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AbstratPoint-to-Multipoint systems are a kind of radio systems supplying wireless aess to voie/dataommuniation networks. Suh systems have to be run using a ertain frequeny spetrum,whih typially auses apaity problems. Hene it is, on the one hand, neessary to reusefrequenies but, on the other hand, no interferene must be aused thereby. This leads tothe bandwidth alloation problem, a speial ase of so-alled hromati sheduling problems.Both problems are NP-hard, and there exist no polynomial time algorithms with a �xedapproximation ratio for these problems. As algorithms based on utting planes have shownto be suessful for many other ombinatorial optimization problems, the goal is to applysuh methods to the bandwidth alloation problem. For that, knowledge on the assoiatedpolytopes is required. The present thesis ontributes to this issue.We present an integer programming formulation for the bandwidth alloation problem andde�ne the assoiated hromati sheduling polytopes. We �rst study the ombinatorial stru-ture of these polytopes, disussing the di�erent stages {emptyness, non-emptyness but low-dimensionality, full-dimensionality but ombinatorial instability, and ombinatorial stability{as the frequeny span inreases. Moreover, we explore the relations of hromati shedulingpolytopes to the linear ordering polytope.From a geometrial point of view, hromati sheduling polytopes are of partiular interest dueto their symmetry. Outgoing from this symmetry, we develop an important tool for identifyingfaet-de�ning inequalities without any knowledge on the dimension of the polytopes. Thisenables us to identify the faet-induing onstraints from the integer programming model. Theother model onstraints need to be strengthened with the help of lique-based strutures inorder to yield faets. In partiular, the so-alled overing-lique inequalities generate a broadnumber of faets, and we also present several lasses of faets oming from generalizationsand variations of these inequalities. We introdue further lasses of faet-induing inequalitiesbased on di�erent onepts, and study the omplexity of the assoiated separation problems.Keywords: bandwidth alloation, polyhedral ombinatoris
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ResumenLos sistemas de radio punto a multipunto son onjuntos de antenas de radio que proveenaeso inal�ambrio a redes de omuniai�on de voz y datos. Este tipo de sistemas debe seroperado utilizando un ierto espetro de freuenias de radio, lo ual normalmente produeproblemas de apaidad. Por lo tanto es neesario reutilizar freuenias, pero este reusono debe generar interferenia entre las se~nales. El problema de determinar las freueniaspara los enlaes se onoe omo el problema de asignai�on de freuenias, y en este tipo desistemas es un aso espeial de los problemas de plani�ai�on rom�atia. Estos problemasson NP-hard, y no existen algoritmos aproximados polinomiales on una garant��a de alidad�ja. Como los m�etodos de planos de orte han demostrado ser efetivos para muhos otrosproblemas de optimizai�on ombinatoria, el objetivo es apliar estos m�etodos al problema deasignai�on de freuenias en sistemas punto a multipunto. Para esto, es neesario estudiarpreviamente los politopos asoiados on el problema. El presente trabajo ontribuye a esteestudio.Introduimos una formulai�on del problema de asignai�on de freuenias en sistemas puntoa multipunto omo un problema de programai�on lineal entera, y de�nimos los politopos deplani�ai�on rom�atia asoiados a esta formulai�on. Estudiamos en primer lugar la estru-tura ombinatoria de estos politopos, analizando los distintos estados {vauidad, no vauidadpero dimensi�on inompleta, dimensi�on ompleta pero inestabilidad ombinatoria, y estabil-idad ombinatoria{ a medida que el anho de banda disponible aumenta. Por otra parte,exploramos las relaiones de los politopos de plani�ai�on rom�atia on el politopo de orde-namiento lineal.Desde el punto de vista geom�etrio, los politopos de plani�ai�on rom�atia son de un in-ter�es partiular debido a su simetr��a. Como onseuenia de esta propiedad, desarrollamosuna importante herramienta para identi�ar desigualdades que de�nen faetas sin requeririnformai�on sobre la dimensi�on del politopo. Esto nos permite identi�ar las restriiones delmodelo de programai�on lineal entera que de�nen faetas del politopo asoiado. Las restantesrestriiones del modelo deben ser reforzadas mediante estruturas basadas en liques del grafode interferenia para obtener desigualdades que de�nen faetas. En partiular, las desigual-dades de lique en ubrimiento generan una gran familia de faetas, y adem�as presentamosvarias lases de faetas que provienen de generalizaiones y variaiones de estas desigualdades.Introduimos lases adiionales de faetas basadas en distintos oneptos, y estudiamos laomplejidad de los problemas de separai�on asoiados.Palabras lave: asignai�on de freuenias, ombinatoria poliedraliv



Introdution For pratial purposes the di�erene between algebraiand exponential order is often more ruial than the dif-ferene between �nite and non-�nite.{ Jak Edmonds (1965)Sine the advent of wireless ommuniations, the eletromagneti spetrum has beenwidely explored for many appliations, the most popular today being ellular phone net-works. The development of new wireless servies led to sarity of usable frequenies in theradio spetrum, and this introdued the need to reuse frequenies. A ruial problem in thiskind of ommuniation is the interferene inurred whenever two nearby transmitters operateat lose frequenies. Depending on many fators (inluding the power and orientation of thesignal, geographial onstraints and even wheather onditions), the reeived signal may be ofunaeptable poor quality. Therefore, interferene must be avoided by a areful assignmentof frequenies to eah transmitter operating in the same area. It turned out that suh assign-ments are omputationally diÆult to �nd, and this fat has motivated a steady interest onthis topi [1, 2, 9, 17, 34, 35℄.Point-to-Multipoint radio aess systems (PMP-Systems) are one kind of wireless networksproviding voie/data aess to a set of ustomers. Base stations form the aess points to thebakbone network, and ustomer terminals are linked to the base stations by means of radiosignals. In ontrast to ellular phone networks, eah ustomer has a �xed loation on a ertainsetor and is therefore served by a prespei�ed base antenna. Moreover, eah ustomer mustbe assigned a frequeny interval instead of single hannels, subjet to the onstraint thatno interferene is originated by the use of overlapping frequenies. In this setting there aretwo soures of possible interferene, given by (i) ustomers alloated to the same setor and(ii) ertain pairs of potentially interfering ustomers in di�erent setors. To guarantee aninterferene-free ommuniation, a partiular bandwidth alloation problem must be solvedwhen operating a PMP-System.This kind of problems is known as hromati sheduling problem [15℄ or, in some parti-ular ases, as onseutive oloring problem [16℄ and interval oloring problem [22, 36℄. Suhproblems are NP-omplete and annot be polynomially approximated with a guaranteedquality [36℄. Small and medium-sized instanes ould be suessfully handled by greedy-likeheuristis [7℄, but in order to takle real world instanes, algorithms have to be designed thatrely on a deeper insight of the problem struture. Cutting plane methods have shown to bevery e�etive at solving hard ombinatorial optimization problems [6, 30, 42, 45℄. For that,v



knowledge of the polyhedra arising in onnetion to an integer programming formulation ofthe problem is needed. This thesis is devoted to the study of the polytopes de�ned by the in-teger programming formulation of the bandwidth alloation problem in PMP-Systems. Suha polyhedral study is the starting point for the pratial omputational solution of real-sizedinstanes based on utting planes.The thesis is organized as follows. Chapter 1 gives an overview of wireless ommuniationand frequeny assignment problems, and introdues PMP-Systems and the assoiated band-width alloation problem in detail. Chapter 2 presents an integer programming formulationfor this problem, and provides the de�nition of the assoiated polytopes, alled hromatisheduling polytopes. Chapter 3 disusses the di�erent ombinatorial stages of these polyhe-dra, as well as some relations to the linear ordering polytope. Finally, Chapter 4, Chapter 5and Chapter 6 onentrate on the searh for valid inequalities and faets, and address the or-responding separation problems, the ornerstone of a suessful implementation of a uttingplane approah.OutlineChapter 1 starts with a brief survey of the history and main appliations of wireless om-muniations. Setion 1.1 introdues the frequeny assignment problem (FAP) and presents anumber of relevant models for di�erent kinds of appliations. In all these models we are givena set of ustomers and a set of hannels (frequenies) for eah ustomer, and the objetive isto assign a ertain number of hannels to eah ustomer, either avoiding or minimizing inter-ferene. In the feasibility FAP the objetive is to �nd an assignment providing eah ustomerwith the exat number of hannels that he demands. This problem may be infeasible, and inthis ase the maximum servie FAP model is of interest. This model asks for an assignmentproviding to every ustomer at most the demanded number of hannels, maximizing the to-tal number of assigned hannels. On the other hand, if feasible solutions to the feasibilityFAP exist, one is usually interested in the assignments minimizing the total number of usedhannels (minimum order FAP) or the span of the assignment (minimum span FAP). We�nally introdue the minimum interferene FAP, whih onsiders a more realisti senario byseeking an assignment that minimizes the total amount of interferene. This model is usefulin situations where interferene-free frequeny plans do not exist, and hene the objetive isto minimize the quality loss due to interferene.Setion 1.2 introdues PMP-Systems in detail. We give a preise de�nition of the band-width alloation model and state this problem in graph-theoretial terms by introduing theweighted interferene graph (G; d). The node set of this graph represents the ustomer ter-minals, and edges join pairs of interfering ustomers. In this partiular model we have twotypes of edges, representing the two soures of possible interferene (i.e., interferene amongustomers in the same setor, and interferene between ertain pairs of ustomers in di�er-ent setors). The ustomers do not have a uniform ommuniation demand but individualones, hene we onsider a node weighting d reeting these demands. We further have theavailable radio frequeny spetrum [0; s℄, with s 2 Z, where all the frequeny intervals haveto be plaed in. Finally, a guard distane g 2 Z+ must be kept between the intervals ofvi



interfering ustomers in di�erent setors, due to tehnial reasons. Thus, every instane ofthe bandwidth alloation problem is given by a quadruple (G; d; s; g). This problem may beinterpreted as a speial sheduling problem, where the setors orrespond to mahines andthe frequeny intervals to the jobs to be sheduled. In this setting, the assignment of jobs tomahines is �xed in advane, and we have antiparallelity requirements with hangeover timesinstead of the usual preedene onstraints. We prove that this problem is NP-omplete byproviding a straightforward redution from Graph oloring, and alternatively by a redu-tion from Open shop sheduling. The hapter loses with a disussion motivating thestudy of hromati sheduling polytopes in the forthoming hapters.Chapter 2 introdues a natural integer programming formulation for the bandwidth al-loation problem in PMP-Systems. This formulation ontains two integer variables for eahustomer {the interval bounds{ representing the interval assigned to the ustomer, and a bi-nary variable for eah pair of interfering ustomers {the ordering variables{ representing theordering among the intervals. The latter are needed to desribe the feasible solutions, sineotherwise the onvex hull of all integer feasible solutions would ontain infeasible but integralpoints. Setion 2.1 loses with the de�nition of the assoiated polytopes. For any instane(G; d; s; g), we de�ne the hromati sheduling polytope P (G; d; s; g) to be the onvex hull ofall the integer vetors orresponding to feasible solutions. A speial ase of this problem is ofpartiular interest, namely, the ase where eah ustomer reeives an interval whih has pre-isely the length of its demand. We also de�ne the �xed-length hromati sheduling polytopeR(G; d; s; g) to be the onvex hull of the feasible solutions satisfying this additional ondition.Setion 2.2 presents some preliminary omputational studies regarding the omplete lin-ear desription of the easier ase R(G;1; s; 0) for several small graphs. On the one hand,these experiments show that simple instanes of the bandwidth alloation problem generatepolytopes with a rather omplex struture, admitting huge numbers of extreme points andfaets. On the other hand, the reported results also suggest that hromati sheduling poly-topes pass through several stages as the frequeny span s inreases: from a nonempty butlow-dimensional stage to full-dimensionality and, �nally, to a ombinatorially steady state.The purpose of Chapter 3 is to disuss these di�erent ombinatorial stages. A �rst impor-tant issue is to �nd onditions for the existene/nonexistene of feasible solutions resp. forthe nonemptyness/emptyness of the polytopes, as knowing one feasible solution enables usto run a PMP-System properly. We de�ne smin(G; d; g) to be the minimum frequeny spanmaking the polytopes nonempty, and Setion 3.1 provides some straightforward bounds onthis threshold. Note that the NP-ompleteness of the bandwidth alloation problem impliesthat the exat alulation of smin(G; d; g) is an NP-hard problem. We ombine the weightedlique number of the weighted graph (G; d) with setorization arguments to devise a erti�ateof infeasibility, whereas a lower bound on s for feasibility arises from the hromati numberof G.We explore in Setion 3.2 the dimension of hromati sheduling polytopes, a ruialproperty for deiding whih valid inequalities are faets (and, therefore, the best possibleutting planes). It turns out that the dimension of these polytopes is hard to haraterize,beause it strongly depends on the graph struture, the node weighting and the availablefrequeny spetrum [0; s℄. It is not diÆult to verify that the dimension is a nondereasingvii



funtion of the frequeny span and that P (G; d; s; g) and R(G; d; s; g) are full-dimensional ifs� !(G; d). We thus introdue the threshold sfull(G; d; g) de�ned as the minimum frequenyspan s making P (G; d; s; g) full-dimensional. Setion 3.2.1 presents further results related tofull-dimensionality. In partiular, we give a lower bound (G; d; g) on s guaranteeing full-dimensionality of both polytopes based on oloring arguments. The setion loses with aspeial analysis of the dimension of uniform instanes, providing better bounds in terms ofthe hromati number of the interferene graph.In Setion 3.2.2 we disuss the omputational omplexity of the problem of determiningthe dimension of a partiular instane. The main result of this setion states that deidingwhether a ertain instane generates a full-dimensional polytope is NP-omplete. Hene,determining the dimension of hromati sheduling polytopes is an NP-hard task. Finally,Setion 3.2.3 ompletely haraterizes the dimension of P (G; d; s; 0) and R(G; d; s; 0) as afuntion of s for a number of graph lasses. In partiular, we are able to determine thedimension of both polytopes when the interferene graph is a omplete graph, a star, a path,and a yle. These examples show that the dimension is a nontrivial parameter of the graphstruture.Setion 3.3 explores the ombinatorial steady state of hromati sheduling polytopes. Ithas been experimentally observed in some instanes that there exists a ertain smax(G; d; g) 2Z+ suh that the polytopes fR(G; d; s; g)gs�smax(G;d;g) have the same number of extremepoints and faets. This led to the question whether all the polytopes fR(G; d; s; g)gs�smax(G;d;g)are ombinatorially equivalent. In this setion we give an aÆrmative answer by provinga more general result: the polytopes R(G; d; s; g) and R(G; d; s + 1; g) resp. P (G; d; s; g)and P (G; d; s + 1; g) are aÆnely isomorphi (and therefore ombinatorially equivalent) fors � !(G; d). Moreover, we give an upper bound on smax(G; d; g), and this bound an beshown to be sharp when G is the disjoint union of liques.Setion 3.4 loses the hapter establishing some relations between hromati shedul-ing polytopes and the linear ordering polytope P nLO. It is not surprising that hromatisheduling polytopes posess muh of the struture of the linear ordering polytope, sine theordering variables have the same meaning in both settings. We prove that P (Kn; d; s; 0) andR(Kn; d; s; 0) are aÆnely isomorphi to P nLO when s =Pni=1 di, and we show that R(Kn; d; s; 0)is aÆnely isomorphi to P n+1LO when s >Pni=1 di. These results imply that even simple hro-mati sheduling polytopes are hard to haraterize, sine a omplete linear desription ofP (Kn; d; s; 0) inludes all the linear ordering faets. We also study relations between the validinequalities of these polytopes over arbitrary interferene graphs, and the main result in thisdiretion asserts that every faet-induing inequality for the linear ordering polytope is alsofaet-induing for P (G; d; s; g) and R(G; d; s; g) provided that s � !(G; d) and the set ofedges with nonzero oeÆients is ontained in E.Chapter 4, Chapter 5, and Chapter 6 onentrate on the searh for faet-induing inequal-ities for hromati sheduling polytopes. This issue has pratial impliations, sine strongvalid inequalities are the ornerstone of suessful implementations of utting plane methods.In order to apply suh methods to a ertain problem, a deep polyhedral study must be arriedout, so that families of strong inequalities are found. The assoiated separation problems arealso of interest, sine good separation routines are required to eÆiently detet violated in-viii



equalities in order to ontribute to the proess. It is worth noting that the NP-ompletenessof the bandwidth alloation problem implies that �nding a omplete linear desription ofthese polytopes is virtually a hopeless task, unless NP = o-NP [42℄.Chapter 4 starts the searh of faets of hromati sheduling polytopes by exploring validinequalities de�ning faets in all nonempty instanes. To this end, Setion 4.1 disusses thespeial symmetry of hromati sheduling polytopes, whih is a partiular property of thesepolyhedra. Reall that we do not have preedene onstraints given in advane, but onlyantiparallelity onstraints. Hene, for every feasible solution, there is a symmetri feasiblesolution obtained by swapping all the intervals. The polytopes P (G; d; s; g) and R(G; d; s; g)learly reet this symmetry. The �xed-length polytope R(G; d; s; g) is even symmetri withrespet to a ertain point, and due to this symmetry there exists, for every fae, a parallelfae of the same dimension. There is a simple formula to ompute this parallel fae, using theknowledge of the symmetry point. A similar onstrution an be even given for P (G; d; s; g),although there is no symmetry point in this ase.This speial symmetry also provides a theoretial tool for identifying faet-induing in-equalities. Consider a fae F of R(G; d; s; g) suh that any integer solution lies in F if andonly if its symmetrial solution does not belong to F . The main result of Setion 4.1.3 showsthat suh a fae is a faet of R(G; d; s; g) as long as this polytope is nonempty {regardless ofits dimension and partiular struture. This is a powerful tool for identifying faet-de�ninginequalities, sine no knowledge on the dimension is needed. We point out that this theoremonly relies on symmetry onsiderations. A similar result holds for P (G; d; s; g) under somefurther tehnial assumptions.Based on these results, Setion 4.2 explores faets oming from the integer programmingonstraints. We show that the binary bounds on the ordering variables are faet-induing forevery nonempty instane, and we present a further lass of valid inequalities {the triangleinequalities{ that possess the same property. This setion also haraterizes the polytopeswhih admit faets oming from the demand onstraints. The remaining integer program-ming onstraints, i.e., the bounds on the interval variables and the antiparallelity onstraints,do not de�ne faets in general and the purpose of Chapter 5 is to explore faet-induingstrenghtenings of these onstraints.If s is lose to the weighted lique number !(G; d) of the interferene graph (G; d), itis usually diÆult to plae all the intervals interferene-free within the available frequenyspetrum; thus suh settings are the hardest ones in pratie. Setion 4.3 presents three lassesof valid inequalities for instanes with small frequeny spans, and we prove by symmetryarguments that they are faet-induing regardless of the dimension of the polytope.Chapter 5 presents a number of lasses of faets arising from strenghtenings of the intervalbound and the antiparallelity onstraints. A natural way to generalize the interval boundsis to onsider a lique in the neighborhood of the orresponding node of the interferenegraph, but we show that the resulting valid inequalities, alled the lique inequalities, onlyare faet-induing for partiular ases. In order to devise stronger inequalities, a so-alledovering lique must be onsidered instead of an arbitrary lique. Setion 5.1 presents thisonstrution and some algorithmi results onerning the identi�ation of overing liques.ix



Afterwards we prove that the so-alled overing-lique inequalities are faet induing for bothpolytopes if s � smin(G; d; g) + 3(g + dmax). Interestingly, these inequalities are not faet-induing for every instane, and we present a (rather involved) example. Finally, we alsodisuss the assoiated separation problem, showing NP-ompleteness.Based on similar ideas, Setion 5.2 explores a strenghtening of antiparallelity onstraintsthat gives rise to a lass of faet-induing inequalities, the double overing-lique inequalities.It is interesting that the same onstrution of overing liques used for strenghtening theinterval bounds an suessfully be applied to the antiparallelity onstraints. We prove thatthe resulting inequalities are valid for every instane and indue faets if g = 0 and s �smin(G; d; 0)+4dmax. However, many examples an be found where these inequalities are notfaet-de�ning for both polytopes. We also explore the omplexity of the assoiated separationproblem, showingNP-ompleteness. Finally, Setion 5.2.3 presents the onstrution of doubleovering-lique inequalities for the ase g > 0, that establishes that the resulting inequalitiesde�ne faets of both polytopes.Setion 5.3 presents a number of further lasses of faets arising as variations and gener-alizations of overing-lique inequalities and double overing-lique inequalities. Setion 5.3.1and Setion 5.3.2 provide two generalizations of these families, originating two broader lassesof faets. Setion 5.3.3 presents three further lasses of faet-induing inequalities reinforingthe double overing-lique inequalities. These new families show an interesting balane in theoeÆients of double overing-lique inequalities: when we try to strengthen the left-handside, we have to adjust the right-hand side in order to maintain both validity and faetness.This interplay is well exempli�ed by the reinfored inequalities introdued in this setion.Chapter 6 presents further families of faet-induing inequalities based on other struturesof the interferene graph. Setion 6.1 presents the so-alled 4-yle inequalities, arising from aombination of a 4-yle and a lique, and onstraining the relation between the left intervalbounds of two nonadjaent nodes and the left border of the frequeny spetrum [0; s℄. Aonstrutive proof of faetness is given for the uniform ase d = 1 and g = 0.Setion 6.2 onsiders the yle-order inequalities, de�ned over the ordering variables or-responding to yles on the interferene graph. The main result of this setion asserts that,in the ase s � smin(G; d; g)+O(1)dmax, a yle-order inequality is faet-induing if and onlyif the assoiated yle does not ontain a hord. We prove that the yle-order inequalitiesan be separated in polynomial time.Cyles in the interferene graph also originate valid inequalities over the interval bounds,and Setion 6.3 presents a onstrution over odd holes (i.e., odd yles with no hords). Theodd hole inequalities are valid for arbitrary instanes, and we prove that they de�ne faets ofP (C2k+1;1; s; 0). We also provide onditions guaranteeing faetness for P (G;1; s; 0), and weprove that a superlass of the odd hole inequalities an be separated in polynomial time.The analysis of the polytope P (Kn; d; s; g), de�ned over a omplete graph, is of theoretialinterest and an also lead to faets for the general ase. Setions 6.4 and 6.5 lose the hapterwith two lasses of faets for this polytope, along with the orresponding generalizations forarbitrary interferene graphs. We also prove that the assoiated separation problems areNP-omplete. x
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Chapter 1
Frequeny assignment

The strutural problems involving ombinatorial onsid-erations have only reently been studied in an intensivemanner. They involve mathematial diÆulties of thehighest order even in what seem to be the simplest ases.{ Rihard Bellman (1956)Wireless ommuniation via radio waves dates bak to the pioneering work of the frenhphysiist Edouard Branly and the italian physiist Guglielmo Maroni. As early as 1889,Branly was able to transmit signals over small distanes, reahing on open air reeivers loated100 meters away from the transmitter. Based on this and his own experiene, Maronisuessfully transmitted in 1897 a Morse-oded message to a ship at sea over a distane of29 kilometers. A ouple of years later a regular ommuniation was established aross theEnglish Channel, and already in 1902 it was possible to transmit signals aross the AtlantiOean. The ontinuous development led to the �rst installations of telegraphi equipmenton ships rossing the Atlanti Oean, and a few years later every ship was using wirelesstelegraphy to ommuniate with other ships and shore stations. The following omment fromthe 1921 addendum to the W. M. Jakson Enylopaedia [29℄ remarkably reords the extentof the new invention:Whatever the future of this kind of long-distane diret ommuniation between the twoContinents is, it is by now well-known that passengers on board an establish ommuni-ation with New York and London, and all the ships that make the aforementioned routeare equipped with wireless telegraph mahines (...). This way it is possible to daily printon board a newspaper with the Stok Exhange reords and the most important newsfrom all over the world. [ Even more, ℄ the aptains of di�erent ships have fun by playinghess over the telegraph.In the 1920s the �rst experimental transmissions of television signals were made, resultingin the �rst oÆial television broadast in 1927. Radio broadast beame popular after WorldWar I, and television was suessfully introdued to the mass sine the end of the 1940s. To-day, the radio spetrum is not only used for ellular telephony and mass broadasting, but alsofor navigational systems, spae ommuniation, radio astronomy and military appliations.1



Wireless ommuniation between two points is established with the use of a transmitterand a reeiver. The transmitter generates eletrial osillations at a ertain radio frequeny,whih an be modulated either via the amplitude or the frequeny itself. The reeiver detetsthese osillations and deodes them bak to reover the original signal. Every appliationuses a ertain part of the frequeny spetrum, and the availability of frequenies is regulatedworldwide by the International Teleommuniation Union (ITU) and loally by the nationalgovernments.A ruial problem in wireless ommuniation is the interferene between transmitters.If two nearby transmitters use the same frequeny, then the signals may interfere. Thelevel of interferene depends on the distane between them, the geographial position of thetransmitters, the power and diretion of the signal, and even weather onditions. When thelevel of interferene is high, the reeived signal may have an unaeptable poor quality. Henethere is a need for avoiding interferene.Operators of wireless servies are liensed to use one or more frequeny bands in spei�parts of a ountry. The development of new wireless servies and the addition of more andmore ustomers led to sarity of usable frequenies in the radio spetrum. This introduedthe need for operators to develop frequeny plans that not only avoided high interferene levelsbut also minimized the liensing osts. As a onsequene, an operator should arefully hoosethe frequenies on whih eah station transmits. This seletion of frequenies is alled thefrequeny assignment problem or bandwidth alloation problem. The onditions that shouldbe satis�ed by the frequeny plan may vary depending on the appliation. Therefore, manydi�erent approahes have been suggested in the literature to solve this problem. Setion 1.1briey surveys the most reent models, and in Setion 1.2 we introdue Point-To-Multipointradio aess systems and the assoiated bandwidth alloation problem that motivated thework of this thesis.1.1 Frequeny assignment modelsThis setion briey surveys alternative models for frequeny assignment. For a more thoroughtreatment, we refer to [2, 17, 34, 35℄. In a typial frequeny assignment problem, a set ofwireless links is given and frequenies must be assigned suh that the data transmissionbetween the two endpoints of eah link is possible. Suh frequenies must lie within a ertainfrequeny spetrum [fmin; fmax℄ available to the provider. This spetrum is usually partitionedinto a set of intervals, all with the same bandwidth, determining an integer number of so-alled hannels that eah link an use. A transmission may be subjet to interferene if ageographially nearby link uses frequenies lose on the eletromagneti spetrum, and theproposed models handle this situation in di�erent ways.1.1.1 Feasibility and maximum servie FAPIn the feasibility frequeny assignment problem, or shortly F-FAP, we are given a set of us-tomers along with an interferene relationship, and the objetive is to assign a number of single2



frequenies to eah ustomer while satisfying ertain interferene and availability onstraints.Problem input. Let F denote the (disrete) set of available hannels from the frequenyspetrum, and onsider a set V of ustomers (equivalently, a set of antennae). Eah ustomeri 2 V an only be assigned a hannel from a subset F (i) of F due to geographial reasons.Moreover, eah ustomer i 2 V must reeive m(i) di�erent hannels from F (i). Interfereneis modeled by an interferene graph G = (V;E) representing the pairs of ustomers that mayinterfere eah other. Eah pair of potentially interfering ustomers is joined by an edge inG. Finally, with eah edge ij 2 E we assoiate a set Tij of forbidden distanes between thehannels assigned to ustomers i and j.Problem output. The desired output of F-FAP is an assignment t : V ! 2F suh that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V , and(iii) if f 2 t(i) and g 2 t(j) then jf � gj 62 Tij for every ij 2 E.For eah pair of interfering ustomers ij 2 E, this model spei�es a set of forbiddendistanes between the hannels assigned to eah one. A ommon setting is to take Tij =f0; : : : ;Dg for every ij 2 E, thus speifying a minimum distane that must be obeyed betweenhannels used by interfering antennae. Note that F-FAP redues to the standard grapholoring problem by setting F (i) = F and m(i) = 1 for every i 2 V , and Tij = f0g for everyij 2 E. Therefore, F-FAP is NP-omplete.Alternative formulations onsider di�erent interferene measures. One possibility is tode�ne pij(f; g) as the interferene level between the ustomers i and j if they use the frequen-ies f and g, respetively. The interferene ondition jf � gj 62 Tij is then replaed by theondition pij(f; g) > pmin, where pmin is a threshold for the aeptable level of interferene.In pratie, it might happen that feasible solutions to this problem are diÆult to �nd.In this ase, we an deide to look for a partial solution assigning as many frequenies tothe nodes as possible. Under the same problem input as before, the desired output is nowan assignment t : V ! 2F satisfying jt(i)j � m(i) for every i 2 V along with onditions(ii) and (iii), and suh that the total number of assigned hannels Pi2V jt(i)j is maximized.This problem is known as the maximum servie frequeny assignment problem or, shortly,Max-FAP.1.1.2 Minimum order FAPThe objetive of F-FAP is to �nd a feasible frequeny assignment. However, when manyfeasible solutions exist, we ould try to �nd the best one regarding the usage of frequenies.This model is alled the minimum order frequeny assignment problem, or MO-FAP, and asksfor minimizing the total number of assigned hannels. The problem input is the same as forF-FAP. 3



Problem output. The desired output of MO-FAP is an assignment t : V ! 2F suh that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V ,(iii) if f 2 t(i) and g 2 t(j) then jf � gj 62 Tij for every ij 2 E, and(iv) the assignment minimizes j [i2V t(i)j.The MO-FAP is the �rst frequeny assignment problem that was disussed in the literature[41℄. Again, this problem is a diret generalization of the standard graph oloring problemand is, therefore, NP-omplete. The well-known T-oloring and list oloring problems [17℄are also restrited versions of MO-FAP. It is worth noting that the latter is NP-ompleteeven for interval graphs [5℄, a lass that an be olored in polynomial time.1.1.3 Minimum span FAPIn the minimum span frequeny assignment problem (MS-FAP) the objetive is to minimizethe length of the frequeny band needed to aomodate all the hannels. The di�erenebetween the highest and the lowest used frequenies is alled the solution's span; the objetiveis to minimize the span in order to keep the liensing osts for the used frequeny span low.The problem output is, therefore, the following.Problem output. The desired output of MS-FAP is an assignment t : V ! 2F suh that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V ,(iii) if f 2 t(i) and g 2 t(j) then jf � gj 62 Tij for every ij 2 E, and(iv) the assignment minimizes max[i2V t(i)�min[i2V t(i).Note that MO-FAP asks for minimizing the number of used frequenies (whih are notneessarily onseutive), whereas the objetive of MS-FAP is to minimize the span of theassignment. It is worth noting that there exist general instanes suh that an optimal assign-ment for MO-FAP does not have minimum span and, in turn, an optimal solution to MS-FAPdoes not use the minimum possible number of hannels.1.1.4 Minimum interferene FAPAll the previous models ask for an assignment with no interferene at all. However, this maybe impossible in some situation for whih, moreover, the approah proposed by Max-FAPmay be infeasible as well. In this setting a more realisti model {the minimum interferenefrequeny assignment problem, or MI-FAP{ an be stated, looking for an assignment with theminimum possible interferene. 4



Problem input. As in the F-FAP, we are given a set F of available hannels and a set Vof ustomers. Eah ustomer i 2 V an only be assigned a hannel from a subset F (i) ofF and must reeive m(i) hannels. Finally, for every pair of interfering ustomers ij 2 Eand for eah f 2 F (i) and g 2 F (j) we have a penalty value pij(f; g) that is inurred whenthe ustomers i and j reeive the interfering hannels f and g, respetively. These penaltiesmodel the interferene aused by the assignment.Problem output. The desired output of MI-FAP is an assignment t : V ! 2F suh that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V , and(iii) the assignment minimizes Pij2EPf2t(i)Pg2t(j) pij(f; g).As for all penalties pij(f; g) > 0 holds if and only if jf � gj 2 Tij , the optimum assignmenthas objetive value equal to 0 if and only if F-FAP is feasible. Hene this model generalizesF-FAP and is, therefore, an NP-hard optimization problem as well. A usual extension of thismodel arising from some instanes from the CALMA benhmark [4℄ adds penalties for thehoies of ertain frequenies for eah ustomer. This leads to an extra term in the objetivefuntion. It is worth noting that MI-FAP has been widely used in reent years to modelreal-world appliations suh as GSM Frequeny Planning [18℄.1.2 Bandwidth alloation in Point-to-Multipoint systemsWe now turn our attention to Point-to-Multipoint radio aess systems and the assoiatedbandwidth alloation problem. This setion desribes in detail the assignment model thatmust be solved when operating suh a system, also addressing omplexity issues onerningthis problem.The purpose of a Point-to-Multipoint radio aess system (PMP-System) is to supplywireless aess to voie/data ommuniation networks [7℄. Base stations form the aesspoints to the network. Eah base station is loated on a �xed position and serves a ertaingeographial area. This area served by the base station is divided into setors. Figure1.1 shows an example with three base stations, eah serving two, three and two setors,respetively.Customer terminals are linked to base stations by means of radio signals, where somespei� part of the radio frequeny spetrum has to be used to maintain the links. In on-trast to the usual setting for the previously mentioned FAPs, eah ustomer is provided a�xed antenna and is therefore assigned to a ertain setor of a base station (for example, inFigure 1.1 the ustomers t1 and t2 are assigned to setor A within the �rst base station). Aharateristi feature of PMP-Systems is that eah ustomer has an individual ommunia-tion demand, implying that eah ustomer needs a partiular bandwidth within the availablefrequeny spetrum. Hene the task is to assign frequeny intervals instead of single hannels.5



Figure 1.1: Setorization by base stations in PMP-Systems.A entral problem is that a link onneting a ustomer terminal and a base station maybe subjet to interferene from another link, provided that the same frequenies are used.We onsider two soures of interferene in this model. Firstly, links to ustomers in the samesetor must not use the same frequeny. Seondly, some of the links to ustomers in di�erentsetors may also ause interferenes. This seond soure of interferene identi�es ertain pairsof ustomers that even being in di�erent setors might interfere eah other due to the power ofthe transmitted signals and geographial reasons (for example, in Figure 1.1 the ustomers t3and t4 are served by di�erent antennae but still may interfere eah other due to the alignmentwith the base station).Moreover, in base stations osillators provide the di�erent frequenies with a possibledi�erene � to the required frequeny. Hene, between the frequeny intervals of possiblyinterfering links in di�erent setors, a guard distane of length g = 2� has to be obeyed.This makes it neessary to distinguish between \in-setor" and \inter-setor" interferene.To guarantee an interferene-free ommuniation, a partiular bandwidth alloation problemhas to be solved when operating a PMP-System.Problem input. The input of this problem is given as follows. Let T = ft1; : : : ; tng be theset of all ustomer terminals, and S = fS1; : : : ; Skg be a partition of T into setors, providingthe information to whih setor Sj the terminal ti 2 T belongs. Let d = (d1; : : : ; dn) be thevetor of ommuniation demands assoiated with the ustomer terminals, indiating thatustomer ti 2 T has demand di 2 Z+. Additionaly, we have a set EX of unordered pairs(ti; tj) of terminals in di�erent setors that must not use the same frequeny due to possibleinterferene.
6



This setting an be viewed as a weighted graph (G; d) = (V;E; d), where� V = fi : ti 2 T g is the node set,� E = EX [EI is the edge set withEI = fij : ti; tj in the same setor Sl 2 Sg;EX = fij : (ti; tj) 2 EXg;� d = (d1; : : : ; dn) is the node weighting.Thus, the node set represents ustomer terminals, the node weights reet the ommuniationdemands, and the edge set indiates potential interferene between the ustomer terminals.The edge set is given by the set of external interferers EX and the partition of the node set Vorresponding to the setorization of T . In graph theoretial terms, the partition of T intosetors S = fS1; : : : ; Skg orresponds to a lique overing of G, i.e., to a partition of V intok subsets V1; : : : ; Vk suh that the nodes in every Vi are pairwise adjaent. We de�ne thisweighted graph (G; d) to be the interferene graph assoiated with the partiular instane ofthe bandwidth alloation problem.Notation. Throughout this work we shall always denote by (G; d) = (V;E; d) the interferenegraph. We also denote by n = jV j resp. m = jEj the number of nodes resp. edges of G.Moreover, a guard distane g 2 Z+ is given that must be kept between intervals ofterminals (ti; tj) 2 EX . Finally, we have the available radio frequeny spetrum [0; s℄, withs 2 Z+, where all the frequeny intervals have to be plaed in. Thus, every instane of thebandwidth alloation problem is given by a quadruple (G; d; s; g).Problem output. The task is to provide, for eah ustomer ti 2 T , a ertain part1 of theavailable frequeny spetrum meeting the following two onditions. Firstly, the individualommuniation demand di is satis�ed. Seondly, the assignment does not ause interferene,i.e., no terminal within the same setor uses the same frequenies, and the guard distaneis obeyed for eah external interferer tj , (ti; tj) 2 EX . The desired output is, therefore, anassignment of an interval I(i) = [li; ri℄ with li; ri 2 Z+ to eah ustomer ti 2 T suh that:(i) ri � li � di for every i 2 V ,(ii) [li; ri℄ � [0; s℄ for every i 2 V ,(iii) maxfli; ljg �minfri; rjg � ( 0 if ti and tj belong to the same setorg if (ti; tj) 2 EX .Figure 1.2 shows a fragment of a feasible assignment. Note that ustomers t1 and t2are assigned intervals of di�erent lengths (the demand of ustomer t1 being larger than the1The frequeny interval assigned to a ustomer is typially omposed by several onseutive hannels. Thelength of an interval orresponds to the number of those hannels; the demand of a ustomer as well as thebounds of the assigned intervals are, therefore, represented as integers.7



Figure 1.2: Fragment of a feasible assignment.demand of ustomer t2). These intervals do not overlap sine both belong to the same setor ofthe same base station. On the other hand, ustomers t3 and t4 are loated in di�erent setorsbut are identi�ed in EX as interfering ustomers; the orresponding intervals are, therefore,separated by a distane of at least g.Remark. This setting may be interpreted as a k-mahine sheduling problem, where the ksetors orrespond to the k mahines, and the ustomer terminals to the jobs. In our ase, theassignment of jobs to mahines is �xed in advane. The proessing time of a job orrespondsto the ommuniation demand of the ustomer terminal. That no mahine an proess twojobs at the same time is given by EI (reall that S orresponds to a lique overing of G byk liques), where EX gives antiparallelity requirements between jobs proessed on di�erentmahines. Moreover, g an be interpreted as hangeover time, and s as upper bound on theallowed makespan span(y) = maxfri : i 2 V g � minflj : j 2 V g with respet to a feasibleshedule y (for more information on general sheduling problems see, e.g., [10℄).This partiular kind of a sheduling problem does not ontain the usual preedene on-straints, but antiparallelity onstraints are present instead. These onstraints prevent ertainpairs of tasks from overlapping, with a hangeover time between them. The atual orderamong the tasks is not important, as long as the antiparallelity onstraints are satis�ed. Thismodel an be applied as well to the onstrution of integrated iruits, the assembling ofhandrafts and ertain timetabling problems. �Sine every graph is an interferene graph, this model is a generalization of the hromatisheduling problem [15℄ and, if g = 0, of the onseutive oloring problem [16℄ and the intervaloloring problem [22, 36℄. All of these models, in turn, generalize the standard graph oloringproblem, de�ned as follows:Graph oloringInstane: A graph G = (V;E) and an integer k 2 Z+.Question: Does there exist a k-oloring of G, i.e., a funtion f : V ! f1; : : : ; kgsuh that f(i) 6= f(j) for every ij 2 E?8



Theorem 1.1 Let g = 0 and di = 1 for every i 2 V . The bandwith alloation problemin PMP-Systems is feasible if and only if the assoiated interferene graph G admits an s-oloring.Proof. Let f : V ! f1; : : : ; s � 1g be a oloring of G, and onstrut a feasible shedule byassigning the interval I(i) = [f(i)�1; f(i)℄ to the ustomer ti 2 T . Sine f is a oloring, thenno interfering intervals overlap (and the guard distane g = 0 is trivially satis�ed), hene thisonstrution is feasible. Conversely, any feasible shedule assigns an interval I(i) = [li; ri℄ tothe ustomer ti 2 T , suh that all pairs of interfering ustomers reeive disjoint intervals.This indues an s-oloring f(i) = ri for every i 2 V . 2Corollary 1.2 The bandwidth alloation problem in PMP-Systems is NP-omplete.This equivalene between graph oloring and the bandwidth alloation problem inPMP-Systems for the ase g = 0 and d = 1 also shows that the latter problem annot beapproximated by a polynomial-time algorithm with a �xed approximation ratio [20℄. Fur-thermore, onsider the Open shop problem, de�ned as follows.Open shopInstane: A number p 2 Z+ of proessors, a set J of jobs, eah job j 2 J onsistingof p tasks t1j; : : : ; tpj (with tij to be exeuted by proessor i), a lengthl(tij) 2 Z+ for eah suh task, and an overall deadline k 2 Z+.Question: Is there a shedule for J that meets the deadline k?Open shop is NP-omplete even for p = 3 [20℄. A straightforward redution from Openshop to the bandwidth alloation problem in PMP-Systems an be given, and this redutionprovides a seond proof of Corollary 1.2. Given an instane of Open shop, de�ned as above,onstrut an interferene graph (G; d) = (V;E; d) with one node for eah task and suh thattwo nodes are joined by an edge in E if and only if the orresponding tasks either belong tothe same job or must be exeuted by the same proessor. The demand of eah node is de�nedto be the length of the orresponding task. Further, set g = 0 and s = k. There is a shedulemeeting the deadline k if and only if this instane of the bandwidth alloation problem isfeasible.Solving the bandwidth alloation problem is a ruial task when operating a PMP-System,but we have seen that this is a demanding omputational issue, sine this problem generalizesdiÆult oloring resp. sheduling problems. Suitable heuristis based on greedy argumentshave been developed, and these heuristis were able to produe span-minimal resp. feasiblesolutions for small resp. medium-sized problems [7℄. In order to takle problem sizes of real-world instanes, algorithms have to be designed that rely on a deeper insight of the problemstruture.Cutting plane methods have turned out to be suessful for many other appliations[6, 30, 42, 45℄. In this framework, the onvex hull of the inidene vetors of all feasible9



solutions is studied in order to derive faets or, more modestly, valid inequalities for thispolyhedron representing the solution spae of the problem. A strong knowledge of thesepolyhedra provides the ornerstone of suessful implementations of this approah. Therefore,we propose to investigate the polytopes arising from this bandwidth alloation problem, asa starting point for the pratial solution to optimality of real-world instanes. This thesisontributes to this polyhedral issue.
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Chapter 2
Chromati sheduling polytopes

We hope that the feasibility of attaking problems involv-ing a moderate number of points has been suessfullydemonstrated, and that perhaps some of the ideas anbe used in problems of similar nature.{ G. Dantzig, R. Fulkerson and S. Johnson (1954)The study of hromati sheduling polytopes is the topi of this thesis; the main purposeof this hapter is to introdue these polytopes and to disuss some basi properties. Setion2.1 gives an integer programming formulation for the bandwidth alloation problem in PMP-systems (BAP). We de�ne the hromati sheduling polytope P (G; d; s; g) to be the onvexhull of all feasible solutions of this integer program and the �xed-length hromati shedulingpolytope R(G; d; s; g) as the speial ase where no demand is oversatis�ed.Setion 2.2 reports some experiments regarding the omplete linear desription of theeasier ase R(G;1; s; g) for several small graphs G and inreasing values of the frequenyspan s. These experiments show that, on the one hand, the polytopes pass through severalstages as s inreases and, on the other hand, that even simple instanes of the problem giverise to polytopes with a omplex struture, as the number of faets and extreme points isalready huge for small graphs. This adds support to the belief that hromati shedulingpolytopes are hard to haraterize by means of faet-de�ning inequalities.
2.1 Integer programming formulation for BAPWe now present an integer programming formulation for the bandwidth alloation problemin PMP-Systems. To represent a solution, we use two groups of variables. Firstly, for eahnode i 2 V we introdue the interval bounds li and ri, suh that I(i) = [li; ri℄ represents thefrequeny interval assigned to the orresponding ustomer. Both variables are onstrained tobe integer and nonnegative. In addition, for eah edge ij 2 E with i < j we de�ne the binary11



ordering variable xij = ( 1 if ri � lj0 otherwise,asserting whether the interval I(i) is loated before the interval I(j) or not. In every feasiblesolution, the antiparallelity requirements for intervals orresponding to potential interferersare realized by a preedene relation (i.e., a partial order) on the set of intervals. Thispreedene relation is represented by the ordering variables. Note that we need one orderingvariable for every ij 2 E, namely xij if i < j. For notational onveniene, we shall use xjias a shorthand for 1 � xij . Aording to the variable de�nitions, the inidene vetor of asolution S is given by: �S = (l1; : : : ; ln| {z }n ; r1; : : : ; rn| {z }n ; x1i; : : : ; xjn| {z }m ):A feasible solution is, therefore, an assignment of values to li; ri 8i 2 V and xij 8ij 2 E suhthat the following onstraints are satis�ed:di � ri � li 8i 2 V (2.1)0 � li � ri � s 8i 2 V (2.2)ri � lj + s(1� xij) 8ij 2 EI ; i < j (2.3)ri + g � lj + s(1� xij) 8ij 2 EX ; i < j (2.4)rj � li + sxij 8ij 2 EI ; i < j (2.5)rj + g � li + sxij 8ij 2 EX ; i < j (2.6)xij 2 f0; 1g 8ij 2 E; i < j (2.7)li; ri 2 Z 8i 2 V (2.8)The demand onstraints (2.1) and the bound onstraints (2.2) assert that the interval I(i) =[li; ri℄ must satisfy the demand di and �t within the available frequeny spetrum [0; s℄.Inequalities (2.3) to (2.6) realize the antiparallelity onstraints, whih prevent interferingpairs of intervals from overlapping. Note that the intervals orresponding to the pairs ofustomers in EI (loated in the same setor) must not overlap, and there must be a distaneof at least g between the intervals orresponding to pairs of interfering ustomers in di�erentsetors (i.e., pairs of ustomers from EX). Finally, the integrality onstraints (2.7) resp. (2.8)fore the x-variables to be binary resp. the interval bounds to be integral.Remark. It is neessary to inlude the ordering variables xij , for ij 2 E, i < j in orderto enode a solution. A feasible shedule an ertainly be desribed by the interval boundsonly, but then the onvex hull of the inidene vetors of all feasible shedules may ontaininfeasible integral points. Consider, e.g., the problem given by the graph (G; d) = (V;E; d)with V = f1; 2g, E = f12g, and d = (1; 2) and the frequeny spetrum [0; 4℄. Then the set ofall feasible solutions onsists of the following ten points.12



l1 l2 r1 r2 x12p0 0 1 1 3 1p1 0 1 1 4 1p2 0 2 1 4 1p3 0 2 2 4 1p4 1 2 2 4 1p5 2 0 3 2 0p6 2 0 4 2 0p7 3 0 4 2 0p8 3 0 4 3 0p9 3 1 4 3 0Dropping the information given by x12, the onvex hull of even the two points p00 =(0; 1; 1; 3) and p09 = (3; 1; 4; 3) would ontain two infeasible but integral points, namely x =(1; 1; 2; 3) and y = (2; 1; 3; 3), as Figure 2.1 shows. The ordering variables guarantee that theonvex hull of the inidene vetors of all feasible shedules does not ontain any suh point.Hene these binary variables are essential to desribe the solution spae of the problem. �
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Figure 2.1: Convex hull of two feasible solutionsIn order to run a Point-to-Multipoint system, one is mainly interested in �nding feasiblesolutions satisfying all the onstraints above. It is not diÆult to verify that the weightedlique number !(G; d) is a anonial lower bound for the makespan span(y) of any feasiblesolution y. An instane of the bandwidth alloation problem is, therefore, hard to solve if thegap between !(G; d) and the available frequeny span s is small. This auses the interest in�nding span-minimal solutions, i.e., we have to solve the ombinatorial optimization problemmin span(y), where y = (l; r; x) is taken over all feasible solutions satisfying the onstraints(2.1)-(2.8).Small and mid-size instanes of the bandwidth alloation problem an be solved by greedy-like heuristis as in [7℄; large real-world instanes require algorithms using deeper methods.Algorithms based on utting planes have shown to be suessful for many other ombinatorialoptimization problems [6, 30, 42, 45℄. In order to apply suh methods to the bandwidthalloation problem, we are interested in investigating the onvex hull of all feasible solutionssatisfying these onstraints. Reall that n = jV j resp. m = jEj denotes the number of nodesresp. edges of the interferene graph G. 13



De�nition 2.1 (hromati sheduling polytope) Let (G; d) = (V;E; d) be a graph withnode weights d, let [0; s℄ be the available frequeny spetrum, and let g 2 Z+ be the guarddistane. The hromati sheduling polytope P (G; d; s; g) � R2n+m is de�ned as the onvexhull of all integer solutions (l; r; x) 2 R2n+m satisfying onstraints (2.1)-(2.8).A speial ase of the bandwidth alloation problem is of partiular interest, namely thease where eah ustomer reeives an interval I(i) = [li; ri℄ whih has preisely the length ofits demand, i.e., ri � li = di for every i 2 V . This ase is in pratie easier to solve and thesolution spae has lower dimension sine the right interval bounds are no longer neessary.Hene only the l- and x-variables are required, and every solution vetor has only n + mentries instead of the 2n+m entries in the general ase. Therefore, the inidene vetor of afeasible shedule SR is, in this ase:�SR = (l1; : : : ; ln| {z }n ; x1i; : : : ; xjn| {z }m ):De�nition 2.2 (�xed-length hromati sheduling polytope) Let (G; d) = (V;E; d) bea graph with node weights d, let [0; s℄ be the available frequeny spetrum, and let g 2 Z+ bethe guard distane. The �xed-length hromati sheduling polytope R(G; d; s; g) � Rn+m isde�ned as the onvex hull of all integer solutions (l; x) 2 Rn+m suh that there exists somer 2 Rn satisfying ri = li + di and onstraints (2.2)-(2.8).The bandwidth alloation problem in PMP-Systems was �rst introdued in [7℄, wheregreedy-like heuristis were developed for solving small and mid-sized instanes. A �rst studyof the �xed-length polytope R(G; d; s; g) for the speial ase with two setors was arried outin [21℄. Moreover, [26℄ presents initial results for the general polytope P (G; d; s; g).Notation. If z = (l1; : : : ; ln; r1; : : : ; rn; x1i; : : : ; xjn) 2 R2n+m is a feasible solution, we denoteby zli resp. zri its i-th resp. (n + i)-th oordinate. For ij 2 E, i < j, we denote by zxij theentry of z orresponding to the ordering variable assoiated to the edge ij and, as notedpreviously, we de�ne zxji = 1� zxij as a notational shorthand. We also de�ne the projetionsof z onto the spaes of eah group of variables aszl = (l1; : : : ; ln) 2 Rnzr = (r1; : : : ; rn) 2 Rnzx = (x1i; : : : ; xjn) 2 RmNote that z = (zl; zr; zx) 2 R2n+m. The same de�nitions apply to the �xed-length ase.Here, if y 2 Rn+m is a feasible solution, then yli resp. yxij denotes the left interval boundof the interval I(i) resp. the ordering variable assoiated with the edge ij 2 E, i < j. Theprojetions yl and yx are de�ned aordingly.2.2 Computational experimentsThis setion presents some preliminary omputational experiments generating the ompletelinear desription of the polytopes R(G;1; s; 0) assoiated with small graphs G and inreasing14



frequeny spans s in order to have an idea of the number of extreme points and faets involved.These experiments were arried out with Porta [11, 12℄ in ombination with an ad hoprogram for eÆiently generating the feasible solutions. All the experiments were performedon a Silion Graphis Origin 200 mahine, with a 1024 MB RAM and four R12000 proessorsrunning at 400 MHz. The experiments were run with a CPU time limit of 5 days.Tables 2.1 and 2.2 show the number of faets and extreme points of the �xed-lengthhromati sheduling polytope R(Kn;1; s; 0) de�ned over omplete interferene graphs, fordi�erent values of the number n of nodes and the frequeny spetrum length s (the emptyspaes show the infeasible ases). The number of faets is remarkably huge even for smallinstanes, although the number of extreme points seems to grow more modestly. Moreover,the total number of feasible solutions is huge already for the smallest instanes, e.g., thereexist 4410 solutions for n = 3 and s = 6, and 38976 solutions for n = 4 and s = 6.n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 {s = 2 2 {s = 3 8 8 {s = 4 8 20 20 {s = 5 8 20 40 40 {s = 6 8 20 40 910 910 {s = 7 8 20 40 910 87472 87472 {s = 8 8 20 40 910 87472 > 480� 106 > 480� 106s = 9 8 20 40 910 87472 > 480� 106 ?Table 2.1: Number of faets of R(Kn;1; s; 0).n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 {s = 2 2 { {s = 3 6 6 {s = 4 6 24 24 {s = 5 6 24 120 120 {s = 6 6 24 120 720 720 {s = 7 6 24 120 720 5040 5040 {s = 8 6 24 120 720 5040 40320 40320s = 9 6 24 120 720 5040 40320 362880Table 2.2: Number of extreme points of R(Kn;1; s; 0).
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n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 8 24 48 72 96 120 144s = 4 8 24 54 110 222 454 ?s = 5 8 24 54 116 ? ? ?s = 6 8 24 54 ? ? ? ?Table 2.3: Number of faets of R(Pn;1; s; 0).n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 6 12 24 48 96 192 384s = 4 6 18 50 138 378 1034 2826s = 5 6 18 58 172 528 1586 4802s = 6 6 18 58 182 570 1782 5566Table 2.4: Number of extreme points of R(Pn;1; s; 0).These tables also suggest that the polytopes from the family fR(Kn;1; s; g)gs�n+1 have thesame number of extreme points and faets. The same holds for the polytopes R(Kn;1; n+1; 0)and R(Kn+1;1; n + 1; 0), for n � 2. These omputational results in fat reet a deeprelationship between hromati sheduling polytopes and the linear ordering polytope, andwill be explained by the results of Setion 3.4. It must be noted that the results for n � 6and s � 7 were not generated in the omputational environment desribed previously, butwere derived from the results in Setion 3.4 and the omputational experiments reported in[13℄ for the linear ordering polytope.Tables 2.3 and 2.4 show the number of faets and extreme points for hromati shedulingpolytopes de�ned over paths. Again, the number of feasible solutions is huge even for smallinstanes (98620 feasible solutions for n = 4 and s = 6, and 179150 solutions for n = 6 ands = 4). Finally, we present in Tables 2.5 and 2.6 the experiments on hromati shedulingpolytopes de�ned over yles, showing a similar behavior. The number of faets is moremodest in these ases, although it is worth to mention that the omputation time exeededthe time limit of 5 days even for n = 7 and s = 4. All ases whih ould not be omputedwithin this time limit are indiated by a question tag within the tables.The latter experiments imply again that the polytopes de�ned over the same interferenegraph admit the same number of faets and extreme points for s � n (but learly di�erentnumbers of feasible solutions). Similar observations were obtained in [21℄ for o-bipartiteinterferene graphs. This motivated our investigations on the ombinatorial equivalene ofpolytopes over the same interferene graph, explored in Setion 3.3.16



n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 8 8 72 274 816 8768 26634s = 4 8 20 160 644 9848 ? ?s = 5 8 20 242 1556 ? ? ?s = 6 8 20 242 ? ? ? ?Table 2.5: Number of faets of R(Cn;1; s; 0).n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 6 6 18 30 64 126 258s = 4 6 24 46 160 414 1120 3134s = 5 6 24 78 250 726 2296 6790s = 6 6 24 78 300 858 2940 8750Table 2.6: Number of extreme points of R(Cn;1; s; 0).
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Chapter 3
General properties of hromatisheduling polytopes

It is interesting to point out that these appliations relyon the deep theorems haraterizing faets of the orre-sponding polytope. This is in quite a ontrast to pre-viously known algorithms, whih typially do not usethese haraterizations but quite often give them as aby-produt.{ M. Gr�otshel, L. Lovasz and A. Shrijver (1981)Chromati sheduling polytopes admit interesting properties from a ombinatorial pointof view. As observed from the experiments in Setion 2.2, the hromati sheduling polytopesare empty if the frequeny span s is too small and pass through several stages as s inreases:from a nonempty but low-dimensional stage to full-dimensionality and, �nally, to a ombi-natorially steady state. We disuss these di�erent stages and the orresponding \thresholds"smin(G; d; g), sfull(G; d; g), and smax(G; d; g) ensuring nonemptyness, full-dimensionality, andombinatorial stability, respetively.Setion 3.1 treats the problem of proving nonemptyness for the polytopes. This is an im-portant task as knowing one feasible solution enables us to run a PMP-System properly. Wepresent lower (resp. upper) bounds on smin(G; d; g) ensuring emptyness (resp. nonemptyness).Interestingly, the weighted lique number of the weighted graph (G; d) gives a erti�ate of in-feasibility, whereas a lower bound on smin(G; d; g) arising from oloring arguments guaranteesfeasibility.Setion 3.2 deals with the nonempty ase and addresses the problem of alulating thedimension of hromati sheduling polytopes. As the best utting planes are faets, i.e.,inequalities de�ning a fae with dimension one less than the dimension of the polytope itself,the searh for faets must usually be preeded by the study of the dimension. Unfortunately,determining the dimension of hromati sheduling polytopes is NP-omplete in general, asshown in this setion. However, partial results and bounds for sfull(G; d; g) ould be ahieved.19



Setion 3.3 is devoted to the ombinatorial steady state, i.e., to the fundamental issuethat full-dimensional hromati sheduling polytopes maintain, from a ertain value s �smax(G; d; g) of the frequeny span on, the same number of faets and extreme points. Wepresent suh a lower bound smax(G; d; g) for s, give a haraterization of the extreme pointsof R(G; d; s; g) resp. P (G; d; s; g) and, for s � smax(G; d; g), a natural bijetion between theextreme points of R(G; d; s; g) and R(G; d; s + 1; g) resp. P (G; d; s; g) and P (G; d; s + 1; g)implying ombinatorial equivalene.The hapter loses with a disussion relating hromati sheduling polytopes with linearordering polytopes. In Setion 3.4 we prove that hromati sheduling polytopes de�ned overomplete interferene graphs are aÆnely isomorphi to linear ordering polytopes, implyingthat even these simple instanes are hard to haraterize. We also present some relationsbetween the valid inequalities and faets of these polytopes, that an be exploited in a pratialframework for solving the bandwidth alloation problem in PMP-Systems.3.1 On emptyness/nonemptynessThe haraterization of onditions that guarantee feasibility of the bandwidth alloation prob-lem is a entral issue. Clearly, if the frequeny spetrum [0; s℄ is too small, there exists nofeasible shedule for the frequeny intervals at all, and so the polytopes P (G; d; s; g) andR(G; d; s; g) are empty. The results presented in this setion provide straightforward boundson the frequeny span s that guarantee emptyness and nonemptyness. It is worth notingthat upper bounds for infeasibility arise from maximum weighted lique arguments, whereaslower bounds for feasibility ome from oloring assertions. We �rst establish the followingde�nitions, whih provide us a notation to make onversions bak and forth between feasiblesolutions of P (G; d; s; g) and R(G; d; s; g).De�nition 3.1 Let y 2 R(G; d; s; g). We de�ne the extension of y to be ext(y) 2 P (G; d; s; g)suh that ext(y)li = yli 8i 2 Vext(y)ri = yli + di 8i 2 Vext(y)xij = yxij 8ij 2 EConversely, the redution of a point z 2 P (G; d; s; g) is red(z) 2 R(G; d; s; g) de�ned byred(z)li = zli 8i 2 Vred(z)xij = zxij 8ij 2 EThe shedule represented by red(z) (for z 2 P (G; d; s; g)\Z2n+m) is obtained by shrinkingeah interval I(i) to an interval of length di (and projeting down the vetor to Rn+m).Conversely, if y 2 R(G; d; s; g) \ Zn+m is a feasible solution, then ext(y) represents the sameshedule than y, but in a spae of higher dimension that also ontains the r-variables. Notethat red(ext(y)) = y for every y 2 R(G; d; s; g), but ext(red(z)) di�ers from z if zri � zli > difor some i 2 V . 20



As a �rst simple observation, we may point out that P (G; d; s; g) 6= ; if and only ifR(G; d; s; g) 6= ;, implying that the feasibility problems for P (G; d; s; g) and R(G; d; s; g)are equivalent. We all projl;x(P (G; d; s; g)) = fred(z) : z 2 P (G; d; s; g)g � Rn+m to theprojetion of P (G; d; s; g) onto the spae of the l- and x-variables.Proposition 3.1 R(G; d; s; g) = projl;x(P (G; d; s; g)).Proof. If y 2 R(G; d; s; g) \ Zn+m is an integer feasible solution of R(G; d; s; g), then ext(y)belongs to P (G; d; s; g), and thus R(G; d; s; g) � projl;x(P (G; d; s; g)). Conversely, if z 2P (G; d; s; g) \ Z2n+m is a feasible integer solution of P (G; d; s; g), then red(z) belongs toR(G; d; s; g), implying the onverse inlusion. 2Corollary 3.2 P (G; d; s; g) is nonempty if and only if R(G; d; s; g) is nonempty.It is worth noting that Corollary 1.2 implies that determining whether R(G; d; s; g) isempty or not is a omputationally diÆult task. Observe that if R(G; d; s0; g) is nonempty,then R(G; d; s; g) is nonempty for every s � s0. Similarly, if R(G; d; s0; g) is empty, then alsois R(G; d; s; g) for every s � s0.De�nition 3.2 (nonemptyness threshold) We denote by smin(G; d; g) the minimum fre-queny span s suh that P (G; d; s; g) is nonempty.Note that P (G; d; s; g) is nonempty if and only if s � smin(G; d; g). Corollary 3.2 im-plies that smin(G; d; g) is also the minimum frequeny span s guaranteeing feasibility forR(G; d; s; g). The exat alulation of this threshold is, by Corollary 1.2, an NP-hard prob-lem, hene we onentrate on deriving bounds on this value. A erti�ate of infeasibility anbe obtained by means of the weighted lique number !(G; d) of (G; d) (i.e., the weight of alargest weighted lique of G), as Proposition 3.3 shows.Proposition 3.3 If s < !(G; d), then R(G; d; s; g) and P (G; d; s; g) are empty.Proof. LetK � V be a largest weighted lique ofG (i.e., a liqueK suh that d(K) = !(G; d)).The intervals fI(i) : i 2 Kg annot overlap in any feasible solution, sine all verties in Kare pairwise adjaent. Hene we need at least a span of d(K) = !(G; d) for sheduling theseintervals, and sine the length of the available spetrum [0; s℄ is stritly less than this lowerbound, the problem is infeasible. 2However, s � !(G; d) does not provide a erti�ate for feasibility, as there exist graphs(G; d) suh that !(G; d) is stritly smaller than the span of any feasible solution. Suhinstanes learly exist for the speial ase (G;1; s; 0) of usual graph oloring problems, e.g.,R(C2k+1;1; 2; 0) is empty for every odd hole C2k+1 with k � 2, sine !(C2k+1;1) = 2 < 3 =�(C2k+1) holds. Moreover, [7℄ reports real-world instanes (G; d; s; 0) with d 6= 1, ontainingritial on�gurations G0 � G with !(G0; d) < smin(G0; d; 0).21



Figure 3.1: Critial on�gurations from two real-world instanes.Example 3.1 Consider the instane depited in Figure 3.1(a), withG = C9 and the ustomerdemands presented in the �gure. This interferene graph has !(G; d) = 81 but smin(G; d; 0) =82 (see Figure 3.1(b)). Further, the weighted asteroidal tripel (G; d) presented in Figure 3.1()has !(G; d) = 80, but smin(G; d; 0) = 82, as Figure 3.1(d) shows. �Remark. Graphs G with !(G; d) = smin(G; d; 0) for all possible demand vetors d are intro-dued by Golumbi [22℄ as superperfet graphs. The previous example shows that interferenegraphs arising from PMP-Systems are not superperfet in general. �Additionally, in the ase g > 0 we must also obey the guard distane between pairs ofadjaent intervals in di�erent setors. This setting is more restritive, and Proposition 3.4gives a straightforward generalization of Proposition 3.3.De�nition 3.3 (lique bound) If K � V is a lique, de�ne pK = jfi : Si \ K 6= ;gj tobe the number of setors with nonempty intersetion with K. Let K(G) denote the set of allliques of G, and de�ne the lique bound !(G; d; g) to be!(G; d; g) = maxK2K(G)�d(K) + g (pK � 1)�:Proposition 3.4 If s < !(G; d; g), then P (G; d; s; g) and R(G; d; s; g) are empty.22



Proof. Let K � V be a lique suh that d(K) + g (pK � 1) = !(G; d; g). Sine K is a lique,then the intervals fI(i) : i 2 Kg must be disjoint. Moreover, in every feasible solution thereare at least pK � 1 adjaent intervals belonging to di�erent setors, and sine K is a liquethey must obey the guard distane, hene at least pK�1 guard distanes must our betweenthe intervals assigned to the nodes of K. Therefore, we need a frequeny span of at leastd(K) + g (pK � 1) to assign all these intervals. 2Again, s � !(G; d; g) does not imply that the polytopes are nonempty. In the oppositediretion, we an derive an upper bound for smin(G; d; g) that guarantees feasibility.De�nition 3.4 (hromati bound) Let dmax = maxfdi : i 2 V g denote the maximumnode weight of (G; d). We de�ne the hromati bound �(G; d; g) to be�(G; d; g) = (dmax + g) �(G)� g:Proposition 3.5 If s � �(G; d; g), then R(G; d; s; g) and P (G; d; s; g) are nonempty.Proof. Let k = �(G) and let  : V ! f1; : : : ; kg be a oloring of G (i.e., a partition of Vinto disjoint independent subsets). Construt a feasible solution y 2 R(G; d; s; g) \ Zn+m bysetting yli = ((i) � 1)(dmax + g), where (i) is the olor assigned to i by . Note that thisassignment is feasible and �ts in the frequeny spetrum [0; s℄. Thus R(G; d; s; g) is nonemptyand, by Corollary 3.2, P (G; d; s; g) is also nonempty. 2Note that the weighted hromati number �(G; d) (i.e., the minimum number of stablesets overing every node i at least di times) annot be used to obtain a better bound than�(G; d; g) sine the olors assigned to eah node annot be expeted to be onseutive. Now,Proposition 3.4 and Proposition 3.5 imply that smin(G; d; g) an be bounded by the liquebound and the hromati bound:!(G; d; g) � smin(G; d; g) � �(G; d; g):In the uniform ase d = 1 with null guard distane (i.e., g = 0), we obtain smin(G;1; 0) =�(G;1; 0) = �(G) and !(G;1; 0) = !(G).3.2 On the dimension of the polytopesA ommon way of proving that a valid inequality is faet-de�ning for a ertain polytope is toonstrut as many aÆnely independent points in the partiular hyperplane as the dimensionof the polytope is. However, determining the dimension of hromati sheduling polytopesturns out to be a diÆult task. This setion presents partial results on this issue. We pointout as a �rst observation that nonempty polytopes may not be full-dimensional when theavailable frequeny spetrum [0; s℄ is not large.23



Figure 3.2: The polytope R(C4;1; 3; 0) is not full-dimensional.Example 3.2 Consider the polytope R(C4;1; 3; 0) � R8. Every integer feasible solution inthis polytope assigns the unit intervals I(1); : : : ; I(4) within the frequeny span [0,3℄, and thuswe have that I(1) = I(3) or I(2) = I(4) (or both). Note that I(i) = I(j) implies that xik = xjkfor every k 2 V nfi; jg. We laim that every feasible shedule satis�es x14 � x12 = x34 � x32.� If I(1) = I(3), then the previous observation implies that x14 = x34 and x12 = x32 (seeFigure 3.2(a) and Figure 3.2(b), along with the symmetrial onstrutions). Subtratingthese equations we obtain x14 � x12 = x34 � x32.� If I(2) = I(4), then x12 = x14 and x32 = x34 (see Figure 3.2() and Figure 3.2(d), andthe symmetrial onstrutions). These two equations imply x14 � x12 = 0 = x34 � x32.Thus, every feasible point satis�es x14�x12 = x34�x32, hene dim(R(C4;1; 3; 0)) � 7 (in fat,the dimension is exatly 7). As we shall verify in Setion 3.2.3, the polytopes R(C4;1; s; 0)for s � 4 are full-dimensional. �The polytopes P (G; d; s; g) and R(G; d; s; g) are nonempty if and only if s � smin(G; d; g).The previous example shows that they may not be full-dimensional, even if s > smin(G; d; g).However, as the frequeny span s inreases, the dimension of both polytopes also inreases (al-though not stritly), sine every feasible solution of R(G; d; s; g) is also feasible for R(G; d; s+1; g). This observation implies the following.Proposition 3.6 If s � smin(G; d; g), then R(G; d; s; g) � R(G; d; s+1; g) and P (G; d; s; g) �P (G; d; s+ 1; g).Corollary 3.7 If s � smin(G; d; g), then dim(R(G; d; s; g)) � dim(R(G; d; s + 1; g)) anddim(P (G; d; s; g)) � dim(P (G; d; s+ 1; g)).Hene the dimension is a nondereasing funtion of the frequeny span s. When s �!(G; d), both polytopes are full-dimensional. We prove this fat in the next subsetion, where24



we provide a lower bound on s that guarantees full-dimensionality. Setion 3.2.2 ompletesthe analysis by showing that the exat alulation of the dimension is an NP-hard problem.Finally, Setion 3.2.3 loses with haraterizations of the dimension for speial families ofinterferene graphs.3.2.1 The full-dimensional aseIt has been previously observed [26℄ that P (G; d; s; g) and R(G; d; s; g) are full-dimensionalwhen [0; s℄ is large enough. This subsetion presents some results related to full-dimensionality.In partiular, we provide a lower bound (G; d; g) on s suh that P (G; d; s; g) and R(G; d; s; g)are full-dimensional if s � (G; d; g). We present some examples where this bound is indeedtight.Next, we analyze the dimension in the uniform ase d = 1 with g = 0, where the boundsimpli�es to (G;1; 0) = �(G) + 2. We provide a haraterization of full-dimensionality forbipartite graphs and s = �(G) + 1, proving that for a bipartite interferene graph G, thepolytope P (G;1; �(G) + 1; 0) is full-dimensional if and only if G does not ontain any 4-hole. Based on this result, we also provide a partial haraterization of full-dimensionalityfor arbitrary graphs.Lemma 3.8 Let � 2 Rn+m and �0 2 R suh that �T y = �0 for every y 2 R(G; d; s; g). Ifs > smin(G; d; g), then �lj = 0 for every j 2 V .Proof. Let y 2 R(G; d; s; g) \ Zn+m be an integer feasible solution suh that all the intervalsare ontained in [0; smin(G; d; g)℄. Construt a digraph D = (V;ED) suh that ij 2 ED ifand only if ij 2 E and I(j) is loated before I(i). Note that D is ayli. Now, let i1; : : : ; inbe a topologial ordering of the nodes of D and onstrut n feasible solutions y1; : : : ; yn asfollows. Point yk is obtained from y by shifting the intervals I(ij) for j = 1; : : : ; k one unitto the right.These new points are feasible solutions. Indeed, if the interval I(ij) has been shiftedto the right in yk, then all the possible interfering intervals to the right of I(Ij) have alsobeen shifted, sine the orresponding nodes are before ij in any topologial ordering of D.Moreover, the pair of solutions yk and yk+1 for k = 0; : : : ; n� 1 (where we onsider y0 = y)only di�er in their lik-oordinate, hene the lik -oordinate of � must be zero. Therefore,�lj = 0 for every j 2 V . 2De�nition 3.5 Let Fs(G; d) denote the set of nodes i suh that P (G; d; s; g) ontains somefeasible shedule suh that the interval I(i) has length stritly greater than di. That is,Fs(G; d) = fi 2 V : zri � zli > di for some z 2 P (G; d; s; g)g:Note that Lemma 3.8 implies Fs(G; d) = V for s > smin(G; d; g). However, when s =smin(G; d; g) we may have Fs(G; d) � V . In both ases, Fs(G; d) states a relation betweenthe dimension of P (G; d; s; g) and the dimension of R(G; d; s; g).25



Lemma 3.9 If s � smin(G; d; g) then dim(P (G; d; s; g)) = dim(R(G; d; s; g)) + jFs(G; d)j.Proof. For eah i 2 Fs(G) let yi 2 P (G; d; s; g) be a solution suh that yiri �yili > di and yirj �yilj = dj for j 6= i (suh a solution exists by the de�nition of Fs(G; d)). Now, if w0; : : : ; wk 2R(G; d; s; g) is a set of aÆnely independent points, then ext(w0); : : : ; ext(wk) are also aÆnelyindependent, and moreover eah of these new points satis�es ri + li = di for every i 2 V .This implies that the point yi is aÆnely independent w.r.t. ext(w0); : : : ; ext(wk), for everyi 2 Fs(G; d). Hene the set fext(wi)gki=0[fyigi2Fs(G;d) is omposed by k+jFs(G; d)j aÆnely in-dependent points of P (G; d; s; g), and thus dim(R(G; d; s; g))+jFs(G; d)j � dim(P (G; d; s; g)).For the reverse inequality, let A 2 Rk�n, B 2 Rk�m and b0 2 Rk suh that Al+Bx = b0is a maximal system of equations for R(G; d; s; g), implying dim(R(G; d; s; g)) = n +m � k.By Proposition 3.1, we have that Al + Bx = b0 is also a (possibly nonmaximal) system of kequations for P (G; d; s; g) and, in addition, every feasible solution z 2 P (G; d; s; g) satis�eszri�zli = di for eah i 62 Fs(G; d). Hene we onstrut k+(n�jFs(G; d)j) linearly independentequations satis�ed by every feasible solution of P (G; d; s; g). Sine P (G; d; s; g) � R2n+m, weonlude that dim(P (G; d; s; g)) � (2n+m)� (k + n� jFs(G; d)j)= (n+m� k) + jFs(G; d)j= dim(R(G; d; s; g)) + jFs(G; d)j:2Lemma 3.10 Let �T z = �0 for every z 2 P (G; d; s; g). If s > smin(G; d; g), then �li = 0 and�ri = 0 for every i 2 V .Proof. Lemma 3.8 implies Fs(G; d) = V , hene dim(P (G; d; s; g)) = dim(R(G; d; s; g)) + n.Moreover, we have that projx(P (G; d; s; g)) = projx(R(G; d; s; g)), and thus �li = �ri = 0 forevery i 2 V . 2We are now able to provide a lower bound on s that ensures full-dimensionality in thegeneral ase.De�nition 3.6 (oloring bound) We de�ne the oloring bound to be(G; d; g) = smin(G; d; g) + maxjk2E(dj + dk) + 2g:Theorem 3.11 If s � (G; d; g) then R(G; d; s; g) and P (G; d; s; g) are full-dimensional.Proof. Let �T z = �0 for every z 2 P (G; d; s; g). By Lemma 3.10, we have �li = �ri =0 for every i 2 V . Now, let z 2 P (G; d; s; g) \ Z2n+m be a feasible solution suh that26



Figure 3.3: Construtions for the proof of Theorem 3.11.maxi2V zri = smin(G; d; g) (suh a solution exists by the de�nition of the nonemptynessthreshold smin(G; d; g)). Consider an arbitrary edge ij 2 E and onstrut the feasible solutionz1 as follows: z1lk = 8><>: smin(G; d; g) + g if k = ismin(G; d; g) + di + 2g if k = jzlk otherwiseDe�ne further z1rk = z1lk + dk for every k 2 V . Now onstrut a new feasible solution z2 fromz1 by swapping the intervals I(i) and I(j) (see Figure 3.3). These solutions only di�er intheir li-, ri-, lj-, rj- and xij-oordinates and, therefore, �xij = 0. Sine ij is an arbitrarilyhosen edge, we have � = 0, and so we onlude that P (G; d; s; g) is full-dimensional. SineFs(G; d) = V , Lemma 3.9 implies that R(G; d; s; g) is also full-dimensional. 2Theorem 3.11 implies that for every instane (G; d; s; g) there exists a frequeny span s0suh that the polytopes fP (G; d; s; g)gs�s0 are full-dimensional. Hene we an introdue thefollowing threshold for full-dimensionality.De�nition 3.7 (full-dimensionality threshold) We denote by sfull(G; d; g) the minimumfrequeny span s suh that the polytope P (G; d; s; g) is full-dimensional.Under this de�nition, Theorem 3.11 an be restated as sfull(G; d; g) � (G; d; g). Thisbound is sharp, in the sense that there exist in�nitelymany graphsG suh that P (G; d; s�1; g),for s = (G; d; g), has not full dimension. For example, if the interferene graph is a 4-yle, we have sfull(C4;1; 0) = (C4;1; 0) = 4 but Example 3.2 shows that the polytopeR(C4;1; 3; 0) � R8 has dimension 7, thus not being full-dimensional. In Setion 3.2.3 weshall present further instanes illustrating the same situation.27



Figure 3.4: R(W6;1; 4; 0) is full-dimensional whereas P (W6;1; 4; 0) is not.Note that sfull(G; d; g) is the minimum frequeny span guaranteeing full-dimensionalityfor P (G; d; s; g) but not for the �xed-length polytope R(G; d; s; g). If P (G; d; s; g) has fulldimension, then learly R(G; d; s; g) is full-dimensional, but the onverse is not true as thefollowing example shows.Example 3.3 Consider the wheel W6 depited in Figure 3.4(a), omposed by a 5-yle plusa universal node. Figure 3.4(b) shows smin(W6;1; 0) = 4. It is not diÆult to verify byinspetion that R(W6;1; 4; 0) is full-dimensional. However, P (W6;1; 4; 0) does not have fulldimension, sine r1� l1 = 1 for every feasible solution. Moreover, for this partiular instanewe have sfull(W6;1; 0) = 5. �Hene the threshold sfull(G; d; g) for full-dimensionality in the general ase annot bediretly applied to the �xed-length ase. We obtain instead the following about the dimensionof the two polytopes.Corollary 3.12 Consider an instane (G; d; s; g).(i) If s < smin(G; d; g) then both polytopes P (G; d; s; g) and R(G; d; s; g) are empty.(ii) If s = smin(G; d; g) then P (G; d; s; g) is full-dimensional only if R(G; d; s; g) is full-dimensional.(iii) If s > smin(G; d; g) then P (G; d; s; g) is full-dimensional if and only if R(G; d; s; g) isfull-dimensional, by dim(P (G; d; s; g)) = n+ dim(R(G; d; s; g)).Thus, we an express the minimum frequeny span suh that R(G; d; s; g) has full dimen-sion in terms of sfull(G; d; g) as follows.Corollary 3.13 Let sR be the minimum frequeny span s suh that the polytope R(G; d; s; g)has full-dimension. Then, sR = sfull(G; d; g) if FsR(G; d) = V and sR = sfull(G; d; g) � 1otherwise. 28



In the remaining part of this setion, we disuss better bounds fo sfull(G; d; g) in the aseof usual graph oloring, i.e., if we assume d = 1 and g = 0.Corollary 3.14 The polytopes R(G;1; s; 0) and P (G;1; s; 0) are full-dimensional if and onlyif s � �(G) + 2.Corollary 3.14 provides a small range for inomplete dimensionality in the uniform ase.Indeed, P (G;1; s; 0) is empty if s < �(G) and full-dimensional if s � �(G) + 2. So we areleft to analyze the ases s = �(G) and s = �(G) + 1. In what follows, our objetive is to givea partial haraterization of full-dimensionality in the ase s = �(G) + 1. As we shall see,inomplete dimension is related to the existene of indued 4-yles in the interferene graph.We �rst analyze the ase of bipartite graphs.Theorem 3.15 If G is a bipartite graph, then P (G;1; 3; 0) is full-dimensional if and only ifG does not ontain C4 as an indued subgraph.Proof. Assume �rst that G does not ontain any 4-hole as indued subgraph, and suppose�T y = �0 for every y 2 P (G;1; 3; 0). Lemma 3.10 implies that �li = �ri = 0 for everyi 2 V . We will now verify that the same holds for the ordering variables, thus proving thefull-dimensionality of the polytope.Fix an edge ij 2 E and let  : E ! f1; 2g be a 2-oloring of G. Assume w.l.o.g. that(i) = 1 and (j) = 2. De�ne the node subsets A = N(i) and B = N(j) (see Figure 3.5).Note that (k) = 2 for every k 2 A and (t) = 1 for every t 2 B, hene A\B = ;. Moreover,E(A;B) = ;, otherwise a 4-hole would be reated. Partition now the remaining nodes asC [D, where C = fk 62 A [B [ fi; jg : (k) = 1gD = fk 62 A [B [ fi; jg : (k) = 2g

Figure 3.5: Partition of V into subsets.29



These sets de�ne the partition of V depited in Figure 3.5. Notie that the sets A, B, C andD are stable sets. Moreover, E(A;D) = ; sine the nodes of A and D admit the same olor.The same argument shows E(B;C) = ;.We now de�ne the following subsets of edges:E1 = E(fig; A)E2 = E(A;C)E3 = E(C;D)E4 = E(B;D)E5 = E(fjg; B)By the previous observations, we have E = fijg [ E1 [ : : : [ E5. We now onstrut thesequene of feasible solutions y0; : : : ; y6 depited in Figure 3.6. For k = 1; : : : ; 6, onsider thepair of solutions y0 and yk. Both solutions are feasible, and thus �T y0 = �T yk, implying thefollowing equations. k = 1 ) 0 = �(E1) + �(E2)k = 2 ) 0 = �(E2) + �(E3)k = 3 ) 0 = �(E3) + �(E4)k = 4 ) 0 = �(E4) + �(E5)k = 5 ) 0 = �(E5) + �xjik = 6 ) 0 = �(E3) + �(E4) + �(E5)Solving these equations leads to �xji = 0 and �(Ek) = 0 for k = 1; : : : ; 5 (note that this doesnot imply � = 0). Thus, we have shown �xji = 0. Sine ij is an arbitrary edge of G, thisproedure shows � = 0. Therefore, the polytope is full-dimensional.Now let us turn to the onverse. Let C � V be an indued 4-hole in G. The projetionof P (G;1; 3; 0) over the variables li, ri for i 2 C and xij for ij 2 E(C) equals P (C;1; 3; 0),and we already know that this polytope is not full-dimensional. Hene, P (G;1; 3; 0) does nothave full dimension as well. 2Corollary 3.16 If G is a tree, then P (G;1; �(G) + 1; 0) is full-dimensional.Based on the previous results, we now provide a partial haraterization of full-dimensio-nality for arbitrary graphs in the ase s = �(G)+1. Theorem 3.17 gives a suÆient onditionfor P (G;1; �(G) + 1; 0) to be full-dimensional, whereas Theorem 3.18 provides a suÆientondition ensuring inomplete dimension. Although these onditions are similar, they are notthe onverse of eah other and so the haraterization given here is only partial.Theorem 3.17 If there exists a k-oloring of G with k � �(G)+1 and olor lasses I1; : : : ; Iksuh that GIi[Ij does not ontain a 4-hole for every i 6= j, then P (G;1; �(G) + 1; 0) is full-dimensional. 30



Figure 3.6: Feasible solutions y0; : : : ; y6.
31



Proof. Suppose that �T y = �0 for every y 2 P (G;1; �(G) + 1; 0). Lemma 3.10 implies that�li = �ri = 0 for every i 2 V . Now, for every pair Ii, Ij of olor lasses, with i 6= j, onsiderthe indued subgraph Gij = GIi[Ij . By Theorem 3.15, the polytope P (Gij;1; 3; 0) is full-dimensional. Moreover, P (Gij;1; 3; 0) � projIi[Ij P (G;1; �(G) + 1; 0) implies �xe = 0 forevery e 2 Gij. Thus, �x = 0 and so P (G;1; �(G) + 1; 0) has full dimension. 2Theorem 3.18 If there exists a 4-hole C = f1; 2; 3; 4g � V suh that every k-oloring , withk � �(G)+1, has (1) = (3) or (2) = (4), then P (G;1; �(G)+1; 0) is not full-dimensional.Proof. Sine every feasible shedule (l; r; x) has either I(1) = I(3) or I(2) = I(4), thenx14 � x12 � x34 � x32, hane P (G;1; �(G) + 1; 0) is not full-dimensional. 23.2.2 Determining the dimension is NP-ompleteThe results of Setion 3.2.1 suggest that the dimension of hromati sheduling polytopesis hard to haraterize. The purpose of this setion is to show that its alulation is also aomputationally hard problem, by proving that the assoiated deision problems are NP-omplete. As a starting point of our analysis, onsider the problem of deiding whetherP (G; d; s; 0) has full dimension:Full-dimensionalityInstane: A weighted graph (G; d) and an integer s 2 Z+.Question: Has P (G; d; s; 0) full dimension?Theorem 3.19 Full-dimensionality is NP-omplete.Proof. It is not hard to verify that this problem belongs to NP, sine we an nondeter-ministially generate a set of integer feasible solutions and verify whether this set is a set ofaÆnely independent points with the required number of elements or not. Note we an hekin polynomial time whether a set of vetors is aÆnely independent or not [42℄. To ompletethe proof, we shall redue Graph oloring to Full-dimensionality. Let G = (V;E) bean arbitrary graph and onstrut a graph H = (VH ; EH) from G by taking:VH = V [ fv1; v2; v3; v4gEH = E [ fvi w : w 2 V; i = 1; : : : ; 4g[ fv1v2; v2v3; v3v4; v4v1gWe laim that �(G) � s if and only if P (H;1; s+4; 0) has full dimension. For the forwarddiretion, if �(G) � s then (H; d; 0) = �(H) + 2 � �(G) + 4 � s+ 4, and P (H;1; s + 4; 0)is full-dimensional by Theorem 3.11. For the onverse diretion, suppose that �(G) � s+ 1.We shall prove that in this ase every integer feasible solution satis�esxv1v2 � xv1v4 = xv3v2 � xv3v4 ; (3.1)32



Figure 3.7: Illustration for the proof of Theorem 3.19.thus verifying that P (H;1; s + 4; 0) is not full-dimensional. Consider any feasible solutiony 2 P (H;1; s+ 4; 0) \Z2jVH j+jEH j. This solution must have at least s+ 1 olors oupied byintervals orresponding to nodes in V , and this leaves at most three olors left for the nodesfv1; : : : ; v4g. Thus, either v1 and v3 or v2 and v4 have the same olor, and only the fouron�gurations depited in Figure 3.7 (along with their symmetrial solutions) are possible.All of them satisfy (3.1), hene P (H;1; s+ 4; 0) is not full-dimensional. 2Corollary 3.20 Full-dimensionality for R(G; d; s; 0) is NP-omplete.Proof. Given a graph G, repeat the onstrution from the proof of Theorem 3.19 to obtain anew graph H. The same argumentation an be applied in this ase to show that �(G) � s ifand only if R(G;1; s+ 4; 0) has full dimension. 2The omplexity of the general problem of alulating the dimension of hromati shedul-ing polytopes an now be addressed as a orollary to the previous results. To this end,onsider the assoiated deision problem:Chromati sheduling polytope's dimensionInstane: A weighted graph (G; d), and integers k; s; g 2 Z+.Question: Has P (G; d; s; g) dimension greater or equal than k?Corollary 3.21 Chromati sheduling polytope's dimension is NP-omplete.3.2.3 Dimension for speial interferene graphsThis subsetion provides results about the dimension of hromati sheduling polytopes forspeial lasses of interferene graphs. We present haraterizations of the dimension of in-stanes de�ned over omplete graphs Kn, stars K1;t, paths Pn, and holes Cn, the last onebeing the most involved ase. These theorems give the hint that formulating the dimensionin terms of standard graph parameters may be a nontrivial task. We start by analyzing thedimension of polytopes de�ned over omplete interferene graphs.33



Theorem 3.22 Call D =Pni=1 di. Then,dim�R(Kn; d; s; 0)� = ( m if s = Dn+m if s > Ddim�P (Kn; d; s; 0)� = ( m if s = Dn+ 2m if s > DProof. Clearly, R(Kn; d; s; 0) is nonempty if and only if s � D. When s = D, there areno empty spaes among the intervals, hene every feasible solution satis�es the following nequations: li = Xj 6=i dj xji i = 1; : : : ; n (3.2)This implies dim(R(Kn; d;D; 0)) � m. Conversely, s = D allows every linear ordering amongthe intervals, so projx(R(Kn; d;D; 0)) ontains exatly m aÆnely independent points. Henewe onlude dim(R(Kn; d;D; 0)) = m. Moreover, FD(Kn; d) = ;, and thus Proposition 3.7implies that R(Kn; d;D; 0) and P (Kn; d;D; 0) have the same dimension.To omplete the proof, we verify that both polytopes are full-dimensional when s > D.Suppose �T y = �0 for every point y 2 R(G; d; s; 0). By Lemma 3.8, �li = 0 follows forevery i 2 V . Moreover, note that every point in R(Kn; d;D; 0) also belongs to R(Kn; d; s; 0),and dim(projx(R(Kn; d;D; 0)) = m, hene �x = 0. Therefore, � = 0 and R(Kn; d; s; 0) isfull-dimensional. Sine Fs(Kn; d) = f1; : : : ; ng, then P (Kn; d; s; 0) also has full dimension. 2The following theorem provides a haraterization of the dimension of hromati shedul-ing polytopes de�ned over omplete and bipartite interferene graphs with no indued 4-yles.This result enables us to fully understand the dimension of hromati sheduling polytopesde�ned over stars, paths, and even holes.Theorem 3.23 Let G be a onneted and bipartite graph with at least two nodes, and suhthat G does not ontain any 4-hole. Then, the polytopes R(G;1; s; 0) and P (G;1; s; 0) havedimension 1 if s = 2 and are full-dimensional if s � 3.Proof. Let  : V ! f1; 2g be a 2-oloring of G. Sine G is onneted and bipartite, then thisoloring is unique up to olor renamings. Construt a feasible solution y 2 R(G;1; 2; 0)\Zn+mby setting yli = (i)� 1 for every i 2 V . By the uniqueness of , there only exist two feasiblesolutions, namely y and sym(y), hene dim(R(G;1; 2; 0)) = 1. Sine every node in G has atleast one neighbor, then no feasible solution z 2 P (G;1; 2; 0) an have zri � zli > 1, heneF2(G;1) = ; and Lemma 3.9 implies dim(P (G;1; 2; 0)) = 1.Consider now the ase s � 3. Sine G is a bipartite graph with no indued 4-yle,Theorem 3.15 implies that R(G;1; s; 0) is full-dimensional. Sine s > smin(G;1; 0) = 2, thenFs(G;1) = V , implying that P (G;1; s; 0) also has full dimension. 234



Corollary 3.24 dim (R(K1;t;1; s; 0)) = ( 1 if s = 22t+ 1 if s � 3dim(P (K1;t;1; s; 0)) = ( 1 if s = 23t+ 2 if s � 3Corollary 3.25 dim (R(Pn;1; s; 0)) = ( 1 if s = 22n� 1 if s � 3dim (P (Pn;1; s; 0)) = ( 1 if s = 23n� 1 if s � 3Corollary 3.26 Let n � 6 be an even integer. Then,dim (R(Cn;1; s; 0)) = ( 1 if s = 22n if s � 3dim (P (Cn;1; s; 0)) = ( 1 if s = 23n if s � 3To lose this setion, we prove a similar result for odd yles. The previous examplesmay suggest that P (G;1; s; 0) is not full-dimensional for s = smin(G;1; 0), but Theorem3.27 shows full-dimensionality for in�nitely many instanes. Indeed, hromati shedulingpolytopes de�ned over odd yles are empty if s � 2 and full-dimensional otherwise. In orderto prove this result, we introdue the following de�nition.De�nition 3.8 Given a linear ordering S = (i1; : : : ; in) of V , the greedy solution assoiatedwith S is the feasible solution onstruted by the following proedure:For j = 1; : : : ; n do:Set I(ij) = [tj; tj + dij ℄, where tj is the minimum feasible starting timefor the interval I(ij), aording to the previous assignments.End (for)For example, Figure 3.8 shows two suh solutions for odd yles, assoiated with thesequenes (1; : : : ; n) and (n; 1; : : : ; n� 1), respetively.
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Figure 3.8: Examples of greedy solutionsTheorem 3.27 Let n � 5 be an odd integer. The polytopes R(Cn;1; s; 0) and P (Cn;1; s; 0)are empty if s � 2 and have full dimension otherwise.Proof. Sine odd yles are nonbipartite, we have that R(Cn;1; 2; 0) and P (Cn;1; 2; 0) areempty. To omplete the proof, we show that P (Cn;1; 3; 0) has full dimension (this implies thatR(Cn;1; s; 0) and P (Cn;1; s; 0) are full-dimensional for s � 3). Suppose �T z = �0 for everyz 2 P (Cn;1; 3; 0)\Z3n. We shall verify � = 0, implying that this polytope is full-dimensional.For i = 1; : : : ; n, onstrut the two feasible solutions zi and �zi presented in Figure 3.10(a)and Figure 3.10(b). Sine �T zi = �0 = �T �zi, we have that �li = 0. A similar onstrutionshows �ri = 0.It remains to verify that �x = 0. For i = 1; : : : ; n, de�ne the sequene Si = (i; i +1; : : : ; n; 1; : : : ; i � 1), and let yi be the assoiated greedy solution. Also de�ne the oppositesequene �Si = (i; i � 1; : : : ; 1; n; n � 1; : : : ; i + 1) and let �yi denote the assoiated greedysolution. For i = 1; : : : ; n, we have that �T yi = �T �yi. These n equations de�ne an (n � n)-system Dn�x = 0 of linear equations. The matrix Dn has two onseutive diagonals withones, and the remaining diagonals are alternatively omposed by -1 and 1 (see Figure 3.9 foran example).
D7 = 0BBBBBBBBBB�

1 1 �1 1 �1 1 �1�1 1 1 �1 1 �1 11 �1 1 1 �1 1 �1�1 1 �1 1 1 �1 11 �1 1 �1 1 1 �1�1 1 �1 1 �1 1 11 �1 1 �1 1 �1 1
1CCCCCCCCCCA ; 0BBBBBBBBBB�

1 1 �1 1 �1 1 �10 2 0 0 0 0 00 0 2 0 0 0 00 0 0 2 0 0 00 0 0 0 2 0 00 0 0 0 0 2 00 0 0 0 0 0 2
1CCCCCCCCCCAFigure 3.9: A matrix arising from greedy solutions and its triangulation.It is not diÆult to verify that Dn is a nonsingular matrix (reall that n is an odd integer).To this end, for i = n; : : : ; 2 in dereasing order, add row i� 1 to row i. The resulting matrix36



Figure 3.10: Feasible solutions of P (Cn;1; 3; 0) showing �li = 0.is upper triangular (see Figure 3.9 for an example with n = 7), thus proving that the onlysolution to Dn�x = 0 is �x = 0. Hene � = 0 and P (Cn;1; 3; 0) is full-dimensional. 2Remark. Consider the vetors fprojx(yi)gni=1 of the ordering variables orresponding to thegreedy solutions assoiated with the n asending sequenes S1; : : : ; Sn introdued in the proofof Theorem 3.27. Let A be the quadrati 0/1-matrix with these vetors as rows. Then A hasa speial struture, with the �rst two diagonals �lled with ones, and the remaining diagonalsalternating between zeros and ones, respetively. It is worth noting that A is nonsingular andhas determinant (n� 1)=2 (sine n is odd). �3.3 The ombinatorial steady stateThis setion explores a fundamental issue onerning the ombinatorial struture of hromatisheduling polytopes. It has been experimentally observed in [21℄ for some instanes (G; d; s; 0)that, from a ertain value smax(G; d; 0) on, the polytopes fR(G; d; s; 0)gs�smax(G;d;0) reah aombinatorial steady state with the same number of extreme points and faets. This led tothe question whether the polytopes fR(G; d; s; g)gs�smax(G;s;g) are pairwise ombinatoriallyequivalent. In this setion we give an aÆrmative answer by proving a more general result:the polytopes R(G; d; s; g) and R(G; d; s + 1; g) resp. P (G; d; s; g) and P (G; d; s + 1; g) areaÆnely isomorphi (and therefore ombinatorially equivalent) for s� !(G; d). Moreover, wegive a lower bound on s ensuring this isomorphism, and this bound an be shown to be sharpwhen G is the union of disjoint liques.3.3.1 A haraterization of the extreme pointsWe start by providing a simple haraterization of the extreme points of hromati shedulingpolytopes. For any valid ordering �x 2 projx(R(G; d; s; g)\Zn+m), de�ne the lower and upperbounds for the interval I(i) assigned to ustomer i 2 V as follows:37



Li(�x; s) = minfyli : y 2 R(G; d; s; g) \ Zn+m and yx = �xgUi(�x; s) = maxfyli : y 2 R(G; d; s; g) \ Zn+m and yx = �xgFor every ij 2 E, let Æij be the minimum gap required between the intervals I(i) and I(j),i.e., Æij = ( g if ij 2 EX0 otherwiseDe�nition 3.9 (�xed-length adjaeny graph) Let y 2 R(G; d; s; g)\Zn+m be a feasibleshedule. The adjaeny graph assoiated with this shedule is G(y) = (V 0; E0), with V 0 = Vand E0 = f ij 2 E : yli + di + Æij = ylj ; or ylj + dj + Æij = ylig.Nodes i and j are adjaent in G(y) if they are adjaent in G and there is a spae of exatlyÆij between the intervals I(i) and I(j). For example, if H is the interferene graph depitedin Figure 3.11(a), then Figure 3.11(b) shows a feasible shedule and Figure 3.11() presentsits assoiated adjaeny graph.De�nition 3.10 A onneted omponent C of G(y) is alled a border omponent if thereexists some i 2 C with yli = 0 or yli = s� di.Theorem 3.28 The vetor y 2 R(G; d; s; g) \ Zn+m is an extreme point of R(G; d; s; g) ifand only if every onneted omponent of G(y) is a border omponent.Proof. Only if. Consider a feasible solution y and its �xed-length adjaeny graph G(y).Suppose that G(y) has a omponent C suh that every node i 2 C has yli > 0 and yli < s�di.Then, we an onstrut two feasible points y1; y2 2 R(G; d; s; g) by shifting all the intervalsassigned to nodes in C one unit to the left and one unit to the right, respetively:y1li = � yli if i 62 Cyli � 1 if i 2 C 8 i 2 Vy2li = � yli if i 62 Cyli + 1 if i 2 C 8 i 2 Vy1xij = yxij 8 ij 2 Ey2xij = yxij 8 ij 2 ENote that 0 � yilj � s�di (i = 1; 2), sine 0 < ylj < s�dj for all j 2 C. Moreover, this shiftingdoes not ause interval overlappings. Any suh overlapping in y1 would be y1lj + dj + Æij > y1lifor i 2 C and j 62 C, but then ylj + dj + Æij = yli , and thus j 2 C. A similar analysis showsthat y2 is feasible. 38



Figure 3.11: Examples for Setion 3.3.1.But now we have that y = 12y1 + 12y2, and thus y is not an extreme point of R(G; d; s; g),ontraditing the hypothesis.If. Let y be a feasible solution suh that every onneted omponent of G(y) is a borderomponent. Further, suppose that z1; : : : ; zk 2 R(G; d; s; g) \ Zn+m are k extreme points ofR(G; d; s; g), suh that y = Pki=1 �izi, with Pki=1 �i = 1 and �i > 0 for i = 1; : : : ; k. Sine0 � yxe ; zixe � 1 for every edge e 2 E, then yxe = zixe . This implies that y and zi (i = 1; : : : ; k)have the same ordering among the intervals.Consider now any onneted omponent C of G(y), and assume without loss of generalitythat ylt = 0 for some t 2 C. De�ne CL = fi 2 C : yli = Li(yx; s)g, whih is nonempty sinet 2 CL. For eah node i 2 C, let i denote the distane from i to CL (i.e., the length of theshortest path from i to some node in CL). Note that i = 0, i 2 CL.Claim: zilj = ylj for every j 2 C and i = 1; : : : ; k. We shall prove this laim byindution on the distane j from j to CL.� j = 0: Then j 2 CL, and so ylj = Lj(yx; s). But zi has the same ordering among theintervals than y, and thus zilj � Lj(yx; s), for i = 1; : : : ; k. Thus, zilj = Li(yx; s), sineotherwise Pi �izilj > Lj(yx; s) = ylj .� j > 0: Then ylj + dj + Æjp = ylp or ylp + dp+ Æjp = ylj for some p 2 C in the path fromj to CL (assume without loss of generality that the former holds). By the indutionhypothesis, zilp = ylp for i = 1; : : : ; k, sozilj + dj + Æjp � zilp = ylp :39



But ylj + dj + Æjp = ylp , and thus zilj = ylj . 3Hene zi = y for i = 1; : : : ; k, implying that y is an extreme point of R(G; d; s; g). 2Theorem 3.28 states that a feasible solution y 2 R(G; d; s; g)\Zn+m is an extreme point ifand only if every onneted omponent of G(y) has at least one interval loated either to theleft or to the right bound of the spetrum [0; s℄. In the example above, the feasible sheduledepited in Figure 3.11(b) is not an extreme point of R(H;1; s; g), whereas Figure 3.11(d)presents a solution whose inidene vetor is an extreme point of R(H;1; s; g). Note that,in a border omponent C, not every node i 2 C has to satisfy li = Li(x; s) or li = Ui(x; s)(i.e., attain its leftmost or rightmost position). For example, onsider the border omponentC = f1; 2; 4; 5g from the shedule depited in Figure 3.11(d). The intervals I(1), I(2) andI(4) are loated in their leftmost position, but the interval I(5) is not, despite the fat thatit belongs to C sine l5 + d5 = l4.A similar onstrution an be given for the general ase ri � li � di, i 2 V . In this ase,the adjaeny graph ontains two nodes for eah interval I(i) = [li; ri℄, representing the leftand the right bound, respetively. For i 2 V , the nodes li and ri are adjaent if the intervalI(i) has lenght exatly di. For ij 2 E, the nodes li and rj are adjaent if there exists a spaeof exatly Æij between I(i) and I(j).De�nition 3.11 (adjaeny graph) Let z 2 P (G; d; s; g) \ Z2n+m be a feasible shedule.The adjaeny graph assoiated with this shedule is H(z) = (V 0; E0), withV 0 = f li : i 2 V g [ f ri : i 2 V gE0 = f li ri : i 2 V and zri � zli = dig [f ri lj : ij 2 E and zri + Æij = zljg:De�nition 3.12 A onneted omponent C of H(z) is alled a border omponent if thereexists some li 2 C with zli = 0 or some ri 2 C with zri = s.Theorem 3.29 The point z 2 P (G; d; s; g) \ Z2n+m is an extreme point of P (G; d; s; g) ifand only if every onneted omponent of H(z) is a border omponent.Proof. Only if. Consider a feasible solution z and its adjaeny graph H(z). Supposethat H(z) has a nonborder omponent C, and onstrut two feasible shedules z1; z2 2P (G; d; s; g) \ Z2n+m from z by shifting the bounds in C one unit to the left resp. to theright, i.e., z1lj = ( zlj � 1 if lj 2 Czlj if lj 62 C z2lj = ( zlj + 1 if lj 2 Czlj if lj 62 Cz1rj = ( zrj � 1 if rj 2 Czrj if rj 62 C z2rj = ( zrj + 1 if rj 2 Czrj if rj 62 C40



Claim: z1; z2 2 P (G;d; s; g) \ Z2n+m. We �rst verify that z1rj � z1lj � dj for everyj 2 V . Suppose that rj 2 C but lj 62 C. The onstrution of H(z) implies zrj �zlj > dj , sineotherwise lj would belong to C. Hene z1 satis�es the demand onstraints. It is not diÆultto verify that 0 � z1lj for every j 2 V , sine the left interval bound lj is shifted to the leftonly when lj belongs to a nonborder omponent, implying zlj > 0. The opposite onstraintsz1lj � s� dj are learly satis�ed.To omplete the proof of the laim we show that z1 satis�es the antiparallelity onstraints,by verifying that no overlappings are produed by the shifting. In this setting, an overlappingan our only when zxjk = 1 (for jk 2 E) and zlk is shifted but zrj remains unhanged. Byonstrution, this implies lk 2 C and rj 62 C, hene zrj + Æjk < zlk and so z1rj + Æij � z1lk . Theshedule z2 is de�ned similarly, and the same arguments show that it is feasible. 3But now we have z = 12(z1 + z2) and, therefore, z is not an extreme point.If. Let z be a feasible solution suh that every onneted omponent of H(z) is a borderomponent. Further, suppose that z1; : : : ; zp 2 P (G; d; s; g) \ Z2n+m are p extreme points ofP (G; d; s; g) suh that z = Ppi=1 �izi, with Ppi=1 �i = 1 and �i > 0 for i = 1; : : : ; p. Sinezxe ; zixe 2 f0; 1g for every edge e 2 E, then zxe = zixe .Let C be a onneted omponent of H(z). Sine C is a border omponent, then either(a) lt 2 C and zlt = 0 or (b) rt 2 C and zrt = s, for some t 2 V . Assume w.l.o.g. that theformer holds. For k 2 C, de�ne k to be the distane from node k to lt in H(z) (note thatlt = 0). We now verify by indution on  that zlj = zilj for every lj 2 C and zrj = zirj forevery rj 2 C. Let k 2 C. If k = 0 then k = lt, so zlt = 0. But zilt � 0 for i = 1; : : : ; p,implying zilt = 0. On the other hand, if k > 0, then either k = lj or k = rj for some j 2 V .Suppose w.l.o.g. the former and onsider the following ases:� If there exists some rl 2 C suh that zlj + Æjl = zrl and rl = lj � 1, by the indutionhypothesis we have zrl = zirl for i = 1; : : : ; p. Sine z and zi have the same orderingamong the intervals, then zilj � zirl � Æjl = zrl � Æjl = zlj , implying zilj = zlj fori = 1; : : : ; p.� On the other hand, if zrj � zlj = dj and rj = lj � 1, the indution hypothesis implieszirj = zrj for i = 1; : : : ; p. Sine zilj � zirj � dj = zrj � dj = zlj , then zilj = zlj fori = 1; : : : ; p.The same arguments apply to the ase k = rj. This way we show that z = zi for i = 1; : : : ; pand, therefore, z is an extreme point of P (G; d; s; g). 23.3.2 Combinatorial equivalene for large frequeny spansThe main result of this subsetion asserts that for every interferene graph (G; d) and ev-ery guard distane g there exists a value smax(G; d; g) 2 Z+ suh that the polytopes fromthe families fR(G; d; s; g)gs�smax(G;d;g) resp. fP (G; d; s; g)gs�smax(G;d;g) are pairwise aÆnely41



isomorphi, hene being ombinatorially equivalent. We also provide an upper bound onsmax(G; d; g).De�nition 3.13 The polytopes P � Rn and Q � Rm are aÆnely isomorphi, denoted byP �= Q, if there is a bijetive aÆne map f : Rn ! Rm between the two polytopes.Note that the de�nition asks for an aÆne bijetion between all the points of the polytopes,and this is equivalent to �nding an aÆne bijetion between the extreme points of P and Q,sine aÆne bijetions preserve onvex ombinations of points. Moreover, if f is a bijetionin the ambient spaes, then P and Q are basially \the same polytope" with respet to anaÆne hange of oordinates. From the ombinatorial point of view, if P and Q are aÆnelyisomorphi, then they share the same faial struture. In partiular, the aÆne map gives anisomorphism between their extreme points, and between their faets [46℄.De�nition 3.14 Let �(G; d; g) denote the minimum frequeny spetrum length s suh thatR(G; d; s; g) admits a solution for every possible ordering among the intervals.In order to prove the equivalene of R(G; d; s; g) and R(G; d; s + 1; g), we de�ne now adi�erent representation for feasible shedules, in terms of binary variables. For every nodei 2 V and every k 2 f0; : : : ; s� 1g, de�ne the binary position variable qik as:qik = ( 1 if li � k0 otherwise (3.3)We also onsider the ordering variables xij , for ij 2 E, with the usual meaning. If P is apolytope, we denote by vert(P ) the set of extreme points of P . Therefore, to every extremepoint y = (l; x) 2 vert(R(G; d; s; g)) we an assoiate a point zy = (q; x) 2 Zns+m withzyx = yx and zyq de�ned by (3.3).De�nition 3.15 R(G; d; s; g) = onvfzy : y 2 vert(R(G; d; s; g))g.Sine the extreme points y1; : : : ; yt of R(G; d; s; g) are pairwise distint, then zy1 ; : : : ; zytare pairwise distint as well. Moreover, zy1 ; : : : ; zyt are binary vetors and, therefore, none ofthem an be written as a onvex ombination of the remaining ones. Hene R(G; d; s; g) hasexatly t = jvert(R(G; d; s; g))j extreme points.Lemma 3.30 R(G; d; s; g) �= R(G; d; s; g).Proof. Let 0d 2 R1�d resp. 1d 2 R1�d denote the d-dimensional row vetor with only 0-entries resp. 1-entries. Consider the aÆne map f : vert(R(G; d; s; g)) ! vert(R(G; d; s; g))42



de�ned by f(z) = Bz, where: B = 0BBBBBB� 1s 0s : : : 0s 0n0s 1s : : : 0s 0n... ... . . . ... 0n0s 0s : : : 1s 0n0s 0s : : : 0s In
1CCCCCCAThis funtion maps the point (q; x) to the pointB(q; x) = (l; x), with li =Ps�1k=1 qik. Therefore,f maps extreme points of R(G; d; s; g) onto extreme points of R(G; d; s; g). This mapping islearly injetive and, sine the sets of the extreme points of both polytopes have the sameardinality, it follows that f is a bijetion between these sets. Sine f is an aÆne bijetionbetween vert(R(G; d; s; g)) and vert(R(G; d; s; g)), then f is a bijetion between R(G; d; s; g)and R(G; d; s; g) and, therefore, these polytopes are aÆnely isomorphi. 2Lemma 3.31 If s > 2�(G; d; g), then R(G; d; s; g) �= R(G; d; s+ 1; g).Proof. Let y be an extreme point of R(G; d; s; g), and let C be a onneted omponent ofG(y). Sine C is a border omponent, there there exists some i 2 C suh that either yli = 0 oryli = s�di holds. If yli = 0, s > 2�(G; d; g) implies maxj2C ylj < s=2. Similarly, if yli = s�di,s > 2�(G; d; g) implies minj2C ylj > s=2. Hene the interval set an be partitioned into twosubsets, namely the intervals loated in [0; s=2℄ and the intervals loated in [s=2; s℄.Now, if zy is a feasible solution of R(G; d; s; g), we denote by shift(zy) the orrespondingextreme point of R(G; d; s+1; g), whih has the same on�guration, but the intervals loatedin [s=2; s℄ are now shifted one unit to the right (i.e., these intervals are loated in the rightpart of the new frequeny spetrum [0; s+ 1℄). The point shift(zy) an be written as:shift(zy)qik = ( yqik if k < bs=2yqi;k�1 if k � bs=2shift(zy)xij = yxijThis mapping shifts the intervals of y that are loated in [s=2; s℄ (and therefore have qi;s=2 = 1)one unit to the right, and lets the remaining intervals unhanged. Moreover, it is an aÆnebijetion between the extreme points of R(G; d; s; g) and R(G; d; s+1; g) implying that theyare aÆnely isomorphi. 2Theorem 3.32 If s > 2�(G; d; g), then R(G; d; s; g) �= R(G; d; s+ 1; g).Proof. From Lemma 3.30 and Lemma 3.31 follows R(G; d; s; g) �= R(G; d; s; g) �= R(G; d; s+1; g) �= R(G; d; s+ 1; g). 2Remark. The de�nition of R(G; d; s; g) presented in this setion was inspired by the on-strution given in [37℄ for haraterizing the integer hull of a general polytope. It is also worthnoting that an alternative proof of a weaker version of Theorem 3.32 was found by proving43



that the Fourier-Motzkin elimination method [43, 44, 46℄ performs the same operations onR(G; d; s; g) and R(G; d; s+ 1; g) when s� !(G; d). �The same onstrution an be applied to prove a similar result for the polytope P (G; d; s; g).To this end, we onsider a new set of binary variables uik for i 2 V and k 2 f1; : : : ; sg, de�nedby uik = ( 1 if ri � k0 otherwise (3.4)To every extreme point z = (l; r; x) 2 vert(P (G; d; s; g)) we an assoiate a point wz =(q; u; x) 2 Z2ns+m with wzx = zx and wzq resp. wzu de�ned by (3.3) resp. (3.4). We de�neP(G; d; s; g) � R2ns+m to be the onvex hull of all the points onstruted this way. The sametehniques from the previous lemmas an be applied to show the following result.Theorem 3.33 If s > 2�(G; d; g), then P (G; d; s; g) �= P (G; d; s+ 1; g).Hene, there exists a ertain value of the frequeny span whih ensures ombinatorialstability for the general polytope P (G; d; s; g). We thus introdue the orresponding thresh-old for ombinatorialy stability of hromati sheduling polytopes, whih is well-de�ned byTheorem 3.33.De�nition 3.16 (ombinatorial stability threshold) We denote by smax(G; d; g) theminimum frequeny span s suh that the polytopes P (G; d; s; g) and P (G; d; s+1; g) are om-binatorially equivalent.Theorem 3.33 implies 2�(G; d; g) � smax(G; d; g), but the omputational experimentsfrom Setion 2.2 suggest smax(G; d; g) = �(G; d; g)+1. Moreover, this omputational evidenesuggest that smax(G; d; g) is also the minimum frequeny span ensuring ombinatorial stabilityfor the �xed-length polytope R(G; d; s; g).3.3.3 A better bound for the ase EX = ;If EX = ; (i.e., we have no inter-setor edges), thenG is the disjoint union of liques T1; : : : ; Tt,eah one orresponding to one setor. In this ase, we an prove the ombinatorial equiva-lene of R(G; d; s; g) and R(G; d; s + 1; g) for s > �(G; d; g), thus giving a better bound forsmax(G; d; g) in this partiular setting.In order to state this result, we de�ne another representation for feasible solutions. Foreah node i 2 V , onsider the gap variable pi measuring the total gap to the left of the intervalI(i) (not just the gap between I(i) and its immediate predeessor, but the sum of all gapsloated to the left of I(i)). We also onsider the ordering variables xij , for ij 2 E, with theusual meaning. In this setting, a feasible solution is any assignment of integer values to these44



variables suh that the following onstraints are satis�ed:pj � pi + s xij 8ij 2 E; i < j (3.5)pi � pj + s (1� xij) 8ij 2 E; i < j (3.6)0 � pi � s� Xj2Tk djxij 8k = 1; : : : ; t; 8i 2 Tk (3.7)2 � xij + xjk + (1� xik) 8ij; jk 2 E; i < j; j < k (3.8)xij 2 f0; 1g 8ij 2 E; i < j (3.9)De�nition 3.17 Let �R(G; d; s; g) � Rn+m denote the onvex hull of all feasible solutions(p; x) 2 Zn+m satisfying onstraints (3.5)-(3.9).Lemma 3.34 R(G; d; s; g) �= �R(G; d; s; g).Proof. We show that both polytopes are aÆnely isomorphi by verifying that the gap variablesp an be obtained from the interval bounds l and the ordering variables x by an aÆne map.If i 2 Tk, then pi = li � Xj2Tknfig djxji (3.10)Given any integer solution (l; x) 2 R(G; d; s; g) \ Zn+m, we an �nd its assoiated solution(p; x) 2 �R(G; d; s; g) using 3.10. We an write this mapping in matrix form as (p; x)T =A(l; x)T , with A 2 R(n+m)�(n+m):� px� = � In M0 Im �� lx� ;where In is the n� n identity matrix and M is a (m�m)-matrix with integer entries. Giventhis struture, it an be seen that A is nonsingular, and thus this mapping is an isomorphismon the ambient spaes. Therefore, R(G; d; s; g) �= �R(G; d; s; g). 2Lemma 3.35 The point z 2 �R(G; d; s; g) is an extreme point of �R(G; d; s; g) if and only ifeah lique Tk of G an be partitioned as Tk = T 0k [ T 00k in suh a way that zpi = 0 for i 2 T 0kand zpi = s� !(Tk) for i 2 T 00k .Proof. Only if. If 0 < zpi < s � !(Tk) for some i 2 Tk, then the set of intervals assoiatedwith nodes in Tk having no gap between them and inluding I(i) an be shifted one unit tothe left and one unit to the right, thus onstruting two feasible solutions z1 and z2 suh thatz = 12 (z1 + z2).If. Suppose that z = Ppi=1 �izi, with Ppi=1 �i = 1 and �i > 0. Sine x 2 f0; 1gm, thenzix = zx for i = 1; : : : ; p. Moreover, if j 2 T 0k then zipj � 0 = zpj , and if j 2 T 00k thenzipj � s� !(Tk) = zpj , for every i = 1; : : : ; p. Thus, zipj = zpj for all j 2 V , and then z is anextreme point of �R(G; d; s; g). 2 45



Lemma 3.36 If s > �(G; d; g), then �R(G; d; s; g) �= �R(G; d; s+ 1; g).Proof. Note �rst that s > �(G; d; g) if and only if s � !(Tk) + 1 for every k = 1; : : : ; t. Foreah lique Tk of G, de�ne nk = jTkj and let Mk 2 Rnk�nk be the matrixMk = s+ 1� !(Tk)s� !(Tk) Ink :We now de�ne an aÆne map f : Rn+m ! Rn+m as f(y) = By, withB = 0BBBBB� M1 0n2�n2 : : : 0nt�nt 0m�m0n1�n1 M2 : : : 0nt�nt 0m�m... ... . . . ... ...0n1�n1 0n2�n2 : : : Mt 0m�m0n1�n1 0n2�n2 : : : 0nt�nt Im
1CCCCCA :Let z be an extreme point of �R(G; d; s; g). By Lemma 3.35, eah lique Tk � G has a partitionTk = T 0k [ T 00k suh that zpi = 0 for i 2 T 0k and zpi = s � !(Tk) for i 2 T 00k . Thus, f(z)pi = 0for i 2 T 0k and g(z)pi = s + 1 � !(Tk). Moreover, f(z)x = zx, and so f(z) is the same pointthan z, but with the intervals orresponding to [kT 00k shifted one unit to the right (i.e., at theright of the new frequeny spetrum [0; s+ 1℄).Sine s � !(Tk) + 1 for k = 1; : : : ; t, we have that f maps every extreme point of�R(G; d; s; g) onto its orresponding extreme point of �R(G; d; s + 1; g). Note that the lowerbound on s ensures that all orderings among the intervals are feasible in �R(G; d; s; g) andthus no new interval ordering is introdued in �R(G; d; s+ 1; g). Sine B is nonsingular, then�R(G; d; s; g) �= �R(G; d; s+ 1; g). 2Theorem 3.37 If s > �(G; d; g), then R(G; d; s; g) �= R(G; d; s+ 1; g).Proof. By Lemmas 3.34 and 3.36, we have that R(G; d; s; g) �= �R(G; d; s; g) �= �R(G; d; s +1; g) �= R(G; d; s+ 1; g). Hene R(G; d; s; g) �= R(G; d; s+ 1; g). 2Corollary 3.38 If s > �(G; d; g), then the polytopes R(G; d; s; g) and R(G; d; s + 1; g) areombinatorially equivalent.3.4 Relations to the linear ordering polytopeA linear ordering of a �nite set V = f1; : : : ; ng is a bijetive mapping � : V ! f1; : : : ; ng.For i 2 V and j 2 V , we say that i is before j in � if �(i) < �(j). Given a linear ordering� of V , we an de�ne an ayli tournament T = (V;A) with ar set A = fij : �(i) < �(j)gand, onversely, every ayli tournament T = (V;A) indues a linear ordering of V . Forevery two elements i; j 2 V two values ij 2 R and ji 2 R are given, measuring the pro�t46



we obtain from having i before j resp. j before i in a linear ordering. The weight of a linearordering � is de�ned to be (�) =P�(i)<�(j) ij , and the problem of �nding a linear orderingof maximum weight is alled the linear ordering problem. This problem is NP-hard [20℄ and itis losely related to the so-alled feedbak ar set problem and the ayli subgraph problem[24℄. It has appliations in eonomis (triangulation of input-output matries), sheduling(minimizing average weighted ompletion time), sports (ranking of teams), mathematialpsyhology, arheology and anthropology.We an assoiate with eah linear ordering � a harateristi vetor x� 2 Rn(n�1), de�nedas follows. x�ij = ( 1 if �(i) < �(j)0 otherwiseThe linear ordering polytope P nLO on n nodes is the onvex hull of the harateristi vetors ofall linear orderings of f1; : : : ; ng. This polytope has attrated muh attention. Several lassesof faet-de�ning inequalities are known [8, 19, 23, 38℄, and the omplexity of the assoiatedseparation problems has been studied in detail [39℄. Complete desriptions of P nLO are knownfor n � 7, with 87.472 faets for n = 7. A onjetured omplete desription for n = 8 ontainsover 480 million faets [13℄.Chromati sheduling polytopes share many strutural properties with the linear order-ing polytope, sine the ordering variables have the same meaning in both settings. Notsurprisingly, some of the simplest ases of hromati sheduling polytopes, namely the in-stanes de�ned over omplete graphs, are equivalent to P nLO. We show that R(Kn; d; s; 0) andP (Kn; d; s; 0) are aÆnely isomorphi to P nLO when s = Pni=1 di, and afterwards we present ageneralization of this result for the �xed-length ase when s >Pni=1 di.Reall that two polytopes P 2 Rn and Q 2 Rm are aÆnely isomorphi, denoted P �= Q,if there is an aÆne bijetion f : Rn ! Rm between the points of the two polytopes.Theorem 3.39 If s =Pni=1 di, then P (Kn; d; s; 0) �= P nLO and R(Kn; d; s; 0) �= P nLO.Proof. Sine s = !(Kn; d) then P (Kn; d; s; 0) is nonempty. Moreover, all intervals I(i) haveexatly length di and there is no gap between two intervals left; thus the feasible solutionsdistinguish only in the order of the intervals. Therefore, the following linear equations aresatis�ed by every feasible solution of P (Kn; d; s; 0):li = Pj 6=i dj xji i = 1; : : : ; nri = Pj 6=i dj xji + di i = 1; : : : ; nHene the interval bound variables an be written as aÆne ombinations of the orderingvariables, whih are preisely the linear ordering variables. Moreover, this aÆne mappingis a bijetion, sine every linear ordering generates a feasible shedule in P (Kn; d; s; 0) andonversely. Thus, P (Kn; d; s; 0) �= P nLO. Sine every feasible shedule z 2 P (Kn; d; s; 0) \Z2n+m has zri � zli = di, then P (Kn; d; s; 0) �= R(Kn; d; s; 0), implying R(Kn; d; s; 0) �= P nLO.2 When s = !(Kn; d), every feasible solution of P (Kn; d; s; 0) is a linear ordering. TheaÆne mapping is possible sine there annot be empty spaes between the intervals. If47



s > !(Kn; d), there will be some empty spae between the intervals or there exist intervalsI(i) with ri > li + di. We an still give a haraterization of R(Kn; d; s; 0) in terms of thelinear ordering polytope, but not for P (Kn; d; s; 0) anymore.Theorem 3.40 If s >Pni=1 di, then R(Kn; d; s; 0) �= P n+1LO .Proof. By Theorem 3.28, every extreme point y of R(Kn; d; s; 0) has the following struture.The node set is partitioned into V = Ly [Ry suh thatyli = Xj2Ly yxjidj 8i 2 Lyyli = s� Xj2Ry yxijdj 8i 2 RyThat is, the intervals orresponding to nodes in Ly resp. Ry are loated in the left resp. rightpart of the frequeny spetrum, and there is only one empty interval in between, namely[d(Ly); s � d(Ry)℄. We an regard this unique empty interval as a new interval with lengths�Pni=1 di, and so every extreme point of R(Kn; d; s; 0) represents a linear ordering on n+1nodes. Hene, given an extreme point x 2 vert(P n+1LO ) we an onstrut an extreme point ofR(Kn; d; s; 0) by li = nXj=1djxji + �s� nXj=1 dj�xn+1;i i = 1; : : : ; nSine vert(R(Kn; d; s; 0)) inludes every linear ordering among the n+1 onsidered intervals,then this mapping is an isomorphism and, therefore, R(Kn; d; s; 0) �= P n+1LO . 2These results imply that even simple hromati sheduling polytopes, namely those de�nedover omplete graphs, are hard to haraterize. A omplete desription of R(Kn; d; s; 0) interms of its faets should inlude all the linear ordering faets, whih amount to severalmillions of valid inequalities even for small instanes [13℄. One may expet that similarrelationships may hold for hromati sheduling polytopes over arbitrary graphs, and this isindeed the ase. The remaining of this setion is devoted to presenting these results.De�nition 3.18 If �Tx � �0 is a valid inequality of P nLO, let S� denote the set of diretedars having nonzero oeÆients in the inequality (i.e., S� = fe 2 E : �e 6= 0g).Proposition 3.41 Let �Tx � �0 be a valid inequality of P nLO with S� � E. Then theinequality Pij2S� �ijxij � �0 is valid for P (G; d; s; g) and R(G; d; s; g).Proof. Let (l; r; x) 2 P (G; d; s; g) \ Z2n+m be an integer feasible solution. The vetor xspei�es a partial ordering among the intervals, and an be extended into a linear orderingx0 2 P nLO satisfying �Tx0 � �0. Sine S� � E, then �Tx0 = Pij2S� �ijx0ij = Pij2S� �ijxij ,implying that Pij2S� �ijxij � �0 is valid for P (G; d; s; g). Sine this inequality only involvesthe ordering variables, it is also valid for R(G; d; s; g). 248



Theorem 3.42 Let �Tx � �0 be a faet-de�ning inequality of P nLO with S� � E. If s �!(G; d), then Pij2S� �ijxij � �0 de�nes a faet of P (G; d; s; g) and R(G; d; s; g).Proof. Sine the equations xij + xji = 1 8i 6= j are a maximal equation system for P nLO,there exist k = n(n � 1)=2 aÆnely independent integer points x1; : : : ; xk 2 P nLO suh that�Txi = �0 for i = 1; : : : ; k. These points have n(n � 1)=2 oordinates, one for eah edgeof Kn. Delete the oordinates orresponding to the edges that are not present in G. Thatway we obtain the new points projx(x1); : : : ;projx(xk) 2 Rm, and we an �nd m aÆnelyindependent points among them. Sine s � !(G; d), we an extend �xi = projx(xi) to afeasible shedule zi 2 P (G; d; s; g) \Z2n+m, by assigning the intervals in suh a way that thepreedene relation indiated by �xi is satis�ed, i.e., zilj = Lj(�xi; s) and zirj = Lj(�xi; s)+dj forj 2 V . By onstrution, this shedule is feasible.We now onstrut 2n more aÆnely independent points from z1 as follows. Let D =(V;ED) be a digraph suh that ij 2 ED if and only if ij 2 E and I(j) is loated beforeI(i) in z1. Let i1; : : : ; in be a topologial ordering of D, and onstrut n feasible solutionsu1; : : : ; un 2 P (G; d; s; g) by settinguilj = ( z1lj + 1 if j = it, for t � iz1lj if j = it, for t > iuirj = uilj + djNow, for j = 1; : : : ; n, onstrut a point wj 2 P (G; d; s; g) from uj by enlarging the in-terval I(ij) one unit to the left. These new shedules are aÆnely independent with re-spet to z1; : : : ; zn. This way we omplete a set of 2n + m aÆnely points and, therefore,Pij2S� �ijxij � �0 de�nes a faet of the (full-dimensional) polytope P (G; d; s; g). The on-strution of the shedules z1; : : : ; zk and u1; : : : ; un shows that this inequality also de�nes afaet of R(G; d; s; g). 2
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Chapter 4
Faets for all nonempty instanesoming from symmetry arguments

An algorithm whih is good in the sense used here is notneessarily very good from a pratial viewpoint. How-ever, the good versus not-good dihotomy is useful. (...)The lasses of problems whih are respetively known andnot known to have good algorithms are very interestingtheoretially.{ Jak Edmonds (1967)Chromati sheduling polytopes also admit interesting properties from a geometrial pointof view. The main reason is that there are only antiparallelity requirements on the jobs butno presribed partial orders, implying strong symmetry properties as addressed in Setion4.1. The main onsequene is a powerful tool for identifying faet-de�ning inequalities fornonempty polytopes without any knowledge on the dimension. This is of partiular interestas determining the dimension of hromati sheduling polytopes is NP-omplete.Based on this tool, we analyze in Setion 4.2 the demand onstraints, the binary boundson the ordering variables, and a further lass of valid inequalities showing that they induefaets whenever the polytopes are nonempty. We also observe that the remaining integerprogramming onstraints, i.e., the bounds on the interval variables and the antiparallelityonstraints, do not de�ne faets in general.Setion 4.3 presents three lasses of faet-de�ning inequalities for the polytopes P (G; d; s; g)where the frequeny span s is small ompared to the weighted lique number !(G; d). Thissetting is the hardest ase in pratie, sine we annot expet to �nd feasible solutions ina straightforward manner. We explore three lasses of inequalities being valid only in low-dimensional polytopes, but being faet-induing due to symmetry arguments.
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4.1 Symmetry of hromati sheduling polytopesChromati sheduling polytopes admit a partiular property: they are symmetri. Reall thatwe only have antiparallelity onstraints for potential interferers ij 2 E but no preedenerelation given in advane. Hene, in a feasible solution either the interval I(i) has to besheduled before the interval I(j) or I(j) omes before I(i). Thus, for every feasible sheduleS, there is a feasible shedule symmetri to S w.r.t. the available spetrum [0; s℄, obtainedby swapping all intervals of S. This is obviously not true for sheduling problems in general.Clearly, the polytopes P (G; d; s; g) and R(G; d; s; g) reet the symmetry of the shedules.This was �rst observed in [21℄ and further explored in [26℄. In this setion we disuss thisproperty in more detail and study how it a�ets the searh for valid inequalities. We �rststate the main results onerning the symmetry of R(G; d; s; g) resp. P (G; d; s; g) in Setion4.1.1 resp. Setion 4.1.2. This speial symmetry provides tools for identifying faet-de�ninginequalities without any knowledge of the dimension of the polytopes, see Setion 4.1.3. Weshall apply these theorems in Setion 4.2 and Setion 4.3 to some lasses of valid inequalitiesshowing that they de�ne faets whenever the polytopes are nonempty.4.1.1 Symmetry results for R(G; d; s; g)In the �xed-length ase, the polytope admits a symmetry point as observed in [21, 26℄.Theorem 4.1 ([26℄) The polytope R(G; d; s; g) is symmetri with respet to the pointp = �s� d12 ; : : : ; s� dn2| {z }n ; 12 ; : : : ; 12�| {z }m :Proof. Let S be a feasible shedule, representing an assignment of an interval I(i) = [li; li+di℄to eah ustomer i 2 V . We obtain a symmetri assignment of intervals I 0(i) = [l0i; l0i + di℄ =[s � li � di; s � li℄ in the reverse order if we mirror the interval I(i) with respet to theavailable spetrum [0; s℄ for every i 2 V . Thus the shedule S0 given by the left intervalbounds l0i = s � li � di 8i 2 V and the preedene variables x0ij = 1 � xij 8ij 2 E, i < jdesribes a feasible shedule symmetri to S. Heneli + l0i2 = li + s� li � di2 = s� di2 and xij + x0ij2 = xij + 1� xij2 = 12implies that p = �s� d12 ; : : : ; s� dn2| {z }n ; 12 ; : : : ; 12�| {z }mis the symmetry point of R(G; d; s; g). 2 52



De�nition 4.1 If y = (l; x) 2 R(G; d; s; g) \ Zn+m is a feasible integer solution, thensym(y) = 2p� y denotes its symmetrial solution, i.e.,sym lx! =  s 1� d1 !�  lx!:Due to the symmetry of the polytope R(G; d; s; g), to every fae exists a parallel fae ofthe same dimension and there is a simple formula to ompute this parallel fae.Theorem 4.2 ([26℄) Let b � aTx be a valid (faet-induing) inequality of R(G; d; s; g). ThenaTx � 2aT p� b is also valid (faet-induing) for R(G; d; s; g).Proof. We �rst prove that aTx � 2aT p � b is valid for R(G; d; s; g). Let y be a feasiblesolution and let y0 = sym(y) = 2p � y. Then aT y = aT (2p � y0) = 2aT p � aT y0 � 2aT p � b(sine y0 is feasible and aT y0 � b). Now, if there are k aÆnely independent points in H =fy 2 R(G; d; s; g) : aT y = 2aT p � bg, there are obviously k aÆnely independent points inH 0 = fy 2 R(G; d; s; g) : aT y = bg. Thus, if b � aTx is faet-induing for R(G; d; s; g), thenaTx � 2aT p� b is faet-de�ning too. 24.1.2 Symmetry results for P (G; d; s; g)In the general ase, every feasible shedule is represented by the interval bounds l; r 2 Rnand the ordering variables x 2 Rm. Swapping all the intervals of a feasible solution z =(l; r; x) with respet to the spetrum [0; s℄ onstruts a new point z0 whih is also feasible andsymmetri to the original one. Thereby, the swapping maps the left interval bounds li of z tothe right interval bounds r0i of z0, and reverses the order of the intervals:li ! r0i = s� li 8i 2 Vri ! l0i = s� ri 8i 2 Vxij ! x0ij = 1� xij 8ij 2 EHene, swapping the intervals yields(l1; : : : ; ln; r1; : : : ; rn; x1i; : : : ; xjn)! (r01; : : : ; r0n; l01; : : : ; l0n; x01i; : : : ; x0jn):The point �p with entries �pli = li+r0i2 = li+s�li2 = s2 8i 2 V�pri = ri+l0i2 = ri+s�ri2 = s2 8i 2 V�pxij = xij+x0ij2 = xij+1�xij2 = 12 8ij 2 Eis, therefore, the symmetry point for every pair of symmetri feasible solutions z and z0. Sine�p is independent of the speial hoie of z, it an be seen as the symmetry point of P (G; d; s; g)with respet to swapping shedules. 53



De�nition 4.2 Let sym(z) denote the symmetrial point of an integer solution z = (l; r; x) 2P (G; d; s; g) \ Z2n+m, wheresym0� lrx1A = 0� s 1� rs 1� l1� x 1A = 0� s 1s 11 1A�0� rlx1A :We again bene�t from the symmetry of the polytope in order to �nd, for every inequalityvalid for P (G; d; s; g), a symmetri valid inequality. For that, let S be a feasible shedule andlet zS 2 P (G; d; s; g) \ Z2n+m be its assoiated vetor. Let b � aTx be a valid inequality ofP (G; d; s; g). The straight line through zS and the symmetry point �p meets the hyperplaneH = fx 2 R2n+m : aTx = bg in a point, say zSH . Let zS0 and zS0H be the images of zS and zSHobtained by the swapping. Then zS0H lies on the hyperplane H 0 = fx0 2 R2n+m : aTx0 = b0gwith x0 = (xr1 ; : : : ; xrn ; xl1 ; : : : ; xln ; xx1i ; : : : ; xxjn):Observe that aTx0 = a0Tx holds by(al; ar; ax)0B�xrxlxx1CA = (ar; al; ax)0B� xlxrxx1CA :Thus we may represent the hyperplane H 0 = fx 2 R2n+m : a0Tx = b0g witha0 = (ar1 ; : : : ; arn ; al1 ; : : : ; aln ; ax1i ; : : : ; axjn):By P (G; d; s; g) � fx 2 R2n+m : b � aTxg and the symmetry of the polytope, P (G; d; s; g) �fx 2 R2n+m : �b0 � �a0Txg follows, i.e., a0Tx � b0 is valid for P (G; d; s; g). We have todetermine b0. The previous observations imply zS0H = 2�p � zSH . Thus, from aT zSH = b andaT zS0H = b0 follows b0 = aT zS0H = aT (2�p� zSH) = 2aT �p� aT zSH = 2aT �p� band a0Tx � 2aT �p� b is, therefore, the valid upper bound inequality of P (G; d; s; g) symmetrito b � aTx. (Note aT �p = a0T �p.) Further, if there are k aÆnely independent points inH\P (G; d; s; g), there are obviously k aÆnely independent points in H 0\P (G; d; s; g). Thus,if b � aTx is faet-induing for P (G; d; s; g), so is a0Tx � 2aT �p� b and we have obtained thefollowing theorem:Theorem 4.3 ([26℄) Let b � aTx be a valid (faet-induing) inequality of P (G; d; s; g) andlet �p be the symmetry point of P (G; d; s; g) with respet to swapping shedules. Then a0Tx �2aT �p� b is also valid (faet-induing) for P (G; d; s; g) wherea0 = (ar1 ; : : : ; arn| {z }n ; al1 ; : : : ; aln| {z }n ; ax1i ; : : : ; axjn| {z }m ):54



4.1.3 Faets arising from symmetry argumentsThe symmetry of hromati sheduling polytopes provides us an important tool for identifyingfaet-de�ning inequalities, where no knowledge on the dimension is required. The results ofthis subsetion show that if F is a fae suh that y 2 F , sym(y) 62 F , then F is a faet ofR(G; d; s; g). With some other minor assumptions, the same result applies to P (G; d; s; g).Theorem 4.4 Let F be a fae of R(G; d; s; g) suh that y 2 F , sym(y) 62 F for everyy 2 R(G; d; s; g) \ Zn+m. Then F is a faet of R(G; d; s; g).Proof. Assume that dim(F ) = k, and let y0; : : : ; yk be a maximal set of aÆnely independentpoints in F . Let yk+1 62 F be any feasible solution outside F . Then, y0; : : : ; yk; yk+1 areaÆnely independent, beause y0; : : : ; yk satisfy the equation whih de�nes F and yk+1 doesnot.Now let yk+2 62 F be some other feasible solution not in F . Note that sym(yk+1) andsym(yk+2) are in F , and thus they an be written as aÆne ombinations of y0; : : : ; yk. Then,yk+2 � yk+1 =  s 1� d1 !� yk+1 �  s 1� d1 !+ yk+2= sym(yk+1)� sym(yk+2)= kXi=0 �iyi � kXi=0 �iyi= kXi=0(�i � �i)yi;where Pi �i =Pi �i = 1. But thenyk+2 = yk+1 + kXi=0(�i � �i)yiimplies that yk+2 is an aÆne ombination of the points y0; : : : ; yk; yk+1. This proves thatdim(R(G; d; s; g)) = dim(F ) + 1 holds, and thus F is a faet of R(G; d; s; g). 2The symmetry for the general ase provides some tools for identifying faet-de�ning in-equalities as well. In order to state these results, reall Lemma 3.9, whih relates the dimensionof R(G; d; s; g) and P (G; d; s; g) by means of the node subset Fs(G; d).Theorem 4.5 Let F = fy 2 R(G; d; s; g) : aT y = bg be a fae of R(G; d; s; g) suh thatred(z) 2 F , red(sym(z)) 62 F for every z 2 P (G; d; s; g) \ Z2n+m. Then F 0 = fz 2P (G; d; s; g) : aT red(z) = bg is a faet of P (G; d; s; g).Proof. If y 2 R(G; d; s; g), then ext(y) 2 P (G; d; s; g). By the hypothesis, we have thateither red(ext(y)) 2 F or red(sym(ext(y))) 2 F (but not both). But red(ext(y)) = y and55



red(sym(ext(y))) = sym(y) imply y 2 F , sym(y) 62 F . Therefore, F is a faet of R(G; d; s; g)by Theorem 4.4. Let r = dim(R(G; d; s; g)), then there exist r aÆnely independent vetorsy1; : : : ; yr in the faet F (i.e., aT yk = b for k = 1; : : : ; r). Then, ext(y1); : : : ; ext(yr) areaÆnely independent points satisfying aT red(ext(yk)) = b by de�nition.Now, for eah k 2 Fs(G) let zk 2 P (G; d; s; g) be a solution suh that zkrk � zklk > dk andzkrl � zkll = dl for l 6= k. We an assume that red(zk) 2 F 0 (otherwise, onsider the redutionof its symmetrial point sym(zk)). De�ne the following set of feasible solutions:A = fext(y1); : : : ; ext(yr)g [ fzk : k 2 Fs(G)g:For every k 2 Fs(G), zk is aÆnely independent w.r.t. the points in Anfzkg, sine all thepoints in Anfzkg satisfy rk � lk = dk, but zk does not. This way we have by Lemma3.9 jAj = dim(R(G; d; s; g)) + jFs(G)j = dim(P (G; d; s; g)) aÆnely independent points inP (G; d; s; g) satisfying aT red(z) � b at equality and this inequality de�nes, therefore, a faetof P (G; d; s; g). 2Corollary 4.6 Let F = fy 2 R(G; d; s; g) : aT y = bg be a fae of R(G; d; s; g) suh that y 2F , sym(y) 62 F for every y 2 R(G; d; s; g) \ Z2n+m and projl(a) = 0 (i.e. only x-variableshave nonnegative oeÆients in aT y � b). Then F 0 = fz 2 P (G; d; s; g) : aT red(z) = bg isa faet of P (G; d; s; g).Proof. We verify that the assumptions of Theorem 4.5 are satis�ed. Consider any feasiblesolution z 2 P (G; d; s; g). By the hypothesis, we know that red(z) 2 F , sym(red(z)) 62 F .Moreover, aT red(sym(z)) = projx(a) projx(red(sym(z)))= projx(a) projx(sym(red(z)))= aT sym(red(z)):Then, we have that red(z) 2 F , aT red(z) = b, aT sym(red(z)) < b, aT red(sym(z)) < b, red(sym(z)) 62 F:So, the hypotheses of Theorem 4.5 are satis�ed, and thus F 0 is a faet of P (G; d; s; g). 24.2 Faets oming from the model onstraintsWith the help of the results from the previous setion, we are now able to determine whihmodel onstraints de�ne faets of hromati sheduling polytopes. In this setion we showthat the lower and upper bounds on the ordering variables 0 � xij � 1 8ij 2 E implied56



by the binary onstraints xij 2 f0; 1g are always faet-de�ning whenever the polytopes arenonempty, and we present a further lass of valid inequalities whih admits the same property.We also give a haraterization of the ases where the demand onstraints de�ne faets ofP (G; d; s; g). We start with the bounds on the ordering variables.Theorem 4.7 If ij 2 E, then xij � 0 and xij � 1 de�ne faets of R(G; d; s; g) andP (G; d; s; g), whenever the polytopes are nonempty.Proof. Let F = fy 2 R(G; d; s; g) : yxij = 1g be the fae de�ned by xij � 1, i.e., the onvexhull of the set of points having I(i) before I(j). A point has I(i) before I(j) if and only if itssymmetrial point has I(j) before I(i), and thus y 2 F , sym(y) 62 F . Theorem 4.4 showsthat F is a faet of R(G; d; s; g), and Corollary 4.6 implies that F 0 = fz 2 P (G; d; s; g) : zxij =1g is a faet of P (G; d; s; g). The same argumentation applies to xij � 0. 2De�nition 4.3 (triangle inequalities) Consider a triangle T = fi; j; kg of G, i.e., a setof three pairwise adjaent nodes of G. We de�nexij + xjk + xki � 2 (4.1)to be the triangle inequality assoiated with T .It is easy to verify that triangle inequalities are valid for both polytopes, sine xij = xjk =xki = 1 is obviously not possible in any feasible solution. We now apply the results of Setion4.1.3 to prove faetness.Theorem 4.8 The triangle inequalities de�ne faets of R(G; d; s; g) and P (G; d; s; g) when-ever the polytopes are nonempty.Proof. Let y 2 R(G; d; s; g) be an integer solution. Sine fi; j; kg is a omplete subgraph,the intervals I(i), I(j) and I(k) annot overlap in y. Thus y ontains one of the six on-�gurations depited in Figure 4.1. Note that the ases (a), (b), and () satisfy (4.1) atequality, whereas the ases (d), (e), and (f) do not. Moreover, the ases (a), (b), resp. ()are the symmetri ases of (d), (e), resp. (f). Thus, if F is the fae de�ned by (4.1), theny 2 F , sym(y) 62 F holds. Theorem 4.4 resp. Corollary 4.6 implies that F is a faet ofR(G; d; s; g) resp. P (G; d; s; g). 2Corollary 4.9 If T = fi; j; kg is a triangle of G, then the inequality 1 � xij + xjk + xkisymmetri to (4.1) is faet-induing for P (G; d; s; g) and R(G; d; s; g) whenever the polytopesare nonempty.Let us now analyze the demand onstraints li + di � ri for P (G; d; s; g) (reall that theseonstraints are replaed by equalities in R(G; d; s; g)). Let i 2 V . If i 62 Fs(G; d), i.e., if57



Figure 4.1: Possible ases for y.every point in P (G; d; s; g) satis�es li + di = ri, then P (G; d; s; g) � fy : yli + di = yrig. Onthe other hand, if i 2 Fs(G; d), i.e., if there exists a feasible solution z 2 P (G; d; s; g) withzli + di < zri , then the demand onstraint for the node i de�nes a proper fae of P (G; d; s; g)and, moreover, this fae is a faet.Theorem 4.10 If i 2 Fs(G; g), then the demand onstraint li + di � ri de�nes a faet ofP (G; d; s; g).Proof. Call dim(P (G; d; s; g)) = k, and let y0; : : : ; yk 2 P (G; d; s; g) be k + 1 aÆnely in-dependent points in P (yj 2 R2n+m). For i = 0; : : : ; k, onsider the vetor �yj obtainedfrom yj by replaing its ri-entry by yjli + di. Note that this shrinks the interval I(i) to itsminimum length di in every yj , leaving the remaining intervals unhanged, and thus keep-ing feasibility. These new points lie in the fae F of P (G; d; s; g) de�ned by li + di � ri.Moreover, from dimfy0; : : : ; ykg = k follows dimf�y0; : : : ; �ykg � k � 1. But there is a pointz 2 P (G; d; s; g) whih does not satisfy the demand onstraint li + di � ri at equality, andthus dimf�y0; : : : ; �ykg = k � 1, implying that this inequality de�nes a faet of P (G; d; s; g). 2It is natural to ask whether the remaining model onstraints, i.e., the bounds on theinterval variables and the antiparallelity onstraints, indue faets. In Chapter 5 we shall seethat these onstraints do not indue faets in general, and we shall devise strengthenings ofthe orresponding inequalities providing faet-induing families of inequalities.4.3 Faet-de�ning inequalities for small frequeny spansIf s is lose to the weighted lique number !(G; d) of the interferene graph, then the frequenyspetrum [0; s℄ does not allow every possible ordering among the intervals. This setting isthe hardest ase in pratie sine we annot expet to �nd feasible solutions easily. Thissetion presents valid inequalities that arise in this situation. The main idea is to identifystrutures on the interferene graph that prelude every possible ordering, and to state a validinequality asserting this onstraint. The inequalities devised in this setion are amenable of58



Figure 4.2: Possible on�gurations of a feasible solution in the proof of Theorem 4.12.being analyzed with symmetry arguments, and we will use the results presented in Setion4.1.3 to show that these inequalities are faet-de�ning as long as the polytopes are nonempty.De�nition 4.4 (4-path inequalities) Let i; j; k; l 2 V be four nodes of G suh that ij, jk,kl 2 E and no feasible solution of P (G; d; s; g) has the ordering i! j ! k ! l. We de�nexij + xjk + xkl � 2 (4.2)to be the 4-path inequality assoiated with the path fi; j; k; lg.Proposition 4.11 If no feasible solution has the ordering i ! j ! k ! l, then the 4-pathinequality (4.2) is valid for R(G; d; s; g) and P (G; d; s; g).Proof. The 4-path inequality an only be violated by a solution z 2 P (G; d; s; g) \ Z2n+msuh that zxij = zxjk = zxkl = 1, but this implies that z has the ordering i ! j ! k ! l,whih is exluded by the hypothesis. Hene (4.2) is valid for P (G; d; s; g) and, sine it doesnot involve the interval bounds, it is also valid for R(G; d; s; g). 2Theorem 4.12 If no feasible solution has the ordering i ! j ! k ! l, then the 4-pathinequality (4.2) is faet-induing for R(G; d; s; g) and P (G; d; s; g).Proof. Let y 2 R(G; d; s; g) \ Zn+m be an integer feasible solution. Sine the orderingi ! j ! k ! l is not allowed, then y has one of the six forms depited in Figure 4.2. Notethat ases 4.2(a), 4.2(b) and 4.2() satisfy (4.2) at equality, whereas ases 4.2(d), 4.2(e) and4.2(f) do not. Moreover, ases 4.2(a) and 4.2(d) are symmetrial, ases 4.2(b) and 4.2(e)are symmetrial, as well as 4.2() and 4.2(f). Thus, if F is the fae de�ned by (4.2), theny 2 F , sym(y) 62 F , and by Theorem 4.4 and Corollary 4.6, the inequality (4.2) de�nes afaet of R(G; d; s; g) and P (G; d; s; g). 2Remark. The 4-path inequality appears only for small values of s preventing a linear orderingof the nodes fi; j; k; lg. This ordering is not feasible ifdi + dj + dk + dl + g (Æij + Æjk + Ækl) > s; (4.3)59



where Æij denotes the minimum possible distane between I(i) and I(j). Note that theonverse is not true in general, i.e., it may happen that (4.3) is not satis�ed but still thestruture of G does not allow the ordering i ! j ! k ! l. This is the situation in theexample depited in Figure 4.3, whih has g = 0 and di + dj + dk + dl � s, but does not allowthe ordering in question. �
Figure 4.3: The ordering i! j ! k ! l is not feasible but (4.3) does not hold.The 4-path inequalities annot be trivially generalized to faet-induing inequalities asso-iated with paths on more than 4 nodes. For example, let j1; : : : ; jk be a path in G on k > 4nodes, suh that no feasible solution has xji;ji+1 = 1 for i = 1; : : : ; k� 1. Then, the inequalityk�1Xi=1 xji;ji+1 � k � 1 (4.4)is valid but may not de�ne a faet if s is too small.De�nition 4.5 (paw inequalities) Let i; j; k; l 2 V be four distint nodes of G suh thatfi; j; kg indues a triangle and jl 2 E. Furthermore, suppose that no feasible solution ofP (G; d; s; g) has the ordering i! j ! k and j ! l. We de�nexjk + xjl � 1 + xji (4.5)to be the paw inequality assoiated with the nodes fi; j; k; lg.Remark. Note that the de�nition of the paw inequalities allows il 2 E and kl 2 E, i.e., thenode set fi; j; k; lg is not supposed to de�ne an indued paw. �Proposition 4.13 If no feasible solution has the ordering i ! j ! k and j ! l, then thepaw inequality (4.5) is valid for R(G; d; s; g) and P (G; d; s; g).Proof. The only ombination of values for variables xjk, xjl and xji violating inequality (4.5)is xjk = xjl = 1 and xji = 0, whih amounts to the forbidden ordering i! j ! k and j ! l.Thus, (4.5) is a valid inequality for R(G; d; s; g) and P (G; d; s; g). 2Theorem 4.14 If no feasible solution has the ordering i ! j ! k and j ! l, then the pawinequality (4.5) is faet-de�ning for R(G; d; s; g) and P (G; d; s; g).60



Proof. To show that this inequality de�nes a faet of these polytopes, it is enough to verifythat y is in the fae de�ned by (4.5) if and only if sym(y) is not, and then applying Theorem4.4 and Corollary 4.6. 2To lose this setion, we now present a faet-de�ning inequality for a 5-node struture.De�nition 4.6 (extended paw inequalities) Let 1; : : : ; 5 2 V be �ve distint nodes suhthat 12; 23 2 E and f3; 4; 5g form a triangle in G. Moreover, assume that no feasible solutionhas the orderings 1! 2! 3! 4, 1! 2! 3! 5 and 2! 3! 4! 5. We de�nex34 + x35 � x21 � 2x32 (4.6)to be the extended paw inequality assoiated with the nodes f1; : : : ; 5g.Remark. Again, note that the de�nition of the extended paw inequalities allows 14; 15 2 Eand 24; 25 2 E. �Proposition 4.15 If no feasible solution has the orderings 1 ! 2 ! 3 ! 4, 1 ! 2 !3 ! 5 and 2 ! 3 ! 4 ! 5, the extended paw inequality (4.6) is valid for R(G; d; s; g) andP (G; d; s; g).Proof. Sine the LHS of (4.6) is bounded by 2, this inequality is satis�ed by any feasiblesolution y with yx32 = 1. So, let y be an integer solution with yx32 = 0. In this ase, (4.6)an only be violated in one of the following ases:� LHS = 1: This an only happen in one of the following three situations:{ yx34 = 1, yx35 = 0 and yx21 = 0, but this amounts to the ordering 1! 2! 3! 4,whih is forbidden by the hypotheses.{ yx34 = 0, yx35 = 1 and yx21 = 0, but this yields the ordering 1! 2! 3! 5, whihagain is forbidden by the hypotheses.{ yx34 = 1, yx35 = 1 and yx21 = 1, but this orresponds to the ordering 2! 3! 4!5, whih annot appear in a feasible solution.� LHS = 2: This an only happen with yx34 = yx35 = 1 and yx21 = 0, but this impliesthat y has the orderings 1! 2! 3! 4 and 1! 2! 3! 5, whih are both forbiddenby the hypotheses.So, we an only have RHS = 0 when LHS = 0, thus verifying that (4.6) is a valid inequalityfor P (G; d; s; g) and R(G; d; s; g). 2Theorem 4.16 If no feasible solution has the orderings 1 ! 2 ! 3 ! 4, 1 ! 2 ! 3 ! 5and 2! 3! 4! 5, the extended paw inequality (4.6) is faet-induing for R(G; d; s; g) andP (G; d; s; g). 61



Figure 4.4: Feasible on�gurations for the proof of Theorem 4.16.Proof. Consider all the possible on�gurations for the nodes 1 to 5 (i.e., exluding the forbid-den orderings given by the hypotheses). There are 8 possible on�gurations, 4 of whih satisfy(4.6) at equality and are depited in Figure 4.4. The remaining 4 on�gurations (whih donot satisfy (4.6) at equality) are exatly the symmetrial on�gurations, so Theorem 4.4 andCorollary 4.6 imply that this inequality de�nes a faet of P (G; d; s; g) and R(G; d; s; g). 2
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Chapter 5
Clique inequalitiesand faet-de�ning variants

For a lass of disrete problems, formulated in a naturalway, one may hope then that equivalent linear onstraintsare pleasant enough though they are not expliit in thedisrete formulation{ Jak Edmonds (1965)This hapter provides onstrutions of valid and faet-de�ning lasses of inequalities de-rived from the interval bound onstraints and the antiparallelity onstraints, respetively.Setion 5.1 presents the onstrution of the lique inequalities as a strengthening of the boundonstraints for the interval variables. We prove that these new inequalities are faet-de�ningfor R(G;1; s; 0) and P (G;1; s; 0) if s � smin(G; d; 0) + 3, and analyze a partiular sublass,the overing-lique inequalities, that indues faets of nonuniform instanes. We also addressthe assoiated separation problem.Setion 5.2 analyzes the antiparallelity onstraints, showing that these inequalities do notde�ne faets in general. We strengthen these inequalities with a lique struture, obtainingthe so-alled double overing-lique inequalities, being valid for P (G; d; s; g) and R(G; d; s; g).These inequalities are faet-induing for s � smin(G; d; 0) + 4dmax but not for instanes withsmall frequeny span in general. We present further examples suggesting that instanes withsmall frequeny spans an have faet-de�ning inequalities with unusual strutures.Setion 5.3 presents generalizations and extensions of the standard overing-lique in-equalities. Setion 5.3.1 and Setion 5.3.2 provide two lasses of faet-induing inequalitiesgeneralizing the overing-lique inequalities, i.e., ontaining the overing-lique inequalitiesas speial ases. Finally, we disuss in Setion 5.3.3 three lasses of faet-de�ning inequalitiesarising as variations of the double overing-lique inequalities.
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5.1 Clique inequalities and overing-lique inequalitiesThe integer programming model for the bandwidth alloation problem in PMP-Systems in-ludes the bound onstraints, asserting 0 � li and ri � s for i 2 V . The inequality 0 � li doesnot de�ne a faet in general, sine any feasible shedule z 2 P (G; d; s; g) \ Z2n+m satisfyingzli = 0 must have zxij = 1 for every j 2 N(i), implying that the orresponding fae annothave the required dimension for being a faet if the polytope is full-dimensional. The sameargumentation applies to the opposite onstraint.However, we an strengthen the interval bound 0 � li by onsidering a neighbor of thenode i. Let j 2 N(i) be suh a neighbor and onsider the following simple inequality:dj xji � li: (5.1)This inequality is learly valid for R(G; d; s; g) and P (G; d; s; g), sine xji = 1 implies thatthe interval I(j) is loated before the interval I(i), and thus li � dj . We an generalize thisinequality by onsidering a lique K in N(i) = fj 2 V : ij 2 Eg. As we shall see below, theresulting inequality is faet-induing for P (G;1; s; 0) and R(G;1; s; 0) if K is maximal ands is large enough. However, this inequality does not de�ne a faet of hromati shedulingpolytopes in the general ase d � 1.De�nition 5.1 (lique inequalities) If i 2 V and K � N(i) is a lique of G, then wede�ne Xk2K dk xki � li (5.2)to be the lique inequality assoiated with i and K.Proposition 5.1 The lique inequalities are valid for R(G; d; s; g) and P (G; d; s; g).Proof. Let z 2 P (G; d; s; g)\Z2n+m be an integer feasible solution of P (G; d; s; g). Let L � Kbe the set of nodes k 2 K suh that the interval I(k) is loated before I(i). Sine K is alique, the intervals fI(k)gk2K are pairwise disjoint, implying zli �Pk2L dk =Pk2K zxkidk.Hene the lique inequality (5.2) is valid for P (G; d; s; g). Moreover, sine this inequality doesnot involve the r-variables, it is also valid for R(G; d; s; g). 2Theorem 5.2 Let K � N(i) be a maximal lique in N(i). If s � smin(G;1; 0) + 3, then thelique inequality (5.2) de�nes a faet of R(G;1; s; 0) and P (G;1; s; 0).Proof. We already know that (5.2) is valid for P (G;1; s; 0) and R(G;1; s; 0), so it remainsto show that the orresponding fae F is maximal. To this end, suppose �T z = �0 for everyz 2 P (G; d; s; 0) satisfying (5.2) at equality. We will show that (�; �0) is in fat a multiple of(5.2), thus proving that this inequality indues a faet of P (G; d; s; 0).64



Figure 5.1: Construtions for the proof of Theorem 5.2.
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Figure 5.2: Clique inequalities do not de�ne faets in general.Claim 1: �lj = 0 for j 6= i. Consider the feasible shedules z and z0 presented in Figure5.1(a) and Figure 5.1(b), respetively. It is not diÆult to verify that z; z0 2 F and, therefore,�T z = �0 = �T z0. Sine these points only di�er in their lj-oordinate, �lj = 0 follows. 3Claim 2: �rj = 0 for every j 2 V . The feasible shedules presented in Figure 5.1()and Figure 5.1(d) satisfy (5.2) at equality, implying �rj = 0. 3Claim 3: �xjt = 0 for every jt 2 EnÆ(i). Consider now the feasible solutionspresented in Figure 5.1(e) and Figure 5.1(f). Note that this onstrution is possible sines � smin(G;1; 0)+3. We know from the previous laims that �lj = �rj = 0 and �lt = �rt = 0,thus �xjt = 0. 3Claim 4: �xik = �dk�li for every k 2 K. The feasible integer solutions depited inFigure 5.1(g) and Figure 5.1(h) satisfy (5.2) at equality. Hene, �xjk = 0. 3Claim 5: �xil = 0 for every l 2 N(i)nK. Sine K is a maximal lique in N(i), thereexists some node inK, say node k, suh that lk 62 E. Consider the feasible shedules in Figure5.1(i) and Figure 5.1(j). Both lie in the fae F de�ned by (5.2) and, therefore, �xil = 0. 3This sequene of laims shows that � is a multiple of the oeÆient vetor of (5.2), henethis lique inequality indues a faet of P (G;1; s; 0). The same argumentation (omittingClaim 2) applies to R(G;1; s; 0). 2If A � V , we denote by GA the subgraph of G indued by A. Notie that K [ fig is amaximal lique of G if and only if K is a maximal lique of GN(i). The inequality (5.2) isstronger than the inequality (5.1), but does not de�ne a faet of the polytopes in the generalase d � 1, even if K is a maximal lique.Example 5.1 Consider the graph K1;3 in Figure 5.2(a) (alled \law"), with node weightsd1 = d2 = d4 = 1 and d3 = 2. The inequality l1 � x21 is a lique inequality (take i = 1 andK = f2g). No feasible solution satisfying this inequality at equality an have x13 = 0, sinein this ase we would have l1 � d3 = 2 > x21 (see Figure. 5.2(b)). Therefore, x13 = 1 inevery integer solution in the fae de�ned by this inequality, and this shows that l1 � x21 isnot faet-de�ning for s � 4. �In order to onstrut a lass of faet-de�ning inequalities for the general ase d � 1, weshall introdue the following de�nition. 66



De�nition 5.2 (overing lique) Let A � V , and let K � A be a lique. We say that Kovers A if every node k 2 AnK satis�es dk �Pi2KnN(k) di.Proposition 5.3 Every node subset admits a overing lique, and suh a lique an be foundin polynomial time.Proof. Let A � V , and let i1; i2; : : : ; in be an ordering of the nodes in A suh that dik � dik+1 .Consider every node in this sequene and onstrut K iteratively as follows. At step k, wemust deide whether ik has to be inserted into K or not. If there is some it 2 K with ikit 62 E,then do not insert ik into K. Otherwise, insert ik into K. Note that in both ases K is aovering lique of fi1; : : : ; ikg due to the ordering of the nodes, so upon termination of thealgorithm K is a lique overing A. This proedure gives an O(m+ n logn) algorithm. 2De�nition 5.3 (overing-lique inequalities) Let i 2 V be a node of G, and let K be alique overing N(i). We de�ne Xk2K dk xki � li (5.3)to be the overing-lique inequality assoiated with i and K.Covering-lique inequalities are, as speial lique inequalities, valid for P (G; d; s; g) andR(G; d; s; g) by Lemma 5.1 and de�ne faets if s is large enough.Theorem 5.4 If s � smin(G; d; 0) + 3dmax, then the overing-lique inequalities (5.3) de�nefaets of P (G; d; s; 0) and R(G; d; s; 0).Proof. To prove that overing-lique inequalities are faet-induing, suppose that �T z = �0for every z 2 P (G; d; s; 0) \ Z2n+m satisfying (5.3). Claims 1, 2 and 3 from the proof ofTheorem 5.2 imply �lj = 0 for every j 6= i, �rj = 0 for every j 2 V , and �xjt = 0 for jt 62 Æ(i).Moreover, Claim 4 from Theorem 5.2 implies �xik = �dk�li for every k 2 K.So it is left to verify �xij = 0 for every j 2 S = N(i)nK. To this end, onsider a node setUj � KnN(j) suh that dj � d(Uj) (note that suh a set Uj exists by the onstrution of theovering lique K). The feasible shedule z resp. z0 depited in Figure 5.3(a) resp. Figure5.3(b) satis�es (5.3) at equality. Hene0 = �xji + Xk2Uj �xki + z0li�li= �xji + Xk2Uj(�dk�li) + Xk2Uj dk�li= �xjishows that (�; �0) is a multiple of the oeÆient vetor of inequality (5.3) and, therefore, thisinequality de�nes a faet of P (G; d; s; 0). The same argumentation applies to R(G; d; s; 0). 267



Figure 5.3: Construtions for the proof of Theorem 5.4.Remark. An alternative proof an be given for Theorem 5.4 by onsidering the intervalbound onstraint 0 � li and lifting the variables xki for (a) k 2 K and (b) k 2 N(i)nK.The interval bound is faet-induing for P (G; d; s; 0) \ fz 2 R2n+m : zki = 0 8k 2 N(i)g.Moreover, the maximum lifting oeÆient for the variable xki is dk if k 2 K and 0 otherwise,implying that the resulting overing-lique inequality is faet-induing for P (G; d; s; 0). Thesemaximum lifting oeÆients are independent of the order in whih the variables are lifted,provided the variables xki with k 2 K are lifted before the variables xki for k 62 K. Thisproedure provides a natural view of overing-lique inequalities as a strengthening of theinterval bound onstraints. �Reall from Setion 4.1 that the symmetri inequality of a faet-induing inequality is againa faet-induing inequality. The following orollary presents the symmetri onstrution ofovering-lique inequalities.Corollary 5.5 Let i 2 V be a node of G, and let K be a lique overing N(i). The followinginequality is valid for P (G; d; s; 0): ri � s�Xk2K dk xik (5.4)Moreover, if s � smin(G; d; 0) + 3dmax, then this inequality de�nes a faet of P (G; d; s; 0).The same holds for R(G; d; s; 0) if we replae ri by li + di in (5.4).Remark. The overing-lique inequalities (5.3) desribe the relation between the left boundof the interval I(i) and the left bound on the frequeny span [0; s℄. The orrespondingsymmetri inequalities (5.4) desribe the opposite relation between the right bound of I(i)and the right bound of the frequeny span. �Covering-lique inequalities are faet-de�ning in many ases, but unfortunately there areinstanes where they do not indue faets, as the following example shows. The onstru-tion presented in this ounterexample is rather involved, suggesting that instanes withoutovering-lique faets may be unusual.Example 5.2 Let G be the graph depited in Figure 5.4, with node set V = f1; : : : ; 13g andthe following node weights: d1; : : : ; d5 = 1d6; d9 = 468



Figure 5.4: Counterexample for general faetness of overing-lique inequalities.d7; d8 = 1d10; d13 = 3d11; d12 = 2

Figure 5.5: Possible on�gurations for intervals I(6) to I(13).Consider the nonempty polytope P (G; d; 5; 0). Let y 2 P (G; d; 5; 0) \ Z31 be a feasiblesolution. Due to d6 + d7 = 5 and 67 2 E, there are only two possible assignments forthe interval I(6), namely l6 = 0 or l6 = 5. Moreover, eah of these assignments ompletelydetermines the positions of the intervals I(7), I(8) and I(9). Thus, the intervals I(6); : : : ; I(9)only admit the two possible on�gurations depited in Figure 5.5(a) and Figure 5.5(b). Asimilar analysis applies to the intervals I(10); : : : ; I(13), whih only admit the two possibleon�gurations presented in Figure 5.5() and Figure 5.5(d).Hene we an assign the intervals I(6); : : : ; I(9) aording to two possible on�gurations,and the intervals I(10); : : : ; I(13) aording to two other on�gurations. Moreover, theseon�gurations uniquely determine the positions of intervals I(1); : : : ; I(5), so that P (G; d; 5; 0)has only the 4 feasible solutions presented in Figure 5.6.Consider now the following overing-lique inequality, being valid for P (G; d; 5; 0):l2 � x42 + x52 (5.5)Having listed all the feasible solutions of P (G; d; 5; 0), it is not diÆult to verify that thepolytope P (G; d; 5; 0) has dimension 2, but only the feasible shedule presented in Figure69



Figure 5.6: Feasible solutions of P (G; d; 5; 0).5.6(a) satis�es (5.5) at equality, and thus the fae de�ned by (5.5) has dimension 0. Therefore,this overing-lique inequality does not de�ne a faet of P (G; d; 5; 0). �5.1.1 Complexity of the separation problemGiven a point in the linear relaxation of an integer programming model, the separation prob-lem for a family of valid inequalities onsists in deiding whether this point violates someinequality belonging to the family or not. This problem is of pratial interest, sine eÆientseparation proedures are required for the implementation of utting plane methods. Thissetion explores the separation problem for overing-lique inequalities, and the main theoremstates the negative result that this problem is NP-omplete. If PLP (G; d; s; g) denotes thelinear relaxation of P (G; d; s; g), i.e., the solution spae of onstraints (2.1)-(2.6), then theseparation problem for overing-lique inequalities an be de�ned as follows.Covering-lique inequalities separationInstane: A point y 2 PLP (G; d; s; 0)Question: Does y violate some overing-lique inequality?Note that the separation problem takes as input a point in the linear relaxation of the inte-ger programming model, sine this is the ommon situation within a branh&ut framework.70



Moreover, note that the separation of the onstraints (2.1)-(2.6) an be performed in O(n+m)time by exhaustive inspetion. The proof of NP-ompleteness for this separation probleminvolves Max-Clique and a speial ase of this problem, alled Max Majority-Clique.Max-CliqueInstane: A graph G on n nodes, and an integer k � 0Question: Does G ontain a lique of size k or greater?Max Majority-CliqueInstane: A graph G on n nodes, and an integer k � n=2 + 1(we may assume w.l.o.g. that n � 2 and k � n)Question: Does G ontain a lique of size k or greater?We denote by !(G) the lique number of G, i.e., the size of a lique of G of maximum ar-dinality. Note that Max-Clique and Max Majority-Clique onsist in deiding whether!(G) � k or not, but under di�erent onditions. Max-Clique is a well-known NP-ompleteproblem [20℄, and we now prove that Max Majority-Clique is also NP-omplete.Lemma 5.6 Max Majority-Clique is NP-omplete.Proof. Note that the set of instanes of Max Majority-Clique is ontained in the set ofinstanes ofMax-Clique, and sine the latter belongs toNP, thenMax Majority-Cliquealso belongs to NP. To prove NP-ompleteness, we onstrut a polynomial redution fromMax-Clique. Let (H; t) be an instane of Max-Clique, and de�ne an instane (G; k) ofMax Majority-Clique as follows. The graph G is onstruted from H by adding m + 2universal nodes u1; : : : ; um+2, and k is de�ned as k = t+m+2. Note that G has n = 2m+2nodes and k > n=2 + 1. We �nally verify that !(H) � t if and only if !(G) � k.)) If !(H) � t, then H has a t-lique K, and it an be extended to the (t+m+ 2)-liqueK [ fu1; : : : ; um+2g of G. Hene G has a k-lique and so !(G) � k.() Conversely, suppose that !(G) � k and let K be a k-lique of G. Therefore, the nodeset Knfu1; : : : ; um+2g is a lique of H with at least k� (m+2) = t nodes, so !(H) � t.Thus, Max Majority-Clique is NP-omplete. 2Theorem 5.7 Covering-lique inequalities separation is NP-omplete.Proof. It is not diÆult to verify that the problem belongs to the lass NP, sine we annondeterministially generate a lique K and verify in polynomial time whether K is a over-ing lique and the lique inequality de�ned by K is violated by y. To omplete the proof weonstrut a polynomial redution from Max Majority-Clique. Let (H; k) be an instane71



of Max Majority-Clique, given by a graph H on n nodes and an integer k > n=2. De�nea new weighted graph (G; d) = (V;E;1) from H by the addition of a universal node, i.e.,V = VH [ figE = EH [ fij : j 2 VHgSet further g = 0 and s = n=2 + 1. Finally, onstrut the point y 2 PLP (G; d; s; 0) as follows:ylj = � n2 if j 6= ik�12 if j = i 8 j 2 Vyrj = ylj + dj 8 j 2 Vyxe = 1=2 8 e 2 EThis onstrution is polynomial in the size of H. To show that (G; k) is a well-de�ned instaneof Covering-lique inequalities separation we must verify that y 2 PLP (G; d; s; 0) byheking that y satis�es all the onstraints of this relaxed polytope.a) We �rst verify that the antiparallelity onstraints lj + dj � lk + sxkj are satis�ed by y,onsidering the following three ases:Case 1: j; k 6= i. (reall that n � 2)ylj + dj = n2 + 1 � n2 + n=2 + 12 = ylk + syxkjCase 2: j 6= i and k = i. (reall that the hypothesis of Max Majority-Cliqueasserts k > n=2 + 1)ylj + dj = n2 + 1 � k � 12 + n=2 + 12 = yli + syxijCase 3: j = i and k 6= i.yli + di = k � 12 + 1 � n2 + n=2 + 12 = ylk + syxkib) The bounds 0 � lk � s� dk on variables lk are trivially satis�ed, sinemaxfylk : k 2 V g = n2 � n2 + 1 = s� dk:) The relaxed onstraints 0 � xe � 1 are also satis�ed, sine yxe = 1=2 for all e 2 E.To omplete the proof, we show that !(H) � k if and only if there exists some overing-lique inequality violated by y.)) If !(H) � k, let K � VH be a maximum k-lique of H. Sine i is a universal nodeof G, then K � NG(i), and moreover d = 1 implies that K overs NG(i). Hene theovering-lique inequality de�ned by K is violated by y:Xk2K dkyxki = jKj2 > k � 12 = yli72



() Conversely, suppose that the overing-lique inequality de�ned by the node j and theovering lique K � NG(j) is violated by y, i.e.,Xk2K dkyxkj > ylj (5.6)holds. Note that the LHS of this inequality is Pk2K dkyxkj = 12 jKj. This implies j = i,for otherwise lj = n2 , and thus (5.6) would not be violated (beause jKj � n). Henej = i and thus K � NG(i), implying that K is a lique of H. But yli = k2 and, therefore,(5.6) reads: jKj2 = Xk2K dkyxki > yli = k � 12Thus, jKj � k, and so !(H) � k.This �nally shows that the polynomial transformation maps aÆrmative instanes of MaxMajority-Clique onto aÆrmative instanes of Covering-lique inequalities separa-tion and onversely. Therefore, the latter is NP-omplete. 25.1.2 Covering-lique inequalities in the ase g > 0The overing-lique inequalities (5.3) are valid for every instane, but Theorem 5.4 showsfaetness only if g = 0. In the ase g > 0 these inequalities remain valid but may no longer befaet-de�ning if the assoiated overing lique overs nodes in more than one setor. In thissetting a more general version of overing-lique inequalities an be given, and this setion isdevoted to presenting these general inequalities.De�nition 5.4 For i 2 V , let a(i) denote the setor to whih node i belongs (i.e., i 2 Sa(i)).De�nition 5.5 (general overing-lique inequalities) Fix an arbitrary node i 2 V andlet K be a lique overing N(i). Assume w.l.o.g. that K = f1; : : : ; tg and, for k = 1; : : : ; t,let Ak = fig [ f1; : : : ; k � 1g. Partition the lique K into K = N [ C, withN = fk 2 K : a(k) 6= a(t) for every t 2 AkgC = fk 2 K : a(k) = a(t) for some t 2 AkgWe de�ne Xk2N(dk + g)xki +Xk2C dkxki � li (5.7)to be the general overing-lique inequality assoiated with the node i, the lique K and theordering K = f1; : : : ; tg.The proof of faetness for the general overing-lique inequalities goes along the argu-mentation of the proof of faetness for the standard overing-lique inequalities presented inTheorem 5.4. 73



Theorem 5.8 The general overing-lique inequalities (5.7) are valid for P (G; d; s; g) andR(G; d; s; g), and de�ne faets for both polytopes if s � smin(G; d; g) + 3(dmax + g).Under the same setting as before, the following symmetri inequalityri � s�Xk2N(dk + g)xik �Xk2C dkxikis valid for P (G; d; s; g) and faet-induing if s � smin(G; d; g)+3(dmax+ g). The same resultholds for R(G; d; s; g) if we replae ri by li + di.Remark. These general inequalities arise as a natural strengthening of the interval boundonstraints 0 � li for every i 2 V , by lifting the variables xki, for k 2 N(i). In the ase g = 0,we �rst lift the variables xki for k 2 K, and afterwards we lift the variables xki for k 62 K.The lifting of variables xki for k 2 K resp. k 62 K is sequene-independent and originatesthe standard overing-lique inequalities (5.3). In the ase g > 0, however, the lifting is notindependent of the sequene, requiring di�erent de�nitions for the oeÆients for k 2 N andk 2 C. �5.2 Double overing-lique inequalitiesWe now turn to the antiparallelity onstraints. Reall that these onstraints are given by thefollowing inequalities: ri � lj + s(1� xij) 8ij 2 EI ; i < j (2:4)ri + g � lj + s(1� xij) 8ij 2 EX ; i < j (2:5)rj � li + sxij 8ij 2 EI ; i < j (2:6)rj + g � li + sxij 8ij 2 EX ; i < j (2:7)Proposition 5.9 Every point z 2 P (G; d; s; g) \ Z2n+m satisfying the antiparallelity on-straint (2.4) at equality must have zxik � zxjk = �zxji for every k 2 N(i) \N(j).Proof. Let z 2 P (G; d; s; g) \ Z2n+m be a point satisfying (2.4) at equality, and let k 2N(i) \N(j).Case 1: zxij = 1. Sine z satis�es (2.4) at equality, we have zri = zlj , implying zxki = zxkjand hene zxik � zxjk = 0 = �zxji .Case 2: zxij = 0. In this ase, we have zri = s and zlj = 0, implying zxik = 1 and zxjk = 0.Therefore, zxik � zxjk = 1 = �zxji . 2If P (G; d; s; g) is full-dimensional, then this proposition shows that the fae de�ned by(2.4) annot have the required dimension for being a faet. The same is true for the other74



antiparallelity onstraints, showing that these inequalities do not de�ne faets of P (G; d; s; g)for arbitrary instanes if N(i) \N(j) 6= ;.Fortunately, we an strengthen these inequalities by onsidering a overing lique in theommon neighborhood of the nodes whose intervals are separated by the onstraint. Thisproess an be viewed as a lifting from the antiparallelity onstraints into a new lass of faet-de�ning inequalities, resembling the overing-lique inequalities presented in the previoussetion. The resulting inequalities desribe the interation between these two nodes, involvingmany similarities with the onstrution of overing-lique inequalities.De�nition 5.6 (double overing-lique inequalities) Let ij 2 E be an edge of G, andlet K be a lique overing N(i) \N(j). We de�neri +Xk2K dk(xik � xjk) � lj + (s� d(K))xji (5.8)to be the double overing-lique inequality assoiated with ij and K, where d(K) =Pk2K dk.Proposition 5.10 The double overing-lique inequalities (5.8) are valid for P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) \ Z2n+m be a feasible integer solution, and onsider two ases:Case 1: yxji = 0. In this ase, the interval I(i) is loated to the left of I(j). Let M � Kbe the set of nodes k suh that the interval I(k) is between the intervals I(i) and I(j), i.e.,M = fk 2 K : yxik = 1 and yxjk = 0g. Sine K [ fi; jg is a lique, then the orrespondingintervals annot overlap, and thus ylj � yri � d(M), implying that y satis�es (5.8). 3Case 2: yxji = 1. Here, the interval I(j) is before I(i). Partition K = L [M [ R asfollows: L = fk 2 K : yxjk = 0gM = fk 2 K : yxjk = 1 and yxik = 0gR = fk 2 K : yxik = 1gNote that d(L) � ylj and yri � s� d(R). Moreover, Pk2K dk(yxik � yxjk) = �d(M). Theseobservations implyyri � ylj +Xk2K dk(yxik � yxjk) � s� d(R)� d(L)� d(M)= s� d(K):3Sine y was arbitrarily hosen, (5.8) is valid for P (G; d; s; g). 2Theorem 5.11 If s � smin(G; d; 0)+4dmax, then the double overing-lique inequalities (5.8)de�ne faets of P (G; d; s; 0). 75



Figure 5.7: Construtions for the proof of Theorem 5.11.76



Proof. By Proposition 5.10, the double overing-lique inequalities are valid for P (G; d; s; 0).We now prove that, under these hypotheses, they de�ne faets of this polytope. Note �rstthat any feasible solution satisfying lj = ri is tight for inequality (5.8). Suh points existwhenever s � smin(G; d; 0) + 2dmax, hene this inequality de�nes a nonempty fae in thisase. Let F be the fae of P (G; d; s; 0) de�ned by (5.8), and suppose that �T y � �0 de�nes afaet ontaining F . We will show that (�; �0) is in fat a multiple of (5.8), thus proving thatthis inequality is faet-induing, i.e., that F is not ontained in any other faet. To this end,we prove the following sequene of laims:Claim 1: �lk = 0 for k 6= j. Let k 6= j and let y 2 F be an integer solution withyrk � ylk > dk (whih exists beause s > smin(G; d; 0) + 2dmax). De�ne y0 to be the solutionobtained from y by just setting y0lk = ylk + 1. Note that this new solution is feasible. Bothpoints lie in F , implying �T y = �T y0 = �0. Moreover, they only di�er in their lk-oordinates,hene �lkylk = �lky0lk = �lk(ylk + 1):Thus �lk = 0, proving the laim. 3Claim 2: �rk = 0 for k 6= i. A similar onstrution, with points y; y0 2 F suh thatyrk � ylk > dk and y0rk = yrk � 1 shows that �rk = 0 for k 6= i. 3Claim 3: �xkt = 0 if both k; t di�er from i; j. Let y 2 F be a feasible solution withylk = 0, ylt = dk, and all the remaining intervals to the right of I(k) (suh a y exists bys � smin(G; d; 0)+4dmax). Let y0 be a new feasible solution obtained from y by swithing theintervals I(k) and I(l) (see Figure 5.7(a), (b)). Both solutions are in F , and thus �T y = �T y0.These two feasible solutions only di�er in their lk-, lt-, rk-, rt� and xkt-oordinates. Moreover,we know from the previous laims that �lk = �rk = �lt = �rt = 0, implying �xkt = 0. 3Claim 4: �ri = ��lj . Let y 2 F be a feasible solution with yri = ylj , suh thatboth intervals I(i) and I(j) an be moved one unit to the right (this is possible sine s >smin(G; d; 0) + 2dmax). Let y0 be the solution obtained by this shifting. Sine both solutionsare in F and �li = �rj = 0, we obtain�riyri + �ljylj = �ri(yri + 1) + �lj (ylj + 1):This implies that �ri + �lj = 0, thus justifying the laim. 3Claim 5: �xik = dk�ri for k 2 K. Let y be an integer point in F with yri = ylj , and lety0 be a feasible solution with only intervals k and j hanged in suh a way that y0lk = yri andy0lj = y0rk = y0lk + dk (see Figure 5.7() and Figure 5.7(d)). This onstrution is possible sines > smin(G; d; 0) + di + dj + dk. Both solutions lie in F , so �T y = �T y0 = �0, and thus�lkylk + �ljylj = �lky0lk + �ljy0lj + �xik :But �lk = 0 and y0lj = yri + dk imply �xik = dk�ri , proving the laim. 3Claim 6: �xjk = �dk�ri for k 2 K. A similar onstrution veri�es this laim, byonsidering the solutions presented in Figure 5.7(e), (f). 3Claim 7: �xik = �xjk = 0 for k 2 [N(i)\N(j)℄nK. Let Ak � K be a set of nodes notadjaent to k suh that d(Ak) � dk. Suh a set exists by the de�nition of the overing lique77



K of N(i) \ N(j). The two feasible solutions depited in Figure 5.7(g) and Figure 5.7(h)show that �xik = 0, and the opposite onstrution implies �xjk = 0. 3Claim 8: �xik = 0 for k 2 N(i)nN(j). Let y 2 F be a solution with yli = 0, ylj = di,ylk = di+dj and ylt � di+dj+dk for t 62 fi; j; kg. Construt a new solution y0 2 F from y bysetting y0lk = 0, y0li = dk and y0lj = dk + di. Sine both solutions are tight for F , we onludethat �xik = 0. 3Claim 9: �xjk = 0 for k 2 N(j)nN(i). If k is adjaent to j and not adjaent to i, theonstrution applied in Claim 8 also shows �xjk = 0. 3Claim 10: �0 = 0 and �xji = �(s�d(K))�ri . Let y 2 F be any integer solution withyri = ylj , and let y0 be a solution with y0li = s�di and y0lj = 0 (and thus y0xji = 1), as in Figure5.7(i) and Figure 5.7(j). Note that yxik�yxjk = 0, y0xik = 0, and y0xjk = 1 for k 2 N(i)\N(j).This implies that y0 satis�es (5.8) at equality, and, therefore, y0 2 F . Moreover, we have that�0 = �T y = �riyri + �ljylj + Xk2K(�xikyxik + �xjkyxjk) == �ri (yri � yri)| {z }= 0 + Xk2K dk�ri (yxik � yxjk)| {z }= 0 = 0�T y0 = �riy0ri + �ljy0lj + Xk2K �xjky0xjk + �xjiy0xji == �ris+ Xk2K �xjk + �xji == �ri�s+ Xk2K(�dk)�+ �xji (5.9)We onlude �xji = �(s� d(K))�ri , proving the laim. 3This way, we have that�T y = h yri � ylj + Xk2K dk(yxik � yxjk)� (s� d(K))yxji i�ri :Then � is a multiple of the LHS of inequality (5.8), implying that �0 = 0. Thus, the fae Fde�ned by (5.8) annot be ontained in any other faet of P (G; d; s; 0) and de�nes, therefore,itself a faet of the (full-dimensional) polytope P (G; d; s; 0). 2Remark. An alternative proof an be given for Theorem 5.11 by onsidering the antiparal-lelity onstraint ri � lj + sxji and lifting the variables xik and xjk, for k 2 N(i). We �rstlift the variables xik and xjk for k 2 K, and afterwards lift the remaining variables. Theantiparallelity onstraint is faet-induing for P (G; d; s; 0) \ fz 2 R2n+m : zik = zjk = 0g.Moreover, the maximum lifting oeÆient for variable xik resp. xjk is dk resp. �dk and, there-fore, the resulting double overing-lique inequality is faet-induing for P (G; d; s; 0). Thus,we naturally arise double overing-lique inequalities as a strengthening of the antiparallelityonstraints. � 78



Corollary 5.12 Let ij 2 E be an edge of G suh that N(i)\N(j) = ;. If s � smin(G; d; 0)+4dmax, then the antiparallelity onstraints (2.4)-(2.7) de�ne faets of P (G; d; s; 0).Corollary 5.13 Let ij 2 E. The double overing-lique inequalityli + di + Xk2K dk(xik � xjk) � lj + (s� d(K))xji (5.10)is valid for R(G; d; s; g) and de�nes a faet of R(G; d; s; 0) if s � smin(G; d; 0) + 4dmax.Proposition 5.14 The symmetri inequality of a double overing-lique inequality is againa double overing-lique inequality.Proof. Consider �rst the polytope R(G; d; s; g). Let aT y � b be the double overing-liqueinequality (5.8) assoiated with (K;S). Reall that the symmetri inequality of aT y � b is2aT p� b � aT y, where p = 12 (s1� d;1) is the symmetry point of R(G; d; s; g). We have that2aT p� b = 20�(s� di)2 � (s� dj)2 + Xk2K(dk2 � dk2 ) + d(K)� s2 1A+ di= dj + d(K)� sholds. This implies that 2aT p� b � aT y is the inequality:dj + d(K)� s � li � lj + Xk2K dk(xik � xjk)� (s� d(K))xji;whih an be rewritten aslj + dj + Xk2K dk(xjk � xik) � li + (s� d(K))(1 � xji): (5.11)Realling the notation xij = 1 � xji, we obtain that (5.11) is again a double overing-liqueinequality. A similar argumentation applies to P (G; d; s; g). 25.2.1 Double overing-lique inequalities are not always faet-de�ningAs we have seen previously, the overing-lique inequalities presented in Setion 5.1 are notalways faet-de�ning, although they do indue faets in many instanes. Example 5.1 suggeststhat it is diÆult to onstrut instanes in whih these inequalities do not indue faets. Weshall see in this setion that double overing-lique inequalities do not always indue faets,but the ounterexamples are more straightforward.Example 5.3 Let (G; d) = (V;E; d) be the weighted graph depited in Figure 5.8, andonsider the polytope R(G; d; 4; 0). By inspetion, this polytope has dimension 4. We shallverify that the double overing-lique inequality l4+d4 � l2+4x24 does not indue a faet. All79



Figure 5.8: Interferene graph for Example 5.3.

Figure 5.9: The only four feasible solutions in the double overing-lique fae.the feasible solutions satisfying this inequality at equality are the 4 points y1; : : : ; y4 depitedin Figure 5.9, and it is not diÆult to verify y4 = y1�y2+y3. Hene y4 is an aÆne ombinationof the other three solutions, and so the dimension of the fae de�ned by the inequality is atmost 2, implying that this fae is not a faet of the polytope. �Double overing-lique inequalities may not de�ne faets even if the polytope is full-dimensional. The following ounterexample shows an instane induing a full-dimensionalpolytope with a double overing-lique inequality that does not de�ne a faet.Example 5.4 Consider the weighted graph (G; d) = (V;E; d) presented in Figure 5.10, andonsider the polytope P (G; d; 9; 0). It is straigthforward to verify that this polytope has fulldimension.Consider now the edge 26 2 E. The fae F de�ned by the double overing-lique inequalityr2 � l6 + 9x62 is the onvex hull of all feasible solutions satisfying it at equality, whih eitherhave (i) x26 = 1 and r2 = l6 or (ii) x26 = 0, l6 = 0 and r2 = 9. Every point of group (i) hasintervals I(2) and I(6) in parallel, and therefore:� It annot hold x12 = x32 = 1 beause there would be no spae left for the interval I(6)after the interval I(2), as required by x26 = 1.� If x12 = x32 = 0, then x46 6= x56 (see Figure 5.11b).� If x12 6= x32, then l2 � 2 and thus l6 = r2 � 5. This implies that l6 � 7, and thereforex46 = x56 = 1. 80



Figure 5.10: Interferene graph for Example 5.4.

Figure 5.11: Instane for Example 5.4.Hene every point of group (i) either has x12 = x32 = 0 and x46 6= x56, or x12 6= x32 andx46 = x56 = 1. Consider now any point of group (ii). Suh a point has x26 = 0, implying thatintervals I(1) and I(3) are loated before the intervals I(2) and I(4), and the intervals I(4)and I(5) are loated after I(6) (see Figure 5.11(d)). Thus, x12 = x32 = 1 and x46 = x56 = 0.Having enumerated all the possible ases, we an now verify that every feasible solution in Fsatis�es x45 + x56 + 3(1 � x26) = 1 + (x12 + x32):This shows dim(F ) < 18, and sine P (G; d; 9; 0) � R19 has full dimension, F is not a faet ofthis polytope. �The �nal example shows an instane where a ertain double overing-lique inequalityde�nes a faet of P (G; d; s; 0) but not of P (G; d; s+1; 0). At �rst sight, one would expet thata faet-induing inequality for P (G; d; s; 0) should also be faet-induing for P (G; d; s+1; 0),but the following example shows that this is, surprisingly, not the ase.Example 5.5 Let (G; d) = (V;E; d) be the weighted graph depited in Figure 5.12. Thepolytope P (G; d; 5; 0) has only 4 integer solutions, and has dimension 2. It is not diÆult toverify by inspetion that r2 � l5 +5x52 de�nes a fae of P (G; d; 5; 0) of dimension 1, whih isa faet.Consider now the polytope P (G; d; 6; 0) and the feasible solution depited in Figure5.13(a)). Starting from this solution, alternatively shift the interval bounds to the right(repeating the proof of Lemma 3.8 and Lemma 3.9) to onstrut 10 aÆnely independentpoints. Moreover, Figure 5.13(b), Figure 5.13() and Figure 5.13(d) present three aÆnely81



independent points w.r.t. the preeding onstrutions, showing that dim(P (G; d; 6; 0)) � 13.Conversely, it is not hard to prove that every feasible solution satis�es the equations:x13 = x23 (5.12)x25 = x45 (5.13)x23 = x43 (5.14)Sine P (G; d; 6; 0) 2 R16, then dim(P (G; d; 6; 0)) � 16�3 = 13, and thus dim(P (G; d; 6; 0)) =13.
Figure 5.12: Interferene graph for Example 5.5.

Figure 5.13: Feasible solutions for Example 5.5.Let F denote the fae of P (G; d; 6; 0) de�ned by r2 � l5 + 6x52. Every feasible solutionin F satis�es this inequality at equality, by de�nition. Sine F � P (G; d; 6; 0), the feasiblesolutions lying on F also satisfy (5.12), (5.13) and (5.14). We now laim that every integerpoint in F also has interval I(1) before interval I(2):(i) If x25 = 1, then x45 = 1 and so r2 = l5 � 4. This leaves no spae to assign I(1) afterI(2).(ii) If x25 = 0 then r2 = 6, hene I(1) must be before I(2).Therefore, every feasible solution in F satis�es x12 = 1, and we have 6 equations for everypoint in F . This proves that dim(F ) � 11 (in fat, dim(F ) = 11), and thus F is not a faetof P (G; d; 6; 0). � 82



5.2.2 Complexity of the separation problemThis setion addresses the omputational omplexity of the separation problem for dou-ble overing-lique inequalities. Reall that PLP (G; d; s; g) denotes the linear relaxation ofP (G; d; s; g). With this de�nition, the separation problem for this lass of inequalities an bede�ned as follows:Double overing-lique inequalities separationInstane: A point y = (l; r; x) 2 PLP (G; d; s; g)Question: Does y violate some double overing-lique inequality?Theorem 5.15 Double overing-lique inequalities separation is NP-omplete.Proof. We an easily hek that this problem belongs to the lass NP, sine we an nondeter-ministially generate an edge ij 2 E and a lique K � N(i)\N(j) and verify in deterministipolynomial time whether K overs N(i) \ N(j) and the double overing-lique inequalityassoiated with ij and K is violated by the point y. To omplete the proof, we onstrut apolynomial redution from Max-lique. An instane of the latter is given by a pair (H; p),where H = (VH ; EH) is a graph and p 2 Z+ is an integer suh that 1 � p � jVH j, and onsistsin deiding whether H has a lique of size at least p. Assume w.l.o.g. jVH j � 2 and that H isnonomplete. We onstrut a graph G = (V;E) from H by adding two universal nodes i andj, thus V = VH [ fi; jgE = EH [ fti; tj : t 2 VHg [ fijgAlso set d = 1, g = 0 and s = 2n, where n = jV j. Finally, de�ne a point y as follows:ylt = ( 0 if t 6= jp+12 if t = j 8t 2 Vyrt = ylt + 1 8t 2 Vyxe = ( 1 if e = tj for some t 2 V12 otherwise 8e 2 EThis onstrution is polynomial in the size of H. We �rst verify that y 2 PLP (G;1; 2n; 0) byheking that the point y satis�es all the onstraints of this relaxed polytope. The demandonstraints, the interval bounds and the relaxed onstraints 0 � xe � 1 for every e 2 E aretrivially satis�ed by onstrution. So we are left to verify that the antiparallelity onstraintslk + dk � lt + sxtk are also satis�ed. Consider the following ases:1. If k; t 6= j, then yxtk = 1=2 and, therefore,ylk + dk = 1 � n = ylt + syxtk :83



2. If k = j, then yxtk = 1 and we have thatylj + dj = p+ 12 + 1 � 2n = ylt + syxtj :3. If t = j, then yxtk = 0 andylk + dk = 1 � p+ 12 = ylj + syxjk :Therefore, y 2 PLP (G;1; 2n; 0). To omplete the proof, we must show that the presribedtransformation maps aÆrmative instanes of Max-lique onto aÆrmative instanes of Dou-ble overing-lique inequalities separation and onversely, i.e., !(H) � p if and onlyif y violates some double overing-lique inequality.)) LetK � VH be a maximal lique ofH of size at least p. Sine i and j are universal nodes,then K � NG(i)\NG(j). Moreover, d = 1 implies that K overs NG(i)\NG(j) = VH .The onstrution of y implies that the double overing-lique inequality assoiated with(K;VHnK) is violated by this point:yli + di +Xk2K dk(yxik � yxjk) = 1 + d(K)2 > p+ 12 = ylj + (s� d(K))yxji :() Conversely, suppose that the double overing-lique inequality de�ned by the nodes kand t and the lique K � NG(k) \NG(t) is violated, i.e.,ylk + dk +Xl2K dl(yxkl � yxtl) > ylt + (s� d(K))yxtk : (5.15)Claim: t = j. Suppose t 6= j and onsider two ases.{ If k 6= j, then yxkl � yxtl = 0 for every l 2 V nfk; tg, and therefore (5.15) hasLHS = 1 and RHS = 12(s � d(K)) � 12(2n � !(H)) � 1. Hene (5.15) does nothold, a ontradition.{ On the other hand, if k = j then LHS = 1+ 12(p+1� jKj) and RHS = 2n� d(K).Again, we have LHS � RHS, ontraditing the fat that(5.15) holds. 3This laim proves that, in this setting, violated double overing-lique inequalities musthave I(j) as the right hand side interval. Sine t = j, then ylt = p+12 and yxkl�yxtl = 1=2follows for every l 2 K. Hene (5.15) reads 1+ jKj2 > p+12 , implying jKj � p. ThereforeK is a lique of G with at least p nodes. Now, if i 62 K then K � VH and !(H) � p. Onthe other hand, if i 2 K then (Knfig) [ fkg is a lique of H on p nodes, also implying!(H) � p.Hene the transformation maps aÆrmative instanes of Max-Clique onto aÆrmative in-stanes of Double overing-lique inequalities separation and onversely. Therefore,the latter is NP-omplete. 2 84



5.2.3 Double overing-lique inequalities in the ase g > 0Theorem 5.11 shows that the double overing-lique inequalities (5.8) are faet-de�ning wheng = 0. Clearly, these inequalities are still valid if g > 0, but may not de�ne faets in this asesine the set of feasible solutions an be muh smaller. This setion presents a generalizationof double overing-lique inequalities for this ase, suh that the resulting inequalities arevalid for every instane, and faet-induing if s � !(G; d) + 4(g + dmax). Reall that wedenote by a(i) the setor to whih the node i belongs, for i 2 V .De�nition 5.7 (general double overing-lique inequalities) Let ij 2 E, and let K bea lique overing N(i)\N(j). Fix K = f1; : : : ; tg as order of the nodes in K and, for k 2 K,let Ak = fi; jg [ f1; : : : ; k � 1g. We de�neri + Xk2K 'k(xik � xjk) + Æij � lj + �s+ Æij + Xk2K 'k�xji (5.16)to be the general double overing-lique inequality assoiated with the edge ij, the lique Kand the ordering K = f1; : : : ; tg, where the oeÆients 'k are de�ned as follows. LetN = f k 2 K : a(k) 6= a(t) for all t 2 Ak gC = f k 2 K : a(k) = a(t) for some t 2 Ak gand onsider two ases. If N = ;, then 'k = dk for every k 2 K. On the other hand, ifN 6= ;, let k0 be some �xed node of N and, for every k 2 K,'k = 8><>: dk + 2g if k = k0dk + g if k 2 Nnfk0gdk if k 2 CThe proof of faetness for the general double overing-lique inequalities goes along theargumentation of the proof of faetness for the standard double overing-lique inequalitiespresented in Theorem 5.11.Theorem 5.16 The general double overing-lique inequalities (5.16) are valid for the poly-tope P (G; d; s; g), and de�ne faets if s � smin(G; d; g) + 4(dmax + g).Remark. A similar result holds for R(G; d; s; g) if we replae ri by li + di in (5.16). Notiethat these inequalities arise as a natural strengthening of the antiparallelity onstraints bylifting the variables xik and xjk, for k 2 K. In the ase g = 0, this lifting is sequene-independent and originates the standard double overing-lique inequalities (5.8). In the aseg > 0, however, the lifting depends on the sequene, requiring the di�erent de�nitions of theoeÆients 'k for k = k0, k 2 Nnfk0g and k 2 C. �85



5.3 Generalizations and extensions of lique inequalitiesThis setion presents families of faet-de�ning inequalities arising from the overing-liqueinequalities as generalizations (ontaining the overing-lique inequalities as partiular ases)or extensions (de�ned over slightly di�erent strutures). The �rst family, introdued in Setion5.3.1, �xes a lique in N(i) and onsiders a lique overing the remaining nodes of thisneighborhood. We also provide a generalization of double overing-lique inequalities basedon these ideas. The seond family, presented in Setion 5.3.2, onsiders a subset of nodesfrom N [N(i)℄, introduing oeÆients for the edges linking N(i) to these nodes. We showthat both lasses of valid inequalities are faet-induing for s > smin(G; d; g) + O(1)dmax,and that they ontain the overing-lique inequalities as speial ases. Finally, we disussin Setion 5.3.3 three lasses of faet-de�ning inequalities arising as variations of the doubleovering-lique inequalities.5.3.1 Reinfored overing-lique inequalitiesDe�nition 5.8 If K � V and j 2 V nK, we de�ne K(j) = maxf0; dj �Pk2KnN(j) dkg (seeFigure 5.14).De�nition 5.9 (reinfored overing-lique inequalities) Let i 2 V be a node of G and�x a lique K 0 � N(i). Furthermore, let K be a lique overing N(i)nK 0. We de�neXk2K dkxki + Xk2K0 K(k)xki � li (5.17)to be the reinfored overing-lique inequality assoiated with K and K 0.Note that the existene of a lique K overing N(i)nK 0 is guaranteed by Proposition 5.3.The standard overing-lique inequalities disussed in Setion 5.1 an be obtained as a speialase of these reinfored overing-lique inequalities by setting K 0 = ;.

Figure 5.14: (a) Example of K(j) = 0, and (b) example of K(j) > 0.86



Proposition 5.17 The reinfored overing-lique inequalities are valid for R(G; d; s; g)and P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) \ Z2n+m be an arbitrary shedule, and de�ne the node setsA = fk 2 K 0 : yxki = 1 and K(k) > 0g and B = ft 2 K : yxti = 1g. Sine K resp. K 0 is alique, the intervals orresponding to nodes in K resp. K 0 do not overlap. Moreover, de�neQ = ft 2 K : tk 2 E 8k 2 Ag. Note that A [ Q is a lique, hene A [ (B \ Q) is also alique. The following hain of inequalities establishes the validity of (5.17):yli � Xk2Adk + Xt2B\Q dt= Xk2Adk + Xt2B\Q dt � Xt2BnQ dt + Xt2BnQ dt= Xk2Adk � Xt2BnQ dt + � Xt2B\Q dt + Xt2BnQ dt�� Xk2A (dk � Xt2KnN(k) dt) +Xt2B dt= Xk2A K(k) +Xt2B dt= Xk2K0 K(k) yxki + Xk2K dk yxki2Theorem 5.18 The reinfored overing-lique inequalities indue faets of R(G; d; s; g) andP (G; d; s; g) if s � smin(G; d; g) + 3dmax.Proof. Suppose �T z = �0 for every feasible shedule z 2 P (G; d; s; 0) \ Z2n+m satisfying(5.17) at equality. Claims 1, 2 and 3 from the proof of Theorem 5.2 show �lj = 0 for everyj 6= i, �rj = 0 for every j 2 V and �xjt = 0 for jt 62 Æ(i). Moreover, Claim 4 from the proofof Theorem 5.2 implies �xik = �dk�li for every k 2 K and Theorem 5.4 implies �xik = 0 forevery k 2 N(i)n(K [K 0). So it is left to prove that �xki = �K(k)�li for every k 2 K 0. Tothis end, onsider two ases.Case 1: K(k) > 0. Let z 2 P (G; d; s; 0) \ Z2n+m be a feasible solution with zli =0. Now onstrut a feasible solution z0 2 P (G; d; s; 0) \ Z2n+m by setting zlk = 0 andzli = dk, and assigning every interval I(t), for t 2 KnN(k), to the left of the interval I(i)(see Figure 5.15(a)). These two feasible solutions satisfy (5.17) at equality and, therefore,�xki = �K(k)�li . 3Case 2: K(k) = 0. As in the previous ase, let z 2 P (G; d; s; 0) \ Z2n+m be a feasiblesolution with zli = 0. Now onstrut a feasible solution z0 2 P (G; d; s; 0) \ Z2n+m by settingzlk = 0, zli = Pl2KnN(k) dl, and assigning every interval I(t), for t 2 KnN(k), to the leftof the interval I(i) (see Figure 5.15(b)). Again, these two points satisfy (5.17) at equality,implying �xki = 0. 3 87



Figure 5.15: Construtions for the proof of Theorem 5.18.Hene we verify that � is a multiple of the oeÆient vetor of (5.17) and thus thisinequality indues a faet of P (G; d; s; 0). Sine both P (G; d; s; 0) and R(G; d; s; 0) are full-dimensional, and the inequality does not involve the r-variables, it is also faet-induing forR(G; d; s; 0). 2The symmetri inequalities of the reinfored overing-lique inequalities desribe the in-teration between the right bound of the interval I(i) and the right bound of the frequenyspetrum [0; s℄. Under the same setting as in Theorem 5.18, the symmetri inequalityri � s� Xk2K dkxik � Xk2K0 K(k)xikis valid and faet-induing for P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we replaeri by li + di. Note that this result generalizes Corollary 5.5 for overing-lique inequalities.De�nition 5.10 (reinfored double overing-lique inequalities) Let i; j 2 V be twoadjaent nodes of G and �x a lique K 0 � N(i) \ N(j). Furthermore, let K be a liqueovering [N(i) \ N(j)℄nK 0. Finally, for k 2 K 0, let Uk = fl 2 K : lk 62 Eg (i.e., the set ofnodes in K not adjaent to k). We de�neri + Xk2K dk(xik � xjk) + Xk2K0 K(k)(xik � xjk) � lj + �s� Xk2K dk � Xk2K0 K(k)�xij (5.18)to be the reinfored double overing-lique inequality assoiated with K and K 0.The proof of faetness for the reinfored double overing-lique inequalities is similar tothe proof of Theorem 5.11.Theorem 5.19 The reinfored double overing-lique inequalities are valid for P (G; d; s; 0),and de�ne faets if s � smin(G; d; 0) + 4dmax.5.3.2 Repliated overing-lique inequalitiesDe�nition 5.11 (repliated overing-lique inequalities) Fix a node i 2 V and let Kbe a lique overing N(i). Consider a lique Q = fq1; : : : ; qtg 2 V nN(i) and a subset K 0 =fk1; : : : ; ktg � K suh that kj qj 2 E for j = 1; : : : ; t (see Figure 5.16). We de�neXk2K dkxki + Xk2K0 K(pk)(xpkk � xik) � li (5.19)88



to be the repliated overing-lique inequality assoiated with the liques K and Q.Note that the de�nition of the repliated overing-lique inequalities allows edges betweenK and Q other than kj qj, j = 1; : : : ; t. In the ase Q = ;, the repliated overing-liqueinequality (5.19) is equivalent to the standard overing-lique inequality (5.3). Moreover,when both K and Q are singletons, these inequalities are equivalent to the path inequalitiesintrodued in [21℄.Proposition 5.20 The repliated overing-lique inequalities (5.19) are valid for R(G; d; s; g)and P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) \ Z2n+m denote an arbitrary integer solution, and de�ne A =fk 2 K : yxki = 1g and B = fk 2 K 0 : yxpkk = 1; yxki = 1; K(pk) > 0g. Also de�neT = fk 2 K : kt 2 E 8t 2 Qg, and note that Q [ T is a lique. The following hain ofinequalities establishes the validity of (5.19):yli � Xk2B dpk + Xk2T\Adk= Xk2B dpk + Xk2T\Adk + Xk2AnT dk � Xk2AnT dk= Xk2B dpk � Xk2AnT dk + � Xk2T\A dk + Xk2AnT dk�� Xk2B(dpk � Xt2KnN(pk) dt) +Xk2A dk= Xk2B K(pk) +Xk2Adk� Xk2B K(pk)(yxpkk � yxik) + Xk2K dkyxki2Theorem 5.21 If s � smin(G; d; 0) + 3dmax, then the repliated overing-lique inequality(5.19) de�nes a faet of P (G; d; s; 0) and R(G; d; s; 0).Proof. Let F be the fae of P (G; d; s; 0) de�ned by (5.19), and suppose that every pointy 2 F satis�es �T y � �0. We will show that � is a multiple of the oeÆient vetor of (5.19),implying that this inequality indues a faet.We show �rst �lj = �rj = 0 with the help of the onstrutions illustrated in Figure 5.17(a)and Figure 5.17(b). Points y1 and y2 (Figure 5.17(a) and Figure 5.17(b), respetively) areonstruted with li = 0, and thus xki = 0 for all k 2 K. We also take are of assigning everyk 2 K 0 after its assoiated node pk, so that xpkk�xik = 0. This implies that y1 and y2 are inF , and thus �T y1 = �0 = �T y2. These points only di�er in their lj-oordinates, hene �lj = 0for j 6= i. A similar argument shows �rj = 0 for every j (inluding node i).89



Figure 5.16: Struture for repliated overing-lique inequalities.Consider now any edge jl 2 E suh that jl 6= ik for k 2 K and jl 6= pkk for k 2 K 0. Weonstrut the points depited in Figure 5.17() and Figure 5.17(d), whih belong to F . Sine�lj = �rj = �ll = �rl = 0, we have �xjl = 0.It remains to prove that the nonzero oeÆients of � an be obtained as a multiple of(5.19). To this end, we rewrite (5.19) asXk2K0 �dk + K(pk)�xki + Xk2K0 K(pk)xpkk + Xk 62K0 dkxki � li + Xk2K0 K(pk):Let k 2 K 0, and suppose K \ �N(pk) = fk1; : : : ; ktg, so that K(pk) = dpk � P1�v�t dkv .Consider the pair of points depited in Figure 5.17(e) and Figure 5.17(f). Sine both pointsbelong to F they satisfy �Tx = �0 at equality, and we have(dk + dk1 + : : :+ dkt)�li = �xpkk + (dpk + dk)�li ;implying �xpkk = (dk1 + : : : + dkt � dpk)�li= �K(pk)�li : (5.20)Now, for any k 2 K, onsider the two following ases:Case 1: k 62 K . The points depited in Figure 5.17(g) and Figure 5.17(h) satisfy (5.19)at equality, hene �xki + dk�li = 0. 3Case 2: k 2 K . The two points depited in Figure 5.17(i) and Figure 5.17(j) satisfy (5.19).Sine �lj = �rj = 0, we have �xpkk = �xki + dk�li : From (5.2) we have �xpkk = �K(pk)�li ,implying �xki = ��dk + K(pk)��li . 3Therefore, we have � = ��li�, where � denotes the oeÆient vetor of (5.19). Henethe repliated overing-lique inequality (5.19) de�nes a faet of P (G; d; s; 0). The sameargumentation applies to R(G; d; s; 0) 2The symmetri inequalities of the repliated overing-lique inequalities desribe the in-teration between the interval I(i) and the liques K and K 0 with the right bound of the90



Figure 5.17: Construtions for the proof of Theorem 5.21.91



frequeny spetrum [0,s℄. Under the same setting as in Theorem 5.21, the following symmet-ri inequality is valid and faet-induing for P (G; d; s; 0):ri � s�Xk2K dkxik + Xk2K0 K(pk)(xkpk � xki):If we replae ri by li+ di in this inequality, the resulting inequality is valid and faet-de�ningfor R(G; d; s; 0).5.3.3 Extensions of double overing-lique inequalitiesThe ideas involved in the development of double overing-lique inequalities do not restritto that partiular family of inequalities, but an be further exploited to �nd new lasses offaet-induing inequalities based on similar onepts. In this setion we explore faet-de�ningvalid inequalities over slightly di�erent strutures, analyzing the e�et of these struturehanges in the resulting inequalities. The onstrutions presented in this setion resemblethe development of the reinfored fene inequalities from the fene inequalities for the linearordering polytope, adding a node to the subgraph that supports the inequality and adjustingthe oeÆients to maintain validity while enforing faetness [38℄.De�nition 5.12 If K � V and t 2 V , we de�ne A(K; t) to be the setA(K; t) = argmaxfd(B) : B � KnN(t) and d(B) � dtg:That is, A(K; t) � V is the maximum demand of a node subset of K that an be assignedinside the interval [0; dt℄ in a shedule with lt = 0. Note that the exat alulation of A(K; t)is NP-hard, sine this problem generalizes the feasibility problem for hromati shedulingpolytopes.De�nition 5.13 (extended double overing-lique inequalities) Let i; j 2 V be twoadjaent nodes, and let K be a lique overing N(i) \ N(j). Furthermore, �x some nodet 2 N(j)nN(i) (see Figure 5.18(a)). We de�neri +Xk2K dk(xik � xjk) � lj + 'xji + 'txjt (5.21)to be the extended double overing-lique inequality assoiated with K and t, where ' =s� d(KnA(K; t)) and 't = dt � d(A(K; t)).Proposition 5.22 The extended double overing-lique inequalities (5.21) are valid for thepolytope P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) be an integer solution. If yxji = 0, then the inequality (5.21) isdominated by the standard double overing-lique inequality (5.8), and thus is satis�ed by y.On the other hand, if yxji = 1 onsider two ases:92



Case 1: yxjt = 1. In this ase, the inequality (5.21) admits the formri +Xk2K dk(xik � xjk) � ylj + '0yxji + 'tyxjt= ylj + '+ 't= ylj + (s�Xk2K dk)= ylj + (s�Xk2K dk)yxjiThus, the inequality reads as a standard double overing-lique inequality, and is thereforesatis�ed by y. 3Case 2: yxjt = 0. In this ase, the interval I(j) is loated before I(i), whih in turn isloated before I(t). Note that yri � s � dt and ylj � d(fk 2 K : yxkj = 1g). Moreover, forevery k 2 K we have yxik � yxjk = �1 only if I(j) is loated before I(k) and I(k) is loatedbefore I(i), and yxik � yxjk = 0 otherwise. Combining these observations, we getyri +Xk2K dk(yxik � yxjk)� ylj� (s� dt)� d(fk 2 K : yxjk = yxki = 1g) � d(fk 2 K : yxkj = 1g)= (s� dt)� d(KnA(K; t))= '= 'yxji + 'tyxjt 3Sine y is an arbitrary integer solution, we onlude that the extended double overing-lique inequality (5.21) is valid for P (G; d; s; g). 2The proofs of all the faetness results in this setion go along the argumentation of theproof of faetness for the standard double overing-lique inequalities presented in Theorem5.11.Theorem 5.23 If s � smin(G; d; 0)+4dmax, then the extended double overing-lique inequal-ities (5.21) indue faets of P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we replae riby li + di in (5.21).It is interesting to ompare the standard double overing-lique inequalities (5.8) with theextended inequalities (5.21). The oeÆient of xji is smaller in the extended inequality, whihin turn has a new positive oeÆient in the RHS, orresponding to xjt. This means that weannot reinfore the original inequalities with a nonnegative oeÆient in xjt for free: whenwe fore this variable to have a nonzero oeÆient, variable xji dereases its oeÆient tomaintain validity.Moreover, it is worthwhile to ompute the dual inequality of this new lass. The dual ofa double overing-lique inequality is again a double overing-lique inequality, but the dual93



Figure 5.18: Supports for extended double overing-lique inequalitiesof this extension is a new valid inequality:rj +Xk2K dk(xik � xjk) � li + 'xij + 'txtj : (5.22)In this ase, the inequality is reinfored by adding a oeÆient assoiated with the edgetj 2 E, but now the interval I(j) is the left interval in the inequality. These inequalities anbe generalized to the ase g > 0. In this setting, a more general de�nition for the oeÆientsaompanying variables xji and xjt must be given.De�nition 5.14 (2-extended double overing-lique inequalities) Let i; j 2 V be twoadjaent nodes of G, and let K be a lique overing N(i)\N(j). Moreover, let p 2 N(i)nN(j)and t 2 N(j)nN(i) (see Figure 5.18(b)). We de�neri +Xk2K dk(xik � xjk) � lj + '0xji + 'pxpi + 'txjt (5.23)to be the 2-extended double overing-lique inequality assoiated with K and nodes t and p,where '0 = s� d(Kn(A(K; t) [A(K; p))) � dt � dp't = dt � d(A(K; t))'p = dp � d(A(K; p))Note that the 2-reinfored double overing-lique inequalities are obtained by \ombining"inequalities (5.21) and (5.22) into a new valid one. Now we have two new nodes, namely pand t, adjaent to nodes i and j, respetively. The standard double overing-lique inequalityis reinfored with nonzero oeÆients assoiated with the variables xip and xjt.Theorem 5.24 If s � smin(G; d; 0) + 4dmax, then the 2-extended double overing-lique in-equalities are faet-induing for P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we replaeri by li + di. 94



De�nition 5.15 (losed double overing-lique inequalities) Let i; j 2 V be two adja-ent nodes of G, and let K be a lique overing N(i) \ N(j). Moreover, let p 2 N(i)nN(j)and t 2 N(j)nN(i) suh that pt 2 E and pk; tk 2 E for all k 2 K. We de�neri +Xk2K dk(xik � xjk) � lj + '00xji + 'pxpi + 'txjt � 'ptxpt (5.24)to be the losed double overing-lique inequality assoiated with K and nodes t and p, where'00 = s� d(K)� (dp + dt)'t = dt +minfdp; dtg'p = dp'pt = minfdp; dtgTheorem 5.25 If s � smin(G; d; 0) + 4dmax, then the losed double overing-lique inequali-ties (5.24) indue faets of P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we replae riby li + di.Example 5.6 It is worth omparing the inequalities presented in this setion arising from thesame graph struture. Suppose N(i) \N(j) = ; (so that K = ;) and take d = 1. Moreover,set s = 4 and suppose that P (G; d; 4; 0) is nonempty. In this setting, the standard and theextended double overing-lique inequalities have the following form:standard ! ri � lj + 4xjiextended ! ri � lj + 3xji + xjtextended (symm.) ! ri � lj + 3xji + xpi2-extended ! ri � lj + 2xji + xjt + xpilosed ! ri � lj + 2xji + 2xjt + xpi � xptlosed ! ri � lj + 2xji + xjt + 2xpi � xptThese inequalities show an interesting interplay among the oeÆients of the ordering vari-ables involving the new nodes t and p. The RHS of the extended inequalities gets more andmore strengthened and, at the same time, the oeÆient of xji dereases to maintain faetness(but not too muh in order to keep validity).It is remarkable that all these inequalities are faet-induing for P (G; d; s; 0), showing thatthe ideas leading to the overing-lique inequalities appear in many di�erent faet-de�ninginequalities of this polytope. These results give another hint of the hardness of hromatisheduling polytopes, sine so many variations of a same idea are present as faets. It wouldbe interesting to searh for further variations of overing-lique inequalities involving morethan two nodes outside the standard lique struture. �
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Chapter 6
Further lasses of valid inequalities

The results of this paper suggest that, in applying linearprogramming to a ombinatorial problem, the number ofrelevant inequalities is not important but their ombina-torial struture is.{ Jak Edmonds (1965)Chapter 5 presented faet-induing inequalities oming from strengthenings and variationsof the interval bound onstraints and the antiparallelity ontraints, mainly based on overingliques of the interferene graph. We now turn our attention to the development of faet-induing inequalities based on di�erent graph strutures.Setion 6.1 opens the hapter with the so-alled 4-yle inequalities, an interesting lasswith an unusual struture. These inequalities ombine a 4-yle with a lique in the interfer-ene graph, involving two interval bounds and a number of ordering variables. A onstrutiveproof of faetness is given for the uniform ase d = 1. Setion 6.2 analyses valid inequalitiesover yles of the interferene graph involving the ordering variables only. The main resultof this setion asserts that a yle inequality is faet-induing if and only if the assoiatedyle does not ontain a hord, and it is worth noting that this result does not depend on theparity of the yle.Cyles in the interferene graph also allow to onstrut inequalities only involving theinterval variables. Setion 6.3 presents a lass of valid inequalities de�ned over odd holes of G.These inequalities are valid for every interferene graph, and we prove that they de�ne faetsof P (C2k+1;1; s; 0) whenever the polytope is nonempty. We also devise suÆient onditionsfor this inequality to be faet-induing for arbitrary graphs.The analysis of the polytope P (Kn; d; s; 0), de�ned over a omplete graph, is of theoretialinterest and an also lead to faets for the general ase. Setions 6.4 and 6.5 present twolasses of faets for this polytope, along with the orresponding generalizations for arbitraryinterferene graphs. We also prove that the assoiated separation problems are NP-omplete.
97



6.1 4-Cyle inequalitiesChromati sheduling polytopes over yles are interesting and omplex objets. For example,the polytope R(C4;1; 4; 0) has 2.738 feasible solutions and 160 faets, whereas the polytopeR(C5;1; 4; 0) admits 17.500 feasible solutions and 644 faets. The following example presentsa remarkable inequality that originated the results of this setion.Example 6.1 Consider the interferene graph (C4;1) and suppose s � 4. The followinginequality is valid for the polytope P (C4;1; s; 0):2x34 � 2x14 + 1 � l1 + l2 (6.1)This inequality an be viewed as a strenghtening of 1 � l1 + l2, whih is trivially valid if12 2 E, but does not de�ne a faet if this edge 12 belongs to a larger lique. It is interestingto analyze the validity of inequality (6.1). The only nontrivial ase is x34 = 1 and x14 = 0,where we have the two possible situations illustrated by Figure 6.1, depending on whetherx23 = 0 or x23 = 1. In both ases, inequality (6.1) is satis�ed. Furthermore, this inequalityde�nes a faet of the full-dimensional polytope P (C4;1; 4; 0), implying that it is faet-de�ningfor all polytopes P (C4;1; s; 0) with s � 4. It is remarkable that a valid inequality having onlythese nontrivial ases for validity still de�nes a faet of full-dimensional polytopes. �
Figure 6.1: Possible ases for x34 = 1 and x14 = 0.In the remaining of this setion we onstrut a lass of valid inequalities ontaining (6.1),and we prove that they are faet-de�ning when g = 0 and s � smin(G; d; 0) +O(1)dmax. Theonstrution of these inequalities takes a 4-yle and replaes one of its nodes by a lique (seeFigure 6.2). Reall that dmax stands for the maximum demand in the weighted interferenegraph.

Figure 6.2: Struture for 4-yle inequalities.98



De�nition 6.1 (4-yle inequalities) Let 1; 2; 3 2 V be three nodes suh that 12; 23 2 Eand 13 62 E. Let K be a lique overing N(1)\N(3), and assume w.l.o.g. that K = f4; : : : ; tg.We de�ne l1 + l2 � Xk2K �k(x3k � x1k) + �: (6.2)to be the 4-yle inequality assoiated with these nodes, where �k = � dk + d3 if k = 4dk if k > 4 and� = minfd1; d2; d3g.We now prove that the 4-yle inequalities are always valid but faet-induing only if thereare no edges between node 2 and the lique K.Proposition 6.1 The 4-yle inequalities are valid for P (G; d; s; g) and R(G; d; s; g).Proof. Let z 2 P (G; d; s; g)\Z2n+m be an integer feasible solution, and onsider the followingases:Case 1: zr3 � zl1. Let A = fk 2 K : zx3k = 1 and zx1k = 0g. By de�nition, A [ f3g is alique in G, and so the orresponding intervals do not overlap, hene zl1 � zl3 +d3+Pk2A dk.Moreover, 12 2 E implies zl1 + zl2 � minfd1; d2g � �. Adding these two inequalities we getzl1 + zl2 � d3 +Xk2A dk + �� Xk2K �k(zx3k � zx1k) + � 3Case 2: zr3 > zl1. In this ase, zx3k � zx1k � 0, and thus the inequality (6.2) is dominatedby � � zl1 + zl2 , whih holds beause the intervals I(1) and I(2) do not overlap in a feasibleshedule. 3In both ases the 4-yle inequality (6.2) is satis�ed, so it is valid for P (G; d; s; g) andR(G; d; s; g). 2Theorem 6.2 Assume that N(1)\N(2)\N(3) = ;. If s � smin(G;1; 0)+4, then the 4-yleinequality (6.2) de�nes a faet of P (G;1; s; 0).Proof. Let F be the fae of P (G;1; s; 0) de�ned by (6.2). To prove that F is a faet, we shallonstrut the required number of aÆnely independent points in F .1. Let H be the graph obtained from G by deleting the nodes 1, 2 and 3. Consider afeasible shedule z 2 P (H;1; s� 2; 0), and onstrut a point y 2 P (G;1; s; 0) \ Z2n+mas follows.yli = 8><>: zli + 2 if i 6= 1; 2; 31 if i = 1; 30 if i = 2 yri = 8><>: zri + 2 if i 6= 1; 2; 32 if i = 1; 31 if i = 299



Figure 6.3(a) shows this onstrution. This new solution is feasible and satis�es (6.2)at equality. We an onstrut many suh solutions. In fat, there is a bijetion betweenthis set of solutions and the feasible integer solutions of P (H;1; s � 2; 0). Sine s �smin(G;1; 0) + 4, the polytope P (H;1; s � 2; 0) is full-dimensional, hene there are2(n� 3) + (m� jE(f1; 2; 3g)j) suh aÆnely independent points.Notie that these points satisfy the following onditions:yx21 = 1 (6.3)yx23 = 1 (6.4)yx1k = 1 for k 2 N(1) (6.5)yx3k = 1 for k 2 N(3) (6.6)yx2k = 1 for k 2 N(2) (6.7)yri � yli = 1 for i = 1; 2; 3 (6.8)For eah of these equations in sequene, we now onstrut a feasible shedule in F not sat-isfying it at equality but satisfying the remaining ones, thus showing that F is a faet ofP (G;1; s; 0).2. The feasible solution depited in Figure 6.3(b) satis�es (6.2) at equality and has x21 = 0,thus violating (6.3). Note that this solution satis�es onditions (6.4) to (6.8).3. Similarly, the feasible solution in Figure 6.3() satis�es (6.2) at equality and has x23 = 0,thus violating (6.4) and being aÆnely independent w.r.t. the previous points. Thissolution satis�es onditions (6.5) to (6.8).4. We now onstrut feasible solutions violating ondition (6.5). To this end, for everyk 2 N(1) onstrut a feasible solution aording to the following ases:{ If k = 4, onsider the solution of Figure 6.3(d). Note that this onstrution isfeasible sine there are no edges between node 2 and K.{ If k 2 K but k 6= 4, onstrut the feasible solution depited in Figure 6.3(e).{ If k 2 N(3)nK, onsider the feasible solution presented in Figure 6.3(f). Note that2k 62 E sine N(1)\N(2)\N(3) = ; and 4k 62 E by the de�nition of the overinglique K.{ Finally, if k 62 N(3), onsider the feasible solution presented in Figure 6.3(g).Eah of these feasible points satis�es (6.2) at equality but does not satisfy ondition(6.5), thus being aÆnely independent w.r.t. the previous points. Note that onditions(6.6) to (6.8) hold for these solutions.5. For every k 2 N(3), we now onstrut a feasible solution in F not satisfying (6.6). Ifk 62 N(2) onsider the solution depited in Figure 6.3(h), and if k 62 N(1) onsiderFigure 6.3(i). Note that k must satisfy one of these onditions, for otherwise k 2N(1) \ N(2) \ N(3), ontraditing the hypothesis. Moreover, these solutions are in Fand violate ondition (6.6), thus being aÆnely independent w.r.t. the preeding points.Note that these points satisfy onditions (6.7) and (6.8).100



Figure 6.3: Feasible points for the proof of Theorem 6.2.101



6. Now, for eah k 2 N(2) we shall onstrut a feasible solution with x2k = 0, heneviolating (6.7). If k 62 N(3) onstrut the solution presented in Figure 6.3(j), otherwiseonsider Figure 6.3(k) (in this ase we have k 62 N(1) by our hypothesis N(1) \N(2) \N(3) = ;). These points do not satisfy ondition (6.7), and therefore are aÆnelyindependent with the previous points. Moreover, note that these points satisfy (6.8).7. To onstrut a feasible solution y 2 F with yri � yli > di for i = 1; 2; 3 (thus �nallyviolating ondition (6.8)), we an onsider any of the previous onstrutions havingthe interval I(i) to the right of intervals f1; 2; 3gnfig, and extend the interval I(i) oneunit to the right. Figure 6.3(l), Figure 6.3(m) and Figure 6.3(n) show three feasiblesolutions that an be onstruted that way. These three solutions are obviously aÆnelyindependent w.r.t. the previous points.This way we onstrut the required number of aÆnely independent points in the fae F ofP (G; d; s; 0) de�ned by (6.2). Thus, this inequality indues a faet of both P (G; d; s; 0) andR(G; d; s; 0). 26.2 Cyle-order inequalitiesDe�nition 6.2 (yle-order inequalities) Let C = f1; : : : ; kg be a k-yle in G. Thefollowing inequality is the yle-order inequality assoiated with C:x12 + x23 + : : :+ xk�1;k + xk1 � k � 1 (6.9)Note that the triangle inequalities 4.1 are a speial kind of yle-order inequalities. It is notdiÆult to verify that yle-order inequalities are valid for both P (G; d; s; g) and R(G; d; s; g),sine they are valid for the linear ordering polytope and every partial ordering given bythe ordering variables an be extended to a linear ordering (whih satis�es the yle-orderinequalities by de�nition).However, these inequalities are faet-de�ning for the linear ordering polytope only if k = 3,due to the equality onstraints xij + xji = 1 [23℄. Due to this fat, we annot expet yle-order inequalities to be faet-de�ning for hromati sheduling polytopes in general. Thissetion shows that the yle-order inequalities are faet-de�ning if and only if C is a hordlessyle, provided the frequeny spetrum [0; s℄ is large enough. These results do not dependon the parity of the number of nodes of C. It is worth noting that yle-order inequalitiesdo de�ne faets of the assoiated ayli subdigraph polytope, where the weaker onstraintsxij + xji � 1 are imposed [24℄.De�nition 6.3 If C = f1; : : : ; kg � V is a yle, we de�ne �(C) = #fij 2 E(C) : i and jbelong to di�erent setorsg.Theorem 6.3 If C is a hordless yle and s > smin(GnC; d; g)+d(C)+g �(C)+dmax, thenthe yle-order inequality (6.9) de�nes a faet of P (G; d; s; g) and R(G; d; s; g).102



Figure 6.4: Construtions for the proof of Theorem 6.3.Proof. Let F be the fae of R(G; d; s; g) de�ned by (6.9), suppose �T z = �0 for everyz 2 P (G; d; s; g) \ Z2n+m. Sine s > smin(G; d; g), we have �li = �ri = 0 for every i 2 V byLemma 3.8 and Lemma 3.10. To omplete the proof, we show that �xij = 0 for every ij 2 E.Claim 1: �xi;i+1 = 0 for i; i + 1 2 E(C). Consider the feasible shedules z1 and z2depited in Figure 6.4(a) and Figure 6.4(b) respetively, where the intervals fI(k)gk2C areassigned within the interval [0; kd(C) + �(C)℄. Both points belong to F , hene �T z1 = �0 =�T z2 and thus �xi;i+1 = 0. 3Claim 2: �xij = 0 for ij 62 E(C). The feasible solutions presented in Figure 6.4()and Figure 6.4(d) show that �xij = 0. Note that these onstrutions are feasible sine s >smin(GnC; d; g) + smin(C; d; g) + dmax. 3Claim 3: �xij = 0 if i 2 C and j 62 C. To prove this laim, onsider the feasible solutionsdepited in Figure 6.4(e) and Figure 6.4(f). Both points belong to F , hene �xij = 0. 3This sequene of laims shows � = 0, hene F is a faet of P (G; d; s; g) and R(G; d; s; g).2Proposition 6.4 If C has a hord and P (G; d; s; g) resp. R(G; d; s; g) is full-dimensional,then the yle-order inequality (6.9) does not de�ne a faet of P (G; d; s; g) resp. R(G; d; s; g).
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Proof. Let ij 2 E be a hord of C (i.e., 1 � i < j � k and j 6= i + 1 (mod k)), andonsider an arbitrary point z 2 P (G; d; s; g)\Z2n+m satisfying (6.9) at equality. This implieszx12+: : :+zxk1 = k�1, hene all variables zx12 ; : : : ; zxk1 but one are set to 1. Let t 2 f1; : : : ; kgsuh that zxt;t+1 = 0. Therefore, the intervals orresponding to the nodes in C are assignedin the order t+1! t+2 : : : k ! 1! 2; : : : ; t. Let P = fi; i+1; : : : ; j� 1; jg denote the pathfrom i to j in C. We shall show that z satis�eszxij = Xe2E(P ) zxe � (jE(P )j � 1): (6.10)Case 1: zxij = 1. In this ase, I(i) is loated before I(j). But this means that I(i) isloated before I(i+ 1), I(i+ 1) is loated before I(i + 2), : : :, and I(j � 1) is loated beforeI(j), implying zxe = 1 for every edge e 2 E(P ). Hene Pe2E(P ) zxe = jE(P )j, so we onludethat z satis�es (6.10). 3Case 2: zxij = 0. Here, I(j) is loated before I(i), and thus we have zxi;i+1 = : : : = zxt�1;t =1, zxt;t+1 = 0 and zxt+1;t+2 = : : : = zxj�1;j = 1. But now we have Pe2E(P ) zxe = jE(P )j � 1and so (6.10) is again satis�ed. 3Therefore, the point z satis�es (6.10) and (6.9) at equality, and it is not diÆult to hekthat these equations are linearly independent. Hene the dimension of the fae of P (G; d; s; g)de�ned by (6.9) is at most 2n+m� 2. Sine P (G; d; s; g) is full-dimensional, (6.9) does notde�ne a faet. The same argumentation applies to the �xed-length ase. 2Corollary 6.5 If s > smin(GnC; d; g)+d(C)+ g �(C)+dmax, then the yle-order inequalityassoiated with a yle C is faet-de�ning if and only if C is hordless.It is interesting to generate the symmetri inequalities of yle-order inequalities. ByTheorem 4.3 we an verify that the symmetri inequality of (6.9) is given by1 � x12 + x23 + : : :+ xk�1;k + xk1:It is worth noting that this symmetri inequality gives the opposite lower bound on theordering variables along the yle. By Theorem 4.3, this new inequality is faet-de�ning fors > smin(GnC; d; g) + kdmax if and only if C is a hordless yle.6.2.1 Complexity of the separation problemWe now address the omplexity of the separation problem for the yle-order inequalities.Given a point z 2 PLP (G; d; s; g), this problem onsists in deiding whether there exists someyle-order inequality violated by z or not.Cyle-order inequalities separationInstane: A point z = (l; r; x) 2 PLP (G; d; s; g)Question: Does z violate some yle-order inequality?104



Figure 6.5: Constrution of D from G.The main result of this setion asserts that this problem is polynomially solvable, byproviding a number of redutions to the minimum mean yle problem [3, 33℄. The lattertakes as input a direted graph D with edge osts  : ED ! R and onsists in �nding adireted yle C suh that 1jCjPij2E(C) ij is minimum among all direted yles in D. Suha yle is alled a minimum mean yle of D. The minimum mean yle problem arises as aspeial ase of the minimum ost-to-time ratio problem [3℄ and an be solved in O(nm) time[31, 32℄.Theorem 6.6 The yle-order inequalities an be separated in O(nm2) time.Proof. Let e 2 E be a direted edge of the interferene graph, and onstrut a digraphD = (V;ED) by replaing every (nondireted) edge of G by two direted edges with the sameendpoints and opposite diretions. The only exeption is the edge e, whih is transformedinto only one direted edge in D:ED = fij; ji : ij 2 E and e 6= ijg [ feg:Figure 6.5 shows this onstrution. Now de�ne edge osts  : ED ! R as the values of theordering variables in z, aording to the orientation of the orresponding direted edge (again,the edge e is an exeption): ij = ( �(1 + zxij ) if ij = e�zxij otherwiseClaim: The point z 2 PLP (G; d; s; g) violates a yle-order inequality suh that the assoi-ated yle ontains the edge e if and only if the digraph D has a direted yle C suh that1jCjPij2E(C) ij < �1.)) Let C be a direted yle with 1jCjPij2E(C) ij < �1 and all k = jCj. Suh a yleontains e, sine otherwise ij � �1 for every edge ij 2 E(C), implying Pij2E(C) ijk ��1. Consider now the yle-order inequality assoiated with the direted yle C. Wehave Pij2E(C) ij < �k, and moreover �Pij2E(C) ij = 1 +Pij2E(C) zxij , hene theyle-order inequality assoiated with C is violated by the point z.105



() Let C � V be a direted k-yle suh that e 2 E(C) and Pij2E(C) zxij > k� 1. By theonstrution of D, it is not diÆult to verify that C is a yle with mean stritly lessthan �1: Xij2E(C) ijk = 1k �e + Xij2E(C)nfeg ij�= �1k �1 + zxe + Xij2E(C)nfeg zxij�= �1k �1 + Xij2E(C) zxij�< �1k (1 + (k � 1)) = �13Now, for eah ij 2 E, apply the preeding proedure twie to deide whether some yle-order inequality ontaining ij resp. ji violates the point z 2 PLP (G; d; s; g). The overallrunning time of this algorithm is learly O(nm2). 26.3 Odd hole inequalitiesThis setion presents a lass of valid inequalities de�ned over odd holes of the interferenegraph. The integer solutions in the fae of R(G; d; s; 0) de�ned by these inequalities have avery partiular ombinatorial struture that an be exploited to show that these inequalitiesindue faets of R(C2k+1;1; s; 0) for k � 2. Throughout this setion we assume g = 0.De�nition 6.4 (odd hole inequalities) Let C = f1; : : : ; 2k + 1g be an indued odd yle,alled an odd hole, of the interferene graph. We de�ne2k+1Xi=1 li � k + 2 (6.11)to be the odd hole inequality assoiated with C.Proposition 6.7 The odd hole inequalities are valid for P (G;1; s; 0) and R(G;1; s; 0).Proof. Let z 2 P (G;1; s; 0)\Z2n+m be a feasible shedule. Sine C is a nonbipartite graph, wehave zli � 2 for at least one node i 2 C (otherwise we would be able to assign all the intervalsI(j), with j 2 C, within the frequeny spetrum [0; 2℄, a ontradition). Assume w.l.o.g. thatC = f1; : : : ; 2k + 1g and zl2k+1 � 2. For t = 1; : : : ; k, the inequality zl2t + zl2t+1 � 1 holds,sine 2t and 2t+1 are adjaent nodes. Summing up these inequalities, we obtainP2ki=1 zli � k.Combining this last inequality with zl2k+1 � 2 we get Pni=1 zli � k + 2, hene z satis�es theodd hole inequality assoiated with C. Sine (6.11) does not involve the r-variables, it is alsovalid for R(G;1; s; 0). 2 106



Figure 6.6: Feasible solution satisfying the odd hole inequality at equality.We now analyze the faes indued by the odd hole inequalities. The feasible shedulesin these faes must satisfy Pi2C li = k + 2. This implies that k nodes of C are assignedthe interval [0; 1℄, and k distint nodes reeive the interval [1; 2℄ in the shedule. In order tomaintain feasibility, the remaining node must be assigned the interval [2; 3℄ (see Figure 6.6for an example). This ombinatorial struture was used in Setion 3.2.3 to provide a proofof full-dimensionality of R(C2k+1;1; 3; 0) for k � 2. The same arguments an be applied toprove that the odd hole inequalities indue faets of hromati sheduling polytopes.Theorem 6.8 Let C2k+1 = f1; : : : ; 2k+1g be a hole on 2k+1 nodes. The odd hole inequalityassoiated with C2k+1 indues faets of R(C2k+1;1; s; 0) and P (C2k+1;1; s; 0) if k � 2 ands � 3.Proof. For i = 1; : : : ; 2k+1, de�ne an order of the nodes by Si = (i; i+1; : : : ; 2k+1; 1; : : : ; i�1)and let yi be the greedy solution assoiated with this sequene (see Setion 3.2.3 for thede�nition). Further de�ne the opposite order �Si = (i; i � 1; : : : ; 1; 2k + 1; : : : ; i + 1) andlet �yi be the assoiated greedy solution. It is not diÆult to verify that these solutions liein the fae of R(C2k+1;1; s; 0) de�ned by the odd hole inequality assoiated with C2k+1.Moreover, following the proof of Theorem 3.27 in Setion 3.2.3 we obtain that the solutionsfyi; �yi : i 2 C2k+1g are aÆnely independent. Sine R(C2k+1;1; s; 0) � R4k+2, the existeneof these 4k + 2 aÆnely independent points shows that the odd hole inequality assoiatedwith C2k+1 indues a faet of this polytope. Now, for i = 1; : : : ; 2k + 1, onstrut the twofeasible solutions presented in Figure 3.10(a), (b). These feasible shedules, together with theprevious onstrutions, show that the odd hole inequality assoiated with C2k+1 indues afaet of P (C2k+1;1; s; 0). 2Now we turn to arbitrary interferene graphs. Let C � V be an odd hole of G, andsuppose w.l.o.g. that C = f1; : : : ; 2k + 1g. We say that i 62 C is parity nonadjaent to theyle C if i is nonadjaent to a stable set of size k in C2k+1. If this does not hold, we say thati is parity adjaent to the yle C.Corollary 6.9 Let C � V be an odd hole and suppose s � smin(G;1; 0) + 4. The odd holeinequality assoiated with C de�nes a faet of R(G;1; s; 0) if and only if every node i 62 C isparity nonadjaent to C. 107



Proof. Sine s � smin(G;1; 0) + 4, R(G;1; s; 0) and P (G;1; s; 0) are full-dimensional byTheorem 3.11. If i 62 C is parity adjaent to C, then every feasible solution satisfying the oddhole inequality at equality has xji = 1 for every j 2 C \N(i), hene the fae de�ned by thisinequality annot have the required dimension for being a faet.Conversely, suppose that every node i 62 C is parity nonadjaent to C, and let � 2 Rn+mand �0 2 R suh that �T y = �0 for every y 2 R(G;1; s; 0). For every feasible shedule y 2R(C;1; 3; 0) and every feasible shedule y0 2 R(GnC;1; s; 0), for s = smin(G;1; 0), onstruta new shedule z 2 R(G;1; s; 0) by settingzli = ( yli if i 2 Cy0li + 3 if i 62 CThis set of feasible solutions shows �li = 1 for i 2 C, �li = 0 for i 2 V nC, and �xij = 0 forij 2 E(C) [ E(V nC). To omplete the proof, it remains to show �xij = 0 for every ij 2 Ewith i 62 C and j 2 C. For every suh edge, onstrut a feasible solution satisfying the oddhole inequality assoiated with C, suh that I(j) = [2; 3℄ and I(i) = [1; 2℄. Suh a solutionexists sine i is parity nonadjaent to C. This new feasible solution shows �xij = 0, hene� is a multiple of the oeÆient vetor of the odd hole inequality assoiated with C whih,therefore, de�nes a faet of R(G;1; s; 0). A similar argumentation applies to P (G;1; s; 0). 2We an devise a similar inequality for the nonuniform ase d � 1. If C = f1; : : : ; 2k + 1gis an odd hole of G, then 2k+1Xi=1 li � dmin(C)(k + 2) (6.12)is valid for P (G; d; s; 0) and R(G; d; s; 0), where dmin(C) = mini2C di is the minimum demandamong the nodes in C. Note that this inequality generalizes (6.11), sine dmin(C) = 1 ifd = 1. However, this inequality does not indue faets for arbitrary instanes, sine di < di+1implies xi;i+1 = 1 for every feasible shedule satisfying (6.12) at equality.6.3.1 Complexity of the separation problemIt is not diÆult to verify that a superlass of the odd hole inequalities an be separatedin polynomial time, provided li + lj � 1 for every ij 2 E. Consider a frational solutionz 2 PLP (G;1; s; 0) and assume zli + zlj � 1 for every ij 2 E (if this assumption is notsatis�ed, we have deteted the violated inequality li + lj � 1). Consider the interferenegraph G = (V;E) with edge weights  : E ! R+ de�ned as ij = zli + zlj � 1 (note thatij � 0 by the initial assumption). Under these assumptions, the odd hole inequality (6.11)is equivalent to 2k+1Xi=1 i;i+1 � 3;where indies are taken modulo 2k + 1. Therefore, there is a violated odd yle inequality(assoiated with a not neessarily hordless yle) if and only if there exists an odd hole withweight stritly less than 3. The problem of �nding a minimum odd yle in an undiretedgraph with nonnegative edge weights an be polynomially solved by suessive appliations108



of the shortest path algorithm [25℄. Hene the odd hole inequalities an be separated inO(m SP (n;m)) time, where SP (n;m) is the running time of a shortest path algorithm in agraph with n nodes and m edges.6.4 Interval-sum inequalitiesThis setion presents a anonial valid inequality that onstrains the total interval length inthe non�xed ase P (G; d; s; 0). This inequality is faet-induing for P (Kn; d; s; 0) if and onlyif s >Pni=1 di, and is also faet-induing for P (G; d; s; 0) when s� !(G; d).Assumption. Throughout this setion we shall assume g = 0.6.4.1 Interval-sum inequalities for omplete interferene graphsDe�nition 6.5 (interval-sum inequalities) Let Kn be the omplete graph on n nodes, andonsider the polytope P (Kn; d; s; 0). We de�nenXk=1(rk � lk) � s (6.13)to be the interval-sum inequality assoiated with this instane.Note that this inequality does not apply to the �xed-length polytope R(Kn; d; s; 0) sinethe natural replaement ri = li+di for the �xed-length ase would yield the trivial inequalityPi2V di � s. It is not diÆult to verify that (6.13) is valid for P (Kn; d; s; 0), sine theintervals fI(i)gni=1 annot overlap. If s =Pni=1 di, then every feasible shedule of P (Kn; d; s; 0)satis�es (6.13) at equality, and so the orresponding fae is not proper. On the other hand,if s >Pni=1 di then this inequality indues a faet of P (Kn; d; s; 0) as Theorem 6.10 shows.Theorem 6.10 If s >Pni=1 di then (6.13) de�nes a faet of P (Kn; d; s; 0).Proof. Sine s >Pni=1 di, Theorem 3.11 implies that P (Kn; d; s; 0) is full-dimensional. Let Fbe the fae of this polytope de�ned by (6.13), and suppose �T y = �0 for every point y 2 F .We shall prove that � = ��, where � is the oeÆient vetor of the inequality (6.13), thusshowing that this inequality indues a faet.Let i and j be two di�erent nodes and onsider the points y1 and y2 depited in Figure6.7(a) and Figure 6.7(b). These points are in F and thus �T y1 = �0 = �T y2. Sine y1 andy2 only di�er in their ri- and lj-oordinates, we havedi�ri + di�lj = (di + 1)�ri + (di + 1)�lj109



Figure 6.7: Construtions for the proof of Theorem 6.10.and, therefore, �ri = ��lj . Sine i and j are arbitrary, there exists some � 2 R suh that�rk = � k = 1; : : : ; n (6.14)�lk = �� k = 1; : : : ; n (6.15)Consider now the two points depited in Figure 6.7() and Figure 6.7(d). Again, thesepoints are in F , and thus we havedi�ri + di�lj + (di + dj)�rj = dj�rj + dj�li + (di + dj)�ri + �xji :But we know that �ri = ��lj , and so di�ri + di�lj = 0. We obtain dj�rj + dj�li = 0 in asimilar way, and thus �xji = (di + dj)(�rj � �ri) = 0:Sine i and j are arbitrarily hosen, we have �xe = 0 for every edge e of Kn. Hene � = ��,and this implies �0 = �s. Therefore, the inequality (6.13) de�nes a faet of P (Kn; d; s; 0). 26.4.2 Interval-sum inequalities for arbitrary interferene graphsWe now analyze the interval-sum inequalities in the general ase P (G; d; s; 0) for an arbitraryinterferene graph G. If K � V is a lique (reall that a lique is not neessarily a maximalomplete subgraph), then Xk2K(rk � lk) � s (6.16)is valid for P (G; d; s; 0). We are interested in haraterizing the ases for whih this inequalityis faet-induing. To this end, note that if K is not a maximal lique then no feasible shedule110



an satisfy (6.16) at equality, hene the assoiated fae is empty. So K must be maximal if(6.16) is supposed to de�ne a faet of P (G; d; s; 0).However, the maximality of K is neessary but not suÆient for faetness. If there existssome node i 62 K having a unique nonneighbor k 2 K, then yxil = yxit 8 l; t 2 Knfkg forevery integer point y in the fae de�ned by (6.16), so this fae is not maximal if P (G; d; s; 0)is full-dimensional. Therefore, if K is not maximal or if there exists some i 62 K withjN(i)\Kj = jKj � 1, then (6.16) does not de�ne a faet of P (G; d; s; 0). Theorem 6.11 showsthat the onverse is also true.
Figure 6.8: Constrution of feasible solutions in F .Theorem 6.11 If s � Pi2V di, K � V is a lique, and every node i 62 K has at least twononneighbors p(i); p0(i) 2 K, then (6.16) de�nes a faet of P (G; d; s; 0).Proof. Let F denote the fae of P (G; d; s; 0) de�ned by (6.16), and suppose �T y = �0 forevery point y 2 F . We shall prove � = ��, for some � 2 R, where � is the oeÆient vetorof the inequality. Note �rst that we an onstrut a feasible solution y 2 F by overing [0; s℄with nonoverlapping intervals orresponding to the nodes in K, and assigning every nodei 62 K inside the interval [ylp(i) ; yrp(i) ℄ (see Figure 6.8). The intervals assigned to the nodesin K must be large enough to allow this onstrution (note that this onstrution is feasiblesine we are onsidering the general polytope P (G; d; s; 0) and s �Pi2V di).Similar on�gurations as in Figure 6.7(a) and Figure 6.7(b) an be used to show �ri = �ljfor i; j 2 K. We onstrut two points in F , assigning I(k), for k 62 K, \inside" the intervalI(p(k)) or I(p0(k)), as in Figure 6.9(a). If fp(k); p0(k)g = fi; jg, then we assign I(k) in[0; yrj ℄, as in Figure 6.9(b). This way we show �ri = ��li = � 2 R 8i 2 K. Similarly, theonstrution of Figure 6.7() and Figure 6.7(d) an be adapted to this ase to prove �xij = 0for i; j 2 K.It only remains to show �lk = �rk = 0 for k 62 K, and �xij = 0 for i 62 K or j 62 K (orboth). Figure 6.9() and Figure 6.9(d) show how to onstrut two points in F that only di�erin their rk-oordinate, thus proving �rk = 0. We an show �lk = 0 for every k 62 K similarly.Finally, we verify that �xe = 0 holds for every edge e 62 E, by onsidering two ases.If e = ik with i 2 K and k 62 K, de�ne y1 and y2 as in Figure 6.9(e) and Figure 6.9(f)respetively, and if e = kr with k; r 62 K, de�ne y1 and y2 as depited in Figure 6.9(g) andFigure 6.9(h), respetively. The points y1 and y2 are in F , so �T y1 = �T y2 and thusy1lk�lk + y1rk�rk + �xe = y2lk�lk + y2rk�rk :111



Figure 6.9: Construtions for the proof of Theorem 6.11.But �lk = �rk = 0 for k 62 K, hene �xe = 0. Therefore, the inequality (6.16) de�nes a faetof P (G; d; s; 0). 2As we have already noted, if there exists some i 2 K with at most one nonneighbor in K(whih implies that K is a maximal lique), then (6.16) is not faet-induing for P (G; d; s; 0).Combining this observation with Theorem 6.11 yields the following result.Corollary 6.12 Let s �Pi2V di. Then, the interval-sum inequality (6.16) de�nes a faet ofP (G; d; s; 0) if and only if jKnN(i)j � 2 for every i 62 K.Remark. Suppose that jKnN(i)j � 2 for every i 62 K, and partition V nK into V nK =[k2KVk suh that Vk \ N(k) = ;. Moreover, let Gk be the subgraph of G indued byVk. Under these de�nitions, we an strengthen the bound s � Pi2V di from Theorem 6.11.Under these de�nitions, the interval-sum inequality (6.16) de�nes a faet of P (G; d; s; 0) ifs > maxfd(K);Pk2K smin(Gk; d; 0)g. � 112



6.4.3 Complexity of the separation problemThe separation problem for the interval-sum inequalities takes as input a point in the linearrelaxation PLP (G; d; s; 0), and onsists in deiding whether this point is violated by someinterval-sum inequality or not. We may state this problem as follows:Interval-sum inequalities separationInstane: A point y 2 PLP (G; d; s; 0).Question: Is there any maximal lique K suh that Pi2K yri � yli > s?Theorem 6.13 Interval-sum inequalities separation is NP-omplete in the strongsense.Proof. Consider the Weighted Max-Clique problem, de�ned as follows:Instane: A graph H = (VH ; EH), a weight wi 2 Z+ for eah i 2 VH , and an integer k(me way assume k � 3 and 1 � wi � k � 1).Question: Is there a lique K of H with weight at least k?Weighted Max-Clique is NP-omplete in the strong sense [20℄, and we will onstrut apseudopolynomial redution from this problem to Interval-sum inequalities separation.Given an instane (H;w; k) of Weighted Max-Clique, we onstrut an instane of theseparation problem as follows. Let D = fi 2 VH : wi > k�12 g. We de�ne a new graphG = (V;E) by taking H and splitting the nodes in D.V = fi : i 2 VHg [ fi0 : i 2 DgE = EH [ fi0j : ij 2 EH ; i 2 Dg[ fi0j0 : ij 2 EH and i; j 2 Dg [ fii0 : i 2 DgWe take s = k� 1 and set d = 1. Now, de�ne the point y 2 PLP (G; d; s; 0) by setting yli = 0for every i 2 V and yri = � wi for i 62 Dwi=2 for i 2 DFurthermore, let yri0 = wi=2 for i 2 D, and yxij = 1=2 for every ij 2 E. Note that 0 �yli � yri � s and yri � yli � 1 = di, so the bound onstraints and the demand onstraints aresatis�ed. Moreover, yrj = wj � k�12 for j 62 D, and yrj = yrj0 = wj2 � k�12 if j 2 D, and thusyrj � k � 12 = 0 + s=2 = yli + sxij;yri � k � 12 = 0 + s=2 = ylj + s(1� xij):Hene the antiparallelity onstraints are also satis�ed and, therefore, y 2 PLP (G; d; s; 0). We�nally show that H has a lique of weight k or greater if and only if there is some liqueK � V suh that the inequality (6.16) de�ned by K is violated by y.113



If. Let K � VH be a lique with weight at least k and de�ne K 0 = K [ fi0 : i 2 K \Dg.The onstrution of G implies that K 0 is a lique of G, and moreoverXi2K0(yri � yli)= Xi2KnD(yri � yli) + Xi2K\D(yri � yli) + (yri0 � yli0 )= Xi2KnDwi + Xi2K\D(wi=2 + wi=2)= Xi2Kwi � k = s+ 1 > s:Hene the inequality Pi2K0 ri � li � s is violated by y.Only if. Suppose that Pi2K yri � yli > s for some lique K � V . De�ne K 0 = fi : i 2 Kor i0 2 Kg � VH . Again, we have Pi2K0 wi � Pi2K yri � yli > s = k � 1, and sine wi 2 Z,we onlude that w(K 0) � k.This redution from Weighted Max-Clique to the separation problem for (6.16) ispolynomial, and thus it is also pseudopolynomial. Therefore, Interval-sum inequalitiesseparation is strongly NP-omplete. 26.5 Clique-interval inequalitiesThis setion introdues an interesting lass of valid inequalities, namely the lique-intervalinequalities as a ombination of the lique inequalities and the interval-sum inequalities. Thefull potential of the ideas giving rise to this family appears in hromati sheduling polytopesde�ned over omplete interferene graphs, and Setion 6.5.1 is devoted to these results. Itis worth noting that although omplete interferene graphs are not interesting in pratie,hromati sheduling polytopes de�ned over omplete interferene graphs admit a omplexombinatorial struture. Unfortunately, a generalization of the lique-interval inequalitiesto arbitrary instanes is not straightforward, involving oeÆients whose exat alulation isNP-hard. Setions 6.5.2 and 6.5.3 present this generalization, together with some preliminaryresults for heuristially generating bounds on these oeÆients.6.5.1 Clique-interval inequalities for omplete interferene graphsDe�nition 6.6 For j = 1; : : : ; n, de�ne �dj = s �Pk 6=j dk. Note that every integer feasiblesolution y 2 P (Kn; d; s; 0) \ Z2n+m has yrj � ylj � �dj.De�nition 6.7 (lique-interval inequalities) Consider a omplete interferene graph(Kn; d). Fix a node i 2 V = f1; : : : ; ng, and partition V nfig = K [K 0 arbitrarily, where K114



or K 0 may be empty. We de�neXj2K(rj � lj) + Xj2K0 djxji � li + Xj2K �djxij: (6.17)to be the lique-interval inequality assoiated with K and K 0.Example 6.2 Consider the polytope P (K4;1; 5; 0), assoiated with a uniform omplete in-terferene graph on 4 nodes. Take i = 1 and de�ne K = f2g and K 0 = f3; 4g. Then,(r2 � l2) + (x31 + x41) � l1 + 2x12is the lique-interval inequality assoiated with this partition. It is not diÆult to verify thatthis inequality is valid for this partiular instane. �Proposition 6.14 The lique-interval inequalities are valid for P (Kn; d; s; 0).Proof. Let y 2 P (Kn; d; s; 0) \ Z2n+m be a feasible solution, and de�ne the following sets:A = fj 2 K : yxij = 0g;B = fj 2 K 0 : yxij = 0g;C = fj 2 K : yxij = 1g; (6.18)Sine the intervals do not overlap, Pj2A(yrj � ylj ) +Pj2B dj � yli holds. Moreover, eahj 2 C has yrj � ylj � �dj (by de�nition of �dj), and so Pj2C(yrj � ylj ) �Pj2C �dj . Combiningthese two inequalities, we obtainXj2K(yrj � ylj ) + Xj2K0 djyxji= Xj2A(yrj � ylj ) +Xj2C(yrj � ylj ) +Xj2B dj= hXj2A(yrj � ylj ) +Xj2B dji+ hXj2C(yrj � ylj )i� yli +Xj2C �dj= yli + Xj2K �djyxij :Therefore, the lique-interval inequality (6.17) is valid for P (Kn; d; s; 0). 2If s =Pni=1 di, then every feasible solution satis�es (6.17) at equality, and so this inequalitydoes not de�ne a proper fae of P (Kn; d; s; 0). On the other hand, if s >Pni=1 di we an showthat the lique-interval inequalities de�ne faets of P (Kn; d; s; 0). Theorem 6.15 an be provedin a similar way as the faetness results presented in the previous setions. Note that theseresults do not apply to the �xed-length polytope R(Kn; d; s; 0).115



Theorem 6.15 The lique-interval inequality (6.17) de�nes a faet of P (Kn; d; s; 0) if andonly if s >Pni=1 di.Remark. It is worth noting that the separation of the lique-interval inequalities over a om-plete interferene graph is a polynomially solvable problem. Given a point z 2 PLP (Kn; d; s; g)and a �xed node i 2 f1; : : : ; ng, we partition V nfig = K [K 0 as follows. For eah j 2 V nfig,insert j into K if zrj � zlj � �djzxij � djzxji , otherwise insert j into K 0. Repeating the pro-edure for i = 1; : : : ; n, we onstrut n lique-interval inequalities. If the point z violatessome lique-interval inequality then it must violate some of the onstruted inequalities, andonversely. �6.5.2 Clique-interval inequalities for arbitrary interferene graphsThe purpose of this setion is to provide a generalization of the lique-interval inequalities(6.17) for arbitrary interferene graphs. Proposition 6.16 presents a straightforward gener-alization giving valid inequalities for this ase, but unfortunately these inequalities are notfaet-induing for P (G; d; s; 0). The same arguments from the proof of Proposition 6.14 anbe applied to establish this result.Proposition 6.16 Let i 2 V and onsider disjoint liques K;K 0 � N(i) (K or K 0 may beempty). The inequality Xj2K(rj � lj) + Xj2K0 djxji � li +Xj2K �djxij (6.19)is valid for P (G; d; s; g).Unfortunately, inequality (6.19) does not neessarily de�ne a faet of P (G; d; s; g) sinewe may not be able to �nd feasible solutions satisfying it at equality with some interval I(j),with j 2 K, loated to the right of I(i). The rest of this setion provides a stronger inequalityfor this ase, by applying lifting proedures for the oeÆients on the variables xij , for j 2 K.As we shall see, the alulation of these oeÆients is a diÆult task, and we devise in Setion6.5.3 a proedure for heuristially bounding their values.Theorem 6.17 Let i 2 V and onsider disjoint liques K;K 0 � N(i) suh that for everynode j 62 K [K 0 [ fig there exists some node k 2 K with jk 62 E. Then, the inequalityXj2K(rj � lj) + Xj2K0 djxji � li (6.20)de�nes a faet of P (G; d; s; 0) \ fy 2 R2n+m : yxji = 1 8j 2 Kg if s� !(G; d).Proof. Let P 0 = fy 2 P (G; d; s; 0) : yxji = 1 8j 2 Kg, and let F be the fae of P 0 de�ned by(6.20). Suppose �T y = �0 for every point y 2 F . We will prove that (�; �0) is a multiple of(6.20), thus showing that this inequality indues a faet of P 0.116



The tehnique applied in the proof of Theorem 6.10 an be used to prove that there existssome � 2 R suh that �rj = ��lj = � for j 2 K, and �xjk = 0 for j; k 2 K. Moreover, it isnot hard to see that �li = ��.

Figure 6.10: Construtions for the proof of Theorem 6.17.We now prove �lj = �rj = 0 for j 62 K [ fig. To this end, onsider the points y1 andy2 de�ned in Figure 6.10(a) and Figure 6.10(b), respetively. These points are in F , hene�lj = 0. A similar argumentation yields �rj = 0 for j 62 K (note that �ri = 0).For any node j 2 K 0, onsider now the two points depited in Figure 6.10() and Figure6.10(d). Both points satisfy (6.20) at equality, and we know �ri = �lj = �rj = 0, implyingd(K)�li = [d(K) + dj ℄�li + �xji :Sine �li = ��, we onlude �xji = �dj .To omplete the proof, we must show �xjk = 0 for the remaining edges jk:Case 1: j; k 62 K [fig. As in the previous ases, we an onstrut a point in F with K tothe left of I(i), K 0 to the right of I(i), and no spae between the intervals I(j) and I(k), I(j)being before I(k). If we now swap these two intervals, we get another point in F , showing�xjk = 0. 3Case 2: j = i and k 62 K [K . By the hypothesis, there exists some k0 2 K suh thatk0k 62 E. We an onstrut a feasible solution y 2 P 0 with yrk0 � ylk0 � dk (Figure 6.11(a)),so that we an put I(k) \inside" K0 (Figure 6.11(b)). These two points satisfy (6.20) atequality, hene �xjk = 0. 3Case 3: j 62 K and k 2 K. Applying the same proedure used in the previous ase, wean onstrut two points with I(j) loated to the left and to the right of I(k), respetively.Case 2 implies �xij = 0, hene �xjk = 0. 3 117



Figure 6.11: Construtions for the proof of Theorem 6.17.Case 4: j 2 K , k 2 K. Consider the two points depited in Figure 6.11() and Figure6.11(d). These points are in F , and we know �lj = �rj = 0, so�lk Xl2Knfkg dl + �rk Xl2K dl = �lk�dj + Xl2Knfkg dl�+ �rk�dj +Xl2K dl�+ �xjk :But �lk = �� and �rk = �, hene �xjk = 0. 3Therefore, we show � = ��, proving that (6.20) de�nes a faet of P 0. 2Note that we do not need a overing lique in order to establish Theorem 6.17. To obtaina valid and faet-de�ning inequality for P (G; d; s; 0) from (6.20), we an onsider a liftingproedure over the variables xij (j 2 K), that are set to 0 in P (G; d; s; 0) \ fy 2 R2n+m :yxji = 1 8j 2 Kg. Consider any �xed lifting sequene, and let �j denote the maximumlifting oeÆient for xij with j 2 K. We then get the following inequality, de�ning a faet ofP (G; d; s; 0): Xj2K(rj � lj) + Xj2K0 djxji � li + Xj2K �jxij : (6.21)Unfortunately, the alulation of these lifting oeÆients is NP-hard. Consider the �rst liftedvariable xij , and de�ne the deision problem assoiated with �j as follows:Clique-Interval inequality liftingInstane: A graph G = (V;E) and integers k and s. A node i 2 V ,node sets K;K 0 � V as above, and some node j 2 K.Question: Is �j (de�ned as above) greater or equal than k?Theorem 6.18 Clique-Interval inequality lifting is NP-hard.Proof. Consider the feasibility problem for hromati sheduling polytopes:118



Figure 6.12: Constrution of H from G.Chromati sheduling feasibilityInstane: A weighted graph (G; d) and an integer s0.Question: Is P (G; d; s0; 0) nonempty?Reall that Corollary 1.2 implies that Chromati sheduling feasibility isNP-omplete.We shall onstrut a redution of this problem to Clique-Interval inequality lifting.Given (G; d) and s0, onstrut a new graph H = (VH ; EH) with VH = V [ fi; jg and EH =E [ fjk : k 2 V g [ fijg (see Figure 6.12). De�ne K = fjg and K 0 = ;, and take s = s0 + djand k = dj . We laim that P (G; d; s0; 0) 6= ; if and only if �j � k.If. Suppose that �j � k. If we de�ne Pj = fy 2 P (G; d; s; 0) : yxij = 1g, the maximumlifting oeÆient �j for xij is:�j = maxy2Pj h Xt2K(yrt � ylt) + Xt2K0 dtyxti � ylii = maxy2Pj [yrj � ylj � yli ℄:Suppose that y� realizes this maximum, and that y�rj � y�lj � y�li � k = dj . This solution musthave y�li = 0, otherwise we ould shift I(i) to the left, obtaining a better value for �j (notethat this shifting is feasible sine the only neighbor of the node i is j, and I(j) is loated tothe right of I(i)). Sine y�rj � y�lj � dj and jk 2 EH for all k 2 V , we an onstrut a feasiblesolution y0 of P (G; d; s0; 0) in the following way (see Figure 6.13):y0lk = � y�lk if y�xjk = 0y�lk � (y�rj � y�lj ) otherwisey0rk = � y�rk if y�xjk = 0y�rk � (y�rj � y�lj ) otherwisey0xkl = y�xklThis onstrution shifts the intervals loated to the right of I(j) at least dj units to the left.Now maxk2V (y�rk) � s implies maxk2V (y0rk) � s � dj = s0, hene y0 2 P (G; d; s0; 0) and soP (G; d; s0; 0) is nonempty.Only if. If P (G; d; s0; 0) is nonempty, then we an transform any feasible solution into apoint y 2 Pj by adding the interval I(i) with li = 0 and ri = di, and interval j with lj = s0and rj = s. This new solution y0 has y0rj � y0lj � y0li = s� s0 = dj = k, showing that �j � k.Therefore, Clique-Interval inequality lifting is NP-omplete. 2119



Figure 6.13: Constrution of y0 (�g. (b)) from y� (�g. (a)).6.5.3 Upper bounds for the lifting oeÆientsSine the lifting oeÆients �j introdued above are diÆult to alulate, we an onsider toreplae eah oeÆient by an upper bound, thus maintaining validity (although not nees-sarily faetness). This setion shows a simple proedure for alulating suh upper bounds.Note that this is a priori a nontrivial issue, sine the generation of upper bounds for theseoeÆients is in a sense the dual of the lifting maximization problem. This setion devel-ops, by ombinatorial arguments, a dual for this problem whose feasible solutions are easyto alulate, so they an be used for heuristially generating upper bounds for the liftingoeÆients.Lemma 6.19 �j � 0 for every j 2 K.Proof. Suppose that the variables xil for l 2 L have already been lifted, and de�ne PL = fy 2P (G; d; s; 0) : yxil = 0 for l 2 KnLg. Then, �j = maxy2PL[fjg g(y), withg(y) = Xk2K(yrk � ylk) + Xk2K0 dkyxik � yli �Xk2L�kyxik :We now onstrut a point �y with g(�y) � 0, thus proving �j � 0. The point �y has all intervalsorresponding to K 0 [Knfjg loated to the left of I(i), eah with length equal to its demand(i.e., �yrk � �ylk = dk). Furthermore, we leave no empty spae between them, and no emptyspae between the last interval and I(i) (see Figure 6.14), so thatXk2Knfjg(�yrk � �ylk) + Xk2K0 dk�yxij � �yli :
Figure 6.14: Constrution of �y.120



Moreover, we have �yxit = 0 for every t 2 L, and so Pt2L �t�yxit = 0. Thus,g(�y) = Xk2K(�yrk � �ylk) + Xk2K0 dk�yxik � �yli �Xt2L�t�yxit= (�yrj � �ylj ) + Xk2Knfjg(�yrk � �ylk) + Xk2K0 dk�yxik � �yli= �yrj � �ylj � 0Therefore g(�y) � 0, implying �j � 0. 2Using Lemma 6.19 we an now obtain a lower bound for eah �j. As in the previousproof, assume that the variables xil for l 2 L have been lifted and let y 2 PL[fjg \ Z2n+mbe a point with yxij = 1. Partition K = Ay [ By suh that Ay = ft 2 K : yxti = 1g andBy = ft 2 K : yxti = 0g (note that j 2 By). Then,Xt2K(yrt � ylt) + Xt2K0 dtyxti � yli �Xt2L�txit (6.22)� Xt2K(yrt � ylt) + Xt2K0 dtyxti � yli= h Xt2Ay(yrt � ylt) + Xt2K0 dtyxti � ylii+ Xt2By(yrt � ylt)� Xt2By(yrt � ylt)The �rst inequality holds beause �j � 0 (by Lemma 6.19), and the last inequality holdssine Ay [K 0 is a lique and all its orresponding intervals are alloated to the left of I(i),hene Xt2Ay(yrt � ylt) + Xt2K0 dtyxti � yli :Let C(y) = fT � V : By � T and T is a liqueg and onsider any T 2 C(y). We obtainXt2By(yrt � ylt) � s� Xt2V nBy(yrt � ylt)� s� Xt2TnBy(yrt � ylt) (6.23)� s� Xt2TnBy dtThis last inequality is valid for any T 2 By, sog(y) � miny2PL[fjg �s� d(TnBy)�De�ne S = fT � V : T is a lique and T \K 6= ;g. For every T 2 S, we have that T 2 C(z)for some point z suh that zxit = 1 for t 2 T \K. Moreover, s � d(TnBy) � s � d(TnK),sine By � K. Then, miny2PL[fjg �s� d(TnBy)� � minT2S �s� d(TnK)�: (6.24)121



Thus, by ombining (6.22), (6.23) and (6.24), we get:�j � minT2S h s� d(TnK) i: (6.25)We an ompute an upper bound on �j by heuristially generating liques in S and takingthe minimum of s� d(TnK) over all the generated liques.6.5.4 Complexity of the separation problemTo onlude our analysis of the lique-interval inequalities, we state in this setion a negativeresult onerning the omplexity of the assoiated separation problem. Sine the proof of thisfat is similar to the omplexity analyses presented previously for other families of inequalities,we only give the redution that establishes this result.Clique-Interval inequalities separationInstane: A point z 2 PLP (G; d; s; g).Question: Does z violate a lique-interval inequality?Theorem 6.20 Clique-Interval inequalities separation is NP-omplete.Sketh of proof. Let (H; k) be an instane of Max-Clique (that onsists in deiding whether!(H) � k or not). Construt a graph G = (V;E) from H = (VH ; EH) by the addition of auniversal node i, i.e., V = VH [fig and E = EH [fij : j 2 VHg. Furthermore, set s = 2n+1and de�ne the point z 2 PLP (G;1; s; g) by zlj = n for j 2 VH and zli = k=2. Moreover, setzrj = zlj + 1 for every j 2 V and zxjk = 1=2 for every jk 2 E. The point z violates somelique-interval inequality if and only if !(H) � k. 2
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Chapter 7
Conluding remarksand open problems

Very reent mathematial work on the traveling salesmanproblem (...) indiates that the problem is fundamentallyomplex. It seems very likely that quite a di�erent ap-proah from any yet used may be required for suessfultreatment of the problem. In fat, there may well be nogeneral method for treating the problem and impossibil-ity results would also be valuable.{ M. Flood (1956)This thesis ontributes an initial study of hromati sheduling polytopes by partiallyunovering their ombinatorial struture, presenting �rst lasses of valid and faet-de�ninginequalities, and addressing the assoiated separation problems. We briey review now theresults presented in the preeding hapters and point out some important open problems inthis topi.Emptyness/nonemptynessSolving the bandwidth alloation problem in PMP-Systems amounts to determining whetherthe polytopes are empty or not, hene emptyness/nonemptyness is a ruial issue with strongpratial impliations. The lique bound resp. hromati bound gives a erti�ate of emp-tyness resp. nonemptyness, but it would be interesting to strengthen or re�ne these boundsin order to have more preise onditions ensuring feasibility/infeasibility of the assoiatedbandwidth alloation problem.DimensionA entral issue in polyhedral ombinatoris is to alulate the dimension of the polytopesin question. As we have seen, obtaining the dimension of hromati sheduling polytopes123



is a diÆult task, both omputationally and theoretially. We know that the dimension isa nondereasing funtion of the frequeny span and that P (G; d; s; g) and R(G; d; s; g) arefull-dimensional if s � (G; d; g), but there are many open questions onerning the ases < (G; d; g). Setion 3.2 provides partial results for the uniform ase and for partiularlasses of interferene graphs. One important ase is given by the instanes with uniformdemand d = 1, but even in this setting we do not have a omplete haraterization of thedimension yet (note that this ase orresponds to the usual graph oloring problem, whih isalready a hard problem). Reall that (G;1; 0) = �(G) + 2 holds in this setting.Problem 1 Can we haraterize the dimension of the polytopes R(G;1; s; 0) and P (G;1; s; 0)for s = �(G) and s = �(G) + 1?We know that both polytopes have full dimension if s � �(G)+2 and, furthermore, Setion3.2 provides a partial haraterization of the dimension of R(G;1; s; 0) when s = �(G) + 1.However, a omplete haraterization of the dimension in the uniform ase is still not known.A more modest problem is to provide onditions ensuring full-dimensionality in the uniformase. Here, the following question remains unanswered.Problem 2 For whih interferene graph G are R(G;1; �(G); 0) and P (G;1; �(G); 0) full-dimensional?These open questions are partiular ases of a more general unsolved problem onerninghromati sheduling polytopes, namely the existene of a formula for the dimension of thepolytopes for arbitrary interferene graphs and general node weights. The most generalquestion is the following.Problem 3 Do there exist formulas for the dimension of P (G; d; s; g) and R(G; d; s; g) interms of standard graph parameters? How does the node weighting a�et suh a formula?It is not lear whether this question an be answered aÆrmatively, sine alulating thedimension proves to be a diÆult issue even for uniform instanes. Having a omplete har-aterization of the dimension would help to establish faetness properties of valid inequalitiesfor these polytopes. Based on the bounds given in Setion 3.2, we have been able to providefaetness results for a number of valid inequalities in the ase s � smin(G; d; g) + O(1)dmax.However, full knowledge of the dimension would help to give omplete haraterizations ofthe faet-de�ning ases of eah valid inequality.Combinatorial stabilitySetion 3.3 shows that the polytopes R(G; d; s; g) and R(G; d; s+ 1; g) resp. P (G; d; s; g) andP (G; d; s + 1; g) are aÆnely isomorphi if s > 2�(G; d; g), but empirial evidene suggeststhat only s > �(G; d; g) is needed to establish this isomorphism. As shown in that setion, if124



every onneted omponent of G is a lique, then R(G; d; s; g) �= R(G; d; s+ 1; g) if and onlyif s > �(G; d; g). Therefore, it is natural to ask whether this is the ase for arbitrary graphs.Problem 4 Is R(G; d; s; g) �= R(G; d; s+ 1; g) for s > �(G; d; g)?.The proof tehnique presented in Setion 3.3 onstrains the ondition to be s > 2�(G; d; g),so a di�erent idea should be employed to prove this more general assertion.SymmetryThe symmetry of hromati sheduling polytopes is a very partiular theoretial property.The most remarkable aspet of this property is that it provides results for proving faetnessindependently of the dimension of the assoiated polytopes. This turns out to be a valuabletool for identifying faet-induing inequalities in a ontext where the dimension of the poly-topes is still unknown. It would be interesting to develop further impliations of symmetryrelated to the searh for faets.Problem 5 Can we further exploit the speial symmetry of P (G; d; s; g) and R(G; d; s; g) toprovide theoretial tools for identifying faet-de�ning inequalities?Valid inequalities and faetsSine the bandwidth alloation problem in PMP-Systems is NP-omplete, we annot ex-pet a omplete haraterization of hromati sheduling polytopes unless NP = o-NP[42℄.However, many families of faet-induing inequalties are obtained here, whih enouragesthe use of utting plate methods for solving this problem. Covering liques prove to be auseful onstrution for the development of faets, and Chapter 5 introdues several lassesof faet-induing inequalities arising from suh strutures in the interferene graph. Hene,developing these ideas further seems to be a promising line for future studies of hromatisheduling polytopes.Problem 6 Can we devise further generalizations (as in Setion 5.3) of overing-lique in-equalities?Problem 7 Can we devise further extensions (as in Setion 5.3.3) of the standard doubleovering-lique inequalities?On the other hand, Chapter 6 presents a number of lasses of faet-induing inequalitiesbased on di�erent strutures of the interferene graph. Some families arise as variationsof inequalities from the linear ordering polytope, whereas the remaining ones seem to be125



partiular to hromati sheduling polytopes. The families presented in Setion 4.3, whihonly are valid for small frequeny spetrums, are of pratial importane as they ould serveas utting planes for the hardest instanes in pratie.Problem 8 Find new lasses of faet-induing inequalities, either arising as variations ofknown faets for related polyhedra or being partiular to hromati sheduling polytopes.Problem 9 Find lasses of valid inequalities for small frequeny spetrums, and haraterizethe ases where these inequalities indue faets.The last issue seems to be a diÆult one, sine faetness is hard to analyze when thefrequeny spetrum is small. When [0; s℄ is large, we an easily onstrut feasible solutionsand prove faetness this way. However, when s = !(G; d) +O(1), the onstrution of feasiblesolutions beomes more involved and, therefore, it is more diÆult to prove faetness in thisase. The only known way to aomplish this task relies on symmetry arguments. This showshow important the speial symmetry of hromati sheduling polytopes is for our purposes.Separation problemsThe pratial implementation of a utting plane approah involves routines for eÆientlyidentifying violated valid inequalities. Therefore, the separation problem for the known lassesof inequalities is not only of theoretial interest but also of pratial importane in a uttingplane environment. Throughout this work we proved that many of the nontrivial families ofvalid inequalities have NP-omplete separation problems. This implies that a more detailedstudy must be arried out onerning these separation problems.Problem 10 For eah lass of valid inequalities, identify partiular ases where the separa-tion problem is polynomially solvable.Problem 11 For eah lass of valid inequalities with NP-omplete separation problems, de-velop e�etive and fast heuristis for the orresponding separation problem.Problem 12 Find polynomially separable superlasses of valid inequalities with NP-ompleteseparation problems. * * *The reent progress at exatly solving ombinatorial optimization problems by integerprogramming tehniques and the onsequent interest that these ativities have generated area motivation to multiply the e�orts within this �eld. This work onstitutes a ontribution inthis diretion, by ontinuing the polyhedral study of a problem with important appliations,126



namely the bandwidth alloation problem in PMP-Systems. Suh polyhedral investigationsare the �rst steps for the suessful implementation of utting plane approahes, and we hopethat this work may ontribute to the pratial solution to optimality of real-world instanesof this problem in a near future.
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Appendix A
Summary of valid inequalities

This problem is of ourse a linear programming problem,and hene may be solved by Dantzig's simplex algorithm.However, for the ow problem, we shall desribe whatappears to be a onsiderably more eÆient algorithm; itis, moreover, readily learned by a person with no speialtraining, and may easily be mehanized for handling largenetworks.{ L. Ford and D. Fulkerson (1955)This appendix summarizes the faet-induing inequalities presented in Chapter 4, Chapter5, and Chapter 6. We also provide a short omment on faetness results and the omplexityof the assoiated separation problems, for the families where this information is known.Triangle inequalities. Let T = fi; j; kg be a triangle of G. The following are the triangleinequality assoiated with T and its symmetri inequality, respetively.xij + xjk + xki � 2xij + xjk + xki � 1If P (G; d; s; g) 6= ;, then both inequalities de�ne faets of R(G; d; s; g) and P (G; d; s; g),independently of the dimension of the polytopes (see Setion 4.2). The separation problemfor triangle inequalities by omplete enumeration is learly polynomial.4-path inequalities. Let i; j; k; l 2 V be four nodes of G suh that ij, jk, kl 2 E and nofeasible solution of P (G; d; s; g) has the ordering i! j ! k ! l. The inequalityxij + xjk + xkl � 2is the 4-path inequality assoiated with the path fi; j; k; lg, and is valid and faet-induing forR(G; d; s; g) and P (G; d; s; g) (see Setion 4.3). The separation problem for 4-path inequalitiesan be solved in polynomial time by omplete enumeration.Paw inequalities. Let i; j; k; l 2 V be four distint nodes of G suh that fi; j; kg indues atriangle and jl 2 E. Furthermore, suppose that no feasible solution of P (G; d; s; g) has the129



ordering i! j ! k and j ! l. The inequalityxjk + xjl � 1 + xjiis the paw inequality assoiated with the nodes fi; j; k; lg, and is valid and faet-induingfor R(G; d; s; g) and P (G; d; s; g) (see Setion 4.3). Again, the separation problem for pawinequalities is polynomially solvable by omplete enumeration.Extended paw inequalities. Let 1; : : : ; 5 2 V be �ve distint nodes suh that 12; 23 2 Eand f3; 4; 5g form a triangle inG. Moreover, assume that no feasible solution has the orderings1! 2! 3! 4, 1! 2! 3! 5 and 2! 3! 4! 5. The inequalityx34 + x35 � x21 � 2x32 (A.1)is the extended paw inequality assoiated with the nodes f1; : : : ; 5g. The extended paw in-equalities are valid and faet-induing for R(G; d; s; g) and P (G; d; s; g), and the orrespondingseparation problem an be solved in polynomial time by omplete enumeration (see Setion4.3).Covering-lique inequalities. Let i 2 V be a node of G, and let K be lique overingN(i). The overing-lique inequality assoiated with i and K, and its symmetrial inequalityare Xk2K dk xki � lis�Xk2K dk xik � riIf s � smin(G; d; 0) + 3dmax, the overing-lique inequalities de�ne faets of P (G; d; s; 0)(see Setion 5.1). The same result holds for R(G; d; s; 0) if we replae ri by li + di in thesymmetri inequality. The separation problem for overing-lique inequalities isNP-omplete(see Setion 5.1.1). These inequalities are also valid if g > 0 but may not de�ne faets in thisase. A generalization of overing-lique inequalities for the ase g > 0 suh that the resultinginequalities are faet-induing is presented in Setion 5.1.2.Double overing-lique inequalities. Let ij 2 E be an edge of G, and let K be a liqueovering N(i) \N(j). The double overing-lique inequality assoiated with ij and K isri +Xk2K dk(xik � xjk) � lj + (s� d(K))xji:If s � smin(G; d; 0)+4dmax, the double overing-lique inequalities de�ne faets of P (G; d; s; 0),and the same holds for R(G; d; s; 0) if we replae ri by li+di (see Setion 5.2). The symmetriinequality of a double overing-lique inequality is again a double overing-lique inequality.Again, this onstrution an be generalized for the ase g > 0, and the resulting faet-induinginequalities are presented in Setion 5.2.3. The separation problem for double overing-liqueinequalities is NP-omplete (see Setion 5.2.2).Reinfored overing-lique inequalities. Let i 2 V be a node of G and �x a liqueK � N(i). Furthermore, let K 0 be a lique overing N(i)nK. The inequalityXk2K dkxki + Xk2K0 K(k)xki � li130



is the reinfored overing-lique inequality assoiated with K and K 0. These inequalitiesindue faets of P (G; d; s; 0) and R(G; d; s; 0) if s � smin(G; d; 0) + 3dmax (see Setion 5.3.1).The reinfored double overing-lique inequalities are de�ned similarly.Repliated overing-lique inequalities. Fix a node i 2 V and let K be a lique overingN(i). Consider a lique Q 2 V nN(i) and a subset K 0 � K with jK 0j = jQj suh that everynode k 2 K 0 is adjaent to some node pk 2 Q, and suh that these adjaenies form a bijetionbetween K 0 and Q. The inequalityXk2K dkxki + Xk2K0 K(pk)(xpkk � xik) � liis the repliated overing-lique inequality assoiated with the liques K and Q. If s �smin(G; d; 0) + 3dmax, the repliated overing-lique inequalities de�ne faets of P (G; d; s; 0)and R(G; d; s; 0) (see Setion 5.3.2).Extended double overing-lique inequalities. Let i; j 2 V be two adjaent nodes, andlet K be a lique overing N(i) \ N(j). Furthermore, �x some node t 2 N(j)nN(i). Theinequality ri +Xk2K dk(xik � xjk) � lj + 'xji + 'txjtis the extended double overing-lique inequality assoiated with K and t where ' = s �d(KnA(K; t)) and 't = dt � d(A(K; t)). If s � smin(G; d; 0) + 4dmax, then this inequalityindues a faet of P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we replae ri by li + di(see Setion 5.3.3). The symmetri family is a new family of faets.2-extended double overing-lique inequalities. Let i; j 2 V be two adjaent nodes ofG, and let K be a lique overing N(i)\N(j). Moreover, let p 2 N(i)nN(j) and t 2 N(j)nK.The following is the 2-extended double overing-lique inequality assoiated with K and nodest and p ri +Xk2K dk(xik � xjk) � lj + '0xji + 'pxpi + 'txjt;where the oeÆients '0, 't and 'p are de�ned in Setion 5.3.3. If s � smin(G; d; 0) + 4dmax,then the 2-extended double overing-lique inequalities are faet-induing for P (G; d; s; 0),and the same holds for R(G; d; s; 0) if we replae ri by li + di.Closed double overing-lique inequalities. Let i; j 2 V be two adjaent nodes of G, andlet K be a lique overing N(i) \ N(j). Moreover, let p 2 N(i)nN(i) and t 2 N(j)nK suhthat pt 2 E and pk; tk 2 E for all k 2 K. The following is the losed double overing-liqueinequality assoiated with K and the nodes t and pri +Xk2K dk(xik � xjk) � lj + '00xji + 'pxpi + 'txjt � 'ptxpt;where the oeÆients for the ordering variables in the RHS are de�ned in Setion 5.3.3. Ifs � smin(G; d; 0)+4dmax, then these inequalities (5.24) indue faets of P (G; d; s; 0), and thesame is true for R(G; d; s; 0) if we replae ri by li + di.131



4-yle inequalities. Let 1; 2; 3 2 V be three nodes suh that 12; 23 2 E, and let K be alique overing N(1) \N(3). Assume w.l.o.g. that K = f4; : : : ; tg. The inequalityl1 + l2 � Xk2K �k(x3k � x1k) + �is the 4-yle inequality assoiated with these nodes, where �k = dk+d3 if k = 4 and �k = dkotherwise, and � = minfd1; d2; d3g. If N(1) \ N(2) \ N(3) = ; and s � smin(G; d; 0) +O(1)dmax, then these inequalities de�ne faets of P (G;1; s; 0) and R(G;1; s; 0) (see Setion6.1).Cyle-order inequalities. Let C = f1; : : : ; kg be a k-yle in G. The following inequalitiesare the yle-order inequality assoiated with C and its symmetrial inequality, respetively.x12 + x23 + : : :+ xk�1;k + xk1 � k � 1x12 + x23 + : : :+ xk�1;k + xk1 � 1These inequalities are faet-de�ning for s > smin(G; d; g) + O(1)dmax if and only if C is ahordless yle (see Setion 6.2). The separation problem for yle-order inequalities an besolved in O(m2n) time.Odd hole inequalities. Let C = f1; : : : ; ng be an odd hole of the interferene graph.The following inequalities are the odd hole inequality assoiated with C and its symmetrialinequality, respetively. nXi=1 li � n+ 32nXi=1 ri � s� n+ 32Both inequalities indue faets of P (G;1; s; 0) for s � smin(G; d; 0) + 3. In the partiularase G = Cn (with n � 5 an odd integer), the odd hole assoiated with Cn indues faets ofP (Cn;1; s; 0) for s � 3 (see Setion 6.3). The same results apply to the �xed-length polytopeR(G;1; s; 0) if we replae ri by li + di in the seond inequality. A superlass of the odd holeinequalities an be separated in polynomial time.Interval-sum inequalities. If K � V is a not neessarily maximal lique, then the inequal-ity Xk2K rk � lk � sis the interval-sum inequality assoiated with K. If the interferene graph is omplete and wetake K = V , then this inequality indues a faet of P (Kn; d; s; 0) if and only if s > Pni=1 di.For arbitrary interferene graphs and s� !(G; d), the interval-sum inequality de�nes a faetof P (G; d; s; 0) if and only if K is a maximal lique and jKnN(i)j � 2 for every i 62 K (seeSetion 6.4). The separation problem for the interval-sum inequalities is NP-omplete.Clique-interval inequalities. Assume that G is a omplete graph. Fix any node i 2 V andpartition V = K [K 0 [ fig, where K or K 0 may be empty. The inequalityXj2K(rj � lj) + Xj2K0 djxji � li +Xj2K �djxij132



is the lique-interval inequality assoiated with K and K 0. This inequality is valid forP (G; d; s; 0) and it is faet-induing if and only if s >Pni=1 di. If G is an arbitrary graph wean generalize this inequality, but this onstrution involves oeÆients whose alulation isNP-hard (see Setion 6.5).
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Appendix B
Basis The largest example tried was a 20�20 optimal assign-ment problem. For this example, the simplex methodrequired well over an hour, the present method aboutthirty minutes of hand omputation.{ L. Ford and D. Fulkerson (1956)B.1 Graph theoryA graph G = (V;E) onsists of a �nite nonempty set V of nodes and a �nite set E of unorderedpairs of distint points of V , alled edges. If e = fi; jg 2 E is an edge, we say that e joins thenodes i and j, and we briey write e = ij. Two nodes that are joined by an edge are alledadjaent or neighbors. The neighborhood of a node i 2 V is NG(i) = fj 2 V : ij 2 Eg. Ifthere is no danger of onfusion, we just denote this neighborhood by N(i). A node i 2 V isuniversal if N(i) = V nfig, i.e., if it is adjaent to all the remaining nodes.If A � V , we de�ne the neighborhood of A as N(A) = fj 2 V : ij 2 E for some i 2 Ag.We also de�ne the edge sets E(A) = fij 2 E : i 2 A and j 2 Ag and Æ(A) = fij 2 E : i 2 Aand j 62 Ag. We also use the notation Æ(i) = Æ(fig). If A;B � V are disjoint node sets,we de�ne E(A;B) = fij 2 E : i 2 A and j 2 Bg. A graph G0 = (V 0; E0) is a subgraph ofG = (V;E) if V 0 � V and E0 � E. The subgraph of G indued by a node set A � V isGA = (A;E0), with E0 = E(A). Suh a graph is alled an indued subgraph of G.A sequene of distint nodes v1; : : : ; vk is a path in G if vivi+1 2 E for i = 1; : : : ; k � 1.The number k is the length of this path. For n � 1, we denote by Pn = (V;E) the graph onn nodes suh that V = f1; : : : ; ng and E = fi; i+1 : i = 1; : : : ; n� 1g. A sequene of distintnodes v1; : : : ; vk is a yle in G if vivi+1 2 E for i = 1; : : : ; k� 1 and v1vk 2 E. The number kis the length of this yle. A yle with length 3 is alled a triangle. A yle is odd resp. evenif its length is odd resp. even. Every edge vivj in the subgraph of G indued by the nodesv1; : : : ; vk with j 6= i+ 1 is a hord of the yle. A yle with no hords is alled a hordlessor indued yle or a hole, if it has length at least 4. An odd hordless yle is alled an oddhole. For n � 1, we denote by Cn = (V;E) the graph on n nodes suh that V = f1; : : : ; ng135



and E = fi; i + 1 : i = 1; : : : ; n� 1g [ f1ng. A graph is alled a wheel if it is omposed by ayle with the addition of a universal node. We denote by Wn the wheel on n nodes.A graph is alled omplete if every two nodes are joined by an edge. A lique in a graph Gis a set of nodes induing a omplete subgraph of G (note that we do not require this set to bemaximal). We denote by !(G) the size of a largest lique of G, also alled the lique numberof G. We denote by Kn the omplete graph on n nodes. A stable set is a set of nodes any twoof whih are nonadjaent. A oloring of G is a partition of V into disjoint stable sets. Weall a oloring using k stable sets a k-oloring, and denote by �(G) the minimum number ofstable sets needed for suh a partition of V . This number is also alled the hromati numberof G.A weighted graph is a pair (G; d) suh that G = (V;E) is a graph and d 2 RjV j is a nodeweighting, assoiating a number di to every node i 2 V . This number is alled the weightof the node i. The weight of a node subset A � V is d(A) = Pi2A di. The weighted liquenumber !(G; d) is the largest weight of a lique in G.A direted graph or digraph D = (V;A) onsists of a �nite nonempty set V of nodes anda �nite set A of ordered pairs of distint points of V , alled ars. If e = (i; j) 2 A is an arof D, we simply write e = ij, and we refer to node i resp. j as the tail resp. head of the ar.The ar ij is an outgoing ar of node i and an inoming ar of node j.A direted yle is a sequene of nodes v1; : : : ; vk suh that vivi+1 2 A for i = 1; : : : ; k� 1and vkv1 2 A. A digraph whih admits no yles is alled ayli. A tournament is a ompletedigraph, i.e., a digraph suh that all of its nodes are pairwise adjaent. A tournament withno yles is alled an ayli tournament. A topologial ordering of a digraph D = (V;A)is an ordering v1; : : : ; vn of D suh that i < j whenever vivj 2 A. Suh an ordering an befound in linear time [3℄.A node-weighted digraph is a pair (D;w) suh that D = (V;A) is a digraph and w 2 RjV jis a node weighting, assoiating a number wi to every node i 2 V . An ar-weighted digraph isa pair (D;u) suh that D = (V;A) is a digraph and u 2 RjAj is an ar weighting, assoiatinga number uij to every ar ij 2 A. For further de�nitions and results on graph theory, werefer to [28℄.B.2 Polyhedral theoryA vetor set K is onvex if for any two points x; y 2 K it also ontains the straight linesegment [x; y℄ = f�x+(1��)y : 0 � � � 1g between them. For any vetor set K, the onvexhull of K, denoted by onv(K), is the smallest (w.r.t. set inlusion) onvex set ontaining K,i.e., onv(K) = \fK 0 � Rn : K � K 0 and K 0 is onvexg. If K = fx1; : : : ; xkg is �nite, wean equivalently write onv(K) as the onvex ombinations of its vetors:onv(K) = n kXi=1 �ixi : � � 0 and kXi=1 �i = 1 o:136



A one C � Rn is a nonempty set of vetors suh that for any �nite set of vetors of Cit also ontains all their linear ombinations with nonnegative oeÆients. For an arbitrarysubset K � Rn, we de�ne its onial hull one(K) to be the intersetion of all ones in Rnontaining K. If K = fx1; : : : ; xkg is �nite, we an write:one(K) = n kXi=1 �ixi : � � 0 o:The Minkowsi sum or vetor sum of two sets P;Q � Rn is de�ned to be P + Q = fx + y :x 2 P; y 2 Qg.A polyhedron P � Rn is the intersetion of a �nite number of losed halfspaes, i.e.,P = fx 2 Rn : Ax � bg for a matrix A 2 Rm�n and a vetor b 2 Rm. Equivalently,polyhedra an be desribed by the Minkowski sum of a �nitely generated onvex hull and a�nitely generated onial hull, i.e., P = onv(K)+one(W ) for �nite vetor sets K;W � Rn.A polytope is a bounded polyhedron. A polytope P an just be desribed by the onvex hullof a �nite set of vetors, i.e., P = onv(K) for a �nite set K 2 Rn.The vetors x1; : : : ; xk 2 Rn are aÆnely independent if Pki=1 �ixi = 0 and Pki=1 �i = 0implies �i = 0 for i = 1; : : : ; k. If P � Rn is a polyhedron and fx0; : : : ; xkg � P is a maximalsubset of aÆnely independent vetors of P , then we denote by dim(P ) = k the dimension ofP . If dim(P ) = n, we say that P has full dimension or that P is a full-dimensional polytope.The polytope P has dimension k if and only if a maximal system of linear equations for Phas exatly n� k linearly independent equations.A linear inequality x � 0 is valid for a polyhedron P if it is satis�ed by all vetors x 2 P .A fae of P is any set of the form F = P \ fx 2 Rn : x = 0g, where x � 0 is a validinequality for P . A fae F is alled proper if F 6= ; and F 6= P . The faes of dimensions 0, 1,dim(P ) � 2 and dim(P ) � 1 are alled extreme points, edges, ridges and faets, respetively.In partiular, the verties are the minimal nonempty faes and the faets are the maximalproper faes. The set of all extreme points of P is denoted by vert(P ). Every polytope is theonvex hull of its verties, and if P = onv(K) then vert(P ) � K.Two polytopes P � Rn and Q � Rm are aÆnely isomorphi, denoted by P �= Q, if thereexists an aÆne map f : Rn ! Rm that is a bijetion between the points of the two polytopes.The polytopes P and Q are ombinatorially equivalent if there is a bijetion between theirfaes that preserves the inlusion relation. This is equivalent to a bijetion between vert(P )and vert(Q) suh that the extreme points of faes of P orrespond (under this bijetion)to the extreme points of faes of Q. If two polytopes are aÆnely isomorphi then they areombinatorially equivalent. For a more thorough treatment of this topi we refer to [46℄.B.3 Computational omplexityA deision problem � onsists of a set D� of instanes and a subset Y� � D� of aÆrmativeinstanes. The set of instanes is usually desribed by a general de�nition of all its parameters,and the aÆrmative instanes are de�ned by a yes-no question asked in terms of the problem137



parameters. In this setting, an instane of the problem is obtained by speifying partiularvalues for all the problem parameters. We assume that eah problem has an assoiatedenoding sheme, whih maps problem instanes into �nite strings from a given alphabet.The input length of an instane I 2 D� is de�ned to be the number of symbols in thedesription obtained from the enoding sheme for the problem, and is denoted by Length(I).The length funtion Length : D� ! Z+ is used as the formal measure of the instane size.The time omplexity funtion TA : Z+ ! Z+ of an algorithm A expresses its time re-quirements by giving, for eah possible input length, the largest amount of time needed bythe algorithm to solve a problem of that size. An algorithm A is alled a polynomial-timealgorithm if there exists a polynomial p : R! R suh that TA(n) � p(n) for all n 2 Z+. Thelass P is omposed by the problems solvable by a polynomial-time algorithm.A nondeterministi algorithm is an algorithm omposed of a guessing stage and a hekingstage. Given an instane of the problem, the guessing stage nondeterministially generatessome struture. We then provide this struture to the heking stage, whih omputes ina normal deterministi manner and halts either with the answer \yes" or with the answer\no". A nondeterministi algorithm solves a deision problem if there exists some guessedstruture suh that the heking stage answers \yes" if and only if the instane is aÆrmative.A nondeterministi algorithm is said to operate in polynomial time if for every aÆrmativeinstane there is some guessed struture that leads the heking stage to an aÆrmative answerwithin time bounded by a polynomial in the input size. The lass NP is de�ned to be thelass of all deision problems solvable by nondeterministi algorithms operating in polynomialtime. Clearly P�NP, but it is not known whether this inlusion is strit or not.A polynomial transformation from a deision problem � to a deision problem �0 is afuntion f : D� ! D�0 suh that f is omputable by a polynomial time deterministialgorithm and, for every I 2 D�, I 2 Y� if and only if f(I) 2 Y�0 . If there is a polynomialtransformation from � to �0, we write � / �0. It is not diÆult to verify that the relationindued by / is transitive and reexive. A deision problem � is de�ned to be NP-ompleteif � 2NP and �0 / � for all �0 2NP. To prove that a ertain deision problem � is NP-omplete, it suÆes to show that � 2NP and that �0 / � for some NP-omplete problem�0. If � is NP-omplete, then there exists a polynomial-time algorithm solving � if and onlyif P=NP.If � is a deision problem, we de�ne the funtion Max : D� ! Z+ suh that Max(I)denotes the magnitude of the largest number in I. An algorithm that solves a problem isalled a pseudo-polynomial time algorithm if its time omplexity is bounded by a polynomialon Length(I) and Max(I). A problem � is a number problem if there exists no polynomialp : R ! R suh that Max(I) � p(Length(I)) for all I 2 D�. For any deision problem �and any polynomial p : Z ! Z, let �p denote the subproblem of � obtained by restriting� to only those instanes I satisfying Max(I) � p(Length(I)). The deision problem � isNP-omplete in the strong sense if � belongs to NP and there exists a polynomial p : Z! Zsuh that �p is NP-omplete. If � is NP-omplete in the strong sense, then there does notexist any pseudo-polynomial time algorithm solving � unless P=NP.
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Let � and �0 denote arbitrary deision problems, with instane funtions Length andMax, resp. Length0 and Max0, A pseudo-polynomial transformation from � to �0 is a funtionf : D� ! D�0 suh that(a) for all I 2 D�, I 2 Y� if and only if f(I) 2 Y�0 ,(b) f an be omputed in time polynomial in the two variables Max(I) and Length(I),() there exists a polynomial q1 suh that q1(Length0(f(I)) � Length(I) for all I 2 D�,and(d) there exists a two-variable polynomial q2 suh that Max0(f(I)) � q2(Max(I);Length(I))for all I 2 D�.Every polynomial transformation is a pseudo-polynomial transformation. If � isNP-ompletein the strong sense, �0 2NP, and there exists a pseudo-polynomial transformation from � to�0, then �0 is NP-omplete in the strong sense.A searh problem � onsists of a set D� of instanes and, for eah instane I 2 D�, a setS�(I) of solutions. An algorithm is said to solve a searh problem � if, given as input anyinstane I 2 D�, it returns some solution belonging to S�(I) whenever this set is nonempty.A polynomial-time redution from a searh problem � to a searh problem �0 is an algorithmA that solves � by using a hypothetial subroutine S for solving �0 suh that, if S is apolynomial-time algorithm for �0 then A is a polynomial-time algorithm for �. If there existsa polynomial-time redution from � to �0, we write � /R �0. A searh problem � is NP-hard if there exists some NP-omplete problem �0 suh that �0 /R �. An NP-hard searhproblem annot be solved in polynomial time unless P=NP.
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Notation index
R the set of real numbersZ the set of integer numbersZ+ the set of non-negative integer numbers2F power set of F1 vetor (1; : : : ; 1)T set of ustomersS partition of T into setorsEX interfering pairs of ustomers in di�erent setorsG = (V;E) interferene graphEI set of pairs of nodes in the same setorEX interfering pairs of nodes in di�erent setorsn number of nodes of Gm number of edges of Gd demand vetorg guard distanes length of the frequeny spetruma(i) setor node i belongs toN(i) neighbor set of node iN(A) neighbor set of the node set Ali; ri interval bound variablesxij ordering variablesI(i) = [li; ri℄ interval assigned to ustomer i�S inidene vetor of a shedule SP (G; d; s; g) hromati sheduling polytopeR(G; d; s; g) �xed-length hromati sheduling polytopePLP (G; d; s; g) linear relaxation of P (G; d; s; g)RLP (G; d; s; g) linear relaxation of R(G; d; s; g)zli variable li from the inidene vetor zzri variable ri from the inidene vetor zzxij variable xij from the inidene vetor zzl vetor (zl1 ; : : : ; zln)zr vetor (zr1 ; : : : ; zrn)zx vetor (zx1i ; : : : ; zxjn) 141



ext(y) extension of a solution y 2 R(G; d; s; g)red(z) redution of a solution z 2 P (G; d; s; g)sym(z) symmetri solutionsmin(G; d; g) minimum frequeny span suh that P (G; d; s; g) 6= ;sfull(G; d; g) lower bound ensuring full-dimensionalitysmax(G; d; g) lower bound ensuring ombinatorial stabilitydmax maximum demand maxi2V didmin(C) minimum demand maxi2C did(K) summation Pi2K dipK number of setors with nonempty intersetion with K�(C) number of setor hanges in the yle CÆij minimum distane between I(i) and I(j)�(G) hromati number of G!(G) lique number of G!(G; d) weighted lique number of (G; d)�(G; d; g) minimum span generating a solution for eah orderingCn yle on n nodesPn path on n nodesKn omplete graph on n nodesKn;m omplete (n;m)-bipartite graphGA subgraph indued by the node subset AE(A) set of edges with both endpoints in AE(A;B) set of edges with endpoints in A and B respetivelyFs(G; d) set of nodes i with intervals greater than didim(P ) dimension of the polyhedron PLi(x; s) lower bound for li in [0; s℄ under the ordering xUi(x; s) upper bound for li in [0; s℄ under the ordering xG(y) �xed-length adjaeny graphH(z) general adjaeny graph�= aÆne isomorphismvert(P ) extreme points of PP nLO linear ordering polytope on n nodesS� support of the inequality �x � �0
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Index4-yle inequalities, 98ayli tournament, 47adjaeny graph, 40aÆne independene, 23aÆne isomorphism, 42, 47aÆne map, 42aÆrmative instane, 73bandwith alloation problem, 6bipartite graphs, 29border omponent, 38hannels, 2hordless yle, 102hromati number, 23hromati sheduling polytope, 14ombinatorial equivalene, 16dimension, 23extreme points, 37feasibility, 20�xed-length polytope, 14full dimension, 26symmetry, 52lique, 66overing lique, 66maximal lique, 66lique inequalities, 64lique number, 21lique-interval inequalities, 114ombinatorial equivalene, 42onial hull, 136onneted omponent, 38onstraints, 12antiparallelity onstraints, 12, 52, 74bound onstraints, 12, 64demand onstraints, 12, 57integrality onstraints, 12, 57onvex hull, 14, 44, 45overing-lique inequalities, 67
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inidene vetor, 12, 14extension, 20redution, 20indued subgraph, 66interferene, 2interferene graph, 3, 74-yle, 23asteroidal tripel, 22bipartite, 29law, 66omplete, 15, 33, 48yle, 16, 22, 98even yle, 35odd yle, 35path, 16, 35star, 34tree, 30union of liques, 45interval-sum inequalities, 109lifting, 67, 74, 85, 118linear ordering polytope, 16, 47, 102faets, 48fene inequalities, 92reinfored fene inequalities, 92linear relaxation, 70matrix, 37matrix determinant, 37Max Clique, 71Max Majority-Clique, 71minimum ost-to-time ratio, 105minimum mean yle, 105NP-omplete problem, 9odd hole, 106odd hole inequalities, 106open shop sheduling, 9parity nonadjaent node, 107path inequalities, 89PMP-Systems, 5antiparallelity requirements, 8frequeny spetrum, 7guard distane, 7interferene, 6setors, 5

polyhedron, 136polynomial redution, 71polytope, 136Porta, 15preedene onstraints, 8preedene relation, 12, 52sheduling, 8separation between intervals, 38separation problem, 70omplexity, 70sequene-independent lifting, 67shortest path, 109singular matrix, 37stable set, 26strenghtening a valid inequality, 64superperfet graph, 22support of an inequality, 48symmetry point, 52, 53topologial ordering, 25tournament, 47triangle inequalities, 57valid inequality, 63variables, 11gap variables, 44interval bounds, 11notation, 14ordering variables, 12position variables, 42weighted lique number, 21Weighted Max-Clique, 113wireless ommuniations, 1
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