ)dλ

× Y ∗
j,i(λs1)Y

∗
r,l(λs1) + OP (

√
nh2)

=M∗
n + L∗n + oP (1)

with an obvious notation for M∗
n and L∗n and where the oP (1) term is due to Assumption

4. We show that

(6.4) M∗
n − µ̂n(ϕ) → 0,

in probability, and that

(6.5) L∗n ⇒ N(0, σ2(ϕ)).

To establish (6.4) notice that because of (6.3) we have

E∗(M∗
n) =

√
h

n

m∑

i,j,r,l=1

∑
s

∫ π

−π

K2
h(λ− λs)Γ̂ij,rl,T (λ)dλf̂j,r,T (λs)f̂ i,l(λs)

=

√
h

2π

m∑

i,j,r,l=1

∫ π

−π

∫ π

−π

K2
h(λ− x)Γ̂ij,rl(λ)f̂j,r,T (x)f̂ i,l(x)dxdλ + OP (

√
h).

Using the substitution (λ− x)/h = u it is easily seen that

E∗(M∗
n) =

1

2π
√

h

∫ π

−π

K2(u)du

m∑

i,j,r,l=1

∫ π

−π

Γ̂ij,rl,T (λ)f̂j,r,T (λ)f̂ i,l,T (λ)dλ + OP (
√

h).

Furthermore,

V ar∗(M∗
n) =

h

n2

∑

i1,j1,r1,l1

∑

i2,j2,r2,l2

∑
s1

∑
s2

∫ ∫
K2

h(λ1 − λs1)K
2
h(λ1 − λs2)Γ̂i1j1,r1l1,T (λ1)

× Γ̂i2j2,r2l2,T (λ2)dλ1dλ2

×
{

Cov∗(Y ∗
j1,i1

(λs1), Y
∗
j2,i2

(λs2))Cov∗(Y ∗
r1,l1

(λs1), Y
∗
r2,l2

(λs2))

+ Cov∗(Y ∗
j1,i1

(λs1), Y
∗
r2,l2

(λs2))Cov∗(Y ∗
r1,l1

(λs1), Y
∗
j2,i2

(λs2))

+ cum∗(Y ∗
j1,i1

(λs1), Y
∗
r1,l1

(λs1), Y
∗
j2,i2

(λs2), Y
∗
r2,l2

(λs2))
}
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from which we get by straightforward calculations and using (6.3), that V ar∗(M∗
n) =

OP (n−1h−1) → 0. Thus and because

(6.6)
m∑

i,j,r,l=1

Γ̂ij,rl,T (λ)f̂j,r,T (λ)f̂ i,l,T (λ) = tr{Γ̂ϕ,T (λ)(f̂
′
T (λ)⊗ f̂T (λ))} = µ̂n(ϕ),

we have (6.4).

We next establish (6.5). For this notice first that

V ar∗(L∗n) =
h

n2

∫ ∫ ∑

i1,j1,r1,l1

∑

i2,j2,r2,l2

∑
s1,s2
s1 6=s2

∑
q1,q2
q1 6=q2

Kh(λ1 − λs1)Kh(λ1 − λs2)

×Kh(λ2 − λq1)Kh(λ2 − λq2)Γ̂i1j1,r1l1,T (λ1)Γ̂i2j2,r2l2,T (λ2)dλ1dλ2

×
{

Cov∗(Y ∗
j1,i1

(λs1), Y
∗
j2,i2

(λq1))Cov∗(Y ∗
r1,l1

(λs2), Y
∗
r2,l2

(λq2))

+ Cov∗(Y ∗
j1,i1

(λs1), Y
∗
r2,l2

(λq2))Cov∗(Y ∗
r1,l1

(λs2), Y
∗
j2,i2

(λq1))

+ cum∗(Y ∗
j1,i1

(λs1), Y
∗
r1,l1

(λs2), Y
∗
j2,i2

(λq1), Y
∗
r2,l2

(λq2))
}

=
h

n2

∫ ∫ ∑

i1,j1,r1,l1

∑

i2,j2,r2,l2

∑
s,q
s6=q

Kh(λ1 − λs1)Kh(λ1 − λs2)

×Kh(λ2 − λq1)Kh(λ2 − λq2)Γ̂i1j1,r1l1,T (λ1)Γ̂i2j2,r2l2,T (λ2)dλ1dλ2

×
{

f̂j1,j2,T (λs)f̂ i1,i2,T (λs)f̂r1,r2,T (λq)f̂ l1,l2,T (λq)

+ f̂j1,r2,T (λs)f̂ i1,l2,T (λs)f̂r1,j2,T (λq)f̂ l1,i2,T (λq)
}

+ oP (1),

from which we get by straightforward algebra and because f̂T (λ) → fT (λ) and Γ̂ϕ,T (λ) →
Γϕ,T (λ),

V ar∗(L∗n) → 1

4π2

∫ ( ∫
K(u)K(u + y)du

)2

dy

∫ ∑

i1,j1,r1,l1

∑

i2,j2,r2,l2

Γi1j1,r1l1,T (λ)Γi2j2,r2l2,T (λ)

×
{

fj1,j2,T (λ)f i1,i2,T (λ)fr1,r2,T (λ)f l1,l2,T (λ) + fj1,r2,T (λ)f i1,l2,T (λ)

× fr1,j2,T (λ)f l1,i2,T (λ)
}

dλ.

Denote by σ2
T (ϕ) the right hand side of the last expression, then σ2(ϕ) = σ2

T (ϕ) follows

by Condition 1(iii) and relations similar to (6.6). To proceed with the proof of (6.5) let

W ∗
n(λs1 , λs2) =

√
h

n

m∑

i,j,r,l=1

∫
Kh(λ− λs1)Kh(λ− λs2)Γ̂ij,rl,T (λ)dλY ∗

j,i(λs1)Y
∗
j,i(λs2),
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and notice that

L∗n =
∑

1≤s1<s2≤N

V ∗
n (λs1 , λs2) +

∑

s 6=0

W ∗
n(λs, 0) +

∑

s 6=0

W ∗
n(0, λs)

= L∗1,n + L∗2,n + L∗3,n,

where N = [n/2], V ∗
n (λs1 , λs2) = W ∗

n(λs1 , λs2)+W ∗
n(λ−s1 , λs2)+W ∗

n(λs1 , λ−s2)+W ∗
n(λ−s1 , λ−s2)

and an obvious notation for L∗j,n. Now, L∗2,n → 0 and L∗3,n → 0 in probability, since

E∗|L∗2,n| ≤
√

h

n

∑

i,j,r,l

∑
s

∫
Kh(λ− λs)|Γ̂ij,rl,T (λ)|E∗|Y ∗

j,i(λs)Y
∗
r,l(0)|

= OP (
√

h)

and the same argument apply to L∗3,n. To conclude the proof of (6.5) it remains to show

that L∗1,n ⇒ N(0, σ2(ϕ)). For this and by Theorem 2.1 of deJong (1987), it suffices to

show that

a)
(

max1≤s1≤N

∑N
s2=1 E∗(V ∗

n (λs1 , λs2))
2
)
/σ2

n → 0, and

b) E∗(L∗1,n)4 /σ4
n → 3,

as n → ∞, where σ2
n = V ar(L∗1,n). Notice that σn → σ2

T (ϕ) = O(1) by the same

arguments as those used to handle V ar∗(L∗n).

Consider a). Since s1 6= s2 and by the independence of the Y ∗
ij,rl(λs) we get by straight-

forward calculations that
N∑

s2=1

E∗(W ∗
n(λs1 , λs2))

2 =
h

n2

∑
s2

∑

i1,j1,r1,l1

∑

i2,j2,r2,l2

∫ ∫
Kh(λ1 − λs1)Kh(λ1 − λs2)

×Kh(λ2 − λs1)Kh(λ2 − λs2)Γ̂i1j1,r1l1,T (λ1)Γ̂i2j2,r2l2,T (λ2)dλ1dλ2

× f̂j1,i1,T (λs1)f̂j2,i2,T (λs1)f̂r1,l1(λs2)f̂r2,l2(λs2)

= OP (n−1h−1),

which implies because E∗(V ∗
n (λs1 , λs2))

2 ≤ 4
∑

g1∈{λs1 ,λ−s1}
∑

g2∈{λs2 ,λ−s2} E∗(W ∗
n(g1, g2))

2

that (max1≤s1≤N

∑N
s2=1 E∗(V ∗

n (λs1 , λs2))
2)/σ2

n = OP (n−1h−1) → 0 in probability as n →
∞.

To establish b) notice that by ignoring the asymptotically vanishing fourth order cumulant

term and using E∗(V ∗
n (λs1 , λs2)V

∗
n (λν1 , λν2)) = δs1,ν1δs2,ν2E(V ∗

n (λs1 , λs2))
2 for s1 < s2 and

ν1 < ν2, that the fourth moment of
∑

1≤s1<s2≤N V ∗
n (λs1 , λs2) equals

E∗(
∑

1≤s1<s2≤N

V ∗
n (λs1 , λs2))

4 = 3
∑

1≤s1<s2≤N

∑
1≤ν1<ν2≤N

E∗(V ∗
n (λs1 , λs2))

2E∗(V ∗
n (λν1 , λν2))

2

+ o(1)

= 3(σ2
n)2 + o(1),

which leads to the desired assertion.
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Proof of Theorem 4.1: Define

(6.7) hr(λ) =
fr(λ)

w(λ)
− 1; h̃r(λ) =

f̂r(λ)

w(λ)
− 1,

then we obtain from the proof of Theorem 3.1

√
N

(
TN − 1

m

m∑
r=1

∫
h2

r(λ)dλ
)

=

√
n

m

m∑
r=1

{∫
h̃2

r(λ)dλ−
∫

h2
r(λ)dλ

}
(6.8)

×(1 + op(1))

=

√
n

m

m∑
r=1

{∫ ( f̂r(λ)− fr(λ)

w(λ)

)2

dλ

+2

∫
hr(λ)

f̂r(λ)− fr(λ)

w(λ)
dλ

}
(1 + op(1))

= (An1 + An2)(1 + op(1))

with an obvious definition of the quantities An1, An2. The term An1 can be treated by

similar methods as used in the proof of Theorem 3.1, which yield

(6.9) An1 = Op

( 1√
nh

)
= op(1).

The analysis of the term An2 is more difficult and we obtain
√

m

2
An2 =

√
n

m∑
r=1

∫
hr(λ)

w(λ)

(
f̂r(λ)− fr(λ)

)
dλ = B1n + B2n,(6.10)

where

B1n =
1√
n

∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)

(
Ir(λj)− fr(λj)

)
dλ,(6.11)

B2n =
√

n
{ 1

n

∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)
fr(λj)dλ−

m∑
r=1

∫
hr(λ)

w(λ)
fr(λ)dλ

}

(6.12)

=
√

n
{ 1

2π

∫ ∫
Kh(λ− x)

m∑
r=1

hr(λ)

w(λ)
fr(x)dxdλ−

m∑
r=1

∫
hr(λ)

w(λ)
fr(λ)dλ

}

+o(1)

=
√

n

m∑
r=1

{∫
hr(λ)

w(λ)

[ 1

2π

∫
Kh(λ− x)fr(x)dx− fr(λ)

]
dλ

}
+ o(1)

=
√

nb̃h + o(1)



BOOTSTRAPPING FREQUENCY DOMAIN TESTS 27

with an obvious definition of b̃h. From (6.8), (6.9), (6.10), (6.11), (6.12) and the notation

bh = 2b̃h/sqrtm we therefore obtain

√
N

(
Tn − 1

m

m∑
r=1

∫
h2

r(λ)dλ− bh

)
=

2√
m

B1n + op(1) ,(6.13)

and it remains to consider the asymptotic distribution of the statistic B1n. For this recall

that by (3.3), In(λj) = f 1/2(λj)Un(λj)f 1/2(λj) + Rn,j , where the remainder is of order

Op(1/
√

n) uniformly with respect to j. Recall that Un(λj) has asymptotically a complex

Wc(1, Im) Wishart distribution, and consequently

In(λj) = Wn(λj) + Rnj ,(6.14)

where the random variables Wn(λj) are asymptotically Wc(1, f(λj)) distributed and in-

dependent [see Brockwell and Davis (1991), Proposition 11.7.3]. From Muirhead (1982)

p. 90 and a similar argument as given in the Proof of Proposition 10.3.2 in Brockwell and

Davis (1991) we have

E[eT
r Wn(λj)er] = fr(λj)(1 + o(1)) = fr(λj)(1 + o(1)) ,

(6.15)

Cov[eT
r Wn(λi)er, e

T
s Wn(λj)es] = 2δijfr(λj)fs(λj)(1 + o(1)) ,

where δij = 1 if i = j and δi,j = 0 for i 6= j. For the moment we ignore the remainder and

obtain with the notation Wr(λj) = eT
r Wn(λj)er,

B̃1n =
1√
n

∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)

(
Wr(λj)− fr(λj)

)
(6.16)

the estimates

E[B̃1n] = o(1)

E[B̃2
1n] =

1

n
E

[∑
j

∫ ∫
Kh(λ− λj)Kh(µ− λj)

m∑
r,s=1

[
Wr(λj)− fr(λj)

][
Ws(λj)− fr(λj)

]hr(λ)hs(µ)

w(λ)w(µ)
dµdλ

]
· (1 + o(1))

=
1

2π

m∑
r,s=1

∫ ∫ ∫
Kh(λ− x)Kh(µ− x)

hr(λ)hs(µ)

w(λ)w(µ)
2fr(x)fs(x)dxdµdλ · (1 + o(1))

= 4π

∫
1

w2(x)

( m∑
r=1

hr(x)fr(x)
)2

dx · (1 + o(1))

= 4π

∫ [ m∑
r=1

fr(x)

w(x)

(fr(x)

w(x)
− 1

)]2

dx · (1 + o(1))

= α2 · (1 + o(1))
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with an obvious definition of α2. The asymptotic normality of B̃1n now follows along the

lines given in the proof of Proposition 10.3.2 and 11.7.3 in Brockwell and Davis (1991),

that is

(6.17) B̃1n ⇒ N(0, α2)

We finally show that B1n and B̃1n are asymptotically equivalent, that is

(6.18) B1n − B̃1n = op(1).

For this we note that Lemma 3 in Dette and Spreckelsen (2003) holds also in the multi-

variate case considered here (this follows by the same arguments given by these authors

observing that the assumption of normally distributed innovations is in fact not needed

to establish the result). More precisely, if Rn,r,j = eT
r Rn,jer, then we have

E[Rn,r,j] = o(n−1)(6.19)

Cov(Rn,r,i, Rn,r,j) =

{
O(n−1) if λj = ∓λi

o(n−1) if λj 6= ∓λi

Observing (6.20) we obtain

E[(Bn1 − B̃n1)
2] =

1

n
E

[(∑
j

∫
Kh(λ− λj)

m∑
r=1

hr(λ)

w(λ)
Rn,r,j

)2]

=
∣∣∣ 1
n

∑
i,j

m∑
r,s=1

∫ ∫
Kh(λ− λj)Kh(µ− λi)

hr(λ)hs(µ)

w(λ)w(µ)
E[Rn,r,iRn,s,j]dλdµ

∣∣∣

≤ 1

n

∑
i

m∑
r,s=1

∫
Kh(λ− λi)Kh(µ− λi)

∣∣∣hr(λ)hs(µ)

w(λ)w(µ)

∣∣∣dλdµ ·O(
1

n
)

+
1

n2

∑
i,j

m∑
r,s=1

∫
Kh(λ− λi)Kh(λ− λj)

hr(λ)hs(µ)

w(λ)w(µ)
dλdµ · o(1)

= O
( 1

nh

)
+ o(1) = o(1),

and (6.18) is a consequence of Markov’s inequality. Consequently, the assertion of the

theorem follows from (6.13), (6.17) and (6.18).
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n = 128 n = 512 n = 1024

h= 0.15 h=0.20 h=0.10 h=0.14 h=0.10 h= 0.12

ρ δ

0.9 0.0 0.065 0.078 0.052 0.056 0.055 0.055

0.1 0.674 0.702 0.996 0.998 1.000 1.000

-0.1 0.496 0.512 0.990 0.991 1.000 1.000

0.5 0.0 0.092 0.098 0.055 0.058 0.055 0.058

0.1 0.302 0.364 0.766 0.890 0.966 0.970

-0.1 0.201 0.216 0.546 0.583 0.888 0.894

0.0 0.0 0.093 0.094 0.058 0.065 0.054 0.055

0.1 0.274 0.320 0.648 0.724 0.912 0.928

-0.1 0.191 0.188 0.422 0.446 0.760 0.782

-0.5 0.0 0.094 0.093 0.058 0.062 0.056 0.057

0.1 0.298 0.366 0.754 0.806 0.972 0.973

-0.1 0.226 0.221 0.560 0.588 0.880 0.896

-0.9 0.0 0.079 0.081 0.046 0.048 0.054 0.054

0.1 0.686 0.722 0.998 0.999 1.000 1.000

-0.1 0.504 0.508 0.982 0.985 1.000 1.000

Table 1: Empirical rejection probabilities (α = 0.05) of the test TD,n over 500 replications

of the bivariate process (5.1) for different sample sizes n, values of the bandwidth h and

of the process parameters ρ and δ.
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.

h= 0.14 h=0.18

TD,n S
(1)
D,n S

(2)
D,n TD,n S

(1)
D,n S

(2)
D,n

ρ δ

0.9 0.0 0.062 0.070 0.052 0.063 0.086 0.060

0.1 0.940 0.962 0.847 0.964 0.972 0.899

-0.1 0.844 0.698 0.843 0.852 0.726 0.848

0.5 0.0 0.068 0.072 0.071 0.071 0.071 0.075

0.1 0.567 0.639 0.165 0.618 0.675 0.208

-0.1 0.295 0.132 0.317 0.318 0.133 0.331

0.0 0.0 0.069 0.068 0.085 0.070 0.071 0.074

0.1 0.486 0.537 0.140 0.530 0.593 0.140

-0.1 0.242 0.108 0.268 0.628 0.108 0.289

-0.5 0.0 0.072 0.080 0.082 0.081 0.082 0.076

0.1 0.550 0.629 0.164 0.598 0.670 0.194

-0.1 0.302 0.144 0.345 0.144 0.148 0.361

-0.9 0.0 0.056 0.056 0.064 0.061 0.066 0.075

0.1 0.956 0.967 0.839 0.964 0.972 0.898

-0.1 0.858 0.688 0.868 0.852 0.731 0.874

Table 2: Empirical rejection probabilities (α = 0.05) of the tests TD,n, S
(1)
D,n and S

(2)
D,n

over 500 replications of the bivariate process (5.1) for n = 256 and different sample sizes,

values of the bandwidth h and of the process parameters ρ and δ.
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Figure 1. Plot of US grain price data: (a) corn prices, (b) wheat prices,
(c) ray prices.
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Figure 2. (a) Plot of estimated spectral densities (log-scale) for the grain
price data set and (b) plot of the statistic Q2

r,n(λj). The dashed and dotted
line refers to corn prices, the dashed line to wheat prices and the dotted
line to ray prices. The solid line in part (a) refers to the estimated pooled
spectral density and in part (b) to the bootstrap estimate of the upper 5%-
percentage point of the distribution of the statistic Mn =
max1≤r≤m max0≤λj≤π Q2

r,n(λj).


