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Abstract. The present article assesses the redistributive effects of a key element of German climate 

change policy, the promotion of renewables in the electricity mix through the provision of a feed-in 

tariff. The tariff shapes the distribution of households’ disposable incomes by charging a levy that is 

proportional to household electricity consumption, and by financial transfers channeled to 

households feeding green electricity into the grid. Our study builds on representative household 

survey data, providing information on various socio demographics, household electricity 

consumption and ownership of solar facilities. The redistributive effects of the feed-in tariff are 

evaluated by means of various inequality indices. All the inequality measures indicate that Germany's 

feed-in tariff is mildly regressive. 
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1. Introduction 

Electricity is an elementary ingredient of our everyday life. Nearly all of our daily activities are 

somehow related to the consumption of electricity, starting with the alarm clock and the coffee-

maker in the morning, and ending with turning on the light bulbs and the TV in the evening. Indeed, 

there is ample empirical evidence that household spending on electricity is price inelastic, and that 

the expenditure share for electricity, as for other necessity goods, is inversely related to household 

income. For example, according to the German “Sample Survey of Income and Expenditure 2008” 

(StaBuA 2010), a typical German household in the lowest income quintile spends about 3.7 percent 

of its net income on electricity, as opposed to 1.3 percent in the highest income quintile. 

Under such conditions, higher electricity prices raise a relative higher monetary burden on 

households at the lower end of the income distribution. Accordingly, electricity price-raising 

environmental policies are likely to have regressive effects. In this regard, the key element of 

Germany’s climate change policy, the feed-in tariff to promote renewable electricity, is particularly 

interesting. Like in many other industrialized countries, for instance in Australia, Canada/Ontario, 

several US states or Spain, suppliers of green electricity in Germany receive a fixed payment per kWh 

for feeding the generated electricity into the public grid. The tariff is technology specific and depends 

on the year of installation of the generation facility. However, it generally exceeds the electricity spot 

market price, and provides financial incentives for green electricity generation.  The difference 

between subsidy payment and spot market price is shifted to the electricity consumer, who pays a 

levy on top of the consumer price. 1 

The German approach is quite a success story in terms of green-electricity production: the share of 

renewables in the electricity mix increased from seven to 17 percent between 2000 and 2010. 

However, in the same time the subsidy payments rose from 1.2 billion Euro to about 12.3 billion Euro 

(UeNB 2010a, 2010b), associated with an increase of the levy from 0.6 cent per consumed kilowatt-

hour (ct/kWh) to 2.05 ct/kWh. The design and the scope of the subsidy scheme have evoked a hot 

debate on its effectiveness. Critics argue that the feed-in tariff facilitates expensive technologies 

without fostering cost-reducing innovations, while its climate protection effect is nil, because the 

carbon-dioxide emission in Europe are capped by the European emission trading system, and the 

                                                           
1
 Renewable energy policy instruments in Germany are surveyed in Agnolucci (2006). 
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subsidized greening of the electricity mix simply relieves emission permits that are now used 

elsewhere. 2  

Besides effectiveness and efficiency, the distributive effects are another central question in gauging 

the desirability of environmental policies. For the political acceptability of a policy it is decisive who 

gathers its benefits and who bears its fiscal burden. In the late 1980’s, Baumol and Oates (1988, p. 

235) already emphasized the relevance of distributional effects for the evaluation of environmental 

policies:  

“Obviously, the distributive side of externalities policy is of interest in and of itself in 

a world in which inequality and poverty have assumed high priority among social 

issues. In addition, without adequate consideration of this aspect of the matter, we 

may not be able to design policies that can obtain the support they require for 

adoption. Thus, by ignoring the redistributive effects of an environmental policy, we 

may either unintentionally harm certain groups in society or, alternatively, 

undermine the program politically.” 

For such reasons, assessing the redistributive impacts of taxing energy, electricity, carbon or motor 

fuels has gained popularity in the literature. Fullerton (2008) and Parry et al. (2005) provide a review 

of previous works, and identify the economic channels through which the personal income 

distribution may be affected.3 For several OECD countries, studies such as Pearson and Smith (1991), 

Casler and Rafiqui (1993), Brannlund and Nordstrom (2004), Wier et al. (2005), Scott and Eakins 

(2004), Callan et al. (2008), and Grainger and Kolstad (2009) have assessed the redistributive impacts 

of aforementioned environmental taxes. The general finding is that such taxes have mildly regressive 

distributional effects which can further be alleviated by revenue recycling, e.g. lump-sum transfer or 

tax relieves.  

While most empirical studies assess the redistributive effects by comparing households’ monetary 

tax burdens at different points (quintiles, deciles, percentiles) of the income distribution, studies 

using inequality measures to gauge distributive consequences of climate change policy are rare to 

find. The study of Oladosu and Rose (2007) examines the welfare effects of a carbon tax for a 

particular east-coast region in the United States. The reported Gini- and Theil indices evince that the 

tax yields a more equal income distribution, a result quite contrary to the usual findings. Further, 

Jorgenson et al. (1992) assess the distributional impacts of carbon taxes by means of a social welfare 

function. They report a modest regressive effect, while the magnitude varies with the level of 

inequality aversion in the society. Recently, Araar et al. (2011) have conducted a welfare analysis of 

                                                           
2
 Other practical issues include corruption, accounting finagling, or ease of implementation (see Nordhaus 

(2007)). Concerning the design of economically efficient feed-in-tariff see Lesser and Su (2008). Menanteau et 

al. (2003) examine the (static and dynamic) efficiency of different incentive schemes for promoting the 

development of renewable energy. 
3
 For previous literature reviews see IPCC (1995: 419-421), OECD (1995), and Speck (1999) 
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different domestic emission trading systems using Canadian data. Using the Gini index, they find that 

overall “the policy effects on inequality is numerically small” (Araar et al., 2011, p. 239). 

The redistributive effects of Germany’s feed-in tariff have attained surprisingly scant attention so far, 

despite equality, equity, and fairness being deeply rooted in the German society. Germany’s feed-in 

tariff is likely to be regressive, i.e. redistributing income shares from the lower to the upper part of 

the income distribution. Poorer households spend a higher share of their income on electricity than 

wealthy households, and a levy raised proportionally to electricity consumption emphasizes this 

differential. Moreover, the collected revenues are used for subsidizing renewable energy 

installations, investments typically undertaken by wealthier households. 

The quantitative strength of the direct monetary redistributive effect of the feed-in tariff on 

households’ budgets hinges both on households’ electricity demand and the relationship between 

household income and green-electricity investments. We assess this redistributive effect by 

comparing inequality indices computed with and without the direct monetary consequences of the 

feed-in tariff on households’ budgets. As there is no such thing as a “best” inequality index, our 

analysis relies on four well-known measures: the Gini index, the Theil index, the Atkinson index, and 

the 90/10 percentile ratio. All statistics indicate a regressive effect, meaning that Germany’s feed-in 

tariff yields a more unequal income distribution. However, this effect is moderate in quantitative 

terms. 

Our results build on several simplifying assumptions. First, we restrict our attention to the 

distributive effects of the feed-in tariff among households only, though any other investor in green 

electricity – such as utilities or funds –is entitled to receive the subsidy. Second, concerning the 

transfers, we exclusively focus on subsidies paid for solar panels (installed by private households). De 

facto, other forms of production (e.g., wind power) are subsidized as well. Wind power farms are 

often financed by private funds, and typically wealthier persons invest in such funds. Hence, there is 

an indirect way how the feed-in tariff affects the income distribution as well, but we lack information 

about the household's investment portfolio. However, both aforementioned assumptions should 

lead to an underestimation of the tariffs’ regressive effects. Third, behavioral responses and general 

equilibrium effects are ruled out, with ambiguous effects on inequality estimates.4 Fourth, we focus 

on the monetary consequences of the tariff, and thus ignore how other (external) cost and benefits 

may affect social welfare.5 

                                                           
4
 Using Canadian data Araar et al. (2011) show that the inclusion of equilibrium effects of a carbon tax does not 

change its welfare implications. 
5
 A broad discussion of the distribution of benefits is provided Baumol and Oates (1988) or Brooks and Sethi 

(1997). Already in 1978, Harrison and Rubinfeld have examined how the benefits from air pollution control 

strategy are distributed across income classes in the area of Boston. 
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The remainder of the paper outlines as follows. Section 2 introduces the inequality indices underlying 

the empirical analysis. We provide an overview over the used data in Section 3, and the empirical 

assessment of the redistributive effects in Section 4. Section 5 concludes. The paper further includes 

an Appendix, providing details of the data assembly and estimation methodology. 

2. Measuring inequality 

At first instance, the term “inequality” appears to be a somewhat blurry notion since it simply states 

that the distribution of a particular measure (i.e., income, expenditures, or wealth) deviates from a 

state of equality. The distribution of a particular measure is unequal if disparities in the measure exist 

between economic units such as households, individuals, or groups within a society. Inequality 

analyses typically rely on incomes, since economists consider the income distribution, particularly the 

distribution of disposable incomes, as a good proxy for the distribution of living standard. Along 

these lines, this paper selects the households’ disposable incomes to derive the distribution of living 

standard. 

Comparing incomes across households requires the researcher to deal with the empirical fact that 

people living in households which differ in size and material needs. The subsequent paragraph 

describes the conversion of such a heterogeneous household-level distribution into a quasi-

homogeneous distribution. Further, the researcher must decide how to measure inequality, meaning 

the selection of an appropriate inequality index. This sensible issue will be touched in the paragraph 

after next. 

 

Adjusting household income for differences in needs and household weighting 

Inequality analyses are typically based on incomes, as income is interpreted as a close proxy for living 

standard. However, a complication emerges if the population is heterogeneous and household units 

differ in size and needs. Then the same disposable income is associated with different levels of 

material living standard, and an ordering of households by income is not consistent with an ordering 

by material living standard. For example, it is unlikely that a four-member household and a single–

person household, both endowed with the same disposable income of 2,000 Euro per month, attain 

the same material living standard. However, it is also unlikely that the four-person household needs 

four times the income of the one-member household to attain the same standard of material well-

being, since larger households have the ability to share appliances and household equipment. 
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To capture such scale effects, household incomes are adjusted for differences in needs by means of 

equivalence scales, meaning that the household income is divided by the respective equivalence 

scale. Equivalence scales reflect intra-household sharing potentials and differences in family 

members’ needs, and normalize the household income to the needs of a benchmark household, in 

our case a single-person household. In our empirical examination, we use the square root 

equivalence scale (OECD 2011): the number of household members to the power of 0.5. Accordingly, 

the above mentioned four-person household with a household income of 2,000 Euro attains a living-

standard equivalent to a one-member household endowed with an income of 1,000 Euro, i.e. 

2,000/40.5. The result of this operation is a (needs-adjusted) equalized income which can now be 

assigned to each respective household member.6 This procedure transforms the heterogeneous 

distribution of household incomes at the household level in a quasi-homogeneous distribution of 

individuals, which is underlying our inequality analysis. In the quasi-homogeneous distribution, 

income units are comparable in terms of material living standards as income is adjusted for 

differences in needs, and observations are comparable in size as persons are chosen as observation 

unit. 

 

Inequality indices 

The magnitude of income inequality is typically represented by a scalar, an inequality index.7 By 

definition, it condenses all the particularities of an income distribution in a single number. Numerous 

inequality measures have been suggested in the literature, including ad-hoc measures (e.g., Gini 

index and percentile ratios), entropy-based measures (e.g. Theil index), and measures based on 

social-welfare functions (e.g., Atkinson and Dalton index). Each approach and measure possesses 

particular weaknesses and strengths. Accordingly, there is no such thing as a “best” inequality index. 

Moreover, it is not ruled out that two indices yield different rankings of income distributions. For 

these reasons, our inequality analysis builds on a set of four well-known inequality indices: the 90/10 

percentile ratio, the Gini coefficient, the Theil index, and the Atkinson index, all being defined 

subsequently. 

                                                           
6
 Theoretical issues of alternative techniques to convert heterogeneous distributions in quasi-homogeneous 

distributions are discussed in Ebert and Moyes (2003) and Shorrocks (2004), while Bönke and Schröder (2010) 

provide an empirical examination of the role of alternative conversion techniques. 
7
 An alternative (complementary) option is to depict the extent of inequality by means of graphical device such 

as the Lorenz curve or the Parade of Dwarfs. See Cowell (2011) for an overview. 
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90/10 percentile ratio  

The 90/10 percentile ratio is a simple ad-hoc inequality measure. Let iy  be the income of person 

,  1, ,i i n= … . Then the 90/10 percentile ratio measures the range (in relative terms) between the 

income of a person in the 90th ( 90py ) and a person in the 10th percentile ( 10py ) of the income 

distribution: 

( ) 90
9010

10

1 p

p

y
p

y
=

 

For instance, a 90/10 percentile ratio of 9010 4p = indicates that somebody at the 90th percentile has 

an income which is four times higher than the income of somebody who belongs to the 10th 

percentile. 

Gini coefficient  

The Gini coefficient, G , is probably the most frequently used inequality index in applied inequality 

research. Let ( )F y  denote the proportion of the population with income less than or equal to y , 

and let y  denote the mean income of the population. Then ( )yΦ  is the proportion of total income 

received by persons having an income not more than y , with: 

( ) ( ) ( )
0

1
2 ,

y

y zdF z
y

Φ = ∫  

where z  is the integration variable (income). The Lorenz curve ( ),F Φ  graphs the population 

proportion F versus the income proportionΦ . The Gini index is defined as twice the area between 

the line of perfect equality (each household has the same income) and the Lorenz curve: 

( )
1

0

3 1 2 .G dF= − Φ∫  

 

An index value of 0G =  indicates that income is perfectly equally distributed among the units 

(households or individuals), while 1G =  indicates perfect inequality, i.e. one unit possesses all the 

income. The Gini index puts a lot of weight to the middle part of the income distribution, and slowly 

reacts to changes in the top and bottom part of the income distribution. 
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Theil index  

The Theil index belongs to the family of generalized entropy indices and is defined as 

( )
1

1
4 log

n
i i

i

y y
T

n y y=

 
=  

 
∑ . 

Entropy-based inequality measures rely on an analogy between inequality analysis and information 

theory. Information theory assigns probabilities to events and values the information that an event 

has occurred. The lower the probability for an event, the more weight is assigned to the information 

that the event has been observed. Theil has suggested a re-interpretation of the entropy concept: 

Events are interpreted as economic units (people or households) and probabilities as the income 

shares of the households from total income. The Theil index thus assigns a higher weight to low-

income units than to high-income units. 

Atkinson index  

The Atkinson index explicitly relies on a particular type of social welfare function (SWF). The SWF 

reflects a society’s preference towards (in)equality, generally meaning that the valuation a society 

gives to a person’s income decreases with the increase of the person’s economic position. The SWF is 

defined as  

( ) ( )
1

1
1

1
5 ,...,

1

n
i

n
i

y
W y y

ε

ε

−

=

−
=

−∑  when 1ε ≠  and 0ε > , and 

( ) ( )1
1

,..., ln
n

n i
i

W y y y
=

=∑  for 1ε = . 

The parameter ε  captures the degree of inequality aversion in the society. The higher is ε , the 

more sensitive to inequality is the society. The Atkinson index is defined as  

( )6 1
EDE

A
y

ε
ε = − , 

where EDEε  denotes the equally-distributed-equivalent income. EDEε  provides the level of 

income per head which, if equally shared, would generate the same level of social welfare as the 

observed distribution and is defined as:  

( )
( )1 1

1

1

1
7

n

i
i

a EDE y
n

ε
ε

ε

−

−

=

 
=  
 
∑ , when 1ε ≠  and 0ε > , and  
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( ) ( )
1

1
7 ln

n

i
i

b EDE y
nε

=

=∑ , when 1ε = .  

Figure 1 gives a graphical representation of the idea underlying the Atkinson index. Point A depicts 

the distribution of income for two individuals, ( )1,0 2,0,y y . The related level of social welfare is 

represented by the social indifference curve, while the shape of the indifference curve is triggered by 

the parameter ε . Income would be perfectly equally distributed along the diagonal line. Associated 

with the observed incomes ( )1,0 2,0,y y  is the mean income y . Since the society dislikes inequality, 

social welfare would increase if y  were distributed equally (point C). On the other hand, EDE  

captures an equally distributed income that yields an equivalent level of social welfare as the original 

income distribution (point B). Hence, the distance between B and C is the amount of welfare a 

society is willing to sacrifice for reducing inequality, and the Atkinson index measures the percentage 

of mean income the society is willing to give up. 

 

Figure 1 about here 

 

Properties of inequality indices 

A set of five key principles has been suggested in the inequality literature: weak/strong principle of 

transfers, income scale independence, population principle, and decomposability.8 We proceed with 

an introduction of the principles, and then summarize the properties of the aforementioned four 

indices. 

Weak principle of transfer (WPT)  

Let an income distribution A  be achieved by a simple redistribution of income from a distribution 

B , holding total income constant and ensuring that the Lorenz curve for A  lies wholly inside that of 

B . Then, inequality measures that comply with WPT always indicate strictly less inequality for 

situation A  than for B . 

                                                           
8
 Of course, the list of principles is not exhaustive. Other principles touch the issue of sensitivity of inequality 

measures to transfers in different parts of the income distribution (e.g., Shorrocks and Foster (1987)), or to 

isolated income changes (e.g., Barett and Salles (1998)), or deal with the issue of household-type heterogeneity 

(e.g., Ebert (2007), Shorrocks (2004), and Ebert and Moyes (2003)). For further details, see Cowell (2011, 

Chapter 3 and also pp. 186f). 
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Strong principle of transfer (SPT)  

SPT requires that the inequality reduction due to an income transfer from a rich person to a poor 

person depends on the difference between the two persons’ income. It does not matter which two 

individuals are involved in the transfer. 

Principle of income scale independence (ISI)  

An index complies with ISI if the index depends on the distribution of total income but not on the 

actual level of total income. More precisely, if every person’s income changes by the same 

proportion, then the level of measured inequality should remain unchanged. 

Population principle (PP) 

An index meets PP if it depends on the distribution of total income but not on the number of persons 

in the population. Accordingly, if we merge two identical income distributions, inequality is 

unchanged if the index satisfies PP. 

Decomposability (D) 

Finally, according to D, the total inequality in an income distribution can be expressed as a function 

of inequality within its subgroups (e.g., household types) and inequality between the subgroups. 

 

The properties of the used inequality measures are summarized in Table 1. Percentile ratios satisfy ISI 

and PP, yet violate both transfer principles and D. The Gini index satisfies WPT, ISI, and PP, but it fails 

to satisfy SPT and D. The Atkinson satisfies WPT, ISI, PP, and D but fails to meet SPT. Only the class of 

generalized entropy measures simultaneously satisfy WPT, SPT, ISI, PP and D. 

 

Table 1 about here 

 

3. Data set 

Our data are drawn from the German Residential Energy Consumption Survey (GRECS 2008), a 

sample of 6,714 households, surveyed in spring 2010. GRECS provides socio-demographic 

information about household characteristics such as the household size, disposable income, age and 

education of the household head, and the accommodation. Further, information on households’ 

annual electricity consumption and whether a household owns solar panels is reported. Such data 

are crucial for our purposes, and GRECS is the only household micro database including all the 
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information jointly.9 From annual electricity consumption we can quantify the levy burden. 

Ownership of solar panels indicates whether households generate revenues from the feed-in subsidy 

scheme. 

Electricity consumption 

Table 2 provides summary statistics for households’ annual electricity consumption, decomposed by 

disposable income classes. The second column provides the number of observations in our data set, 

pertaining to the particular income class in 2008. The third column depicts mean electricity 

consumption in the income class, while the fourth column reports the range of the respective 95% 

confidence interval. Results from Table 2 clearly indicate that electricity consumption rises with 

income. For instance, in 2008 the typical household with a monthly income below 500 Euro 

consumed on average 1,915 kWh of electricity compared with more than 4,000 Euro when 

disposable income exceeds 4,000 Euro. However, the relationship of electricity consumption and 

income, as indicated by the third column, is not proportional: While households in the highest 

income class possess an income at least eight times higher as households in the lowest class, their 

electricity consumption is only twice as high. Complying with Engel's law, electricity consumption 

increases in income but its expenditure share declines (i.e. the income elasticity is between zero and 

one). These numbers confirm that electricity – like food, water and gas – is a necessity good.  

 

Table 2 about here 

 

Levy payment 

The German feed-in tariff is funded by a levy on top of the consumer electricity price. The last two 

columns of Table 2 give the results of a back-of-the-envelope calculation to assess the levy payment 

of a typical household in each income class. In 2008, a levy of 1.1 ct per consumed kWh was charged, 

and the typical household in the second income class consumed on average 2,012 kWh. Accordingly, 

these households paid a levy of about 22.13 Euro per year. Since the levy is strictly connected to the 

electricity consumption, the absolute level of levy paid by the households rises with income, while 

the levy-induced monetary burden relative to income decreases with household disposable income. 

The GRECS survey includes electricity billing data, but not all interviewed households provide their 

consumption data. The figures reported in Table 2 rely on 2,594 households. In the inequality 

                                                           
9
 For example, Germany’s Sample Survey of Income and Expenditure contains „expenditures on electricity“ as a 

variable, yet no information on equipment with solar panels. 
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analysis, we have imputed electricity consumption and resulting annual levy payment for all 

households where the information is missing using the correlation between household size, occupied 

living space and electricity consumption. More precisely, we run ordinary least square regressions for 

electricity consumption on dwelling and household size, and use the predicted values to impute 

electricity consumption in case of missing information. For details see the Appendix. 

Solar facilities: distribution of ownership 

Households consume electricity but also they may produce green electricity, for instance if they have 

solar panels installed on their roofs. We expect a positive relationship between the household’s 

disposable income, the size and the quality of the household’s accommodation, and the endowment 

with a solar installation. While less wealthy households typically rent a dwelling, and have little 

opportunity to install a solar panel, wealthy households are more likely to live in their own property, 

and have space and money to invest in such panels. Table 3 provides some evidence in support of 

this hypothesis. The columns show the monthly disposable household income, starting from below 

500 Euro in the first column until 4,500 Euro (and more) in the last column. The percentage of 

households having a solar installation on their roof amounts to 3% in the lowest income category. 

This share rises in income: About 21% of the households belonging to the highest income category 

(meaning at least 4,500 Euro per month as disposable income) possess solar panels. We measure the 

association between the (categorical) income and whether the household has a solar installation 

(binary information) by Cramér’s V , 

( )
( )

( )( )

2

8 , 0 1
min , 1

ij ij ij
i j

n e e

V V
N r c

−

= ≤ ≤
⋅ −

∑∑
,  

where ijn  denotes the number of observations in row i  and column j of a contingency table, 

( ). .ij i je n n N= ⋅  is the expected number of observations when variables are uncorrelated with N  

giving the total number of observations, and ( )min ,r c  is the minimum of the number of rows and 

columns. In our case, the correlation between income category and the possession of solar panels is 

0.1. However, the quantitatively small number should not be interpreted as a weak correlation. As 

can be seen from the definition of Cramér’s V , its upper limit is less than 1.0 when numbers of rows 

and columns are different, which is the case as we have a two item variable for ownership of solar 

panels (yes, no) but a ten item variable for income. 

 

Table 3 about here  
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Solar facilities: costs and revenues 

Households receive payments from the feed-in tariff scheme if they feed generated electricity into 

the public grid. GRECS provides information about the household’s dwelling characteristics, whether 

the building is equipped with solar panels, and the installation year of the panels. If a household 

owns the occupied dwelling and is equipped with solar panels, a net return from the panel has been 

calculated based on the following assumptions: (a) the size of the solar panel is 30 square meters, (b) 

electrical efficiency is 0.13 kilowatts per square meter, and (c) solar radiation is 900 kWh per year 

and square meter. Accordingly, we assume a capacity of 4 kilowatts peak per installed solar facility, 

yielding a supply of 3,510 kWh per year. Each produced kWh generates revenues from the feed-in 

tariff, while the actual subsidy per kWh depends on the year of facility installation. The payment 

dwindles over time, starting with 57.4 cent per generated kWh for installations made before 2005 

and reaching 43.0 cent/kWh for installations made in 2009. Investment costs also depend on the 

year of installation, starting from 4,000 Euro per kW capacity in 2006 and reaching 3,400 Euro/kW 

capacity in 2009. 10 We annualize investment costs over 20 years (the time span the subsidy is 

guaranteed) with an interest rate of 3.9%. Received subsidy payments minus annualized investment 

costs yields the yearly net return of the solar installation, which we add to the household’s 

disposable income. 

Income imputation 

Unfortunately, it is not possible to assess the feed-in tariffs redistributive effects from GRECS directly, 

as household income is not provided as a continuous variable. Instead, income is provided by a 

categorical variable, indicating whether the household’s disposable income belongs to a particular 

income class. To circumvent the limitations arising from the categorical information, we transform 

the income data into a continuous variable: An auxiliary data set provides information on household 

income in continuous form, from which we estimate a household-type specific income distribution 

for Germany. We impute a household income in the GRECS data set from the fitted income 

distribution using a bootstrap procedure. The Appendix describes the imputation procedure in detail. 

We choose 1,000R =  bootstrap replications, where each replication generates an imputed income 

for every household and an according bootstrap income distribution. In the subsequent analysis we 

precede with these imputed bootstrap distributions. 

                                                           
10

 Investment costs are surveyed on a regular basis by the respective solar industrial association. For more 

information, see www.solarwirtschaft.de/preisindex. 
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4. Empirical assessment of the feed-in tariffs’ redistributive effects 

The starting point for our distribution analysis is a benchmark scenario, where we compute inequality 

indices from the disposable income distribution without any adjustment for the feed-in tariffs 

distributional effects. Departing from the inequality estimates for the benchmark scenario, we assess 

the tariffs’ distributional effects for several alternative scenarios. More precisely, for any alternative 

scenario, we adjust the income distribution for the levy burden and the provided feed-in payments 

from solar panels, and re-calculate the inequality indices. Then we gauge the distributional effects of 

the feed-in tariff scheme by comparing the adjusted income distribution in the scenarios with the 

benchmark.  

Defining the scenarios 

Our first scenario involves the distributional effects in year 2010, when a levy of 2.05 ct per 

consumed kWh electricity was charged. We then precede our investigation with 2011 with a levy of 

3.53 ct/kWh. For future periods no “official” point estimates for the levy are published yet, so that 

we have extrapolated the relative increase of the levy for 2012 to 2015. In this respect, we use 

forecasts of generation and associated feed-in remunerations for renewable electricity, forecasts of 

the revenues from selling the provided electricity at the spot market, and estimates of the future 

electricity end-use consumption, in order to assess a likely future path of the levy charge (Table 4). 

To be more specific, it is expected that about 93.7 TWh of renewable electricity will be supplied in 

2011, and the associated remunerations reach about 15.6 billion Euro. Selling this amount of 

electricity yields revenues of 5.5 billion Euro, so that 10.1 billion Euro must be financed via levies to 

be paid by the consumers. Dividing the funding gap of 10.1 billion Euro by the expected electricity 

end-use consumption of 407 TWh, we end up with an estimate for the levy in 2011 of 2.5 ct per kWh 

consumed electricity. The same calculation for the year 2012 yields a levy of 2.8 ct per kWh, an 

increase of more than 13%. However, since the actual levy charged in 2011 is 3.53 ct per kWh, an 

increase of 13% implies a levy of 4.0 ct/kWh. We update the 2012 estimate accordingly, and cross-

check our estimate with the computations of the authority responsible for fixing the levy. While the 

authority expects the levy being in the interval 3.4 ct per kWh to 4.4 ct per kWh (UeNB 2010c), our 

estimate of 4.0 ct/kWh is exactly central in this interval.  

For the future periods 2013 to 2015 the levy estimate can be computed in a like manner. For 2013, 

we estimate the levy to reach 4.3 ct/kWh, reaching 4.6 ct/kWh in 2014, and 4.9 ct/kWh in 2015. 

Since we lack external information about a reasonable interval for the levy in future periods, we are 

unable to cross-check our computations. Table 4 summarizes the scenario set-up. 
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Table 4 about here 

 

Having determined a likely path for the levy levels in future years, the annual levy payments for each 

and every household must be determined. The easiest way is to assume a price inelastic demand for 

electricity, and thereby neglecting any responsiveness of consumer behavior to price changes. 

Though this assumption might appear strong, it is supported by the low price elasticities reported in 

previous studies. For example, Narayan et al. (2007) find a short-run price elasticity of -0.1068 for 

residential demand elasticities in G7 countries. For Swiss households Fillippini (1999) has estimated a 

price elasticity of -0.3, and according to Boonekamp (2007), households in the Netherlands exhibit a 

smaller price responsiveness with an elasticity of -0.13. Thus, electricity demand seems to be highly 

inelastic, at least in the short run and for reasonable price variations as in our scenarios. 

We hence fix households electricity consumption at the 2008 values, and calculate for every 

household in our data set the respective total annual cost associated with the levy. That means, a 

household consuming e.g. 2 000 kWh per year paid 22 Euro as levy in 2008, the levy cost will amount 

to 70.60 Euro in 2011, and will add up to 98 Euro in 2015. 

 

Results 

The distributional effects of Germany’s feed-in tariff are summarized in Table 5. The scenarios appear 

row-wise: In the benchmark scenario, inequality estimates are derived from the distribution of 

equalized disposable incomes before levy and fee-in tariff related transfers to owners of solar panels. 

In the adjacent two rows follow the 2010 scenario with a levy of 2.05 ct/kWh, and the 2011 scenario 

with a levy of 3.53 ct/kWh. Underneath appear the results of three scenarios for year 2012. These 

three scenarios reflect forecasts of an upper and a lower bound of the levy according to the 

responsible grid authority (UeNB 2010c), and also our own projection, which is exactly centered in 

this interval. The last three rows contain the scenarios for 2013 to 2015, where we expect the levy to 

rise from 4.3 ct/kWh to 4.9 ct/kWh. 

For each scenario, seven measures are provided, appearing column-wise, the 90/10 percentile ratio, 

the Gini and Theil index, and the Atkinson index with inequality aversion parameters 0.5, 1.0, and 

2.0. For each measure, two statistics are provided: the estimator of the mean, and the 95 percent 

bootstrap confidence interval (appearing in brackets underneath). We have also computed 

percentage deviations from the benchmark scenario for each and every measure (appearing in 

parentheses). For example, take the 2011 scenario. Here the bootstrap mean of equalized income, 
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= ∑ , is 20,016 Euro. The brackets underneath provide the respective 95 percent 

confidence interval derived from the vector 
1 1000,...,y y . The value in parentheses indicates that 

levies and transfers leads to a 0.296% reduction of mean equalized disposable income compared 

with the benchmark scenario. 

 

Table 5 about here 

 

In all alternative scenarios, mean equalized disposable income falls below its benchmark level. For 

example, while the average loss of equalized disposable income amounted to 25 Euro in year 2010, it 

is expected to be 59 Euro in 2011, and 90 Euro in year 2015. The drop in equalized income is due to 

the fact that levy-related fiscal revenues are transferred back to renewable energy producers in 

general and irrespective of the type of production (e.g., solar panels vs. windmills), while the present 

analysis solely considers transfers to private solar-panel owners. 

The corresponding distributional effects are captured by the associated inequality indices. Except the 

90/10 percentile ratio which always exceeds 1.0, all indices are multiplied with a factor of 100. As can 

be seen from the 90/10 percentile ratios, the feed-in tariff broadens the income divide between the 

bottom and the top of the distribution: While in the benchmark scenario the equalized disposable 

income of high-income households (90th percentile) is 3.259 times the income of low income 

households (10th percentile), the factor increases to 3.272 in the 2011 scenario and to 3.285 in the 

2015 scenario. There are two basic causes explaining the rise of the 90/10 percentile ratio. First, 

electricity is a necessity good with an expenditure share which is decreasing in income. Accordingly, 

relative to income, the levy induced monetary loss is higher at the bottom compared to the top of 

the distribution. Second, the fraction of households owning solar panels is increasing in income. 

Accordingly, revenues accrue especially at the top of the distribution.  

The results for the 90/10 percentile ratio indicate that Germany’s feed-in tariff scheme is associated 

with a regressive effect on the distribution of equalized disposable income. This result is reconfirmed 

by the other inequality indices. The Gini index suggests that the regressive effect is quantitatively 

small. The bootstrap estimator of the mean is 27.092% in the benchmark scenario, and even in the 

2015 scenario, the scenario with the highest levy, it has risen only by 0.518% to a level of 27.232%. 

However, when interpreting the result it should be kept in mind that the Gini index puts a lot of 

weight to the middle part of the income distribution, and thus is insensitive to changes at the very 
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bottom and top. The Theil index, for example, is more sensitive to the redistributive effects of the 

feed-in tariff scheme: In the 2015 scenario, it is 1% higher as in the benchmark. 

The Atkinson index allows an assessment of distributional effects for different levels of inequality 

aversion, as captured by the parameter ε . In a society with low preferences against income 

inequality (i.e., 0.5ε = ), inequality increases by 1.02% from the benchmark to the 2015 scenario. In 

a society with a higher inequality aversion (e.g. 1.0ε = ), the change in the Atkinson index amounts 

to 1.04%, and respectively to 1.10% if 2.0ε = . 

The results from Table 5 indicate that the regressive effect rises with the levy level. Figure 2 gives 

supporting evidence, where we have plotted our inequality indices against the levy levels (in 

ct/kWh). The solid lines give the bootstrap estimate of the mean index, while the grey lines indicate 

the 95 percent confidence interval. For all four indices, we find an almost linear relationship between 

the levy and the level of measured inequality.  

 

Figure 2 about here 

 

The changes in the equally-distributed-equivalent income, EDE , provide a numerical 

representation of the additional welfare loss due to increasing income inequality. Remember from 

Figure 1 that y  is the mean equalized income of a particular scenario, and is documented in column 

1 in Table 5. By contrast, EDE  captures the (equalized) income that gives rise to the same level of 

social welfare like the actual income distribution but is equally distributed among the members of 

the population. If a society has preferences in favor of a more equal income distribution, y EDE>  

and the differences denotes the social welfare loss (in monetary terms) that arise due to the 

inequality in the income distribution. In other words: a society is willing to sacrifice y EDE−  in per 

capita income, in order to reduce income inequality. By rearranging equation (6) to 

( ) ( )6 ' 1EDE A yε ε= −  

it follows that 

( )1

,

EDE y A y y

EDE y A y

y EDE A y

ε ε

ε ε

ε ε

− = − −

− = −

− =
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which can be calculated from the Atkinson index and the mean equalized income, both provided in 

Table 5. By comparing the magnitude of this difference over the several scenarios, we are able to 

gauge whether the regressive effects of the feed-in tariff are of political relevance or too small to be 

of importance.  

Table 6 illustrates the welfare loss due income inequality. In the benchmark scenario, the welfare 

loss amounts to 1,245 Euro up to 4,507 Euro, depending on the level of inequality aversion in the 

society. The table also reveals the additional welfare losses resulting from the regressive effects of 

the feed-in tariff scheme. Consider for example the 2011 scenario. The levy of 3.53 ct/kWh and the 

subsidy payments to the owners of photovoltaic panels increase income inequality compared to the 

benchmark scenario. To remove this additional incurred inequality, the society is willing to sacrifice 

about 6 Euro to 23 Euros per capita, depending on the level of inequality aversion. In the 2005 

scenario with a levy of 4.9 ct/kWh, the additional loss of welfare due to the increase income 

inequality is 7 Euros to 29 Euros. These additional welfare losses are very moderate. Yet, they come 

in addition to the reductions in mean disposable income. 

 

Table 6 about here 

 

5. Concluding remarks 

There are dissenting views on the design and success of Germany’s feed-in tariff scheme to promote 

renewable electricity generation. Advocators emphasize that it is appealing having led to a 

substantial rise of the share of renewable fuels in the electricity mix. By contrast, critics argue that 

the system is costly and inefficient. From a neutral position we can state that the share of renewable 

fuels in the electricity mix increased under the regime of the feed-in tariff from seven percent in 

2000 to about 17 percent in 2011, but also imposed substantial cost to the electricity consumer due 

to subsidizing renewables. 

This paper analyzes the question whether the feed-in tariff scheme increases income inequality in 

the society and thereby conflicts with the general social goal to reduce disparities in peoples’ 

disposable incomes. We use four well-established inequality indices to assess the redistributive 

impacts of the feed-in tariff on the income distribution. All our calculations indicate that Germany's 

feed-in tariff is regressive, but that the redistributive effect is quantitatively small. From this general 

point of view, there is little doubt concerning the feed-in-tariff’s political acceptability and 
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performance. At the same time, we would like to point out that the tariff reduces the disposable 

incomes of households positioned at the very bottom of the distribution, and this may be viewed as 

particularly problematic: As electricity has characteristics of a necessity good, it cannot easily be 

substituted, and related expenditures make up a substantial fraction of low income households’ 

budgets. 

One last but very important point has to be stressed. The electricity consumers in Germany fund a 

subsidy system that redistributes about 13 billion Euro in 2011, with rising tendency. Our analysis 

shows that the per-capita contribution to this funding is minor from a distributional point of view. 

This paper does not contribute to the discussion whether the feed-in tariff attains its goals in a cost-

efficient way. But we do believe that it must be a foregone conclusion to make the most of the 

electricity consumer’s money in terms of renewable electricity. 

 



20 

 

References 

AGEB (2011): Bruttostromerzeugung in Deutschland von 1990 bis 2010 nach Energieträgern, 

Updated: 10.05.2011, Arbeitsgemeinschaft Energiebilanzen, Berlin. Internet: http://www.ag-

energiebilanzen.de/viewpage.php?idpage=65. 

Agnolucci, P. (2006): Use of Economic Instruments in the German Renewable Electricity Policy, 

Energy Policy, 34, 3538-3548. 

Araar, A., Dissou, Y., and J.-Y. Duclos (2011): Household Incidence of Pollution Control Policies: A 

Robust Welfare Analysis using General Equilibrium Effects, Journal of Environmental Economics and 

Management, 61, 227-243. 

Baumol, W.J., and W.E. Oates (1988): The Theory of Environmental Policy, New York: Cambridge 

University Press, 2nd Edition. 

Biewen, M., and S.P. Jenkins (2005): A Framework for the Decomposition of Poverty Differences with 

an Application to Poverty Differences between Countries, Empirical Economics, 30, 331-358. 

Bönke, T., and C. Schröder (2010): Country Inequality Rankings and Conversion Schemes, Discussion 

Papers of DIW Berlin, 1068. 

Boonekamp, P.G.M. (2007): Price Elasticities, Policy Measures and Actual Developments in 

Household Energy Consumption – A Bottom Up Analysis for the Netherlands, Energy Economics, 29, 

133–157. 

Brachmann, K., Stich, A., and M. Trede (1996): Evaluating Parametric Income Distribution Models, 

Allgemeines Statistisches Archiv (“AStA Advances in Statistical Analysis”), 80, 285-298. 

Brannlund, R. and J. Nordstrom (2004): Carbon Tax Simulation Using a Household Demand Model, 

European Economic Review, 48, 211-233. 

Brooks, N., and R. Sethi (1997): The Distribution of Pollution: Community Characteristics and 

Exposure to Air Toxics, Journal of Environmental Economics and Management, 32, 233-250. 

Callan, T., S. Lyons, S. Scott, R.S.J. Tol, and S. Verde (2008): The Distributional Implications of a 

Carbon Tax in Ireland, ESRI Working apper 250, Economic and Social Research Institute, Dublin, 

Ireland. 

Casler, S.D., and A. Rafiqui (1993): Evaluating Fuel Tax Equity: Direct and Indirect Distributional 

Effects, National Tax Journal, 46, 197-205. 



21 

 

Cowell, F.(2011): Measuring Inequality, London School of Economics Perspectives in Economic 

Analysis, Oxford University Press, Princeton, Oxford. 

Dinan, T., and D. Lim Rogers (2002): Distributional Effects of Carbon Allowance Trading: How 

Government Decisions Determine Winners and Losers, National Tax Journal, 55, 199-221. 

Ebert, U., and P. Moyes (2003): Equivalence Scales Reconsidered, Econometrica, 71, 319-343. 

Fillippini, M. (1999): Swiss Residential Demand for Electricity, Applied Economics Letters, 6, 533-538. 

Fullerton, D. (2008): Distributional Effects of Environmental and Energy Policy, NBER Working Paper, 

14241. 

Grainger, C.A., and C.D. Kolstad (2009): Who Pays a Price on Carbon?, NBER Working paper, 15239, 

National Bureau of Economic Research, Cambridge. 

Harrison, D., and D.L. Rubinfeld (1978): The Distribution of Benefits from Improvements in Urban Air 

Quality, Journal of Environmental Economics and Management, 5, 313-332. 

IPCC (1995): Climate Change 1995 - Economic and Social Dimensions of Climate Change, Contribution 

of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate 

Change, Cambridge University Press, Cambridge. 

Jenkins, S.P. (2004): Fitting Functional Forms to Distributions, Using ML. Presentation at Second 

German Stata Users Group Meeting, Berlin.  http://www.stata.com/meeting/2german/Jenkins.pdf 

Jorgenson, D.W, D.T. Slesnick, and P.J. Wilcoxen (1992): Carbon Taxes and Economic Welfare, 

Brookings Papers on Economic Activity, Microeconomics, 393-431. 

Kleiber, C., and S. Kotz (2003): Statistical Size Distributions in Economics and Actuarial Sciences, John 

Wiley: Hoboken, NJ. 

Lesser, J.A., and X. Su (2008): Design of an Economically Efficient Feed-in Tariff Structure for 

Renewable Energy Development, Energy Policy, 981-990. 

Menanteau, P., Finon, D., and M.-L. Lamy (2003): Prices versus Quantities: Choosing Policies for 

Promoting the Development of Renewable Energy, Energy Policy, 31, 799-812. 

McDonald, J.B. (1984): Some Generalized Functions for the Size Distribution of Income, 

Econometrica, 52, 647-663. 



22 

 

McDonald, J.B. and J.X. Yexiao (1995): A Generalization of the Beta Distribution with Applications, 

Journal of Econometrics, 66, 133-152. 

Narayan, P.K., Smyth, R., and A. Prasad (2007): Electricity Consumption in G7 Countries: A Panel 

Cointegration Analysis of Residential Demand Elasticities, Energy Policy, 35, 4485–4494. 

Nordhaus, W.D. (2007): To Tax or Not to Tax: Alternative Approaches to Slowing Global Warming, 

Review of Environmental Economics and Policy, 1, 26-44. 

OECD (1995): Climate Change, Economic Instruments and Income Distribution, Organisation for 

Economic Co-Operation and Development, Paris. 

OECD (2011): http://www.oecd.org/dataoecd/61/52/35411111.pdf 

Oladosu, G., and A. Rose (2007): Income Distribution Impacts of Climate Change Mitigation Policy in 

the Susquehanna River Basin Economy, Energy Economics, 29, 520-544. 

Parry, I.W., Sigman, H., Walls, M., and R.C.I. Williams (2005): The Incidence of Pollution Control 

Policies, NBER Working Papers, 11438. 

Sala-i-Martin, X. (2006): The World Distribution of Income: Falling Poverty and ... Convergence, 

Period, The Quarterly Journal of Economics, 121, 351-397. 

Shorrocks, A. (2004): Inequality and Welfare Evaluations of Heterogeneous Income Distributions, 

Journal of Economic Inequality, 2, 193-218. 

Scott, S. and J. Eakins (2004): Carbon Taxes: Which Households Gain or Lose?, ERTDI Report Series, 

No.20, Environmental Protection Agency, Johnstown Castle. 

Speck, S. (1999): Energy and Carbon Taxes and Their Distributional Implications, Energy Policy, 27, 

659-667. 

UeNB (2010a): EEG-Jahresabrechnungen Entwicklung 2000 bis 2009, Updated: 26.07.2010, 

Informationsplattform der Deutschen Übertragungsnetzbetreiber, Internet: http://www.eeg-

kwk.net. 

UeNB (2010b): Aktuelle Angaben der Übertragungsnetzbetreiber zu den Einnahmen- und Ausgaben-

positionen nach § 3 AusglMechV i.V. mit § 6 AusglMechAV, Updated: 31.12.2010, Informations-

plattform der Deutschen Übertragungsnetzbetreiber, Internet: http://www.eeg-kwk.net. 

UeNB (2010c): Prognose der EEG-Umlage 2012 nach AusglMechAV - Prognosekonzept und 

Berechnung der ÜNB, Updated 15.11.2010, Internet: http://www.eeg-kwk.net.  



23 

 

Wier, M., K. Birr-Pedersen, H.K. Jacobsen, and J. Klok (2005): Are CO2 Taxes Regressive? Evidence 

From the Danish Experience, Ecological Economics, 52, 239-251. 



 
 
Figure 1. Equally-distributed-equivalent income (EDE) 
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Note. Database is GRECS. Own calculations. Solid line indicates the mean of bootstrap estimators, grey lines the 95 percent confidence interval. 
Figure 2. Distributional effects of levy variation 



Table 1. Properties of Inequality Measures 
 Percentile ratio Gini Theil Atkinson 
Principle of 
Transfer 

No Weak Weak and Strong Weak 

Income Scale 
Independence 

Yes Yes Yes Yes 

Population 
Principle 

Yes Yes Yes Yes 

Decomposability 
Principle 

No No Yes Yes 

Source: Cowell (2011). 
 
 
Table 2. Electricity Expenditures and Levy Cost 

Electricity Consumption 2008 Annual levy 2008 Monthly 
disposable  

income 

Number 
of obs. Mean in kWh 

95% confidence 
interval 

Mean in Euro 
95% confidence 

interval 
< 500 € 9 1 915 [± 1 048] 21.06 [± 11.53] 
500 € and  
below 1 000 € 

122 2 012 [± 180] 22.13 [± 1.98] 

1 000 € and  
below 1 500 € 

236 2 240 [± 165] 24.65 [± 1.82] 

1 500 € and  
below 2000 € 

327 2 560 [± 165] 28.16 [± 1.81] 

2 000 € and  
below 2 500 € 

363 3 011 [± 167] 33.12 [± 1.84] 

2 500 € and  
below 3 000 € 

368 3 607 [± 199] 39.68 [± 2.19] 

3 000 € and  
below 3 500 € 

280 3 558 [± 201] 39.14 [± 2.21] 

3 500 € and  
below 4 000 € 

188 3 912 [± 260] 43.03 [± 2.86] 

4 000 € and  
below 4 500 € 

153 4 102 [± 297] 45.12 [± 3.27] 

4 500 € and  
above 

259 4 555 [± 260] 50.10 [± 2.86] 

Note. Database is GRECS. 
 
 



Table 3. Relationship between income and solar installation 
Income  
(in €) 

< 500 
500 -
999 

1 000 - 
1 499 

1 500 - 
1 999 

2 000 - 
2 499 

2 500 - 
2 999 

3 000 - 
3 499 

3 500 – 
3 999 

4 000 - 
4 499 

4 500 
and 

more 
Fraction of 

owners 
3% 2% 6% 10% 12% 14% 11% 11% 11% 21% 

Note. Column-wise the monthly disposable income; the second row refers to the percentage of households in the 
respective income category owing a solar installation. Association between income and solar installation as 
measured by Cramér’s V is 0.1. 
 
 
Table 4. Levy Calculation 
  2011 2012 2013 2014 2015 
Renewable 
Generation  

[TWh] 92.3 99.1 104.4 112.1 117.6 

Feed-In Payments [bn. €] 15.6 17.4 18.4 19.7 20.4 
Sales Revenues [bn. €] 5.5 6.0 6.3 6.7 7.1 
Financial Gap [bn. €] 10.1 11.4 12.1 13.0 13.3 
Electricity End-Use 
Consumption  

[TWh] 407.8 408.1 404.5 399.0 392.8 

Row 4 / Row 5 [ct/kWh] 2.5 2.8 3.0 3.2 3.4 
Change to 2011  - +13.3% +21.3% +31.3% +37.3% 
Levy  [ct/kWh] 3.53 3.99 4.28 4.64 4.85 
Note: The levy actually charged in 2010 was 2.05 ct/kWh and 3.53 ct/kWh in 2011. The responsible authority 
expects the levy 2012 to be in the interval 3.4 ct/kWh to 4.4 ct/kWh (UeNB 2010c). Our estimate for 2012 of 
3.99 ct/kWh is centred in this interval. For 2013 to 2015 we lack respective reference values. 
 
 
 
 



 
Table 5. Distributional effects in different scenarios 

Scenario  Equalized income p90/p10 Gini Theil Atkinson 0.5 Atkinson 1.0 Atkinson 2 
BE of mean 
(variation in %)  

20 075 3.259 27.092 13.269 6.204 11.827 22.452 
benchmark 

Conf. Interval [20 071; 20 078] [3.258; 3.262] [27.078;27.101] [13.264; 13.303] [6.199; 6.215] [11.817; 11.841] [22.435;22.463] 
BE of mean 
(variation in %) 

20 050 (-0.126) 3.272 (0.400) 27.158 (0.243) 13.330 (0.462) 6.233 (0.472) 11.885 (0.484) 22.565 (0.502) 2010 
(2.05 ct/kwh) 

Conf. Interval [20 045; 20 053] [3.271; 3.274] [27.145; 27.167] [13.320; 13.366] [6.229; 6.243] [11.876; 11.897] [22.550; 22.580] 
BE of mean 
(variation in %) 

20 016 (-0.296) 3.279 (0.601) 27.196 (0.385) 13.367 (0.741) 6.251 (0.753) 11.918 (0.771) 22.634 (0.811) 2011 
(3.53 ct/kwh) 

Conf. Interval [20 011; 20 019] [3.278; 3.281] [27.183; 27.206] [13.358; 13.403] [6.246; 6.261] [11.910; 11.931] [22.619; 22.649] 
BE of mean 
(variation in %) 

20 019 (-0.281) 3.278 (0.583) 27.193 (0.373) 13.364 (0.716) 6.249 (0.729) 11.915 (0.745) 22.628 (0.784) 2012 (low) 
(3.4 ct/kwh) 

Conf. Interval [20 014; 20 022] [3.277; 3.281] [27.180; 27.202] [13.354; 13.400] [6.245; 6.259] [11.907; 11.928] [22.613; 22.643] 
BE of mean 
(variation in %) 

20 005 (-0.350) 3.281 (0.668) 27.209 (0.431) 13.379 (0.830) 6.256 (0.843) 11.929 (0.862) 22.656 (0.909) 2012 
(4.0 ct/kwh) 

Conf. Interval [20 000; 20 008] [3.280; 3.284] [27.196; 27.218] [13.370; 13.415] [6.252; 6.267] [11.920; 11.942] [22.641; 22.672] 
BE of mean 
(variation in %) 

19 996 (-0.395) 3.283 (0.723) 27.219 (0.470) 13.389 (0.905) 6.261 (0.920) 11.938 (0.940) 22.675 (0.994) 2012 (high) 
(4.4 ct/kwh) 

Conf. Interval [19 991; 19 999] [3.282; 3.285] [27.206; 27.228] [13.380; 13.425] [6.257; 6.271] [11.930; 11.951] [22.660; 22.691] 
BE of mean 
(variation in %) 

19 998 (-0.384) 3.282 (0.709) 27.217 (0.460) 13.386 (0.887) 6.260 (0.900) 11.936 (0.920) 22.670 (0.972) 2013 
(4.3 ct/kwh) 

Conf. Interval [19 994; 20 001] [3.281; 3.285] [27.204; 27.226] [13.377; 13.422] [6.255; 6.270] [11.927; 11.949] [22.655; 22.686] 
BE of mean 
(variation in %) 

19 991 (-0.418) 3.284 (0.750) 27.224 (0.489) 13.394 (0.943) 6.263 (0.958) 11.943 (0.979) 22.684 (1.036) 2014 
(4.6 ct/kwh) 

Conf. Interval [19 987; 19 994] [3.283; 3.286] [27.212; 27.234] [13.385; 13.430] [6.259; 6.274] [11.934; 11.959] [22.669; 22.700] 
BE of mean 
(variation in %) 

19 985 (-0.453) 3.285 (0.791) 27.232 (0.518) 13.401 (1.000) 6.267 (1.015) 11.950 (1.038) 22.699 (1.099) 2015 
(4.9 ct/kwh) 

Conf. Interval [19 980; 19 987] [3.284; 3.287] [27.219; 27.242] [13.392; 13.437] [6.263; 6.277] [11.941; 11.963] [22.683; 22.715] 

Note. In parentheses: BE denotes bootstrap estimator. In parentheses: change compared with reference scenario (0) in percent. In brackets: 95% bootstrap confidence interval. 
Gini, Theil and Atkinson index as well as 90/10 percentile ratio are given in percentage points. Database is GRECS. 
 



Table 6. Welfare loss due to income inequality 
 Atkinson 0.5 Atkinson 1.0 Atkinson 2 

Benchmark 1 245 2 374 4 507 

2010 1 250 2 383 4 524 

2011 1 251 2 386 4 530 

2012 (low) 1 251 2 385 4 530 

2012 1 252 2 386 4 532 

2012 (high) 1 252 2 387 4 534 

2013 1 252 2 387 4 534 

2014 1 252 2 388 4 535 

2015 1 254 2 388 4 536 
Note. Own calculations. Database is GRECS. 
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Appendix to: 

On the redistributive effects of Germany’s feed-in tariff 

 

 

 

1. Imputation of electricity consumption 

The GRECS data set consists of 6 714 households, from which we observe electricity consumption for 

2 594 households, and respectively lack information for 4 120 households. To impute missing 

consumption data, we estimate the following model with ordinary least squares: 

( )
5

2
1

2

1 . 2008 householdsizes s
s

A electr cons cons mα α
=

= + + ∗∑  

with 
2m  as dwelling size measured in square meters, and with index s   denoting household size 

( 1,...,5s = + ). Accordingly, we have chosen the single person household ( 1s = ) as base category. 

The results are depicted in Table A1. Given the parsimonious specification, the coefficient of 

determination indicates a quite satisfactory explanatory power for cross sectional consumption data. 

The regression coefficients indicate that electricity consumption and household size are positively 

correlated, and that each additional square meter living space raises the electricity consumption by 7 

kWh a year. Using the predicted values, we impute lacking electricity consumption figures.  

 

Table A1 about here 

 

2. Income imputation 

As outlined in the main body of the paper, GRECS provides income only in the form of a categorical 

variable. In order to impute discrete disposable incomes in GRECS, we follow a procedure involving 

two stages. First, we estimate household-type specific income distributions for Germany using an 

auxiliary data set. Second, we transcribe the fitted distribution to the GRECS data set, and use the 

inverse distribution to impute an income to every household observation in the GRECS data set.  
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Stage 1: Estimating an income distribution 

In order to estimate an income distribution for Germany, we draw auxiliary data from the German 

Socio-Economic Panel (GSOEP), a panel dataset of the population in Germany. The GSOEP contains 

information of more than 10 000 households, and more than 20 000 adult persons. Apart from 

household disposable incomes, the GSOEP provides information on household composition (number 

of adults and children), occupation, employment, earnings, etc. 

We start with estimating a four parameter Generalized Beta distribution of the Second Kind (GBD2K). 

According to McDonald (1984, p.660), this distribution “provides the best relative fit” to empirical 

income data (for an assessment based on unit record data see Brachmann et al., 1996).  

The GBD2K probability density function is defined as (McDonald, 1984) 

( ) ( )
( ) ( )( )

1

2 ; , , ,
, 1

ap

p qaap

ay
A h y a b p q

b B p q y b

−

+=
+

 

with 0y >  denoting a random variable (here: household income), and with , , ,a b p q  the four 

parameters to be estimated. Finally, ( ).B  is the beta function. For particular parameter values, the 

GBD2K includes some well-known distributions, one of which the log normal distribution 

(McDonalds, 1984, and Kleiber and Kotz, 2003). Particularly, if  1q =  (and also 1a =  respectively 

1p = ), we have the special case of a Dagum distribution (Inverse Lomax respectively Fisk (log 

logistic) distribution); . if 1a =  (and also 1q =  respectively  1p = ), we have the Beta distribution of 

the Second Kind (Inverse Lomax respectively Lomax distribution); and if 1p =  (and also 1q =  

respectively 1a = ), we have the Singh-Maddala distribution (Fisk respectively Lomax distribution). 

Using the STATA ado-package “gb2fit” (Jenkins 2004), we estimate the parameters of GBD2K. By 

imposing constraints on the distribution parameters, we further test whether the underlying income 

distribution belongs to a particular special case of GBD2K. It turns out that we cannot reject the 

hypotheses 1p = , meaning that the German income distribution is of type Singh-Maddala 

(
2Prob>Chi 0.062= ).The Singh-Madalla (SM) distribution has the cumulated density function  

( ) ( )
( )
1
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aA F y a b q
y b
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and the probability density function 
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. To allow for the possibility that income distributions are different across 

household types, we proceed with the SM distribution and allow its distribution parameters ( , , )a b q  

to be depending on household size (see Biewen and Jenkins, 2005). The parameter estimates 

obtained from GSOEP 2009 including standard errors and significance levels are provided in Table A2. 

The single person household serves as the reference case and the other entries measure the 

deviation for the particular parameter estimate from the reference case. For instance, the estimate 

for the parameter q  in case of three member households is 3ˆ 1.191 0.442 0.749q = − = . The 

corresponding estimates of cumulative density functions of disposable income are depicted in Figure 

A1.  

 

Table A2 about here 

FIgure A1 about here 

 

In order to assess the fit of the estimated household-type specific income distributions, we compare 

actual GSOEP income observations with the predicted values obtained from the fitted SM 

distributions. For each household separately, Figure A2 plots the predicted disposable incomes 

(derived from the inverse SM distribution) against the observed disposable income of every 

household. The closer the observations are to the 45° line, the smaller is the difference between the 

predicted and the observed distribution. Visual inspection of Figure A2 reveals a satisfactory fit for all 

household types, the summary statistics in Table A3 gives additional confirmative evidence. In the 

columns entitled “GSOEP, Observed”, the Table provides several percentiles, the mean and Gini 

coefficient of the observed household-type specific income distributions in GSOEP. The adjacent 

column, “Estimate”, gives the same statistics directly derived from parameter estimates ( )ˆˆ ˆ, ,s s sa b q . 

For example, take the entry “2 300” in column “2, GSOEP, observed,” row “P50”. It indicates that 

median disposable income of two-person households is 2,300 Euro per month. The number “2 334” 

to the right of (column “2, Estimate”) is the corresponding estimate taking the parameter vector 
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( )2 2 2
ˆˆ ˆ, ,a b q . For all household types, observed percentiles are always pretty close to their 

corresponding estimates. The same holds for mean disposable income and the Gini coefficient. 

 

Figure A1 about here 

 

As a final step, we must ensure that the relative frequency of households, belonging to a particular 

income class, is compatible between the estimated income distribution and the GRECS data set. 

Take, for example, the case of single-person households. From equation (2) and the parameter 

estimates ( )1 1 1
ˆˆ ˆ, ,a b q  for single-person households, it follows that  

( ) ( )
( )

1.1913.282

1ˆ ˆ499 0 1 0 7.22%
1 500 1149.13

F F− = − − ≈
 +    

of the single-person households belong to the first income class, that 

( ) ( )
( ) ( )

1.191 1.1913.282 3.282

1 1ˆ ˆ999 500 1 1 36.94%
1 999 1149.13 1 500 1149.13

F F

   
   − = − − − ≈   

   + +           

belong to the second income class, and so on. Whenever we discover a deviation from these relative 

frequencies in our GRECS data set, we re-weight the observations as to comply with the estimate of 

the cumulative density function. Information on the imputed income distributions is contained in the 

column “GRECS, imputed” in Table A3. In general results deviate only marginally from the GSOEP 

estimates. Some minor differences can result when sample size in a particular cell (defined by income 

class and household size) is low. 

 

Table A3 about here 

Figure A3 about here 
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Stage 2: Imputing disposable income 

The GRECS data provide information on disposable income by means of ten income classes. In order 

to transform this discrete information into a continuous variable, we make use of the fitted income 

distributions, described in the subsection above.  

The position of a particular household within its respective income class is, however, unknown, while 

the imputation of an income using the estimated income distributions requires an ordering of the 

households within each income class. We circumvent this conflict by applying the following five-step 

bootstrap procedure.  

(1) We assign a random number ir  to every household i , where i  is of household size 

1,...,5s = + , and belongs to income class { }1,...,10c∈ , with ,s c
i

N i=∑ .  

(2) In the second step, all households of a particular size and within a particular income class are 

sorted by ir  in ascending order.  

(3) In a third step, we assign a probability weight to each household i  of type s  in c , calculated 

as  

( ) ( ) ( )
,

, , 1
5

s c

F s c F s c
A

N
π

− −
=  

with ( ),F s c  denoting the cumulated density at the upper bound of income class c  and 

( ),0 0F s = . Accordingly, we equally divide the probability mass pertaining to a certain income class 

among the households belonging to that class, and every household in this class receives the same 

probability weight. 

(4) Now, the fourth step involves computing cumulative probability weight iΠ  (i.e., the 

percentile position) for every household with respect to its income class and its rank ir : 

( ) ( )
1

6 , 1
ir

i j
j

A F s c π
=

Π = − +∑
 

with ( ), 1F s c −  being the cumulative probability till the lower bound of i ’s income class, and 

1

ir

j
j

π
=
∑ adds probability mass with respect to i ’s rank within its income class.  
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(5) Finally, the fifth step draws on the estimated distribution parameters with respect to i ’s 

household size s along with the cumulative probability iΠ , and uses the inverted SM distribution: 

( ) ( ) ( ) ˆ1ˆ1ˆˆ7 ( ) 1 1
s

s
a

q

i s iA y s b
− = −Π −

 
 

to impute income ˆ iy  for household i at percentile iΠ . 

To ensure that the assignment of ranks within an income class does not drive results in the 

subsequent distribution analysis, we execute this bootstrap procedure 1 000 times, yielding a 

bootstrap sample of 1 000 distributions of disposable incomes. 
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Note. Database is GSOEP 2009. Own calculations. 
Figure A1. Estimates of cumulative density functions 
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Note. Database is GSOEP 2009. Own calculations. 
Figure A2. Probability plots 
 



Table A1 Regression results for electricity consumption imputation 

 Coefficient Std. Err. p-value 

Dwelling Size 7.02 0.53 0.00 

2 Persons 1 091.91 85.92 0.00 

3 Persons 1 832.14 103.57 0.00 

4 Persons 2 414.19 108.05 0.00 

5+ Persons 3 602.42 148.40 0.00 

Constant 1 396.65 77.84 0.00 

F statistic 311.07   

R square 0.375   

Note. Database is GRECS. Number of observations is 2,954. 

 
 
Table A2. Singh-Maddala estimates 

Parameter  
Estimated 
coefficient 

Std. Err. z P>|z| 

a 

HH size 2 0.276 0.143 1.93 0.054 
HH size 3 0.370 0.171 2.16 0.031 
HH size 4 1.066 0.183 5.83 0.000 

HH size 5+ 1.254 0.271 4.63 0.000 
Constant 3.282 0.106 30.84 0.000 

b 

HH size 2 902.287 90.176 10.01 0.000 
HH size 3 1456.315 136.271 10.69 0.000 
HH size 4 1867.864 115.800 16.13 0.000 

HH size 5+ 1419.608 130.986 10.84 0.000 
Constant 1449.130 59.333 24.42 0.000 

q 

HH size 2 -0.172 0.123 -1.4 0.162 
HH size 3 -0.016 0.155 -0.1 0.917 
HH size 4 -0.147 0.135 -1.09 0.277 

HH size 5+ -0.442 0.134 -3.29 0.001 
Constant 1.191 0.103 11.55 0.000 

Note. Database is GSOEP 2009 and electricity database. Own calculations. The constant 
refers to the reference household type, the one-member household. 

 
 
 



 
 

Table A3. Goodness-of-fit 
Household 

size 
1 2 3 4 5+ 

Statistic 
GSOEP 

Estimate 
GRECS GSOEP 

Estimate 
GRECS GSOEP 

Estimate 
GRECS GSOEP 

Estimate 
GRECS GSOEP 

Estimate 
GRECS 

observed imputed observed imputed observed imputed observed imputed observed imputed 
P5 600 559 560 1 024 1 022 1 025 1 300 1 240 1 240 1 675 1 668 1 674 1 600 1 523 1 527 
P10 700 701 702 1 250 1 261 1 263 1 528 1 520 1 521 2 000 1 980 1 981 1 800 1 836 1 842 
P20 861 895 897 1 600 1 583 1 584 1 900 1 893 1 894 2 430 2 385 2 387 2 284 2 223 2 230 
P30 1 030 1 051 1 052 1 830 1 841 1 842 2 170 2 187 2 188 2 700 2 697 2 699 2 557 2 529 2 529 
P40 1 200 1 198 1 199 2 030 2 084 2 084 2 443 2 460 2 463 3 000 2 983 2 986 2 890 2 816 2 817 
P50 1 373 1 348 1 349 2 300 2 334 2 335 2 722 2 737 2 738 3 250 3 271 3 274 3 100 3 120 3 116 
P60 1 522 1 515 1 516 2 600 2 614 2 615 3 000 3 041 3 042 3 538 3 586 3 589 3 500 3 458 3 459 
P70 1 726 1 718 1 719 3 000 2 956 2 957 3 477 3 405 3 405 4 000 3 962 3 967 3 928 3 898 3 895 
P80 2 000 1 996 1 998 3 500 3 434 3 435 4 000 3 901 3 906 4 500 4 473 4 478 4 300 4 500 4 500 
P90 2 500 2 490 2 492 4 188 4 301 4 303 4 867 4 766 4 769 5 200 5 361 5 380 5 580 5 575 5 647 
P95 3 000 3 039 3 042 5 300 5 289 5 298 5 789 5 711 5 727 6 028 6 329 6 373 7 092 6 964 7 005 
P99 4 664 4 676 4 734 7 900 8 344 8 399 8 500 8 450 8 472 10 000 9 118 9 375 10 028 11 837 11 883 

Mean 1 532 1 524 1 534 2 655 2 657 2 662 3 019 3 023 3 029 3 561 3 553 3 573 3 561 3 598 3 618 
Gini 0.285 0.281 0.285 0.277 0.278 0.280 0.252 0.255 0.255 0.227 0.226 0.229 0.252 0.271 0.273 

Note. P denotes percentile. Database is GSOEP 2009 and electricity database. Own calculations. All GSOEP estimates for weighted by GSOEP frequency weights and number of household 
members. Entries in column "Observed" are the actual values as observed in GSOEP 2009. Entries in column " Estimate" is directly derived from the estimates of the Singh-Maddala 
distribution. Entries in column "GRECS, imputed" are bootstrap estimators from the imputed incomes in GRECS. These estimators are derived using as weight the imputed weights (as 
explained in the text) times the number of household members (which is relevant for 5+ households only where observations can differ in household size). 
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