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Abstract

Point-to-Multipoint systems are a kind of radio systems supplying wireless access to voice/data
communication networks. Such systems have to be run using a certain frequency spectrum,
which typically causes capacity problems. Hence it is, on the one hand, necessary to reuse
frequencies but, on the other hand, no interference must be caused thereby. This leads to
the bandwidth allocation problem, a special case of so-called chromatic scheduling problems.
Both problems are NP-hard, and there exist no polynomial time algorithms with a fixed
approximation ratio for these problems. As algorithms based on cutting planes have shown
to be successful for many other combinatorial optimization problems, the goal is to apply
such methods to the bandwidth allocation problem. For that, knowledge on the associated
polytopes is required. The present thesis contributes to this issue.

We present an integer programming formulation for the bandwidth allocation problem and
define the associated chromatic scheduling polytopes. We first study the combinatorial struc-
ture of these polytopes, discussing the different stages —emptyness, non-emptyness but low-
dimensionality, full-dimensionality but combinatorial instability, and combinatorial stability—
as the frequency span increases. Moreover, we explore the relations of chromatic scheduling
polytopes to the linear ordering polytope.

From a geometrical point of view, chromatic scheduling polytopes are of particular interest due
to their symmetry. Outgoing from this symmetry, we develop an important tool for identifying
facet-defining inequalities without any knowledge on the dimension of the polytopes. This
enables us to identify the facet-inducing constraints from the integer programming model. The
other model constraints need to be strengthened with the help of clique-based structures in
order to yield facets. In particular, the so-called covering-clique inequalities generate a broad
number of facets, and we also present several classes of facets coming from generalizations
and variations of these inequalities. We introduce further classes of facet-inducing inequalities
based on different concepts, and study the complexity of the associated separation problems.

KEYWORDS: bandwidth allocation, polyhedral combinatorics
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Resumen

Los sistemas de radio punto a multipunto son conjuntos de antenas de radio que proveen
acceso inalambrico a redes de comunicaciéon de voz y datos. Este tipo de sistemas debe ser
operado utilizando un cierto espectro de frecuencias de radio, lo cual normalmente produce
problemas de capacidad. Por lo tanto es necesario reutilizar frecuencias, pero este reuso
no debe generar interferencia entre las senales. El problema de determinar las frecuencias
para los enlaces se conoce como el problema de asignacion de frecuencias, y en este tipo de
sistemas es un caso especial de los problemas de planificacion cromaética. Estos problemas
son N'P-hard, y no existen algoritmos aproximados polinomiales con una garantia de calidad
fija. Como los métodos de planos de corte han demostrado ser efectivos para muchos otros
problemas de optimizacién combinatoria, el objetivo es aplicar estos métodos al problema de
asignacién de frecuencias en sistemas punto a multipunto. Para esto, es necesario estudiar
previamente los politopos asociados con el problema. El presente trabajo contribuye a este
estudio.

Introducimos una formulacion del problema de asignacién de frecuencias en sistemas punto
a multipunto como un problema de programacién lineal entera, y definimos los politopos de
planificacion cromdtica asociados a esta formulacién. Estudiamos en primer lugar la estruc-
tura combinatoria de estos politopos, analizando los distintos estados —vacuidad, no vacuidad
pero dimension incompleta, dimension completa pero inestabilidad combinatoria, y estabil-
idad combinatoria— a medida que el ancho de banda disponible aumenta. Por otra parte,
exploramos las relaciones de los politopos de planificacién cromética con el politopo de orde-
namiento lineal.

Desde el punto de vista geométrico, los politopos de planificacién croméatica son de un in-
terés particular debido a su simetria. Como consecuencia de esta propiedad, desarrollamos
una importante herramienta para identificar desigualdades que definen facetas sin requerir
informacién sobre la dimensién del politopo. Esto nos permite identificar las restricciones del
modelo de programacién lineal entera que definen facetas del politopo asociado. Las restantes
restricciones del modelo deben ser reforzadas mediante estructuras basadas en cliques del grafo
de interferencia para obtener desigualdades que definen facetas. En particular, las desigual-
dades de clique en cubrimiento generan una gran familia de facetas, y ademds presentamos
varias clases de facetas que provienen de generalizaciones y variaciones de estas desigualdades.
Introducimos clases adicionales de facetas basadas en distintos conceptos, y estudiamos la
complejidad de los problemas de separacién asociados.

PALABRAS CLAVE: asignacion de frecuencias, combinatoria poliedral
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Introduction

For practical purposes the difference between algebraic
and exponential order is often more crucial than the dif-
ference between finite and non-finite.

— Jack Edmonds (1965)

Since the advent of wireless communications, the electromagnetic spectrum has been
widely explored for many applications, the most popular today being cellular phone net-
works. The development of new wireless services led to scarcity of usable frequencies in the
radio spectrum, and this introduced the need to reuse frequencies. A crucial problem in this
kind of communication is the interference incurred whenever two nearby transmitters operate
at close frequencies. Depending on many factors (including the power and orientation of the
signal, geographical constraints and even wheather conditions), the received signal may be of
unacceptable poor quality. Therefore, interference must be avoided by a careful assignment
of frequencies to each transmitter operating in the same area. It turned out that such assign-
ments are computationally difficult to find, and this fact has motivated a steady interest on
this topic [1, 2, 9, 17, 34, 35].

Point-to-Multipoint radio access systems (PMP-Systems) are one kind of wireless networks
providing voice/data access to a set of customers. Base stations form the access points to the
backbone network, and customer terminals are linked to the base stations by means of radio
signals. In contrast to cellular phone networks, each customer has a fixed location on a certain
sector and is therefore served by a prespecified base antenna. Moreover, each customer must
be assigned a frequency interval instead of single channels, subject to the constraint that
no interference is originated by the use of overlapping frequencies. In this setting there are
two sources of possible interference, given by (i) customers allocated to the same sector and
(ii) certain pairs of potentially interfering customers in different sectors. To guarantee an
interference-free communication, a particular bandwidth allocation problem must be solved
when operating a PMP-System.

This kind of problems is known as chromatic scheduling problem [15] or, in some partic-
ular cases, as consecutive coloring problem [16] and interval coloring problem [22, 36]. Such
problems are NP-complete and cannot be polynomially approximated with a guaranteed
quality [36]. Small and medium-sized instances could be successfully handled by greedy-like
heuristics [7], but in order to tackle real world instances, algorithms have to be designed that
rely on a deeper insight of the problem structure. Cutting plane methods have shown to be
very effective at solving hard combinatorial optimization problems [6, 30, 42, 45]. For that,



knowledge of the polyhedra arising in connection to an integer programming formulation of
the problem is needed. This thesis is devoted to the study of the polytopes defined by the in-
teger programming formulation of the bandwidth allocation problem in PMP-Systems. Such
a polyhedral study is the starting point for the practical computational solution of real-sized
instances based on cutting planes.

The thesis is organized as follows. Chapter 1 gives an overview of wireless communication
and frequency assignment problems, and introduces PMP-Systems and the associated band-
width allocation problem in detail. Chapter 2 presents an integer programming formulation
for this problem, and provides the definition of the associated polytopes, called chromatic
scheduling polytopes. Chapter 3 discusses the different combinatorial stages of these polyhe-
dra, as well as some relations to the linear ordering polytope. Finally, Chapter 4, Chapter 5
and Chapter 6 concentrate on the search for valid inequalities and facets, and address the cor-
responding separation problems, the cornerstone of a successful implementation of a cutting
plane approach.

Outline

Chapter 1 starts with a brief survey of the history and main applications of wireless com-
munications. Section 1.1 introduces the frequency assignment problem (FAP) and presents a
number of relevant models for different kinds of applications. In all these models we are given
a set of customers and a set of channels (frequencies) for each customer, and the objective is
to assign a certain number of channels to each customer, either avoiding or minimizing inter-
ference. In the feasibility FAP the objective is to find an assignment providing each customer
with the exact number of channels that he demands. This problem may be infeasible, and in
this case the mazimum service FAP model is of interest. This model asks for an assignment
providing to every customer at most the demanded number of channels, maximizing the to-
tal number of assigned channels. On the other hand, if feasible solutions to the feasibility
FAP exist, one is usually interested in the assignments minimizing the total number of used
channels (minimum order FAP) or the span of the assignment (minimum span FAP). We
finally introduce the minimum interference FAP, which considers a more realistic scenario by
seeking an assignment that minimizes the total amount of interference. This model is useful
in situations where interference-free frequency plans do not exist, and hence the objective is
to minimize the quality loss due to interference.

Section 1.2 introduces PMP-Systems in detail. We give a precise definition of the band-
width allocation model and state this problem in graph-theoretical terms by introducing the
weighted interference graph (G, d). The node set of this graph represents the customer ter-
minals, and edges join pairs of interfering customers. In this particular model we have two
types of edges, representing the two sources of possible interference (i.e., interference among
customers in the same sector, and interference between certain pairs of customers in differ-
ent sectors). The customers do not have a uniform communication demand but individual
ones, hence we consider a node weighting d reflecting these demands. We further have the
available radio frequency spectrum [0, s], with s € Z, where all the frequency intervals have
to be placed in. Finally, a guard distance ¢ € Z; must be kept between the intervals of
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interfering customers in different sectors, due to technical reasons. Thus, every instance of
the bandwidth allocation problem is given by a quadruple (G,d, s, g). This problem may be
interpreted as a special scheduling problem, where the sectors correspond to machines and
the frequency intervals to the jobs to be scheduled. In this setting, the assignment of jobs to
machines is fixed in advance, and we have antiparallelity requirements with changeover times
instead of the usual precedence constraints. We prove that this problem is N'P-complete by
providing a straightforward reduction from GRAPH COLORING, and alternatively by a reduc-
tion from OPEN SHOP SCHEDULING. The chapter closes with a discussion motivating the
study of chromatic scheduling polytopes in the forthcoming chapters.

Chapter 2 introduces a natural integer programming formulation for the bandwidth al-
location problem in PMP-Systems. This formulation contains two integer variables for each
customer —the interval bounds— representing the interval assigned to the customer, and a bi-
nary variable for each pair of interfering customers —the ordering variables— representing the
ordering among the intervals. The latter are needed to describe the feasible solutions, since
otherwise the convex hull of all integer feasible solutions would contain infeasible but integral
points. Section 2.1 closes with the definition of the associated polytopes. For any instance
(G,d,s,g), we define the chromatic scheduling polytope P(G,d,s,g) to be the convex hull of
all the integer vectors corresponding to feasible solutions. A special case of this problem is of
particular interest, namely, the case where each customer receives an interval which has pre-
cisely the length of its demand. We also define the fized-length chromatic scheduling polytope
R(G,d, s, g) to be the convex hull of the feasible solutions satisfying this additional condition.

Section 2.2 presents some preliminary computational studies regarding the complete lin-
ear description of the easier case R(G,1,s,0) for several small graphs. On the one hand,
these experiments show that simple instances of the bandwidth allocation problem generate
polytopes with a rather complex structure, admitting huge numbers of extreme points and
facets. On the other hand, the reported results also suggest that chromatic scheduling poly-
topes pass through several stages as the frequency span s increases: from a nonempty but
low-dimensional stage to full-dimensionality and, finally, to a combinatorially steady state.

The purpose of Chapter 3 is to discuss these different combinatorial stages. A first impor-
tant issue is to find conditions for the existence/nonexistence of feasible solutions resp. for
the nonemptyness/emptyness of the polytopes, as knowing one feasible solution enables us
to run a PMP-System properly. We define sp,iy(G,d, g) to be the minimum frequency span
making the polytopes nonempty, and Section 3.1 provides some straightforward bounds on
this threshold. Note that the NP-completeness of the bandwidth allocation problem implies
that the exact calculation of syi, (G, d, g) is an N'P-hard problem. We combine the weighted
clique number of the weighted graph (G, d) with sectorization arguments to devise a certificate
of infeasibility, whereas a lower bound on s for feasibility arises from the chromatic number
of G.

We explore in Section 3.2 the dimension of chromatic scheduling polytopes, a crucial
property for deciding which valid inequalities are facets (and, therefore, the best possible
cutting planes). It turns out that the dimension of these polytopes is hard to characterize,
because it strongly depends on the graph structure, the node weighting and the available
frequency spectrum [0, s]. It is not difficult to verify that the dimension is a nondecreasing

vii



function of the frequency span and that P(G,d,s,g) and R(G,d, s, g) are full-dimensional if
s> w(G, d). We thus introduce the threshold sg)1(G, d, g) defined as the minimum frequency
span s making P(G,d, s, g) full-dimensional. Section 3.2.1 presents further results related to
full-dimensionality. In particular, we give a lower bound v(G,d,g) on s guaranteeing full-
dimensionality of both polytopes based on coloring arguments. The section closes with a
special analysis of the dimension of uniform instances, providing better bounds in terms of
the chromatic number of the interference graph.

In Section 3.2.2 we discuss the computational complexity of the problem of determining
the dimension of a particular instance. The main result of this section states that deciding
whether a certain instance generates a full-dimensional polytope is N'P-complete. Hence,
determining the dimension of chromatic scheduling polytopes is an NP-hard task. Finally,
Section 3.2.3 completely characterizes the dimension of P(G,d,s,0) and R(G,d,s,0) as a
function of s for a number of graph classes. In particular, we are able to determine the
dimension of both polytopes when the interference graph is a complete graph, a star, a path,
and a cycle. These examples show that the dimension is a nontrivial parameter of the graph
structure.

Section 3.3 explores the combinatorial steady state of chromatic scheduling polytopes. It
has been experimentally observed in some instances that there exists a certain symax(G, d, g) €
Z, such that the polytopes {R(G,d,s,9)}s>smax(G,d,g) have the same number of extreme
points and facets. This led to the question whether all the polytopes { R(G, d, s, g)}SZSmax(G,d,g)
are combinatorially equivalent. In this section we give an affirmative answer by proving
a more general result: the polytopes R(G,d,s,g) and R(G,d,s + 1,g) resp. P(G,d,s,g)
and P(G,d,s + 1,g) are affinely isomorphic (and therefore combinatorially equivalent) for
s > w(G,d). Moreover, we give an upper bound on $max(G,d,g), and this bound can be
shown to be sharp when G is the disjoint union of cliques.

Section 3.4 closes the chapter establishing some relations between chromatic schedul-
ing polytopes and the linear ordering polytope P7,. It is not surprising that chromatic
scheduling polytopes posess much of the structure of the linear ordering polytope, since the
ordering variables have the same meaning in both settings. We prove that P(K,,d,s,0) and
R(Kp,d,s,0) are affinely isomorphic to P’y when s = 1 | d;, and we show that R(K,,d, s,0)
is affinely isomorphic to P/'} ! when s > 3>, d;. These results imply that even simple chro-
matic scheduling polytopes are hard to characterize, since a complete linear description of
P(K,,d,s,0) includes all the linear ordering facets. We also study relations between the valid
inequalities of these polytopes over arbitrary interference graphs, and the main result in this
direction asserts that every facet-inducing inequality for the linear ordering polytope is also
facet-inducing for P(G,d,s,g) and R(G,d,s,g) provided that s > w(G,d) and the set of
edges with nonzero coefficients is contained in F.

Chapter 4, Chapter 5, and Chapter 6 concentrate on the search for facet-inducing inequal-
ities for chromatic scheduling polytopes. This issue has practical implications, since strong
valid inequalities are the cornerstone of successful implementations of cutting plane methods.
In order to apply such methods to a certain problem, a deep polyhedral study must be carried
out, so that families of strong inequalities are found. The associated separation problems are
also of interest, since good separation routines are required to efficiently detect violated in-

viii



equalities in order to contribute to the process. It is worth noting that the AN/P-completeness
of the bandwidth allocation problem implies that finding a complete linear description of
these polytopes is virtually a hopeless task, unless NP = co-N'P [42].

Chapter 4 starts the search of facets of chromatic scheduling polytopes by exploring valid
inequalities defining facets in all nonempty instances. To this end, Section 4.1 discusses the
special symmetry of chromatic scheduling polytopes, which is a particular property of these
polyhedra. Recall that we do not have precedence constraints given in advance, but only
antiparallelity constraints. Hence, for every feasible solution, there is a symmetric feasible
solution obtained by swapping all the intervals. The polytopes P(G,d, s,g) and R(G,d,s,g)
clearly reflect this symmetry. The fixed-length polytope R(G,d, s,g) is even symmetric with
respect to a certain point, and due to this symmetry there exists, for every face, a parallel
face of the same dimension. There is a simple formula to compute this parallel face, using the
knowledge of the symmetry point. A similar construction can be even given for P(G,d, s, g),
although there is no symmetry point in this case.

This special symmetry also provides a theoretical tool for identifying facet-inducing in-
equalities. Consider a face F' of R(G,d, s, g) such that any integer solution lies in F' if and
only if its symmetrical solution does not belong to F'. The main result of Section 4.1.3 shows
that such a face is a facet of R(G,d, s, g) as long as this polytope is nonempty -regardless of
its dimension and particular structure. This is a powerful tool for identifying facet-defining
inequalities, since no knowledge on the dimension is needed. We point out that this theorem
only relies on symmetry considerations. A similar result holds for P(G,d, s, g) under some
further technical assumptions.

Based on these results, Section 4.2 explores facets coming from the integer programming
constraints. We show that the binary bounds on the ordering variables are facet-inducing for
every nonempty instance, and we present a further class of valid inequalities —the triangle
inequalities— that possess the same property. This section also characterizes the polytopes
which admit facets coming from the demand constraints. The remaining integer program-
ming constraints, i.e., the bounds on the interval variables and the antiparallelity constraints,
do not define facets in general and the purpose of Chapter 5 is to explore facet-inducing
strenghtenings of these constraints.

If s is close to the weighted clique number w(G,d) of the interference graph (G,d), it
is usually difficult to place all the intervals interference-free within the available frequency
spectrum; thus such settings are the hardest ones in practice. Section 4.3 presents three classes
of valid inequalities for instances with small frequency spans, and we prove by symmetry
arguments that they are facet-inducing regardless of the dimension of the polytope.

Chapter 5 presents a number of classes of facets arising from strenghtenings of the interval
bound and the antiparallelity constraints. A natural way to generalize the interval bounds
is to consider a clique in the neighborhood of the corresponding node of the interference
graph, but we show that the resulting valid inequalities, called the clique inequalities, only
are facet-inducing for particular cases. In order to devise stronger inequalities, a so-called
covering clique must be considered instead of an arbitrary clique. Section 5.1 presents this
construction and some algorithmic results concerning the identification of covering cliques.
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Afterwards we prove that the so-called covering-clique inequalities are facet inducing for both
polytopes if s > snin(G,d, g) + 3(9 + dmax). Interestingly, these inequalities are not facet-
inducing for every instance, and we present a (rather involved) example. Finally, we also
discuss the associated separation problem, showing N P-completeness.

Based on similar ideas, Section 5.2 explores a strenghtening of antiparallelity constraints
that gives rise to a class of facet-inducing inequalities, the double covering-clique inequalities.
It is interesting that the same construction of covering cliques used for strenghtening the
interval bounds can successfully be applied to the antiparallelity constraints. We prove that
the resulting inequalities are valid for every instance and induce facets if ¢ = 0 and s >
Smin (G, d,0) +4dmax. However, many examples can be found where these inequalities are not
facet-defining for both polytopes. We also explore the complexity of the associated separation
problem, showing NP-completeness. Finally, Section 5.2.3 presents the construction of double
covering-clique inequalities for the case g > 0, that establishes that the resulting inequalities
define facets of both polytopes.

Section 5.3 presents a number of further classes of facets arising as variations and gener-
alizations of covering-clique inequalities and double covering-clique inequalities. Section 5.3.1
and Section 5.3.2 provide two generalizations of these families, originating two broader classes
of facets. Section 5.3.3 presents three further classes of facet-inducing inequalities reinforcing
the double covering-clique inequalities. These new families show an interesting balance in the
coefficients of double covering-clique inequalities: when we try to strengthen the left-hand
side, we have to adjust the right-hand side in order to maintain both validity and facetness.
This interplay is well exemplified by the reinforced inequalities introduced in this section.

Chapter 6 presents further families of facet-inducing inequalities based on other structures
of the interference graph. Section 6.1 presents the so-called 4-cycle inequalities, arising from a
combination of a 4-cycle and a clique, and constraining the relation between the left interval
bounds of two nonadjacent nodes and the left border of the frequency spectrum [0,s]. A
constructive proof of facetness is given for the uniform case d =1 and g = 0.

Section 6.2 considers the cycle-order inequalities, defined over the ordering variables cor-
responding to cycles on the interference graph. The main result of this section asserts that,
in the case s > smin(G,d, g) + O(1)dmax, a cycle-order inequality is facet-inducing if and only
if the associated cycle does not contain a chord. We prove that the cycle-order inequalities
can be separated in polynomial time.

Cycles in the interference graph also originate valid inequalities over the interval bounds,
and Section 6.3 presents a construction over odd holes (i.e., odd cycles with no chords). The
odd hole inequalities are valid for arbitrary instances, and we prove that they define facets of
P(Cyk41,1,s,0). We also provide conditions guaranteeing facetness for P(G,1,s,0), and we
prove that a superclass of the odd hole inequalities can be separated in polynomial time.

The analysis of the polytope P(K,,d, s, g), defined over a complete graph, is of theoretical
interest and can also lead to facets for the general case. Sections 6.4 and 6.5 close the chapter
with two classes of facets for this polytope, along with the corresponding generalizations for
arbitrary interference graphs. We also prove that the associated separation problems are
NP-complete.
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Chapter 1

Frequency assignment

The structural problems involving combinatorial consid-
erations have only recently been studied in an intensive
manner. They involve mathematical difficulties of the
highest order even in what seem to be the simplest cases.

— Richard Bellman (1956)

Wireless communication via radio waves dates back to the pioneering work of the french
physicist Edouard Branly and the italian physicist Guglielmo Marconi. As early as 1889,
Branly was able to transmit signals over small distances, reaching on open air receivers located
100 meters away from the transmitter. Based on this and his own experience, Marconi
successfully transmitted in 1897 a Morse-coded message to a ship at sea over a distance of
29 kilometers. A couple of years later a regular communication was established across the
English Channel, and already in 1902 it was possible to transmit signals across the Atlantic
Ocean. The continuous development led to the first installations of telegraphic equipment
on ships crossing the Atlantic Ocean, and a few years later every ship was using wireless
telegraphy to communicate with other ships and shore stations. The following comment from
the 1921 addendum to the W. M. Jackson Encyclopaedia [29] remarkably records the extent
of the new invention:

Whatever the future of this kind of long-distance direct communication between the two
Continents is, it is by now well-known that passengers on board can establish communi-
cation with New York and London, and all the ships that make the aforementioned route
are equipped with wireless telegraph machines (...). This way it is possible to daily print
on board a newspaper with the Stock Exchange records and the most important news
from all over the world. [ Even more, | the captains of different ships have fun by playing
chess over the telegraph.

In the 1920s the first experimental transmissions of television signals were made, resulting
in the first official television broadcast in 1927. Radio broadcast became popular after World
War I, and television was successfully introduced to the mass since the end of the 1940s. To-
day, the radio spectrum is not only used for cellular telephony and mass broadcasting, but also
for navigational systems, space communication, radio astronomy and military applications.



Wireless communication between two points is established with the use of a transmitter
and a receiver. The transmitter generates electrical oscillations at a certain radio frequency,
which can be modulated either via the amplitude or the frequency itself. The receiver detects
these oscillations and decodes them back to recover the original signal. Every application
uses a certain part of the frequency spectrum, and the availability of frequencies is regulated
worldwide by the International Telecommunication Union (ITU) and locally by the national
governments.

A crucial problem in wireless communication is the interference between transmitters.
If two nearby transmitters use the same frequency, then the signals may interfere. The
level of interference depends on the distance between them, the geographical position of the
transmitters, the power and direction of the signal, and even weather conditions. When the
level of interference is high, the received signal may have an unacceptable poor quality. Hence
there is a need for avoiding interference.

Operators of wireless services are licensed to use one or more frequency bands in specific
parts of a country. The development of new wireless services and the addition of more and
more customers led to scarcity of usable frequencies in the radio spectrum. This introduced
the need for operators to develop frequency plans that not only avoided high interference levels
but also minimized the licensing costs. As a consequence, an operator should carefully choose
the frequencies on which each station transmits. This selection of frequencies is called the
frequency assignment problem or bandwidth allocation problem. The conditions that should
be satisfied by the frequency plan may vary depending on the application. Therefore, many
different approaches have been suggested in the literature to solve this problem. Section 1.1
briefly surveys the most recent models, and in Section 1.2 we introduce Point-To-Multipoint
radio access systems and the associated bandwidth allocation problem that motivated the
work of this thesis.

1.1 Frequency assignment models

This section briefly surveys alternative models for frequency assignment. For a more thorough
treatment, we refer to [2, 17, 34, 35]. In a typical frequency assignment problem, a set of
wireless links is given and frequencies must be assigned such that the data transmission
between the two endpoints of each link is possible. Such frequencies must lie within a certain
frequency spectrum [ fmin, fmax] available to the provider. This spectrum is usually partitioned
into a set of intervals, all with the same bandwidth, determining an integer number of so-
called channels that each link can use. A transmission may be subject to interference if a
geographically nearby link uses frequencies close on the electromagnetic spectrum, and the
proposed models handle this situation in different ways.

1.1.1 Feasibility and maximum service FAP

In the feasibility frequency assignment problem, or shortly F-FAP, we are given a set of cus-
tomers along with an interference relationship, and the objective is to assign a number of single



frequencies to each customer while satisfying certain interference and availability constraints.

Problem input. Let F' denote the (discrete) set of available channels from the frequency
spectrum, and consider a set V' of customers (equivalently, a set of antennae). Each customer
i € V can only be assigned a channel from a subset F'(i) of F' due to geographical reasons.
Moreover, each customer i € V must receive m(i) different channels from F(¢). Interference
is modeled by an interference graph G = (V, E) representing the pairs of customers that may
interfere each other. Each pair of potentially interfering customers is joined by an edge in
G. Finally, with each edge ij € E we associate a set T;; of forbidden distances between the
channels assigned to customers ¢ and j.

Problem output. The desired output of F-FAP is an assignment ¢ : V' — 2" such that
(i) |t(2)| = m(3) for every i € V,
(ii) t(¢) C F (i) for every i € V, and

(iii) if f € t(i) and g € t(j) then |f — g| & T;; for every ij € E.

For each pair of interfering customers 75 € FE, this model specifies a set of forbidden
distances between the channels assigned to each one. A common setting is to take Tj; =
{0,..., D} for every ij € E, thus specifying a minimum distance that must be obeyed between
channels used by interfering antennae. Note that F-FAP reduces to the standard graph
coloring problem by setting F'(i) = F and m(i) = 1 for every ¢ € V, and Tj; = {0} for every
ij € E. Therefore, F-FAP is N"P-complete.

Alternative formulations consider different interference measures. One possibility is to
define p;;(f, g) as the interference level between the customers ¢ and j if they use the frequen-
cies f and g, respectively. The interference condition |f — g| & Tj; is then replaced by the
condition p;;(f,9) > Pmin, Wwhere ppin is a threshold for the acceptable level of interference.

In practice, it might happen that feasible solutions to this problem are difficult to find.
In this case, we can decide to look for a partial solution assigning as many frequencies to
the nodes as possible. Under the same problem input as before, the desired output is now
an assignment ¢ : V — 2% satisfying |t(i)] < m(i) for every i € V along with conditions
(ii) and (iii), and such that the total number of assigned channels }_; - |¢(i)| is maximized.
This problem is known as the mazimum service frequency assignment problem or, shortly,

Max-FAP.

1.1.2 Minimum order FAP

The objective of F-FAP is to find a feasible frequency assignment. However, when many
feasible solutions exist, we could try to find the best one regarding the usage of frequencies.
This model is called the minimum order frequency assignment problem, or MO-FAP, and asks
for minimizing the total number of assigned channels. The problem input is the same as for
F-FAP.



Problem output. The desired output of MO-FAP is an assignment ¢ : V — 2 such that
(i) |t(i)| = m(i) for every i € V,

(i

i) t(i) C F(i) for every i € V,
(iii) if f € t(¢) and g € t(j) then |f — g| & T;; for every ij € E, and
)

(iv) the assignment minimizes | Ujey (7).

The MO-FAP is the first frequency assignment problem that was discussed in the literature
[41]. Again, this problem is a direct generalization of the standard graph coloring problem
and is, therefore, N"P-complete. The well-known T-coloring and list coloring problems [17]
are also restricted versions of MO-FAP. It is worth noting that the latter is N"P-complete
even for interval graphs [5], a class that can be colored in polynomial time.

1.1.3 Minimum span FAP

In the minimum span frequency assignment problem (MS-FAP) the objective is to minimize
the length of the frequency band needed to accomodate all the channels. The difference
between the highest and the lowest used frequencies is called the solution’s span; the objective
is to minimize the span in order to keep the licensing costs for the used frequency span low.
The problem output is, therefore, the following.

Problem output. The desired output of MS-FAP is an assignment ¢ : V — 2% such that
(i) |t(2)| = m(q) for every i € V,

(i

i) t(7) C F(i) for every i € V,
(iii) if f € t(¢) and g € t(j) then |f — g| € T;; for every ij € E, and
)

(iv) the assignment minimizes max U;cy£(:) — minU;eyt(7).

Note that MO-FAP asks for minimizing the number of used frequencies (which are not
necessarily consecutive), whereas the objective of MS-FAP is to minimize the span of the
assignment. It is worth noting that there exist general instances such that an optimal assign-
ment for MO-FAP does not have minimum span and, in turn, an optimal solution to MS-FAP
does not use the minimum possible number of channels.

1.1.4 Minimum interference FAP

All the previous models ask for an assignment with no interference at all. However, this may
be impossible in some situation for which, moreover, the approach proposed by Max-FAP
may be infeasible as well. In this setting a more realistic model —the minimum interference
frequency assignment problem, or MI-FAP— can be stated, looking for an assignment with the
minimum possible interference.



Problem input. As in the F-FAP, we are given a set F' of available channels and a set V'
of customers. Each customer ¢ € V' can only be assigned a channel from a subset F(i) of
F and must receive m(i) channels. Finally, for every pair of interfering customers ij € E
and for each f € F(i) and g € F(j) we have a penalty value p;;(f,g) that is incurred when
the customers ¢ and j receive the interfering channels f and g, respectively. These penalties
model the interference caused by the assignment.

Problem output. The desired output of MI-FAP is an assignment ¢ : V — 2 such that
(i) |t(i)| = m(i) for every i € V,
(ii) t(7) C F(i) for every i € V, and

(iii) the assignment minimizes 3 ;:cp > rei(s) 2oger(s) Pii (f5 9)-

As for all penalties p;;(f, g) > 0 holds if and only if | f — g| € Tj;, the optimum assignment
has objective value equal to 0 if and only if F-FAP is feasible. Hence this model generalizes
F-FAP and is, therefore, an AN/P-hard optimization problem as well. A usual extension of this
model arising from some instances from the CALMA benchmark [4] adds penalties for the
choices of certain frequencies for each customer. This leads to an extra term in the objective
function. It is worth noting that MI-FAP has been widely used in recent years to model
real-world applications such as GSM Frequency Planning [18].

1.2 Bandwidth allocation in Point-to-Multipoint systems

We now turn our attention to Point-to-Multipoint radio access systems and the associated
bandwidth allocation problem. This section describes in detail the assignment model that
must be solved when operating such a system, also addressing complexity issues concerning
this problem.

The purpose of a Point-to-Multipoint radio access system (PMP-System) is to supply
wireless access to voice/data communication networks [7]. Base stations form the access
points to the network. Each base station is located on a fixed position and serves a certain
geographical area. This area served by the base station is divided into sectors. Figure
1.1 shows an example with three base stations, each serving two, three and two sectors,
respectively.

Customer terminals are linked to base stations by means of radio signals, where some
specific part of the radio frequency spectrum has to be used to maintain the links. In con-
trast to the usual setting for the previously mentioned FAPs, each customer is provided a
fixed antenna and is therefore assigned to a certain sector of a base station (for example, in
Figure 1.1 the customers t; and ¢y are assigned to sector A within the first base station). A
characteristic feature of PMP-Systems is that each customer has an individual communica-
tion demand, implying that each customer needs a particular bandwidth within the available
frequency spectrum. Hence the task is to assign frequency intervals instead of single channels.
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Figure 1.1: Sectorization by base stations in PMP-Systems.

A central problem is that a link connecting a customer terminal and a base station may
be subject to interference from another link, provided that the same frequencies are used.
We consider two sources of interference in this model. Firstly, links to customers in the same
sector must not use the same frequency. Secondly, some of the links to customers in different
sectors may also cause interferences. This second source of interference identifies certain pairs
of customers that even being in different sectors might interfere each other due to the power of
the transmitted signals and geographical reasons (for example, in Figure 1.1 the customers t3
and ¢4 are served by different antennae but still may interfere each other due to the alignment
with the base station).

Moreover, in base stations oscillators provide the different frequencies with a possible
difference A to the required frequency. Hence, between the frequency intervals of possibly
interfering links in different sectors, a guard distance of length ¢ = 2A has to be obeyed.
This makes it necessary to distinguish between “in-sector” and “inter-sector” interference.
To guarantee an interference-free communication, a particular bandwidth allocation problem
has to be solved when operating a PMP-System.

Problem input. The input of this problem is given as follows. Let T = {t1,...,t,} be the
set of all customer terminals, and § = {S1, ..., Sk} be a partition of 7 into sectors, providing
the information to which sector S the terminal ¢; € 7 belongs. Let d = (di,...,d,) be the
vector of communication demands associated with the customer terminals, indicating that
customer t; € T has demand d; € Z,. Additionaly, we have a set £x of unordered pairs
(ti,t;) of terminals in different sectors that must not use the same frequency due to possible
interference.



This setting can be viewed as a weighted graph (G,d) = (V, E, d), where

e V={i:t; €T} is the node set,
e /= Ex U Ey is the edge set with

E; = {ij:t,t; in the same sector S; € S},
Ex = {Z] : (ti,tj) S 5)(},

e d=(dy,...,dy,) is the node weighting.

Thus, the node set represents customer terminals, the node weights reflect the communication
demands, and the edge set indicates potential interference between the customer terminals.
The edge set is given by the set of external interferers £x and the partition of the node set V'
corresponding to the sectorization of 7. In graph theoretical terms, the partition of 7 into
sectors & = {S1,..., Sk} corresponds to a clique covering of G, i.e., to a partition of V into
k subsets Viq,...,V, such that the nodes in every V; are pairwise adjacent. We define this
weighted graph (G, d) to be the interference graph associated with the particular instance of
the bandwidth allocation problem.

Notation. Throughout this work we shall always denote by (G, d) = (V, E, d) the interference
graph. We also denote by n = |V/| resp. m = |E| the number of nodes resp. edges of G.

Moreover, a guard distance g € Z, is given that must be kept between intervals of
terminals (¢;,¢;) € £x. Finally, we have the available radio frequency spectrum [0, s}, with
s € Zy, where all the frequency intervals have to be placed in. Thus, every instance of the
bandwidth allocation problem is given by a quadruple (G,d, s, g).

Problem output. The task is to provide, for each customer t; € T, a certain part' of the
available frequency spectrum meeting the following two conditions. Firstly, the individual
communication demand d; is satisfied. Secondly, the assignment does not cause interference,
i.e., no terminal within the same sector uses the same frequencies, and the guard distance
is obeyed for each external interferer ¢;, (¢;,t;) € Ex. The desired output is, therefore, an
assignment of an interval I(i) = [l;,r;] with [;,7; € Z to each customer t; € T such that:

(i) r; —l; > d; for every i € V,
(ii) [l3,m] € [0, s] for every i € V,

(i) max{l;,};} — min{ri,r;} > { 0 if #; and t; belong to the same sector

g if (ti,tj) € &x.

Figure 1.2 shows a fragment of a feasible assignment. Note that customers ¢; and to
are assigned intervals of different lengths (the demand of customer #; being larger than the

!The frequency interval assigned to a customer is typically composed by several consecutive channels. The
length of an interval corresponds to the number of those channels; the demand of a customer as well as the
bounds of the assigned intervals are, therefore, represented as integers.
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Figure 1.2: Fragment of a feasible assignment.

demand of customer t2). These intervals do not overlap since both belong to the same sector of
the same base station. On the other hand, customers ¢3 and ¢4 are located in different sectors
but are identified in £x as interfering customers; the corresponding intervals are, therefore,
separated by a distance of at least g.

Remark. This setting may be interpreted as a k-machine scheduling problem, where the k
sectors correspond to the £ machines, and the customer terminals to the jobs. In our case, the
assignment of jobs to machines is fixed in advance. The processing time of a job corresponds
to the communication demand of the customer terminal. That no machine can process two
jobs at the same time is given by E (recall that S corresponds to a clique covering of G by
k cliques), where Ex gives antiparallelity requirements between jobs processed on different
machines. Moreover, g can be interpreted as changeover time, and s as upper bound on the
allowed makespan span(y) = max{r; : 4 € V} — min{l; : j € V} with respect to a feasible
schedule y (for more information on general scheduling problems see, e.g., [10]).

This particular kind of a scheduling problem does not contain the usual precedence con-
straints, but antiparallelity constraints are present instead. These constraints prevent certain
pairs of tasks from overlapping, with a changeover time between them. The actual order
among the tasks is not important, as long as the antiparallelity constraints are satisfied. This
model can be applied as well to the construction of integrated circuits, the assembling of
handcrafts and certain timetabling problems. <

Since every graph is an interference graph, this model is a generalization of the chromatic
scheduling problem [15] and, if g = 0, of the consecutive coloring problem [16] and the interval
coloring problem [22, 36]. All of these models, in turn, generalize the standard graph coloring
problem, defined as follows:

GRAPH COLORING

Instance: A graph G = (V, E) and an integer k € Z .

Question: Does there exist a k-coloring of G, i.e., a function f : V — {1,...,k}
such that f(i) # f(j) for every ij € E?



Theorem 1.1 Let ¢ = 0 and d; = 1 for every i € V. The bandwith allocation problem
i PMP-Systems is feasible if and only if the associated interference graph G admits an s-
coloring.

Proof. Let f:V — {1,...,s — 1} be a coloring of G, and construct a feasible schedule by
assigning the interval I(i) = [f(¢) — 1, f(7)] to the customer ¢; € T. Since f is a coloring, then
no interfering intervals overlap (and the guard distance g = 0 is trivially satisfied), hence this
construction is feasible. Conversely, any feasible schedule assigns an interval (i) = [l;, ;] to
the customer ¢; € T, such that all pairs of interfering customers receive disjoint intervals.
This induces an s-coloring f(i) = r; for every ¢ € V. O

Corollary 1.2 The bandwidth allocation problem in PMP-Systems is N'P-complete.

This equivalence between GRAPH COLORING and the bandwidth allocation problem in
PMP-Systems for the case ¢ = 0 and d = 1 also shows that the latter problem cannot be
approximated by a polynomial-time algorithm with a fixed approximation ratio [20]. Fur-
thermore, consider the OPEN SHOP problem, defined as follows.

OPEN SHOP
Instance: A number p € Z of processors, a set J of jobs, each job j € J consisting
of p tasks t1,...,t,; (with t;; to be executed by processor ), a length
l(tij) € Z4 for each such task, and an overall deadline k € Z ..
Question: Is there a schedule for J that meets the deadline k7

OPEN SHOP is N'P-complete even for p = 3 [20]. A straightforward reduction from OPEN
SHOP to the bandwidth allocation problem in PMP-Systems can be given, and this reduction
provides a second proof of Corollary 1.2. Given an instance of OPEN SHOP, defined as above,
construct an interference graph (G,d) = (V, E,d) with one node for each task and such that
two nodes are joined by an edge in £ if and only if the corresponding tasks either belong to
the same job or must be executed by the same processor. The demand of each node is defined
to be the length of the corresponding task. Further, set ¢ = 0 and s = k. There is a schedule
meeting the deadline k if and only if this instance of the bandwidth allocation problem is
feasible.

Solving the bandwidth allocation problem is a crucial task when operating a PMP-System,
but we have seen that this is a demanding computational issue, since this problem generalizes
difficult coloring resp. scheduling problems. Suitable heuristics based on greedy arguments
have been developed, and these heuristics were able to produce span-minimal resp. feasible
solutions for small resp. medium-sized problems [7]. In order to tackle problem sizes of real-
world instances, algorithms have to be designed that rely on a deeper insight of the problem
structure.

Cutting plane methods have turned out to be successful for many other applications
[6, 30, 42, 45]. In this framework, the convex hull of the incidence vectors of all feasible
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solutions is studied in order to derive facets or, more modestly, valid inequalities for this
polyhedron representing the solution space of the problem. A strong knowledge of these
polyhedra provides the cornerstone of successful implementations of this approach. Therefore,
we propose to investigate the polytopes arising from this bandwidth allocation problem, as
a starting point for the practical solution to optimality of real-world instances. This thesis
contributes to this polyhedral issue.
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Chapter 2

Chromatic scheduling polytopes

We hope that the feasibility of attacking problems involv-
ing a moderate number of points has been successfully
demonstrated, and that perhaps some of the ideas can
be used in problems of similar nature.

— G. Dantzig, R. Fulkerson and S. Johnson (1954)

The study of chromatic scheduling polytopes is the topic of this thesis; the main purpose
of this chapter is to introduce these polytopes and to discuss some basic properties. Section
2.1 gives an integer programming formulation for the bandwidth allocation problem in PMP-
systems (BAP). We define the chromatic scheduling polytope P(G,d, s, g) to be the convex
hull of all feasible solutions of this integer program and the fixed-length chromatic scheduling
polytope R(G,d, s, g) as the special case where no demand is oversatisfied.

Section 2.2 reports some experiments regarding the complete linear description of the
easier case R(G,1,s,g) for several small graphs G and increasing values of the frequency
span s. These experiments show that, on the one hand, the polytopes pass through several
stages as s increases and, on the other hand, that even simple instances of the problem give
rise to polytopes with a complex structure, as the number of facets and extreme points is
already huge for small graphs. This adds support to the belief that chromatic scheduling
polytopes are hard to characterize by means of facet-defining inequalities.

2.1 Integer programming formulation for BAP

We now present an integer programming formulation for the bandwidth allocation problem
in PMP-Systems. To represent a solution, we use two groups of variables. Firstly, for each
node ¢ € V' we introduce the interval bounds l; and r;, such that I(7) = [l;, ;] represents the
frequency interval assigned to the corresponding customer. Both variables are constrained to
be integer and nonnegative. In addition, for each edge ¢j € F with ¢ < j we define the binary
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ordering variable

i — 1 if T < lj
Y71 0 otherwise,

asserting whether the interval (i) is located before the interval I(j) or not. In every feasible
solution, the antiparallelity requirements for intervals corresponding to potential interferers
are realized by a precedence relation (i.e., a partial order) on the set of intervals. This
precedence relation is represented by the ordering variables. Note that we need one ordering
variable for every ij € E, namely z;; if ¢ < j. For notational convenience, we shall use zj;

as a shorthand for 1 — z;;. According to the variable definitions, the incidence vector of a
solution S is given by:

S
X7 =, b,y e, Ty -, T
—_——— —— N _

~~
n n m

A feasible solution is, therefore, an assignment of values to l;,r; Vi € V and z;; Vij € E such
that the following constraints are satisfied:

d < r—1 VieV (2.1)

0 < [ <r < s VieV (2.2)

ri <L+ s(1 =) Vij e Er, 1 <j (2.3)
ri+g < lj+s(l—x) Vij e Ex, i <j (2.4)
ri <L+ sy Vije Er, i <j (2.5)
rit+g <L+ sz Vije Ex, 1 <j (2.6)
zi; € {0,1} VijeE, i<]j (2.7)
liyry € 74 VieV (2.8)

The demand constraints (2.1) and the bound constraints (2.2) assert that the interval I(i) =
[l;,7;] must satisfy the demand d; and fit within the available frequency spectrum [0, s].
Inequalities (2.3) to (2.6) realize the antiparallelity constraints, which prevent interfering
pairs of intervals from overlapping. Note that the intervals corresponding to the pairs of
customers in E; (located in the same sector) must not overlap, and there must be a distance
of at least g between the intervals corresponding to pairs of interfering customers in different
sectors (i.e., pairs of customers from Ex). Finally, the integrality constraints (2.7) resp. (2.8)
force the z-variables to be binary resp. the interval bounds to be integral.

Remark. It is necessary to include the ordering variables z;;, for ij € E, ¢ < j in order
to encode a solution. A feasible schedule can certainly be described by the interval bounds
only, but then the convex hull of the incidence vectors of all feasible schedules may contain
infeasible integral points. Consider, e.g., the problem given by the graph (G,d) = (V, E,d)
with V' ={1,2}, £ = {12}, and d = (1, 2) and the frequency spectrum [0,4]. Then the set of
all feasible solutions consists of the following ten points.
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Dropping the information given by z19, the convex hull of even the two points pj =
(0,1,1,3) and py = (3,1,4,3) would contain two infeasible but integral points, namely = =
(1,1,2,3) and y = (2,1, 3,3), as Figure 2.1 shows. The ordering variables guarantee that the
convex hull of the incidence vectors of all feasible schedules does not contain any such point.
Hence these binary variables are essential to describe the solution space of the problem. <
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Figure 2.1: Convex hull of two feasible solutions

In order to run a Point-to-Multipoint system, one is mainly interested in finding feasible
solutions satisfying all the constraints above. It is not difficult to verify that the weighted
clique number w(G,d) is a canonical lower bound for the makespan span(y) of any feasible
solution y. An instance of the bandwidth allocation problem is, therefore, hard to solve if the
gap between w(G,d) and the available frequency span s is small. This causes the interest in
finding span-minimal solutions, i.e., we have to solve the combinatorial optimization problem
minspan(y), where y = (I,r,z) is taken over all feasible solutions satisfying the constraints
(2.1)-(2.8).

Small and mid-size instances of the bandwidth allocation problem can be solved by greedy-
like heuristics as in [7]; large real-world instances require algorithms using deeper methods.
Algorithms based on cutting planes have shown to be successful for many other combinatorial
optimization problems [6, 30, 42, 45]. In order to apply such methods to the bandwidth
allocation problem, we are interested in investigating the convex hull of all feasible solutions
satisfying these constraints. Recall that n = |V| resp. m = |E| denotes the number of nodes
resp. edges of the interference graph G.
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Definition 2.1 (chromatic scheduling polytope) Let (G,d) = (V,E,d) be a graph with
node weights d, let [0,s] be the available frequency spectrum, and let g € Zy be the guard
distance. The chromatic scheduling polytope P(G,d,s,g) C R2"™ is defined as the conve
hull of all integer solutions (I,r,z) € R* ™ satisfying constraints (2.1)-(2.8).

A special case of the bandwidth allocation problem is of particular interest, namely the
case where each customer receives an interval I(i) = [l;,r;] which has precisely the length of
its demand, i.e., r; — [; = d; for every ¢ € V. This case is in practice easier to solve and the
solution space has lower dimension since the right interval bounds are no longer necessary.
Hence only the [- and z-variables are required, and every solution vector has only n + m
entries instead of the 2n + m entries in the general case. Therefore, the incidence vector of a
feasible schedule S is, in this case:

S
X R= (llu"'ulnuxlia-"axjn)-
N——— ———

n m

Definition 2.2 (fixed-length chromatic scheduling polytope) Let (G,d) = (V, E,d) be
a graph with node weights d, let [0,s] be the available frequency spectrum, and let g € Zy be
the guard distance. The fixed-length chromatic scheduling polytope R(G,d,s,g) C R"™™ is
defined as the convex hull of all integer solutions (I,z) € R"™ such that there ewists some
r € R" satisfying r; = l; + d; and constraints (2.2)-(2.8).

The bandwidth allocation problem in PMP-Systems was first introduced in [7], where
greedy-like heuristics were developed for solving small and mid-sized instances. A first study
of the fixed-length polytope R(G,d, s, g) for the special case with two sectors was carried out
in [21]. Moreover, [26] presents initial results for the general polytope P(G,d, s, g).

Notation. If z = (I1,...,ln,71,. .., T, T14y - -, Tjn) € R2"H™ ig a feasible solution, we denote
by zj, resp. zy; its i-th resp. (n + i)-th coordinate. For ij € E, i < j, we denote by Zg,; the
entry of z corresponding to the ordering variable associated to the edge 77 and, as noted
previously, we define z,;;, = 1 —z,,; as a notational shorthand. We also define the projections
of z onto the spaces of each group of variables as

z] = (ll,...,ln) eR"
zr = (ri,...,m) €R"
2y = (Q}li,...,ﬂijn) eR™

Note that z = (z;, 27, 2,) € R2"*t™_ The same definitions apply to the fixed-length case.
Here, if y € R""™ is a feasible solution, then y;, resp. Yz;; denotes the left interval bound
of the interval I(7) resp. the ordering variable associated with the edge ij € E, i < j. The
projections y; and y, are defined accordingly.

2.2 Computational experiments

This section presents some preliminary computational experiments generating the complete
linear description of the polytopes R(G, 1, s,0) associated with small graphs G and increasing
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frequency spans s in order to have an idea of the number of extreme points and facets involved.
These experiments were carried out with PORTA [11, 12] in combination with an ad hoc
program for efficiently generating the feasible solutions. All the experiments were performed
on a Silicon Graphics Origin 200 machine, with a 1024 MB RAM and four R12000 processors
running at 400 MHz. The experiments were run with a CPU time limit of 5 days.

Tables 2.1 and 2.2 show the number of facets and extreme points of the fixed-length
chromatic scheduling polytope R(K,,1,s,0) defined over complete interference graphs, for
different values of the number n of nodes and the frequency spectrum length s (the empty
spaces show the infeasible cases). The number of facets is remarkably huge even for small
instances, although the number of extreme points seems to grow more modestly. Moreover,
the total number of feasible solutions is huge already for the smallest instances, e.g., there
exist 4410 solutions for n = 3 and s = 6, and 38976 solutions for n = 4 and s = 6.

n=2|n=3|n=4|n=5|n==6 n==7 n=2~y
s =
§ = 2 -
5§ = 8 8 -
s = 8 20 20 -
5= 8 20 40 40 -
s = 8 20 40 910 910 -
5= 8 20 40 910 | 87472 87472 -
s = 8 20 40 910 | 87472 | > 480 x 10% | > 480 x 10°
s = 8 20 40 910 | 87472 | > 480 x 10° ?

Table 2.1: Number of facets of R(K,,1,s,0).

n=2|n=3|n=4|n=5|n==6 n=71 n=2~8
s =
s = 2 - -
5§ = 6 6 -
s = 6 24 24 -
5= 6 24 120 120 -
s = 6 24 120 720 720 -
s = 6 24 120 720 5040 5040 -
5= 6 24 120 720 5040 40320 40320
s=9 6 24 120 720 5040 40320 362880

Table 2.2: Number of extreme points of R(K,,1,s,0).
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n=2|n=3|n=4|n=5|n=6|n=7|n=2_8
s=1 - - - - - - -
§= 2 2 2 2 2 2 2
§= 8 24 48 72 96 120 144
§ = 8 24 o4 110 222 454 ?
§=29 8 24 04 116 ? ? ?
5s=06 8 24 o4 ? ? ? ?

Table 2.3: Number of facets of R(P,,1,s,0).

n=2|n=3|n=4|n=5|n=6|n=7|n=2_8
s=1
§= 2 2 2 2 2 2 2
s= 6 12 24 48 96 192 384
s = 6 18 50 138 378 1034 | 2826
s = 6 18 58 172 528 1586 | 4802
s=6 6 18 58 182 570 1782 | 5566

Table 2.4: Number of extreme points of R(P,,1,s,0).

These tables also suggest that the polytopes from the family { R(Kp, 1, s, g)}s>n41 have the
same number of extreme points and facets. The same holds for the polytopes R(K,,,1,n+1,0)
and R(K,4+1,1,n + 1,0), for n > 2. These computational results in fact reflect a deep
relationship between chromatic scheduling polytopes and the linear ordering polytope, and
will be explained by the results of Section 3.4. It must be noted that the results for n > 6
and s > 7 were not generated in the computational environment described previously, but
were derived from the results in Section 3.4 and the computational experiments reported in
[13] for the linear ordering polytope.

Tables 2.3 and 2.4 show the number of facets and extreme points for chromatic scheduling
polytopes defined over paths. Again, the number of feasible solutions is huge even for small
instances (98620 feasible solutions for n = 4 and s = 6, and 179150 solutions for n = 6 and
s = 4). Finally, we present in Tables 2.5 and 2.6 the experiments on chromatic scheduling
polytopes defined over cycles, showing a similar behavior. The number of facets is more
modest in these cases, although it is worth to mention that the computation time exceeded
the time limit of 5 days even for n = 7 and s = 4. All cases which could not be computed
within this time limit are indicated by a question tag within the tables.

The latter experiments imply again that the polytopes defined over the same interference
graph admit the same number of facets and extreme points for s > n (but clearly different
numbers of feasible solutions). Similar observations were obtained in [21] for co-bipartite
interference graphs. This motivated our investigations on the combinatorial equivalence of
polytopes over the same interference graph, explored in Section 3.3.
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n=2|n=3|n=4|n=5|n=6|n=7|n=_§
s=1 - - - - - - -
s =2 2 2 2 2 2 2
s = 8 8 72 274 816 | 8768 | 26634
s=4 8 20 160 644 | 9848 ? ?
s = 8 20 242 1556 ? ? ?
s = 8 20 242 ? ? ? ?
Table 2.5: Number of facets of R(Cy,1,s,0).
n=2|n=3|n=4|n=5|n=6|n=7|n=2_8
s=1 - - - - - - -
§= 2 2 2 2 2 2 2
s = 6 18 30 64 126 258
§= 6 24 46 160 414 1120 | 3134
s = 6 24 78 250 726 | 2296 | 6790
s=6 6 24 78 300 858 | 2940 | 8750

Table 2.6: Number of extreme points of R(Cy,1,s,0).
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Chapter 3

General properties of chromatic
scheduling polytopes

It is interesting to point out that these applications rely
on the deep theorems characterizing facets of the corre-
sponding polytope. This is in quite a contrast to pre-
viously known algorithms, which typically do not use
these characterizations but quite often give them as a
by-product.

— M. Grétschel, L. Lovasz and A. Schrijver (1981)

Chromatic scheduling polytopes admit interesting properties from a combinatorial point
of view. As observed from the experiments in Section 2.2, the chromatic scheduling polytopes
are empty if the frequency span s is too small and pass through several stages as s increases:
from a nonempty but low-dimensional stage to full-dimensionality and, finally, to a combi-
natorially steady state. We discuss these different stages and the corresponding “thresholds”
Smin (G, d, 9), stan(G, d, g), and smax(G, d, g) ensuring nonemptyness, full-dimensionality, and
combinatorial stability, respectively.

Section 3.1 treats the problem of proving nonemptyness for the polytopes. This is an im-
portant task as knowing one feasible solution enables us to run a PMP-System properly. We
present lower (resp. upper) bounds on syin (G, d, g) ensuring emptyness (resp. nonemptyness).
Interestingly, the weighted clique number of the weighted graph (G, d) gives a certificate of in-
feasibility, whereas a lower bound on sy, (G, d, g) arising from coloring arguments guarantees
feasibility.

Section 3.2 deals with the nonempty case and addresses the problem of calculating the
dimension of chromatic scheduling polytopes. As the best cutting planes are facets, i.e.,
inequalities defining a face with dimension one less than the dimension of the polytope itself,
the search for facets must usually be preceded by the study of the dimension. Unfortunately,
determining the dimension of chromatic scheduling polytopes is N'P-complete in general, as
shown in this section. However, partial results and bounds for sg,11(G, d, g) could be achieved.
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Section 3.3 is devoted to the combinatorial steady state, i.e., to the fundamental issue
that full-dimensional chromatic scheduling polytopes maintain, from a certain value s >
Smax(G, d, g) of the frequency span on, the same number of facets and extreme points. We
present such a lower bound spyax(G, d, g) for s, give a characterization of the extreme points
of R(G,d, s, g) resp. P(G,d,s,g) and, for s > smax(G,d,g), a natural bijection between the
extreme points of R(G,d,s,g) and R(G,d,s + 1,g) resp. P(G,d,s,g) and P(G,d,s + 1,¢)
implying combinatorial equivalence.

The chapter closes with a discussion relating chromatic scheduling polytopes with linear
ordering polytopes. In Section 3.4 we prove that chromatic scheduling polytopes defined over
complete interference graphs are affinely isomorphic to linear ordering polytopes, implying
that even these simple instances are hard to characterize. We also present some relations
between the valid inequalities and facets of these polytopes, that can be exploited in a practical
framework for solving the bandwidth allocation problem in PMP-Systems.

3.1 On emptyness/nonemptyness

The characterization of conditions that guarantee feasibility of the bandwidth allocation prob-
lem is a central issue. Clearly, if the frequency spectrum [0, s] is too small, there exists no
feasible schedule for the frequency intervals at all, and so the polytopes P(G,d,s,g) and
R(G,d, s,g) are empty. The results presented in this section provide straightforward bounds
on the frequency span s that guarantee emptyness and nonemptyness. It is worth noting
that upper bounds for infeasibility arise from maximum weighted clique arguments, whereas
lower bounds for feasibility come from coloring assertions. We first establish the following
definitions, which provide us a notation to make conversions back and forth between feasible
solutions of P(G,d,s,g) and R(G,d, s,g).

Definition 3.1 Lety € R(G,d,s,g). We define the extension of y to be ext(y) € P(G,d,s,g)
such that

ext(y)y, = w vieV
ext(y)r, = y,+di VieV
eXt(y)Iij = Yzy VijeE

Conwversely, the reduction of a point z € P(G,d, s,g) is red(z) € R(G,d,s,qg) defined by

red(z);, = =z, VieV
red(2)y; = z; Vij€EE

The schedule represented by red(z) (for z € P(G,d, s, g)NZ*"™™) is obtained by shrinking
each interval I(i) to an interval of length d; (and projecting down the vector to R"t™).
Conversely, if y € R(G,d, s,g) N Z"™™ is a feasible solution, then ext(y) represents the same
schedule than gy, but in a space of higher dimension that also contains the r-variables. Note
that red(ext(y)) =y for every y € R(G,d, s, g), but ext(red(z)) differs from z if z,, — 2, > d;
for some 1 € V.
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As a first simple observation, we may point out that P(G,d,s,g) # 0 if and only if
R(G,d,s,g) # 0, implying that the feasibility problems for P(G,d,s,g) and R(G,d,s,q)
are equivalent. We call proj, ,(P(G,d,s,g)) = {red(z) : z € P(G,d,s,g)} € R"™ to the
projection of P(G,d, s, g) onto the space of the [- and z-variables.

Proposition 3.1 R(G,d,s,g) = proj, ,(P(G,d,s,g)).

Proof. If y € R(G,d,s,g) N Z""™ is an integer feasible solution of R(G,d,s,g), then ext(y)
belongs to P(G,d,s,g), and thus R(G,d,s,g) C proj, ,(P(G,d,s,g)). Conversely, if z €
P(G,d,s,g) N Z*"™™ is a feasible integer solution of P(G,d,s,g), then red(z) belongs to
R(G,d, s, g), implying the converse inclusion. O

Corollary 3.2 P(G,d,s,g) is nonempty if and only if R(G,d, s,g) is nonempty.

It is worth noting that Corollary 1.2 implies that determining whether R(G,d,s,g) is
empty or not is a computationally difficult task. Observe that if R(G,d, sy, g) is nonempty,
then R(G,d, s, g) is nonempty for every s > sg. Similarly, if R(G,d, sg,g) is empty, then also
is R(G,d, s, g) for every s < sq.

Definition 3.2 (nonemptyness threshold) We denote by spin(G,d, g) the minimum fre-
quency span s such that P(G,d, s, g) is nonempty.

Note that P(G,d,s,g) is nonempty if and only if s > s,in(G,d,g). Corollary 3.2 im-
plies that spin(G,d,g) is also the minimum frequency span s guaranteeing feasibility for
R(G,d,s,g). The exact calculation of this threshold is, by Corollary 1.2, an N"P-hard prob-
lem, hence we concentrate on deriving bounds on this value. A certificate of infeasibility can
be obtained by means of the weighted clique number w(G,d) of (G,d) (i.e., the weight of a
largest weighted clique of G), as Proposition 3.3 shows.

Proposition 3.3 If s < w(G,d), then R(G,d,s,g) and P(G,d,s,g) are empty.

Proof. Let K C V be a largest weighted clique of G (i.e., a clique K such that d(K) = w(G, d)).
The intervals {I(i) : ¢ € K} cannot overlap in any feasible solution, since all vertices in K
are pairwise adjacent. Hence we need at least a span of d(K) = w(G, d) for scheduling these
intervals, and since the length of the available spectrum [0, s] is strictly less than this lower
bound, the problem is infeasible. O

However, s > w(G,d) does not provide a certificate for feasibility, as there exist graphs
(G,d) such that w(G,d) is strictly smaller than the span of any feasible solution. Such
instances clearly exist for the special case (G,1,s,0) of usual graph coloring problems, e.g.,
R(C9k41,1,2,0) is empty for every odd hole Cyrq with k > 2, since w(Coxy1,1) =2 < 3 =
X(C2k+1) holds. Moreover, [7] reports real-world instances (G, d, s,0) with d # 1, containing
critical configurations G' C G with w(G’,d) < smin(G’, d,0).
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Figure 3.1: Critical configurations from two real-world instances.

Example 3.1 Consider the instance depicted in Figure 3.1(a), with G = Cy and the customer
demands presented in the figure. This interference graph has w(G, d) = 81 but s,in(G,d,0) =
82 (see Figure 3.1(b)). Further, the weighted asteroidal tripel (G, d) presented in Figure 3.1(c)
has w(G,d) = 80, but syin(G,d,0) = 82, as Figure 3.1(d) shows. <

Remark. Graphs G with w(G,d) = spin(G, d,0) for all possible demand vectors d are intro-
duced by Golumbic [22] as superperfect graphs. The previous example shows that interference
graphs arising from PMP-Systems are not superperfect in general. <

Additionally, in the case g > 0 we must also obey the guard distance between pairs of
adjacent intervals in different sectors. This setting is more restrictive, and Proposition 3.4
gives a straightforward generalization of Proposition 3.3.

Definition 3.3 (clique bound) If K C V is a clique, define pg = |{i : S;N K # 0} to
be the number of sectors with nonempty intersection with K. Let K(G) denote the set of all
cliques of G, and define the clique bound w(G,d,g) to be

w(Gydyg) = max (d(K)+9 (i = 1)

Proposition 3.4 If s < w(G,d,g), then P(G,d,s,g) and R(G,d,s,qg) are empty.
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Proof. Let K CV be a clique such that d(K) 4+ ¢ (px — 1) = w(G,d, g). Since K is a clique,
then the intervals {I(7) : + € K} must be disjoint. Moreover, in every feasible solution there
are at least px — 1 adjacent intervals belonging to different sectors, and since K is a clique
they must obey the guard distance, hence at least px — 1 guard distances must occur between
the intervals assigned to the nodes of K. Therefore, we need a frequency span of at least
d(K) + g (px — 1) to assign all these intervals. O

Again, s > w(G,d, g) does not imply that the polytopes are nonempty. In the opposite
direction, we can derive an upper bound for s,in (G, d, g) that guarantees feasibility.

Definition 3.4 (chromatic bound) Let dymax = max{d; : i € V} denote the mazimum
node weight of (G,d). We define the chromatic bound x(G,d, g) to be

xX(G.d,g) = (dmax+9) x(G) —g.
Proposition 3.5 If s > x(G,d,g), then R(G,d,s,g) and P(G,d,s,qg) are nonempty.

Proof. Let k = x(G) and let ¢ : V. — {1,...,k} be a coloring of G (i.e., a partition of V'
into disjoint independent subsets). Construct a feasible solution y € R(G,d, s, g) N Z"T"™ by
setting vy, = (c(¢) — 1)(dmax + g), where c(i) is the color assigned to 7 by c. Note that this
assignment is feasible and fits in the frequency spectrum [0, s]. Thus R(G, d, s, g) is nonempty
and, by Corollary 3.2, P(G,d, s,g) is also nonempty. O

Note that the weighted chromatic number x(G,d) (i.e., the minimum number of stable
sets covering every node 7 at least d; times) cannot be used to obtain a better bound than
Xx(G,d, g) since the colors assigned to each node cannot be expected to be consecutive. Now,
Proposition 3.4 and Proposition 3.5 imply that syin(G,d,g) can be bounded by the clique
bound and the chromatic bound:

w(G,d,g9) < spin(G,d,9) < x(G,d,g).

In the uniform case d = 1 with null guard distance (i.e., g = 0), we obtain sy, (G,1,0) =
¥(G,1,0) = X(G) and w(G, 1,0) = w(G).

3.2 On the dimension of the polytopes

A common way of proving that a valid inequality is facet-defining for a certain polytope is to
construct as many affinely independent points in the particular hyperplane as the dimension
of the polytope is. However, determining the dimension of chromatic scheduling polytopes
turns out to be a difficult task. This section presents partial results on this issue. We point
out as a first observation that nonempty polytopes may not be full-dimensional when the
available frequency spectrum [0, s] is not large.
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Figure 3.2: The polytope R(C4,1,3,0) is not full-dimensional.

Example 3.2 Consider the polytope R(Cy,1,3,0) C R®. Every integer feasible solution in
this polytope assigns the unit intervals I(1), ..., I(4) within the frequency span [0,3], and thus
we have that I(1) = I(3) or I(2) = I(4) (or both). Note that I(i) = I(j) implies that z;, = x 3,
for every k € V\{i,7}. We claim that every feasible schedule satisfies x14 — 212 = T34 — T39.

e If I(1) = I(3), then the previous observation implies that z14 = z34 and 15 = 32 (see
Figure 3.2(a) and Figure 3.2(b), along with the symmetrical constructions). Subtracting
these equations we obtain z14 — x12 = T34 — T32.

o If I(2) = I(4), then z12 = x4 and z32 = 734 (see Figure 3.2(c) and Figure 3.2(d), and
the symmetrical constructions). These two equations imply 214 — 212 = 0 = 34 — X32.

Thus, every feasible point satisfies z14— 19 = 234 — 32, hence dim(R(Cy, 1,3,0)) < 7 (in fact,
the dimension is exactly 7). As we shall verify in Section 3.2.3, the polytopes R(Cy,1,s,0)
for s > 4 are full-dimensional. <

The polytopes P(G,d, s,g) and R(G,d, s, g) are nonempty if and only if s > spin(G,d, g).
The previous example shows that they may not be full-dimensional, even if s > spin(G, d, g).
However, as the frequency span s increases, the dimension of both polytopes also increases (al-
though not strictly), since every feasible solution of R(G, d, s, g) is also feasible for R(G, d, s +
1,g). This observation implies the following.

Proposition 3.6 Ifs > spin(G,d,g), then R(G,d,s,g9) C R(G,d,s+1,g) and P(G,d,s,g) C
P(G’d78+ 179)'

Corollary 3.7 If s > spin(G,d,g), then dim(R(G,d,s,g)) < dim(R(G,d,s + 1,9)) and
dim(P(G,d, s, g)) < dim(P(G,d,s + 1,9)).

Hence the dimension is a nondecreasing function of the frequency span s. When s >
w(G,d), both polytopes are full-dimensional. We prove this fact in the next subsection, where
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we provide a lower bound on s that guarantees full-dimensionality. Section 3.2.2 completes
the analysis by showing that the exact calculation of the dimension is an NP-hard problem.
Finally, Section 3.2.3 closes with characterizations of the dimension for special families of
interference graphs.

3.2.1 The full-dimensional case

It has been previously observed [26] that P(G,d,s,g) and R(G,d,s,g) are full-dimensional
when [0, s] is large enough. This subsection presents some results related to full-dimensionality.
In particular, we provide a lower bound v(G, d, g) on s such that P(G,d, s, g) and R(G,d, s, g)
are full-dimensional if s > v(G,d, g). We present some examples where this bound is indeed
tight.

Next, we analyze the dimension in the uniform case d = 1 with g = 0, where the bound
simplifies to y(G,1,0) = x(G) + 2. We provide a characterization of full-dimensionality for
bipartite graphs and s = x(G) + 1, proving that for a bipartite interference graph G, the
polytope P(G,1,x(G) + 1,0) is full-dimensional if and only if G does not contain any 4-
hole. Based on this result, we also provide a partial characterization of full-dimensionality
for arbitrary graphs.

Lemma 3.8 Let A € R"™™ and \g € R such that \'y = X\ for every y € R(G,d,s,qg). If
s > smin(G,d, g), then \j; =0 for every j € V.

Proof. Let y € R(G,d, s,g) N Z""™ be an integer feasible solution such that all the intervals
are contained in [0, syin(G,d, g)]. Construct a digraph D = (V, Ep) such that ij € Ep if
and only if ij € E and I(j) is located before (7). Note that D is acyclic. Now, let iy, ..., iy,
be a topological ordering of the nodes of D and construct n feasible solutions y',...,y" as
follows. Point ¥ is obtained from y by shifting the intervals I (¢j) for 7 =1,...,k one unit
to the right.

These new points are feasible solutions. Indeed, if the interval I(i;) has been shifted
to the right in y*, then all the possible interfering intervals to the right of I(1;) have also
been shifted, since the corresponding nodes are before ¢; in any topological ordering of D.
Moreover, the pair of solutions y* and y**! for £ = 0,...,n — 1 (where we consider 4° = y)
only differ in their [; -coordinate, hence the /; -coordinate of A must be zero. Therefore,
A; =0 forevery jeV. O

Definition 3.5 Let F5(G,d) denote the set of nodes i such that P(G,d,s,g) contains some
feasible schedule such that the interval I1(i) has length strictly greater than d;. That is,

Fy(G,d) = {i eV :z, -z, >d; for some z € P(G,d,s,qg)}.

Note that Lemma 3.8 implies Fs(G,d) = V for s > spin(G,d,g). However, when s =
Smin (G, d, g) we may have F (G,d) C V. In both cases, Fs(G,d) states a relation between
the dimension of P(G,d, s,g) and the dimension of R(G,d, s, g).
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Lemma 3.9 If s > syin(G,d,g) then dim(P(G,d,s,g)) = dim(R(G, d, s,q)) + |Fs(G,d)|.

Proof. For each i € Fy(G) let y* € P(G,d, s, g) be a solution such that yfqz —ylii > d; and yf;j —
ylij = dj for j # i (such a solution exists by the definition of Fi(G,d)). Now, if w?,... ,wk €
R(G,d,s,g) is a set of affinely independent points, then ext(w®),...,ext(w*) are also affinely
independent, and moreover each of these new points satisfies r; + ; = d; for every i € V.
This implies that the point 3* is affinely independent w.r.t. ext(w?),...,ext(w*), for every
i € F5(G,d). Hence the set {ext(wi)}fzou{yi}ier(G,d) is composed by k+|Fs(G, d)| affinely in-
dependent points of P(G,d, s, g), and thus dim(R(G, d, s,g))+|Fs(G,d)| < dim(P(G,d, s, g)).

For the reverse inequality, let A € R¥*", B € R¥*™ and by € R* such that Al + Bz = by
is a maximal system of equations for R(G,d, s, g), implying dim(R(G,d, s,g)) = n +m — k.
By Proposition 3.1, we have that Al + Bx = by is also a (possibly nonmaximal) system of &
equations for P(G,d, s,g) and, in addition, every feasible solution z € P(G,d, s, g) satisfies
zr; — 21, = d; for each i € Fy(G,d). Hence we construct k+(n—|F,(G,d)|) linearly independent
equations satisfied by every feasible solution of P(G,d, s, g). Since P(G,d,s,g) C R*"™™ we
conclude that

dim(P(G,d,s,g)) < (2n+m)— (k+n—|F(G,d)|)

(n+m—k)+ |Fs(G,d)]
= dim(R(G,d,s,q)) + |Fs(G,d)|.

Lemma 3.10 Let ATz = X\g for every z € P(G,d, s,9). If s > smin(G,d,g), then N, =0 and
Ar; =0 for every i € V.

Proof. Lemma 3.8 implies Fy(G,d) = V, hence dim(P(G,d, s,q)) = dim(R(G,d, s,g)) + n.
Moreover, we have that proj,(P(G,d, s, g)) = proj,(R(G,d, s, g)), and thus \;, = \,, =0 for
every 4 € V. O

We are now able to provide a lower bound on s that ensures full-dimensionality in the
general case.

Definition 3.6 (coloring bound) We define the coloring bound to be

Theorem 3.11 If s > v(G,d,g) then R(G,d,s,qg) and P(G,d,s,g) are full-dimensional.

Proof. Let ATz = )¢ for every z € P(G,d,s,g). By Lemma 3.10, we have X, = A, =
0 for every i € V. Now, let z € P(G,d,s,g) N Z*"*™ be a feasible solution such that
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Figure 3.3: Constructions for the proof of Theorem 3.11.

max;ev Zr, = Smin(G,d,g) (such a solution exists by the definition of the nonemptyness
threshold spin(G,d, g)). Consider an arbitrary edge ij € E and construct the feasible solution
2! as follows:
Smin(G,d,9) +g itk =1
zllk = Smin(G,d,g) +d; +2g ifk=j

2y, otherwise

Define further z}k = lek + dj, for every k € V. Now construct a new feasible solution 2? from
2! by swapping the intervals I(i) and I(j) (see Figure 3.3). These solutions only differ in
their l;-, 7i-, [j-, rj- and z;j-coordinates and, therefore, A;;; = 0. Since ij is an arbitrarily
chosen edge, we have A = 0, and so we conclude that P(G,d,s,g) is full-dimensional. Since
Fi(G,d) =V, Lemma 3.9 implies that R(G,d, s, g) is also full-dimensional. O

Theorem 3.11 implies that for every instance (G,d, s, g) there exists a frequency span s’
such that the polytopes {P(G,d, s, g)}s>s are full-dimensional. Hence we can introduce the
following threshold for full-dimensionality.

Definition 3.7 (full-dimensionality threshold) We denote by sg1(G,d, g) the minimum
frequency span s such that the polytope P(G,d, s,q) is full-dimensional.

Under this definition, Theorem 3.11 can be restated as sp(G,d,g) < v(G,d,g). This
bound is sharp, in the sense that there exist infinitely many graphs G such that P(G,d, s—1, g),
for s = v(G,d,g), has not full dimension. For example, if the interference graph is a 4-
cycle, we have sg(Cy,1,0) = v(Cy,1,0) = 4 but Example 3.2 shows that the polytope
R(C4,1,3,0) € R® has dimension 7, thus not being full-dimensional. In Section 3.2.3 we
shall present further instances illustrating the same situation.
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Figure 3.4: R(Ws,1,4,0) is full-dimensional whereas P(Ws,1,4,0) is not.

Note that sgp(G,d, g) is the minimum frequency span guaranteeing full-dimensionality
for P(G,d,s,g) but not for the fixed-length polytope R(G,d,s,qg). If P(G,d,s,g) has full
dimension, then clearly R(G,d,s,g) is full-dimensional, but the converse is not true as the
following example shows.

Example 3.3 Consider the wheel Wg depicted in Figure 3.4(a), composed by a 5-cycle plus
a universal node. Figure 3.4(b) shows spyin(Ws,1,0) = 4. It is not difficult to verify by
inspection that R(Ws,1,4,0) is full-dimensional. However, P(Wg,1,4,0) does not have full
dimension, since 1 — {1 = 1 for every feasible solution. Moreover, for this particular instance
we have sq(We,1,0) = 5. <

Hence the threshold s (G,d,g) for full-dimensionality in the general case cannot be
directly applied to the fixed-length case. We obtain instead the following about the dimension
of the two polytopes.

Corollary 3.12 Consider an instance (G,d, s,g).

(i) If s < smin(G,d, g) then both polytopes P(G,d,s,g) and R(G,d,s,g) are empty.

(ii) If s = smin(G,d,g) then P(G,d,s,qg) is full-dimensional only if R(G,d,s,qg) is full-
dimensional.

(iii) If s > smin(G,d,g) then P(G,d,s,g) is full-dimensional if and only if R(G,d,s,g) is
full-dimensional, by dim(P(G,d, s,g)) =n + dim(R(G,d, s, g)).

Thus, we can express the minimum frequency span such that R(G,d, s, g) has full dimen-
sion in terms of s (G, d, g) as follows.

Corollary 3.13 Let sg be the minimum frequency span s such that the polytope R(G,d, s, g)
has full-dimension. Then, sp = sp(G,d,g) if Fs,(G,d) =V and sg = sgu(G,d,g) — 1
otherwise.
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In the remaining part of this section, we discuss better bounds fo sy (G, d, g) in the case
of usual graph coloring, i.e., if we assume d =1 and g = 0.

Corollary 3.14 The polytopes R(G,1,s,0) and P(G,1,s,0) are full-dimensional if and only
if s > x(G) + 2.

Corollary 3.14 provides a small range for incomplete dimensionality in the uniform case.
Indeed, P(G,1,s,0) is empty if s < x(G) and full-dimensional if s > x(G) + 2. So we are
left to analyze the cases s = x(G) and s = x(G) + 1. In what follows, our objective is to give
a partial characterization of full-dimensionality in the case s = x(G) + 1. As we shall see,
incomplete dimension is related to the existence of induced 4-cycles in the interference graph.
We first analyze the case of bipartite graphs.

Theorem 3.15 If G is a bipartite graph, then P(G,1,3,0) is full-dimensional if and only if
G does not contain Cy as an induced subgraph.

Proof. Assume first that G does not contain any 4-hole as induced subgraph, and suppose
My = Xy for every y € P(G,1,3,0). Lemma 3.10 implies that Ai; = Ar, = 0 for every
1 € V. We will now verify that the same holds for the ordering variables, thus proving the
full-dimensionality of the polytope.

Fix an edge ij € E and let ¢ : E — {1,2} be a 2-coloring of G. Assume w.l.o.g. that
¢(i) = 1 and ¢(j) = 2. Define the node subsets A = N(i) and B = N(j) (see Figure 3.5).
Note that ¢(k) = 2 for every k € A and ¢(t) = 1 for every ¢t € B, hence AN B = (). Moreover,
E(A,B) = 0, otherwise a 4-hole would be created. Partition now the remaining nodes as
C U D, where

C = {kgAUBU{i,j}:c(k) =1
D = {kAUBU{i,j}:c(k) =2

A=N()
i ) —
il
XS —
B = N(j)

Figure 3.5: Partition of V into subsets.
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These sets define the partition of V' depicted in Figure 3.5. Notice that the sets A, B, C' and
D are stable sets. Moreover, E(A, D) = () since the nodes of A and D admit the same color.
The same argument shows E(B,C) = ).

We now define the following subsets of edges:

By, = E({i},A)
B, = E(AC)
E; = E(C,D)
E. = E(B,D)
B = E({(}.B)

By the previous observations, we have £ = {ij} U E; U...U E5. We now construct the
sequence of feasible solutions 3°, ..., 4% depicted in Figure 3.6. For k = 1,...,6, consider the
pair of solutions y° and y*. Both solutions are feasible, and thus ATy® = ATy*, implying the
following equations.

k=1 = 0 = AE)+\E)
=2 = 0 = \E)+A\(Es)
k=3 = 0 = A(Es)+AEy)
k=4 = 0 = AEy)+AEs)
k=5 = 0 = A(Bs)+ Ay,
k=6 = 0 A(E3) + ME4) + \(Es)

Solving these equations leads to A,;, = 0 and A\(Ej) =0 for k = 1,...,5 (note that this does
not imply A = 0). Thus, we have shown A, = 0. Since ij is an arbitrary edge of G, this
procedure shows A = 0. Therefore, the polytope is full-dimensional.

Now let us turn to the converse. Let C' C V be an induced 4-hole in G. The projection
of P(G,1,3,0) over the variables l;, r; for i € C and z;; for ij € E(C) equals P(C,1,3,0),
and we already know that this polytope is not full-dimensional. Hence, P(G, 1,3,0) does not
have full dimension as well. O

Corollary 3.16 If G is a tree, then P(G,1,x(G) + 1,0) is full-dimensional.

Based on the previous results, we now provide a partial characterization of full-dimensio-
nality for arbitrary graphs in the case s = x(G)+ 1. Theorem 3.17 gives a sufficient condition
for P(G,1,x(G) 4+ 1,0) to be full-dimensional, whereas Theorem 3.18 provides a sufficient
condition ensuring incomplete dimension. Although these conditions are similar, they are not
the converse of each other and so the characterization given here is only partial.

Theorem 3.17 If there exists a k-coloring of G with k < x(G)+1 and color classes I,. .., I}
such that Gr,ur; does not contain a 4-hole for every i # j, then P(G,1,x(G) + 1,0) is full-
dimensional.
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Proof. Suppose that ATy = X\g for every y € P(G,1,x(G) + 1,0). Lemma, 3.10 implies that
Ai; = A, = 0 for every 4 € V. Now, for every pair I;, I; of color classes, with 4 # j, consider
the induced subgraph G;; = Grur;. By Theorem 3.15, the polytope P(Gj,1,3,0) is full-
dimensional. Moreover, P(Gij,1,3,0) C projr,u;, P(G,1,x(G) + 1,0) implies Ay, = 0 for
every e € G;;. Thus, A\; = 0 and so P(G,1,x(G) + 1,0) has full dimension. O

Theorem 3.18 If there exists a 4-hole C = {1,2,3,4} CV such that every k-coloring c, with
E < x(G)+1, has ¢(1) = ¢(3) or ¢(2) = c(4), then P(G,1,x(G)+1,0) is not full-dimensional.

Proof. Since every feasible schedule (I,r,z) has either I(1) = I(3) or I(2) = I(4), then
T14 — T12 — T34 — T32, hance P(G,1,x(G) + 1,0) is not full-dimensional. O

3.2.2 Determining the dimension is N’P-complete

The results of Section 3.2.1 suggest that the dimension of chromatic scheduling polytopes
is hard to characterize. The purpose of this section is to show that its calculation is also a
computationally hard problem, by proving that the associated decision problems are N P-
complete. As a starting point of our analysis, consider the problem of deciding whether
P(G,d, s,0) has full dimension:

FULL-DIMENSIONALITY
Instance: A weighted graph (G, d) and an integer s € Z ..
Question: Has P(G,d,s,0) full dimension?

Theorem 3.19 FULL-DIMENSIONALITY is N P-complete.

Proof. Tt is not hard to verify that this problem belongs to NP, since we can nondeter-
ministically generate a set of integer feasible solutions and verify whether this set is a set of
affinely independent points with the required number of elements or not. Note we can check
in polynomial time whether a set of vectors is affinely independent or not [42]. To complete
the proof, we shall reduce GRAPH COLORING to FULL-DIMENSIONALITY. Let G = (V| E) be
an arbitrary graph and construct a graph H = (Vy, Ep) from G by taking:

Ve = V U {v1,v2,v3,04}
Egy = E U {viw:weV,i=1,...,4}
U {vivg,vav3, v3v4, 0401 }

We claim that x(G) < s if and only if P(H,1,s+4,0) has full dimension. For the forward
direction, if x(G) < s then y(H,d,0) = x(H) +2 < x(G) +4 < s +4, and P(H,1,5+4,0)
is full-dimensional by Theorem 3.11. For the converse direction, suppose that x(G) > s + 1.
We shall prove that in this case every integer feasible solution satisfies

$01U2 - $U1’04 = $U3’02 - $03U47 (31)
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Figure 3.7: Illustration for the proof of Theorem 3.19.

thus verifying that P(H,1,s + 4,0) is not full-dimensional. Consider any feasible solution
ye P(H,1,s+4,0)N 72Vl +1En| Thig solution must have at least s + 1 colors occupied by
intervals corresponding to nodes in V', and this leaves at most three colors left for the nodes
{v1,...,v4}. Thus, either v; and vs or vy and vs have the same color, and only the four
configurations depicted in Figure 3.7 (along with their symmetrical solutions) are possible.
All of them satisfy (3.1), hence P(H,1,s+ 4,0) is not full-dimensional. O

Corollary 3.20 FULL-DIMENSIONALITY for R(G,d,s,0) is N'P-complete.

Proof. Given a graph G, repeat the construction from the proof of Theorem 3.19 to obtain a
new graph H. The same argumentation can be applied in this case to show that x(G) < s if
and only if R(G,1,s+ 4,0) has full dimension. O

The complexity of the general problem of calculating the dimension of chromatic schedul-
ing polytopes can now be addressed as a corollary to the previous results. To this end,
consider the associated decision problem:

CHROMATIC SCHEDULING POLYTOPE’S DIMENSION
Instance: A weighted graph (G, d), and integers k, s,g € Z..
Question: Has P(G,d,s,g) dimension greater or equal than k7

Corollary 3.21 CHROMATIC SCHEDULING POLYTOPE’S DIMENSION is N P-complete.

3.2.3 Dimension for special interference graphs

This subsection provides results about the dimension of chromatic scheduling polytopes for
special classes of interference graphs. We present characterizations of the dimension of in-
stances defined over complete graphs K,, stars K, paths P,, and holes C,,, the last one
being the most involved case. These theorems give the hint that formulating the dimension
in terms of standard graph parameters may be a nontrivial task. We start by analyzing the
dimension of polytopes defined over complete interference graphs.
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Theorem 3.22 Call D =Y}, d;. Then,

. m ifs=D
dim (R(Kn,d,s,O)) - {n+m i§s>D
. m ifs=D
dim (P(Kn,d,s,O)) - {n+2m ijzs>D

Proof. Clearly, R(K,,d,s,0) is nonempty if and only if s > D. When s = D, there are
no empty spaces among the intervals, hence every feasible solution satisfies the following n
equations:

i = Y djzji i=1,...,n (3.2)

J#i

This implies dim(R(K,,, d, D,0)) < m. Conversely, s = D allows every linear ordering among
the intervals, so proj,(R(Kp,d, D,0)) contains exactly m affinely independent points. Hence
we conclude dim(R(K,,,d, D,0)) = m. Moreover, Fp(K,,d) = (), and thus Proposition 3.7
implies that R(K,,d,D,0) and P(K,,d, D,0) have the same dimension.

To complete the proof, we verify that both polytopes are full-dimensional when s > D.
Suppose ATy = Xy for every point y € R(G,d,s,0). By Lemma 3.8, \;, = 0 follows for
every i € V. Moreover, note that every point in R(K,,d, D,0) also belongs to R(K,,d, s,0),
and dim(proj,(R(K,d, D,0)) = m, hence A, = 0. Therefore, A = 0 and R(K,,d,s,0) is
full-dimensional. Since Fy(K,,,d) = {1,...,n}, then P(K,,d,s,0) also has full dimension. O

The following theorem provides a characterization of the dimension of chromatic schedul-
ing polytopes defined over complete and bipartite interference graphs with no induced 4-cycles.
This result enables us to fully understand the dimension of chromatic scheduling polytopes
defined over stars, paths, and even holes.

Theorem 3.23 Let G be a connected and bipartite graph with at least two nodes, and such
that G does not contain any 4-hole. Then, the polytopes R(G,1,s,0) and P(G,1,s,0) have
dimension 1 if s = 2 and are full-dimensional if s > 3.

Proof. Let ¢: V — {1,2} be a 2-coloring of G. Since G is connected and bipartite, then this
coloring is unique up to color renamings. Construct a feasible solution y € R(G, 1,2,0)NZ" "™
by setting y;;, = c(i) — 1 for every ¢ € V. By the uniqueness of ¢, there only exist two feasible
solutions, namely y and sym(y), hence dim(R(G,1,2,0)) = 1. Since every node in G has at
least one neighbor, then no feasible solution z € P(G,1,2,0) can have z,, — 2z, > 1, hence
F5(G,1) = 0 and Lemma 3.9 implies dim(P(G,1,2,0)) = 1.

Consider now the case s Since G is a bipartite graph with no induced 4-cycle,

> 3.
Theorem 3.15 implies that R(G, 1, s,0) is full-dimensional. Since s > spin(G,1,0) = 2, then
Fy(G,1) =V, implying that P(G,1,s,0) also has full dimension. O
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Corollary 3.24

' 1 if s=2
dim (R(K1,4,1,5,0)) = {%+¢ §s>3
| 1 if s=2
dim (P(K1y,1,5,0)) = {&+2 §8>3

Corollary 3.25

. 1 ifs=2
dim (B(Fn,1,5,0) = {Qn—l §5>3

1 ifs=2

dlm(P(Pnalas70)) = {3n—1 if8>3

Corollary 3.26 Let n > 6 be an even integer. Then,

dim (R(Cp, 1,5,0) = { L ys=2

2n ifs >3
. 1 ifs=2
dim (P(CTM 17330)) = { 3n Z“;S >3

To close this section, we prove a similar result for odd cycles. The previous examples
may suggest that P(G,1,s,0) is not full-dimensional for s = syiyn(G,1,0), but Theorem
3.27 shows full-dimensionality for infinitely many instances. Indeed, chromatic scheduling
polytopes defined over odd cycles are empty if s < 2 and full-dimensional otherwise. In order
to prove this result, we introduce the following definition.

Definition 3.8 Given a linear ordering S = (i1,...,1,) of V, the greedy solution associated
with S is the feasible solution constructed by the following procedure:
Forj=1,...,n do:

Set 1(ij) = [tj,t; + d;;], where t; is the minimum feasible starting time
for the interval I(i;), according to the previous assignments.

End (for)

For example, Figure 3.8 shows two such solutions for odd cycles, associated with the
sequences (1,...,n) and (n,1,...,n — 1), respectively.
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Figure 3.8: Examples of greedy solutions

Theorem 3.27 Let n > 5 be an odd integer. The polytopes R(Cy,1,s,0) and P(C,,1,s,0)
are empty if s < 2 and have full dimension otherwise.

Proof. Since odd cycles are nonbipartite, we have that R(Cy,1,2,0) and P(C),,1,2,0) are
empty. To complete the proof, we show that P(C),, 1, 3,0) has full dimension (this implies that
R(Cp,1,5,0) and P(Cp,1,s,0) are full-dimensional for s > 3). Suppose ATz = \g for every
z € P(C,,1,3,0)NZ>". We shall verify A = 0, implying that this polytope is full-dimensional.

For i =1,...,n, construct the two feasible solutions z* and z* presented in Figure 3.10(a)
and Figure 3.10(b). Since AT2? = \g = AT'Z%, we have that \;, = 0. A similar construction
shows A, = 0.

It remains to verify that A\, = 0. For ¢ = 1,...,n, define the sequence S; = (i,i +
1,...,n,1,...,i — 1), and let 3 be the associated greedy solution. Also define the opposite
sequence S; = (i,i — 1,...,1,n,m — 1,...,i + 1) and let §* denote the associated greedy
solution. For i = 1,...,n, we have that ATy’ = AT . These n equations define an (n x n)-
system DpA; = 0 of linear equations. The matrix D, has two consecutive diagonals with
ones, and the remaining diagonals are alternatively composed by -1 and 1 (see Figure 3.9 for
an example).

1 1 -1 1 -1 1 -1
-1 1 1 -1 1 -1 1
1 -1 1 1 -1 1 -1
Dy = -1 1 -1 1 1 -1 1 ~
1 -1 1 -1 1 1 -1
-1 1 -1 1 -1 1 1
1 -1 1 -1 1 -1 1

SO OO oo
SO OO O N
SO OO N O -
SO O N O O
SO N O OO
OSON OO OO -
N O OO OO

Figure 3.9: A matrix arising from greedy solutions and its triangulation.

It is not difficult to verify that D,, is a nonsingular matrix (recall that n is an odd integer).
To this end, for ¢ = n,...,2 in decreasing order, add row ¢ — 1 to row ¢. The resulting matrix
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Figure 3.10: Feasible solutions of P(Cy,1,3,0) showing A;, = 0.

is upper triangular (see Figure 3.9 for an example with n = 7), thus proving that the only
solution to D,\; =0 is A, = 0. Hence A = 0 and P(C,, 1,3,0) is full-dimensional. O

Remark. Consider the vectors {proj,(y*)}"_, of the ordering variables corresponding to the
greedy solutions associated with the n ascending sequences 51, ..., S, introduced in the proof
of Theorem 3.27. Let A be the quadratic 0/1-matrix with these vectors as rows. Then A has
a special structure, with the first two diagonals filled with ones, and the remaining diagonals
alternating between zeros and ones, respectively. It is worth noting that A is nonsingular and
has determinant (n — 1)/2 (since n is odd). <

3.3 The combinatorial steady state

This section explores a fundamental issue concerning the combinatorial structure of chromatic
scheduling polytopes. It has been experimentally observed in [21] for some instances (G, d, s, 0)
that, from a certain value smax(G,d, 0) on, the polytopes {R(G,d, $,0)}s>smax (@,4,0) Teach a
combinatorial steady state with the same number of extreme points and facets. This led to
the question whether the polytopes {R(G,d, s, 9) }s>smax(G,s,9) ar€ Pairwise combinatorially
equivalent. In this section we give an affirmative answer by proving a more general result:
the polytopes R(G,d,s,g) and R(G,d,s + 1,¢g) resp. P(G,d,s,g) and P(G,d,s + 1,g) are
affinely isomorphic (and therefore combinatorially equivalent) for s > w(G, d). Moreover, we
give a lower bound on s ensuring this isomorphism, and this bound can be shown to be sharp
when G is the union of disjoint cliques.

3.3.1 A characterization of the extreme points

We start by providing a simple characterization of the extreme points of chromatic scheduling
polytopes. For any valid ordering z € proj, (R(G,d, s,g) NZ™"™), define the lower and upper
bounds for the interval (i) assigned to customer i € V' as follows:
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Li(Z,s) = min{y, :y € R(G,d,s,9) N Z""™ and y, = T}
Ui(z,s) = max{y, :y € R(G,d,s,g) NZ""™ and y, = z}

For every ij € E, let §;; be the minimum gap required between the intervals I(i) and I(j),
ie.,

5 {g if ij € Ex

Y 71 0 otherwise

Definition 3.9 (fixed-length adjacency graph) Lety € R(G,d,s,g)NZ"™ be a feasible
schedule. The adjacency graph associated with this schedule is G(y) = (V', E'"), with V! =V
and E' = {Z] e FE: Yi; + d; +6ij =Y, OT Yy -l-dj +5ij :yli}.

Nodes i and j are adjacent in G(y) if they are adjacent in G and there is a space of exactly
d;; between the intervals I(i) and I(j). For example, if H is the interference graph depicted
in Figure 3.11(a), then Figure 3.11(b) shows a feasible schedule and Figure 3.11(c) presents
its associated adjacency graph.

Definition 3.10 A connected component C of G(y) is called a border component if there
exists some 1 € C with y;, =0 or y,, = s — d;.

Theorem 3.28 The vector y € R(G,d,s,g) NZ"T™ is an extreme point of R(G,d,s,q) if
and only if every connected component of G(y) is a border component.

Proof. Only if. Consider a feasible solution y and its fixed-length adjacency graph G(y).
Suppose that G(y) has a component C such that every node ¢ € C has y;, > 0 and y;, < s—d;.
Then, we can construct two feasible points y',y? € R(G,d, s,g) by shifting all the intervals
assigned to nodes in C one unit to the left and one unit to the right, respectively:

Y = {wfqﬁiec viev

Y = {mﬂ& iticc 'SV

Note that 0 < yfj < s—d; (i =1,2), since 0 <y, < s—dj forall j € C. Moreover, this shifting
does not cause interval overlappings. Any such overlapping in y' would be y}. +d; +&;; > ylli
fori € C'and j ¢ C, but then y;; + dj + d;j = y;, and thus j € C. A similar analysis shows
that y? is feasible.
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Figure 3.11: Examples for Section 3.3.1.

But now we have that y = %yl + %yQ, and thus y is not an extreme point of R(G,d, s, g),
contradicting the hypothesis.

If. Let y be a feasible solution such that every connected component of G(y) is a border
component. Further, suppose that z',...,2¥ € R(G,d,s,g) N Z""™ are k extreme points of
R(G,d,s,g), such that y = S2F | a;2", with ¥F  a; = 1 and o > 0 for i = 1,...,k. Since
0 <ys., zée < 1 for every edge e € E, then y,, = zée. This implies that y and 2° (i = 1,..., k)
have the same ordering among the intervals.

Consider now any connected component C of G(y), and assume without loss of generality
that y;, = 0 for some ¢ € C. Define C, = {i € C : y;, = L;(ys,s)}, which is nonempty since
t € Cp. For each node i € C, let y; denote the distance from i to Cy, (i.e., the length of the
shortest path from i to some node in Cp). Note that v; =0 < i € Cf.

Claim: zlij = yi; for every j € C and ¢« = 1,...,k. We shall prove this claim by
induction on the distance y; from j to Cf.

e 7 =0: Then j € Cr, and SO Yy, = Lj(yg,s). But #* has the same Qrdering among the
intervals than y, and thus zlz]_ > Lj(Ys,s), for i = 1,...,k. Thus, zfj = L;i(yy, s), since
otherwise ), aizfj > Lj(yz, 8) = yi;-

e v; > 0: Then y;, +d; +djp = yi, or yi, +dp + 95, = yi; for some p € C' in the path from
j to Cr (assume without loss of generality that the former holds). By the induction
hypothesis, zfp =y, fori=1,...,k, so

2, +dj+ o < 2, =y,
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But y;; +d; + djp = yi,,, and thus zlij =y;. ©

Hence 2! =y for i = 1,...,k, implying that y is an extreme point of R(G,d,s,g). O

Theorem 3.28 states that a feasible solution y € R(G,d, s,g)NZ"™ is an extreme point if
and only if every connected component of G(y) has at least one interval located either to the
left or to the right bound of the spectrum [0, s]. In the example above, the feasible schedule
depicted in Figure 3.11(b) is not an extreme point of R(H,1,s,g), whereas Figure 3.11(d)
presents a solution whose incidence vector is an extreme point of R(H,1,s,g). Note that,
in a border component C, not every node i € C has to satisfy I; = L;(z,s) or I; = U;(z,s)
(i.e., attain its leftmost or rightmost position). For example, consider the border component
C = {1,2,4,5} from the schedule depicted in Figure 3.11(d). The intervals I(1), I(2) and
I(4) are located in their leftmost position, but the interval I(5) is not, despite the fact that
it belongs to C' since l5 + d5 = l4.

A similar construction can be given for the general case r; — [; > d;, i € V. In this case,
the adjacency graph contains two nodes for each interval I(i) = [l;, r;], representing the left
and the right bound, respectively. For ¢ € V, the nodes [; and r; are adjacent if the interval
I(i) has lenght exactly d;. For ij € E, the nodes I; and r; are adjacent if there exists a space
of exactly d;; between I(i) and I(j).

Definition 3.11 (adjacency graph) Let z € P(G,d,s,g) N Z*""™ be a feasible schedule.
The adjacency graph associated with this schedule is H(z) = (V', E"), with

V' = {ZZZEV}U{T‘ZZEV}
E' = {lir;:i€V and z,, — 2z, = d;} U
{rilj:ij € E and Zri+5ij:le}-

Definition 3.12 A connected component C of H(z) is called a border component if there
exists some l; € C' with z;, = 0 or some r; € C with z,; = s.

Theorem 3.29 The point z € P(G,d,s,g) N Z*" ™™ s an extreme point of P(G,d,s,gq) if
and only if every connected component of H(z) is a border component.

Proof. Only if. Consider a feasible solution z and its adjacency graph H(z). Suppose
that H(z) has a nonborder component C, and construct two feasible schedules z!, 2z? €
P(G,d,s,g) N Z*"*™ from z by shifting the bounds in C one unit to the left resp. to the
right, i.e.,

T Zl].—l ifleO 9 le-i-l ifleO
Ay T a, iflj¢C AT a, iflj¢C
A zr; —1 ifr;€C 2 zr; +1 ifr; el
T zr,  ifr; € C T zr,  ifr; € C
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Claim: z!,2%2 € P(G,d,s,g) N Z>"T™. We first verify that z}j - zllj > d; for every
j € V. Suppose that r; € C but I; ¢ C. The construction of H(z) implies z,; — 2, > dj, since
otherwise /; would belong to C. Hence 2! satisfies the demand constraints. It is not difficult
to verify that 0 < zl1] for every j € V, since the left interval bound /; is shifted to the left
only when [; belongs to a nonborder component, implying z;; > 0. The opposite constraints

zll < s —dj are clearly satisfied.
J

To complete the proof of the claim we show that z!' satisfies the antiparallelity constraints,
by verifying that no overlappings are produced by the shifting. In this setting, an overlapping
can occur only when z;,, =1 (for jk € E) and z, is shifted but zr; remains unchanged. By
construction, this implies [y € C and r; € C, hence z,; +d;; < 2, and so z}j +0;; < lek The
schedule 22 is defined similarly, and the same arguments show that it is feasible. ¢

But now we have z = %(z1 + 22) and, therefore, z is not an extreme point.

If. Let z be a feasible solution such that every connected component of H(z) is a border
component. Further, suppose that z%,..., 27 € P(G,d,s,g) N 7> are p extreme points of
P(G,d,s,g) such that z = 3P «;2%, with 3F  a; = 1 and o; > 0 for i = 1,...,p. Since
zxe,zie € {0,1} for every edge e € E, then z, = zée.

Let C' be a connected component of H(z). Since C is a border component, then either
(a) I € C and 2, =0 or (b) r € C and z,, = s, for some ¢t € V. Assume w.l.o.g. that the
former holds. For k € C, define v to be the distance from node & to I; in H(z) (note that
Y, = 0). We now verify by induction on ~y that z;, = zlij for every [; € C' and 2, = zf;j for
every rj € C. Let k € C. If 4 = 0 then k = [;, so z, = 0. But zlit >0fori=1,...,p,
implying z;, = 0. On the other hand, if 7 > 0, then either k =; or k = r; for some j € V.
Suppose w.l.o.g. the former and consider the following cases:

o If there exists some 7, € C' such that z; + d;; = 2z, and v, = 7; — 1, by the induction

hypothesis we have z,, = zf;l for s = 1,...,p. Since z and 2’ have the same ordering
among the intervals, then zllj >z, — 0 = 2z, — 0j; = z;, implying zfj = z; for
1=1,...,p.

e On the other hand, if z,; — 2, = d; and Yr; = — 1, the induction hypothesis implies

zﬁj = 2p; for ¢ = 1,...,p. Since zfj < zﬁj —dj = z; —dj = z,, then zfj = 2 for
1=1,...,p.
The same arguments apply to the case & = r;. This way we show that z = Zifori=1,...,p

and, therefore, z is an extreme point of P(G,d, s,g). O

3.3.2 Combinatorial equivalence for large frequency spans

The main result of this subsection asserts that for every interference graph (G,d) and ev-
ery guard distance g there exists a value spax(G,d,g) € Z; such that the polytopes from
the families {R(G,d, 8, 9) }s>smax(G,dyg) TSP {P(G,d,5,9) }s>smax(G,d,g) are pairwise affinely
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isomorphic, hence being combinatorially equivalent. We also provide an upper bound on
smax (G, d, g).

Definition 3.13 The polytopes P C R"™ and Q C R™ are affinely isomorphic, denoted by
P = Q, if there is a bijective affine map f : R™ — R™ between the two polytopes.

Note that the definition asks for an affine bijection between all the points of the polytopes,
and this is equivalent to finding an affine bijection between the extreme points of P and @,
since affine bijections preserve convex combinations of points. Moreover, if f is a bijection
in the ambient spaces, then P and ) are basically “the same polytope” with respect to an
affine change of coordinates. From the combinatorial point of view, if P and @) are affinely
isomorphic, then they share the same facial structure. In particular, the affine map gives an
isomorphism between their extreme points, and between their facets [46].

Definition 3.14 Let 7(G,d,g) denote the minimum frequency spectrum length s such that
R(G,d,s,g) admits a solution for every possible ordering among the intervals.

In order to prove the equivalence of R(G,d,s,g) and R(G,d,s + 1,g), we define now a
different representation for feasible schedules, in terms of binary variables. For every node
i € V and every k € {0,...,s — 1}, define the binary position variable g;;, as:

1 ifl; >k
Gk = { 0 otherwise (3.3)

We also consider the ordering variables z;;, for ¢j € E, with the usual meaning. If P is a
polytope, we denote by vert(P) the set of extreme points of P. Therefore, to every extreme
point y = (I,z) € vert(R(G,d,s,g)) we can associate a point z¥ = (¢,z) € Z"™™™ with
7§ =y, and 2{ defined by (3.3).

Definition 3.15 R(G,d, s, g) = conv{z¥ : y € vert(R(G,d, s,g))}.

Since the extreme points y,...,y; of R(G,d, s, g) are pairwise distinct, then 2%, ..., 2¥
are pairwise distinct as well. Moreover, 2¥1, ..., zY are binary vectors and, therefore, none of
them can be written as a convex combination of the remaining ones. Hence R(G,d, s,g) has
exactly ¢t = |vert(R(G, d, s, g))| extreme points.

Lemma 3.30 R(G,d,s,g) 2 R(G,d,s,g).

Proof. Let 04 € R resp. 1, € R denote the d-dimensional row vector with only 0-
entries resp. l-entries. Consider the affine map f : vert(R(G,d,s,g)) — vert(R(G,d,s,g))
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defined by f(z) = Bz, where:

1, O 0, |0,
0, 1, 0, |0,
B = Do .o,
0, 0, ... 1,0,
0, 0, ... 0,1,

This function maps the point (g, z) to the point B(q, z) = (I, z), with [; = Zz;ll g;k- Therefore,
f maps extreme points of R(G,d, s,g) onto extreme points of R(G,d, s, g). This mapping is
clearly injective and, since the sets of the extreme points of both polytopes have the same
cardinality, it follows that f is a bijection between these sets. Since f is an affine bijection
between vert(R(G,d, s,g)) and vert(R(G,d,s,g)), then f is a bijection between R(G,d, s, g)
and R(G,d, s,g) and, therefore, these polytopes are affinely isomorphic. O

Lemma 3.31 If s > 27(G,d,qg), then R(G,d,s,g) = R(G,d,s +1,g).

Proof. Let y be an extreme point of R(G,d,s,g), and let C' be a connected component of
G(y). Since C is a border component, there there exists some 7 € C such that either y;, = 0 or
yi; = s—d; holds. Ify;, = 0, s > 27(G, d, g) implies max;jec yi; < /2. Similarly, if y;, = s—d;,
s > 27(G,d, g) implies minjec y;; > s/2. Hence the interval set can be partitioned into two
subsets, namely the intervals located in [0, s/2] and the intervals located in [s/2, s].

Now, if 2¥ is a feasible solution of R(G,d, s, g), we denote by shift(z¥) the corresponding
extreme point of R(G,d, s+ 1,g), which has the same configuration, but the intervals located
in [s/2, s] are now shifted one unit to the right (i.e., these intervals are located in the right
part of the new frequency spectrum [0, s + 1]). The point shift(z¥) can be written as:

o _ oy ik <[5/2]
shift(z¥)q,, { Ygip, k> ls/2]

This mapping shifts the intervals of y that are located in [s/2, 5] (and therefore have g; ;o = 1)
one unit to the right, and lets the remaining intervals unchanged. Moreover, it is an affine
bijection between the extreme points of R(G,d, s,g) and R(G,d, s+ 1,g) implying that they
are affinely isomorphic. O

Theorem 3.32 If s > 27(G,d,g), then R(G,d,s,g) = R(G,d,s+ 1,9).

Proof. From Lemma 3.30 and Lemma 3.31 follows R(G,d, s,g) = R(G,d,s,g) = R(G,d,s +
l,9) = R(G,d,;s +1,9). O

Remark. The definition of R(G,d, s,g) presented in this section was inspired by the con-
struction given in [37] for characterizing the integer hull of a general polytope. It is also worth
noting that an alternative proof of a weaker version of Theorem 3.32 was found by proving
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that the Fourier-Motzkin elimination method [43, 44, 46] performs the same operations on
R(G,d,s,g) and R(G,d,s + 1,g) when s > w(G,d). <

The same construction can be applied to prove a similar result for the polytope P(G,d, s, g).

To this end, we consider a new set of binary variables u;; for i € V and k € {1,..., s}, defined
by
_ 1 ifr; >k
ik = { 0 otherwise (3-4)

To every extreme point z = (I,r,z) € vert(P(G,d,s,g)) we can associate a point w* =
(q,u,z) € Z®™ with w? = 2z, and w; resp. w;, defined by (3.3) resp. (3.4). We define
P(G,d,s,g) € R*™ to be the convex hull of all the points constructed this way. The same
techniques from the previous lemmas can be applied to show the following result.

Theorem 3.33 If s > 27(G,d,g), then P(G,d,s,g) =2 P(G,d,s +1,9).

Hence, there exists a certain value of the frequency span which ensures combinatorial
stability for the general polytope P(G,d,s,g). We thus introduce the corresponding thresh-
old for combinatorialy stability of chromatic scheduling polytopes, which is well-defined by
Theorem 3.33.

Definition 3.16 (combinatorial stability threshold) We denote by smax(G,d,g) the
minimum frequency span s such that the polytopes P(G,d,s,g) and P(G,d,s+1,g) are com-
binatorially equivalent.

Theorem 3.33 implies 27(G,d,g) < smax(G,d,g), but the computational experiments
from Section 2.2 suggest smax(G,d, g) = 7(G, d, g)+1. Moreover, this computational evidence
suggest that smax(G, d, g) is also the minimum frequency span ensuring combinatorial stability
for the fixed-length polytope R(G,d, s, g).

3.3.3 A better bound for the case Ex =0

If Ex = 0 (i.e., we have no inter-sector edges), then G is the disjoint union of cliques 71, . .. , T},
each one corresponding to one sector. In this case, we can prove the combinatorial equiva-
lence of R(G,d,s,g) and R(G,d,s + 1,g) for s > 7(G,d, g), thus giving a better bound for
Smax(G, d, g) in this particular setting.

In order to state this result, we define another representation for feasible solutions. For
each node 7 € V, consider the gap variable p; measuring the total gap to the left of the interval
I(i) (not just the gap between I(i) and its immediate predecessor, but the sum of all gaps
located to the left of I(z)). We also consider the ordering variables z;;, for ij € E, with the
usual meaning. In this setting, a feasible solution is any assignment of integer values to these
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variables such that the following constraints are satisfied:

pi < pitswzy Vije E, 1 <j (3.5)
pi < pj+s(l—uxy) Vij€E, i<j
0 < i < s— ) djzy; Vk=1,...,t, Vi €T}

JETE
2 > Q}ij—i-.’ll'jk—l-(l—.’ll'ik) Vij, gk € E, 1 <j, 1<k (3.8)
zi; € {0,1} Vije E, i<j

Definition 3.17 Let R(G,d,s,g) € R"™™ denote the convex hull of all feasible solutions
(p,x) € Z"™ satisfying constraints (3.5)-(5.9).

Lemma 3.34 R(G,d,s,g) = R(G,d,s,g).

Proof. We show that both polytopes are affinely isomorphic by verifying that the gap variables
p can be obtained from the interval bounds [ and the ordering variables z by an affine map.
If ¢ € Ty, then
pi = li - Z djﬂ)ji (3.10)
JETK\{i}

Given any integer solution (I,z) € R(G,d,s,g) N Z"T™ we can find its associated solution
(p,z) € R(G,d,s,g) using 3.10. We can write this mapping in matrix form as (p,z)’ =
A(l,z)T, with A € R(vtm)x(ntm).

p\ (I, M l

z) \0 I, z )’
where I,, is the n x n identity matrix and M is a (m X m)-matrix with integer entries. Given
this structure, it can be seen that A is nonsingular, and thus this mapping is an isomorphism

on the ambient spaces. Therefore, R(G,d, s,g9) = R(G,d,s,g). O

Lemma 3.35 The point z € R(G,d, s,g) is an extreme point of R(G,d,s,g) if and only if
each clique Ty, of G can be partitioned as Ty, = T}, UT} in such a way that z,, =0 for i € T},
and zp;, = s — w(Ty) fori €Ty

Proof. Only if. If 0 < zp, < s —w(T}) for some ¢ € T}, then the set of intervals associated
with nodes in T} having no gap between them and including (%) can be shifted one unit to
the left and one unit to the right, thus constructing two feasible solutions z; and z3 such that
z=3(z1 + 22).

If. Suppose that z = 3¢, a;2%, with 30, ; = 1 and o; > 0. Since z € {0,1}™, then

zy, = zy for i = 1,...,p. Moreover, if j € T} then zzi)j > 0 = z,, and if j € T} then
in)j < s —w(Tk) = 2, for every i = 1,...,p. Thus, z;;]_ = zp, for all j € V, and then z is an

extreme point of R(G,d,s,g). O
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Lemma 3.36 If s > 7(G,d,g), then R(G,d,s,g) = R(G,d,s +1,g).

Proof. Note first that s > 7(G,d,g) if and only if s > w(T}) + 1 for every k = 1,...,t. For
each clique T}, of G, define ny = |Ty| and let M}, € R™ *™ be the matrix

s—i—l—w(Tk)

M, =
g s — w(Ty)

I,.

We now define an affine map f : R"*™ — R"™™ as f(y) = By, with

Ml 0n2><n2 o Ont><nt 0m><m
0n1 XNy M2 e Ontxnt 0m><m
B — . . . .
0n1 Xn1 0n2><n2 o Mt 0m><m
0n1 Xni 0n2><n2 e Ontxnt Im

Let z be an extreme point of R(G, d, s, g). By Lemma 3.35, each clique Ty, C G has a partition
Ty, = T}, U T} such that z,, = 0 for ¢ € T}, and zp, = s — w(T}) for i € T}. Thus, f(z)y, =0
for i € T} and g(z),, = s + 1 — w(T}). Moreover, f(z); = 2z, and so f(z) is the same point
than z, but with the intervals corresponding to U, T}’ shifted one unit to the right (i.e., at the
right of the new frequency spectrum [0, s+ 1]).

Since s > w(Ty) + 1 for k£ = 1,...,t, we have that f maps every extreme point of
R(G,d,s,g) onto its corresponding extreme point of R(G,d,s + 1,g). Note that the lower
bound on s ensures that all orderings among the intervals are feasible in R(G,d,s,g) and
thus no new interval ordering is introduced in R(G,d, s +1,g). Since B is nonsingular, then

R(G,d,s,g) = R(G,d,s +1,g). O
Theorem 3.37 If s > 7(G,d,g), then R(G,d,s,g) = R(G,d,s+1,g).

Proof. By Lemmas 3.34 and 3.36, we have that R(G,d,s,g)

g R(G7d’s7g) g R(G’d78 —"_
l,9) 2 R(G,d,s +1,g). Hence R(G,d,s,g) =2 R(G,d,s+1,g). O

Corollary 3.38 If s > 7(G,d,g), then the polytopes R(G,d,s,g) and R(G,d,s + 1,g) are
combinatorially equivalent.

3.4 Relations to the linear ordering polytope

A linear ordering of a finite set V' = {1,...,n} is a bijective mapping o : V. — {1,...,n}.
For i € V and j € V, we say that 7 is before j in o if 0(i) < o(j). Given a linear ordering
o of V, we can define an acyclic tournament 7' = (V, A) with arc set A = {ij : 0(i) < o(j)}
and, conversely, every acyclic tournament 7" = (V, A) induces a linear ordering of V. For
every two elements ¢,7 € V two values ¢;; € R and ¢j; € R are given, measuring the profit
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we obtain from having ¢ before j resp. j before i in a linear ordering. The weight of a linear
ordering o is defined to be ¢(0) = 32, (;)<0(j) Cij» and the problem of finding a linear ordering
of maximum weight is called the linear ordering problem. This problem is N"P-hard [20] and it
is closely related to the so-called feedback arc set problem and the acyclic subgraph problem
[24]. It has applications in economics (triangulation of input-output matrices), scheduling
(minimizing average weighted completion time), sports (ranking of teams), mathematical
psychology, archeology and anthropology.

We can associate with each linear ordering o a characteristic vector 7 € R”(”_l), defined

as follows.
50— 1 ifo(i) < o(y)
Y] 0 otherwise

The linear ordering polytope P}y, on n nodes is the convex hull of the characteristic vectors of
all linear orderings of {1,...,n}. This polytope has attracted much attention. Several classes
of facet-defining inequalities are known [8, 19, 23, 38], and the complexity of the associated
separation problems has been studied in detail [39]. Complete descriptions of P}, are known
for n < 7, with 87.472 facets for n = 7. A conjectured complete description for n = 8 contains
over 480 million facets [13].

Chromatic scheduling polytopes share many structural properties with the linear order-
ing polytope, since the ordering variables have the same meaning in both settings. Not
surprisingly, some of the simplest cases of chromatic scheduling polytopes, namely the in-
stances defined over complete graphs, are equivalent to Pf',. We show that R(K,,d,s,0) and
P(Ky,d,s,0) are affinely isomorphic to P}'5 when s = Y"1 | d;, and afterwards we present a

generalization of this result for the fixed-length case when s > Y1 d;.

Recall that two polytopes P € R" and ) € R™ are affinely isomorphic, denoted P = @),
if there is an affine bijection f : R® — R between the points of the two polytopes.

Theorem 3.39 If s =3}, d;, then P(K,,d,s,0) = Py and R(K,,d,s,0) = PJ,.

Proof. Since s = w(K,,d) then P(K,,d,s,0) is nonempty. Moreover, all intervals I(i) have
exactly length d; and there is no gap between two intervals left; thus the feasible solutions
distinguish only in the order of the intervals. Therefore, the following linear equations are
satisfied by every feasible solution of P(K,,d,s,0):

li = Zj;éidjwji iZl,...,’I’L

r; = Zj;ﬁidjxji—i_di 1=1,...,n
Hence the interval bound variables can be written as affine combinations of the ordering
variables, which are precisely the linear ordering variables. Moreover, this affine mapping
is a bijection, since every linear ordering generates a feasible schedule in P(K,,d,s,0) and
conversely. Thus, P(K,,d,s,0) = P/',. Since every feasible schedule z € P(K,,d,s,0) N
Z>"™ has z,.. — 2. = d;, then P(K,,d,s,0) = R(K,,d,s,0), implying R(K,,d,s,0) = PF,.
O

When s = w(K,,d), every feasible solution of P(K,,d,s,0) is a linear ordering. The
affine mapping is possible since there cannot be empty spaces between the intervals. If
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s > w(Ky,d), there will be some empty space between the intervals or there exist intervals
I(i) with r; > I; + d;. We can still give a characterization of R(K,,d,s,0) in terms of the
linear ordering polytope, but not for P(K,,d, s,0) anymore.

Theorem 3.40 If s > YI", d;, then R(K,,d,s,0) = P/}t

Proof. By Theorem 3.28, every extreme point y of R(K,,d,s,0) has the following structure.
The node set is partitioned into V' = L, U R, such that

Yy, = Z ya;jidj Vi € Ly
JELy
y, = s— Y yu;dj  ViER,
JERy

That is, the intervals corresponding to nodes in L, resp. R, are located in the left resp. right
part of the frequency spectrum, and there is only one empty interval in between, namely
[d(Ly),s — d(Ry)]. We can regard this unique empty interval as a new interval with length
s —y.ir, d;, and so every extreme point of R(K,,d, s,0) represents a linear ordering on n + 1

nodes. Hence, given an extreme point z € vert(PJ 1) we can construct an extreme point of

R(Kn,d,S,O) by
o= Y diwii+ (=D dj)anp i=1,....m
J=1 j=1

Since vert(R(Ky,d, s,0)) includes every linear ordering among the n + 1 considered intervals,
then this mapping is an isomorphism and, therefore, R(K,,d, s,0) = P/'} Lo

These results imply that even simple chromatic scheduling polytopes, namely those defined
over complete graphs, are hard to characterize. A complete description of R(K,,d,s,0) in
terms of its facets should include all the linear ordering facets, which amount to several
millions of valid inequalities even for small instances [13]. One may expect that similar
relationships may hold for chromatic scheduling polytopes over arbitrary graphs, and this is
indeed the case. The remaining of this section is devoted to presenting these results.

Definition 3.18 If 1’z < my is a valid inequality of o, let Sy denote the set of directed
arcs having nonzero coefficients in the inequality (i.e., Sz = {e € E : w¢ # 0}).

Proposition 3.41 Let 77z < my be a valid inequality of PP, with S, C E. Then the
inequality 3-,:cq mijTij < mo is valid for P(G,d,s,g) and R(G,d,s,g).

Proof. Let (I,r,z) € P(G,d,s,g) N Z*"™ be an integer feasible solution. The vector
specifies a partial ordering among the intervals, and can be extended into a linear ordering
z' € PP, satisfying nl7z’ < mp. Since S; C E, then nla’ = > ijesy mja;%j = Y ijesx TijTij,
implying that >>,;cq mijzij < mo is valid for P(G,d, s, g). Since this inequality only involves
the ordering variables, it is also valid for R(G,d,s,g). O
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Theorem 3.42 Let 7'z < my be a facet-defining inequality of Pry with S C E. If s >
w(G,d), then 3, ;cs. mijTij < mo defines a facet of P(G,d,s,g) and R(G,d, s, g).

Proof. Since the equations z;; + z;; = 1 Vi # j are a maximal equation system for Py,
there exist k = n(n — 1)/2 affinely independent integer points z',...,z¥ € PP, such that

nl'z? = my for i = 1,...,k. These points have n(n — 1)/2 coordinates, one for each edge
of K,. Delete the coordinates corresponding to the edges that are not present in G. That
way we obtain the new points proj,(z'),...,proj,(z") € R™, and we can find m affinely

independent points among them. Since s > w(G,d), we can extend z* = proj,(z°) to a
feasible schedule z' € P(G,d, s,g) N Z*"T™, by assigning the intervals in such a way that the
precedence relation indicated by Z* is satisfied, i.e., zlij = L;(z*,s) and zf;j = L;(7,s) +d; for
j € V. By construction, this schedule is feasible.

We now construct 2n more affinely independent points from z! as follows. Let D =
(V,Ep) be a digraph such that ij € Ep if and only if i € E and I(j) is located before
I(i) in z'. Let 41,...,i, be a topological ordering of D, and construct n feasible solutions
ul,...,u" € P(G,d,s,g) by setting

i z, + 1 if j =iy, for t <
i z}] if § =iy, for t > i
ui]_ = uf].+dj

Now, for j = 1,...,n, construct a point w/ € P(G,d,s,g) from u/ by enlarging the in-
terval I(i;) one unit to the left. These new schedules are affinely independent with re-
spect to z',...,2". This way we complete a set of 2n + m affinely points and, therefore,
Yijes, TijTij < mo defines a facet of the (full-dimensional) polytope P(G,d,s,g). The con-
struction of the schedules z', ..., zF and u!,...,u™ shows that this inequality also defines a

facet of R(G,d,s,g). O
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Chapter 4

Facets for all nonempty instances
coming from symmetry arguments

An algorithm which is good in the sense used here is not
necessarily very good from a practical viewpoint. How-
ever, the good versus not-good dichotomy is useful. (...)
The classes of problems which are respectively known and
not known to have good algorithms are very interesting
theoretically.

— Jack Edmonds (1967)

Chromatic scheduling polytopes also admit interesting properties from a geometrical point
of view. The main reason is that there are only antiparallelity requirements on the jobs but
no prescribed partial orders, implying strong symmetry properties as addressed in Section
4.1. The main consequence is a powerful tool for identifying facet-defining inequalities for
nonempty polytopes without any knowledge on the dimension. This is of particular interest
as determining the dimension of chromatic scheduling polytopes is N'P-complete.

Based on this tool, we analyze in Section 4.2 the demand constraints, the binary bounds
on the ordering variables, and a further class of valid inequalities showing that they induce
facets whenever the polytopes are nonempty. We also observe that the remaining integer
programming constraints, i.e., the bounds on the interval variables and the antiparallelity
constraints, do not define facets in general.

Section 4.3 presents three classes of facet-defining inequalities for the polytopes P(G, d, s, g)
where the frequency span s is small compared to the weighted clique number w(G, d). This
setting is the hardest case in practice, since we cannot expect to find feasible solutions in
a straightforward manner. We explore three classes of inequalities being valid only in low-
dimensional polytopes, but being facet-inducing due to symmetry arguments.
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4.1 Symmetry of chromatic scheduling polytopes

Chromatic scheduling polytopes admit a particular property: they are symmetric. Recall that
we only have antiparallelity constraints for potential interferers i € E but no precedence
relation given in advance. Hence, in a feasible solution either the interval I(7) has to be
scheduled before the interval I(j) or I(j) comes before I(z). Thus, for every feasible schedule
S, there is a feasible schedule symmetric to S w.r.t. the available spectrum [0, s|, obtained
by swapping all intervals of S. This is obviously not true for scheduling problems in general.
Clearly, the polytopes P(G,d, s,g) and R(G,d, s, g) reflect the symmetry of the schedules.

This was first observed in [21] and further explored in [26]. In this section we discuss this
property in more detail and study how it affects the search for valid inequalities. We first
state the main results concerning the symmetry of R(G,d, s,g) resp. P(G,d,s,g) in Section
4.1.1 resp. Section 4.1.2. This special symmetry provides tools for identifying facet-defining
inequalities without any knowledge of the dimension of the polytopes, see Section 4.1.3. We
shall apply these theorems in Section 4.2 and Section 4.3 to some classes of valid inequalities
showing that they define facets whenever the polytopes are nonempty.

4.1.1 Symmetry results for R(G,d, s, g)

In the fixed-length case, the polytope admits a symmetry point as observed in [21, 26].
Theorem 4.1 ([26]) The polytope R(G,d, s, g) is symmetric with respect to the point

_<s—d1 s—d, 1 1>
p= 5 T 5 gy

- vl vl

N~ N~
n m

Proof. Let S be a feasible schedule, representing an assignment of an interval I(z) = [I;,1; +d;]
to each customer i € V. We obtain a symmetric assignment of intervals I'(i) = [I},1} 4+ d;] =
[s — l; — dj,s — ;] in the reverse order if we mirror the interval I(:) with respect to the
available spectrum [0, s] for every i € V. Thus the schedule S’ given by the left interval
bounds l; = s —l; —d; Yi € V and the precedence variables z;; = 1 —z;; Vij € E, i < j
describes a feasible schedule symmetric to S. Hence

li-i-lg _ li+s—1;—d; _ s —d; and $ij+I;j _ ZTij +1— x4 :1
2 2 2 2 2 2

implies that

is the symmetry point of R(G,d, s, g). O
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Definition 4.1 If y = (I,z) € R(G,d,s,g) N Z""™ s a feasible integer solution, then
sym(y) = 2p — y denotes its symmetrical solution, i.e.,

()= ()0)

Due to the symmetry of the polytope R(G,d, s, g), to every face exists a parallel face of
the same dimension and there is a simple formula to compute this parallel face.

Theorem 4.2 ([26]) Letb < a’'z be a valid (facet-inducing) inequality of R(G,d, s, g). Then
a’z < 2a’p — b is also valid (facet-inducing) for R(G,d,s,g).

Proof. We first prove that o’z < 2a”p — b is valid for R(G,d,s,g). Let y be a feasible
solution and let y' = sym(y) = 2p —y. Then a’y = a’ (2p —¢') = 2a’p — a’y' < 2aTp — b
(since 3/ is feasible and a’y’ > b). Now, if there are k affinely independent points in H =
{y € R(G,d,s,9) : a’y = 2a’p — b}, there are obviously k affinely independent points in
H' = {y € R(G,d,s,g) : a’'y = b}. Thus, if b < o’z is facet-inducing for R(G,d, s, g), then
a’z < 2a"p — b is facet-defining too. O

4.1.2 Symmetry results for P(G,d, s, g)

In the general case, every feasible schedule is represented by the interval bounds I, € R"
and the ordering variables £ € R™. Swapping all the intervals of a feasible solution z =
(1,7, z) with respect to the spectrum [0, s] constructs a new point z’ which is also feasible and
symmetric to the original one. Thereby, the swapping maps the left interval bounds I; of z to
the right interval bounds r} of 2’, and reverses the order of the intervals:

l; —)7'2 =s—1; YieV
ri =l =s—r; YieV

Tij — .’E;j:1—mij Vij € E

Hence, swapping the intervals yields

!/ !/ !/ ! !/ !/
(s oo sl Ty oo Ty @1y e Tjn) = (P e T Uy ooy by Ty - -+, )

The point p with entries

p, = Wn sl _swyiey

12

pr, = "L _nmbsn _syiey
7

_ R R T T h e B T

Pzij = 2 2 =3 VijeE

is, therefore, the symmetry point for every pair of symmetric feasible solutions z and z’. Since
p is independent of the special choice of z, it can be seen as the symmetry point of P(G,d, s, g)
with respect to swapping schedules.
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Definition 4.2 Let sym(z) denote the symmetrical point of an integer solution z = (I,r,x) €
P(G,d,s,g) N Z*"™  where

of)- (- (3)-0)

We again benefit from the symmetry of the polytope in order to find, for every inequality
valid for P(G,d, s, g), a symmetric valid inequality. For that, let S be a feasible schedule and
let z° € P(G,d,s,g) N Z>"t™ be its associated vector. Let b < aTz be a valid inequality of
P(G,d,s,g). The straight line through z° and the symmetry point p meets the hyperplane
H = {z € R : ¢T¢ = b} in a point, say z5. Let 2% and 23 be the images of z° and 2}
obtained by the swapping. Then 27, lies on the hyperplane H' = {z' € R*"*™ . o4/ =¥/}
with
z = (Trys ey Ty Tl oy Tl s Ty -+ o5 Ty )-

Observe that a’z’ = a'T'z holds by

Ty x;
(alaaraax) zp | = (araalaax) Ly
Ty Ty

Thus we may represent the hyperplane H' = {z € R**™ . ¢/T¢ = b'} with

I_
@ = (Aryy ooy Qs Qs ALy Ay e e ey Gy )

By P(G,d,s,g) C {z € R : b < a"z} and the symmetry of the polytope, P(G,d,s,g) C
{x € R¥™™ . i < —aTx} follows, ie., a'Tz < V' is valid for P(G,d,s,g). We have to
determine b'. The previous observations imply zg = 2p — zfl Thus, from aTzI% = b and
a® 23 =V follows

4
b = aTzIS; = aT(

2 —z27) =2a"p—alzy =2aTp—b

and a'T'z < 2a’'p — b is, therefore, the valid upper bound inequality of P(G,d, s, g) symmetric
to b < a’z. (Note a’p = a''p.) Further, if there are k affinely independent points in
HNP(G,d,s,g), there are obviously k affinely independent points in H'N P(G,d, s, g). Thus,
if b < a’'z is facet-inducing for P(G,d, s, g), so is '’z < 2a”p — b and we have obtained the
following theorem:

Theorem 4.3 ([26]) Let b < a’'z be a valid (facet-inducing) inequality of P(G,d,s,g) and
let p be the symmetry point of P(G,d,s,q) with respect to swapping schedules. Then o'z <
2a7'p — b is also valid (facet-inducing) for P(G,d,s,q) where

r_
@' = (Qryyeee s Qs @y ey QL Gy Qg )

~~ ~~ ~-
n n m
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4.1.3 Facets arising from symmetry arguments

The symmetry of chromatic scheduling polytopes provides us an important tool for identifying
facet-defining inequalities, where no knowledge on the dimension is required. The results of
this subsection show that if F' is a face such that y € F' < sym(y) € F, then F is a facet of
R(G,d,s,g). With some other minor assumptions, the same result applies to P(G,d, s, g).

Theorem 4.4 Let F be a face of R(G,d,s,g) such that y € F < sym(y) € F for every
y € R(G,d,s,g) NZ"T™. Then F is a facet of R(G,d,s,g).

Proof. Assume that dim(F') = k, and let yy, ...,y be a maximal set of affinely independent
points in F. Let ypy1 € F be any feasible solution outside F. Then, yo,..., Yk, Ypr1 are
affinely independent, because vy, ...,y satisfy the equation which defines F' and yx,1 does
not.

Now let yxio & F' be some other feasible solution not in F'. Note that sym(yx1) and
sym(ygi2) are in F', and thus they can be written as affine combinations of yo, ..., y,. Then,

s1—d s1—d
Ye+2 — Yk+1 = 1 — Yk+1 — 1 + Yk+2

= sym(ygi1) — sym(ye12)

k k
= Y awi— Y B
i=0 i=0

k

= > (@i = Bi)yi,
i=0
where >, a; = >; 8; = 1. But then
k
Ykt2 = Yks1 + Y (i — Bi)yi
i=0
implies that yx,o is an affine combination of the points yo,...,yr, yx+1. This proves that

dim(R(G,d, s,g)) = dim(F) + 1 holds, and thus F is a facet of R(G,d,s,g). O

The symmetry for the general case provides some tools for identifying facet-defining in-
equalities as well. In order to state these results, recall Lemma 3.9, which relates the dimension
of R(G,d,s,g) and P(G,d,s,g) by means of the node subset Fy(G,d).

Theorem 4.5 Let F = {y € R(G,d,s,g) : a’y = b} be a face of R(G,d,s,q) such that
red(z) € F < red(sym(z)) € F for every z € P(G,d,s,g) N Z*""™. Then F' = {z €
P(G,d,s,q) : a'red(z) = b} is a facet of P(G,d,s,q).

Proof. If y € R(G,d,s,g), then ext(y) € P(G,d,s,g). By the hypothesis, we have that
either red(ext(y)) € F or red(sym(ext(y))) € F (but not both). But red(ext(y)) = y and
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red(sym(ext(y))) = sym(y) imply y € F < sym(y) ¢ F. Therefore, F is a facet of R(G,d, s, g)
by Theorem 4.4. Let r = dim(R(G,d, s, g)), then there exist r affinely independent vectors
y',...,y" in the facet F (i.e., a y* = b for k = 1,...,r). Then, ext(y'),...,ext(y") are
affinely independent points satisfying a” red(ext(y*)) = b by definition.

Now, for each k € Fy(G) let z¥ € P(G,d, s,g) be a solution such that sz - zﬁ > dj, and

k zl’j = d, for | # k. We can assume that red(z¥) € F' (otherwise, consider the reduction

r
of its symmetrical point sym(z¥)). Define the following set of feasible solutions:

V4

A = {ext(yl),...,ext(y")} U {zF: ke Fy(G)}.

For every k € Fs(G), z¥ is affinely independent w.r.t. the points in A\{z*}, since all the
points in A\{z*¥} satisfy r, — [y = dj, but z; does not. This way we have by Lemma
3.9 |A] = dim(R(G,d,s,q)) + |Fs(G)| = dim(P(G,d,s,g)) affinely independent points in
P(G,d, s, g) satisfying a’ red(z) < b at equality and this inequality defines, therefore, a facet
of P(G,d,s,g). O

Corollary 4.6 Let F = {y € R(G,d,s,g): a’y = b} be a face of R(G,d,s,g) such thaty €
F & sym(y) € F for every y € R(G,d, s,g) NZ* ™ and proj,(a) = 0 (i.e. only z-variables
have nonnegative coefficients in a’y <b). Then F' = {z € P(G,d,s,g) : a’ red(z) = b} is
a facet of P(G,d,s,q).

Proof. We verify that the assumptions of Theorem 4.5 are satisfied. Counsider any feasible
solution z € P(G,d, s,g). By the hypothesis, we know that red(z) € F < sym(red(z)) & F.
Moreover,

a’ red(sym(z)) = proj,(a) proj,(red(sym(z)))
proj;(a) proj,(sym(red(z)))
= ol sym(red(z)).

Then, we have that

red(z) €F < a’ red(z) =b
& ol sym(red(z)) < b
& al red(sym(z)) < b
& red(sym(z)) € F.

So, the hypotheses of Theorem 4.5 are satisfied, and thus F' is a facet of P(G,d,s,g). O

4.2 Facets coming from the model constraints

With the help of the results from the previous section, we are now able to determine which
model constraints define facets of chromatic scheduling polytopes. In this section we show
that the lower and upper bounds on the ordering variables 0 < z;; < 1 Vij € E implied
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by the binary constraints z;; € {0,1} are always facet-defining whenever the polytopes are
nonempty, and we present a further class of valid inequalities which admits the same property.
We also give a characterization of the cases where the demand constraints define facets of
P(G,d, s,g). We start with the bounds on the ordering variables.

Theorem 4.7 If ij € E, then x;; > 0 and z;; < 1 define facets of R(G,d,s,g) and
P(G,d, s, g), whenever the polytopes are nonempty.

Proof. Let F' = {y € R(G,d,s,9) : yz; = 1} be the face defined by z;; < 1, i.e., the convex
hull of the set of points having I(i) before I(j). A point has I(i) before I(j) if and only if its
symmetrical point has I(j) before I(i), and thus y € F' < sym(y) ¢ F. Theorem 4.4 shows
that F is a facet of R(G, d, s,g), and Corollary 4.6 implies that F' = {z € P(G,d,s,9) : z,; =
1} is a facet of P(G,d, s,g). The same argumentation applies to z;; > 0. O

Definition 4.3 (triangle inequalities) Consider a triangle T = {i,j,k} of G, i.e., a set
of three pairwise adjacent nodes of G. We define

Tij + Tk + Ty < 2 (4.1)

to be the triangle inequality associated with T

It is easy to verify that triangle inequalities are valid for both polytopes, since z;; = zj;, =
zk; = 1 is obviously not possible in any feasible solution. We now apply the results of Section
4.1.3 to prove facetness.

Theorem 4.8 The triangle inequalities define facets of R(G,d,s,g) and P(G,d,s,g) when-
ever the polytopes are nonempty.

Proof. Let y € R(G,d,s,g) be an integer solution. Since {7, j,k} is a complete subgraph,
the intervals I(i), I(j) and I(k) cannot overlap in y. Thus y contains one of the six con-
figurations depicted in Figure 4.1. Note that the cases (a), (b), and (c) satisfy (4.1) at
equality, whereas the cases (d), (e), and (f) do not. Moreover, the cases (a), (b), resp. (c)
are the symmetric cases of (d), (e), resp. (f). Thus, if F' is the face defined by (4.1), then
y € F < sym(y) ¢ F holds. Theorem 4.4 resp. Corollary 4.6 implies that F' is a facet of
R(G,d,s,g) resp. P(G,d,s,g). O

Corollary 4.9 If T = {i,j,k} is a triangle of G, then the inequality 1 < ;5 + x5 + T4
symmetric to (4.1) is facet-inducing for P(G,d,s,g) and R(G,d, s,g) whenever the polytopes
are nonempty.

Let us now analyze the demand constraints I; + d; < r; for P(G,d, s, g) (recall that these
constraints are replaced by equalities in R(G,d,s,q)). Let i € V. If i € Fs(G,d), ie., if
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(a) (b) (©)

(d) (e) ()

Figure 4.1: Possible cases for y.

every point in P(G,d, s, g) satisfies l; + d; = 4, then P(G,d,s,g) C{y : y, +di = yr;}. On
the other hand, if i € Fy(G,d), i.e., if there exists a feasible solution z € P(G,d,s,g) with
21, + d;i < zp;, then the demand constraint for the node 7 defines a proper face of P(G,d, s, g)
and, moreover, this face is a facet.

Theorem 4.10 If i € F4(G,g), then the demand constraint l; + d; < r; defines a facet of
P(G7 d’ 879)'

Proof. Call dim(P(G,d,s,g)) = k, and let 4°,...,y* € P(G,d,s,g) be k + 1 affinely in-
dependent points in P (y/ € R2”+m)'. For i = 0,...,k, consider the vector 7/ obtained
from 3/ by replacing its rj-entry by yfi + d;. Note that this shrinks the interval I(i) to its
minimum length d; in every %/, leaving the remaining intervals unchanged, and thus keep-
ing feasibility. These new points lie in the face F' of P(G,d,s,g) defined by I; + d; < r;.
Moreover, from dim{y°,...,y*} = k follows dim{7°,...,9*} > k — 1. But there is a point
z € P(G,d,s,g) which does not satisfy the demand constraint [; + d; < r; at equality, and
thus dim{g°,...,7*} = k — 1, implying that this inequality defines a facet of P(G,d,s,g). O

It is natural to ask whether the remaining model constraints, i.e., the bounds on the
interval variables and the antiparallelity constraints, induce facets. In Chapter 5 we shall see
that these constraints do not induce facets in general, and we shall devise strengthenings of
the corresponding inequalities providing facet-inducing families of inequalities.

4.3 Facet-defining inequalities for small frequency spans

If s is close to the weighted clique number w(G, d) of the interference graph, then the frequency
spectrum [0, s] does not allow every possible ordering among the intervals. This setting is
the hardest case in practice since we cannot expect to find feasible solutions easily. This
section presents valid inequalities that arise in this situation. The main idea is to identify
structures on the interference graph that preclude every possible ordering, and to state a valid
inequality asserting this constraint. The inequalities devised in this section are amenable of
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(a) (b) (©)

Figure 4.2: Possible configurations of a feasible solution in the proof of Theorem 4.12.

being analyzed with symmetry arguments, and we will use the results presented in Section
4.1.3 to show that these inequalities are facet-defining as long as the polytopes are nonempty.

Definition 4.4 (4-path inequalities) Let i,j,k,l € V be four nodes of G such that ij, jk,
kl € E and no feasible solution of P(G,d,s,qg) has the ordering i — j — k — . We define

Tij + Tk + Tkt < 2 (4.2)

to be the 4-path inequality associated with the path {i,j, k,l}.

Proposition 4.11 If no feasible solution has the ordering i — 7 — k — [, then the 4-path
inequality (4.2) is valid for R(G,d,s,g) and P(G,d,s,g).

Proof. The 4-path inequality can only be violated by a solution z € P(G,d,s,g) N Z**T™
such that zy,; = 25, = 2y, = 1, but this implies that z has the ordering i — 7 — k — [,
which is excluded by the hypothesis. Hence (4.2) is valid for P(G,d, s, g) and, since it does
not involve the interval bounds, it is also valid for R(G,d, s,g). O

Theorem 4.12 If no feasible solution has the ordering i — j — k — [, then the 4-path
inequality (4.2) is facet-inducing for R(G,d,s,g) and P(G,d,s,g).

Proof. Let y € R(G,d,s,g) N Z""™ be an integer feasible solution. Since the ordering
i — 7 — k — [ is not allowed, then y has one of the six forms depicted in Figure 4.2. Note
that cases 4.2(a), 4.2(b) and 4.2(c) satisfy (4.2) at equality, whereas cases 4.2(d), 4.2(e) and
4.2(f) do not. Moreover, cases 4.2(a) and 4.2(d) are symmetrical, cases 4.2(b) and 4.2(e)
are symmetrical, as well as 4.2(c) and 4.2(f). Thus, if F' is the face defined by (4.2), then
y € F < sym(y) € F, and by Theorem 4.4 and Corollary 4.6, the inequality (4.2) defines a
facet of R(G,d,s,g) and P(G,d,s,g). O

Remark. The 4-path inequality appears only for small values of s preventing a linear ordering
of the nodes {i, j, k,l}. This ordering is not feasible if

d; + dj +dp+di+g (5@' + 5jk + 5kl) > s, (4.3)
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where ¢;; denotes the minimum possible distance between I(i) and I(j). Note that the
converse is not true in general, i.e., it may happen that (4.3) is not satisfied but still the
structure of G does not allow the ordering ¢ — j — k& — [. This is the situation in the
example depicted in Figure 4.3, which has g = 0 and d; +d; + dy, +d; < s, but does not allow
the ordering in question. <

| |

—

Figure 4.3: The ordering i — j — k — [ is not feasible but (4.3) does not hold.

The 4-path inequalities cannot be trivially generalized to facet-inducing inequalities asso-
ciated with paths on more than 4 nodes. For example, let ji,...,jx be a path in G on k > 4

nodes, such that no feasible solution has zj, ;,,, =1 fori=1,...,k—1. Then, the inequality
E—1
Z Tjijin < k—1 (4.4)
i=1

is valid but may not define a facet if s is too small.

Definition 4.5 (paw inequalities) Let i,5,k,l € V be four distinct nodes of G such that
{i,74,k} induces a triangle and jl € E. Furthermore, suppose that no feasible solution of
P(G,d, s,g) has the ordering i — j — k and j — 1. We define

Tjptxj < 1+xy (4.5)
to be the paw inequality associated with the nodes {i,7,k,1}.

Remark. Note that the definition of the paw inequalities allows il € E and kl € F, i.e., the
node set {i,7,k, [} is not supposed to define an induced paw. <

Proposition 4.13 If no feasible solution has the ordering ¢ — j — k and j — [, then the
paw inequality (4.5) is valid for R(G,d,s,g) and P(G,d,s,g).

Proof. The only combination of values for variables z 1, 2;; and zj; violating inequality (4.5)
is zjp = xj; = 1 and zj; = 0, which amounts to the forbidden ordering s — j — k and j — [.
Thus, (4.5) is a valid inequality for R(G,d, s,g) and P(G,d,s,g). O

Theorem 4.14 If no feasible solution has the ordering 1 — j — k and j — [, then the paw
inequality (4.5) is facet-defining for R(G,d,s,g) and P(G,d,s,g).
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Proof. To show that this inequality defines a facet of these polytopes, it is enough to verify
that y is in the face defined by (4.5) if and only if sym(y) is not, and then applying Theorem
4.4 and Corollary 4.6. O

To close this section, we now present a facet-defining inequality for a 5-node structure.

Definition 4.6 (extended paw inequalities) Let 1,...,5 € V' be five distinct nodes such
that 12, 23 € E and {3,4,5} form a triangle in G. Moreover, assume that no feasible solution
has the orderings 1 -2 -3 —4,1—-2—=33—=5and2— 3 —4— 5. We define

T34 + w35 — 21 < 2730 (4.6)

to be the extended paw inequality associated with the nodes {1,...,5}.

Remark. Again, note that the definition of the extended paw inequalities allows 14,15 € E
and 24,25 € E. <

Proposition 4.15 If no feasible solution has the orderings 1 — 2 — 3 — 4,1 — 2 —
3—=5and 2 — 3 — 4 — 5, the extended paw inequality (4.6) is valid for R(G,d,s,g) and
P(G’ d7 S’g)'

Proof. Since the LHS of (4.6) is bounded by 2, this inequality is satisfied by any feasible
solution y with y,,, = 1. So, let y be an integer solution with y;,, = 0. In this case, (4.6)
can only be violated in one of the following cases:

e LHS = 1: This can only happen in one of the following three situations:

— Ypay = 1, Ygyy = 0 and y,,, = 0, but this amounts to the ordering 1 — 2 — 3 — 4,
which is forbidden by the hypotheses.

— Ygaq = 0, Ygos = 1 and yg,, = 0, but this yields the ordering 1 —+ 2 — 3 — 5, which
again is forbidden by the hypotheses.

~ Ygaq = 1, Ygos = 1 and yg,, = 1, but this corresponds to the ordering 2 - 3 — 4 —
5, which cannot appear in a feasible solution.

e LHS = 2: This can only happen with y;,, = yz,, = 1 and y;,, = 0, but this implies
that y has the orderings 1 -2 -3 — 4 and 1 - 2 — 3 — 5, which are both forbidden
by the hypotheses.

So, we can only have RHS = 0 when LHS = 0, thus verifying that (4.6) is a valid inequality
for P(G,d,s,g) and R(G,d,s,g). O

Theorem 4.16 If no feasible solution has the orderings 1 -2 -3 - 4,1 -2 —3 =5
and 2 — 3 — 4 — b, the extended paw inequality (4.6) is facet-inducing for R(G,d,s,g) and
P(G7 d7 87 g)'
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Figure 4.4: Feasible configurations for the proof of Theorem 4.16.

Proof. Consider all the possible configurations for the nodes 1 to 5 (i.e., excluding the forbid-
den orderings given by the hypotheses). There are 8 possible configurations, 4 of which satisfy
(4.6) at equality and are depicted in Figure 4.4. The remaining 4 configurations (which do
not satisfy (4.6) at equality) are exactly the symmetrical configurations, so Theorem 4.4 and
Corollary 4.6 imply that this inequality defines a facet of P(G,d, s,g) and R(G,d,s,g). O
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Chapter 5

Clique inequalities
and facet-defining variants

For a class of discrete problems, formulated in a natural
way, one may hope then that equivalent linear constraints
are pleasant enough though they are not explicit in the
discrete formulation

— Jack Edmonds (1965)

This chapter provides constructions of valid and facet-defining classes of inequalities de-
rived from the interval bound constraints and the antiparallelity constraints, respectively.
Section 5.1 presents the construction of the clique inequalities as a strengthening of the bound
constraints for the interval variables. We prove that these new inequalities are facet-defining
for R(G,1,s,0) and P(G,1,s,0) if s > smin(G,d,0) + 3, and analyze a particular subclass,
the covering-clique inequalities, that induces facets of nonuniform instances. We also address
the associated separation problem.

Section 5.2 analyzes the antiparallelity constraints, showing that these inequalities do not
define facets in general. We strengthen these inequalities with a clique structure, obtaining
the so-called double covering-clique inequalities, being valid for P(G,d, s, g) and R(G,d, s, g).
These inequalities are facet-inducing for s > spin(G, d, 0) + 4dmax but not for instances with
small frequency span in general. We present further examples suggesting that instances with
small frequency spans can have facet-defining inequalities with unusual structures.

Section 5.3 presents generalizations and extensions of the standard covering-clique in-
equalities. Section 5.3.1 and Section 5.3.2 provide two classes of facet-inducing inequalities
generalizing the covering-clique inequalities, i.e., containing the covering-clique inequalities
as special cases. Finally, we discuss in Section 5.3.3 three classes of facet-defining inequalities
arising as variations of the double covering-clique inequalities.
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5.1 Clique inequalities and covering-clique inequalities

The integer programming model for the bandwidth allocation problem in PMP-Systems in-
cludes the bound constraints, asserting 0 < [; and r; < s for ¢ € V. The inequality 0 < [; does
not define a facet in general, since any feasible schedule z € P(G,d, s, g) N Z*"™ satisfying
z; = 0 must have z,,; = 1 for every j € N(i), implying that the corresponding face cannot
have the required dimension for being a facet if the polytope is full-dimensional. The same
argumentation applies to the opposite constraint.

However, we can strengthen the interval bound 0 < [; by considering a neighbor of the
node i. Let j € N(i) be such a neighbor and consider the following simple inequality:

dj T i < li. (5.1)

This inequality is clearly valid for R(G,d,s,g) and P(G,d,s,g), since zj; = 1 implies that
the interval I(j) is located before the interval (i), and thus I; > d;. We can generalize this
inequality by considering a clique K in N (i) = {j € V : ij € E}. As we shall see below, the
resulting inequality is facet-inducing for P(G,1,s,0) and R(G,1,s,0) if K is maximal and
s is large enough. However, this inequality does not define a facet of chromatic scheduling
polytopes in the general case d > 1.

Definition 5.1 (clique inequalities) If i € V and K C N(i) is a clique of G, then we
define
S dp mg < (5.2)
keK

to be the clique inequality associated with i and K.
Proposition 5.1 The clique inequalities are valid for R(G,d,s,g) and P(G,d,s,g).

Proof. Let z € P(G,d, s, g)NZ** ™™ be an integer feasible solution of P(G,d, s, g). Let L C K
be the set of nodes k£ € K such that the interval I(k) is located before I(i). Since K is a
clique, the intervals {I(k)}rcx are pairwise disjoint, implying z;, > > rcr di = D re i Zar; dk-
Hence the clique inequality (5.2) is valid for P(G,d, s,g). Moreover, since this inequality does
not involve the r-variables, it is also valid for R(G,d, s,g). O

Theorem 5.2 Let K C N (i) be a mazimal cliqgue in N(i). If s > smin(G,1,0) + 3, then the
clique inequality (5.2) defines a facet of R(G,1,s,0) and P(G,1,s,0).

Proof. We already know that (5.2) is valid for P(G,1,s,0) and R(G,1,s,0), so it remains
to show that the corresponding face F' is maximal. To this end, suppose XLz = \q for every
z € P(G,d,s,0) satisfying (5.2) at equality. We will show that (A, Ag) is in fact a multiple of
(5.2), thus proving that this inequality induces a facet of P(G,d, s,0).
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Figure 5.1: Constructions for the proof of Theorem 5.2.
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Figure 5.2: Clique inequalities do not define facets in general.

Claim 1: A;; = 0 for j # i. Consider the feasible schedules z and 2 presented in Figure
5.1(a) and Figure 5.1(b), respectively. It is not difficult to verify that z, 2z’ € F and, therefore,
Mz =X = ATZ. Since these points only differ in their lj-coordinate, A;; = 0 follows. &

Claim 2: A, = 0 for every j € V. The feasible schedules presented in Figure 5.1(c)
and Figure 5.1(d) satisfy (5.2) at equality, implying A,, = 0. ¢

Claim 3: Az, = 0 for every jt € E\d(i). Consider now the feasible solutions
presented in Figure 5.1(e) and Figure 5.1(f). Note that this construction is possible since
$ 2 smin(G,1,0)+3. We know from the previous claims that A;; = A, = 0and A, = A, =0,
thus Az, =0. &

Claim 4: A;;, = —dg;; for every k € K. The feasible integer solutions depicted in
Figure 5.1(g) and Figure 5.1(h) satisfy (5.2) at equality. Hence, A;;, = 0. <

Claim 5: Az, = 0 for every Il € N(¢)\K. Since K is a maximal clique in N(¢), there
exists some node in K, say node k, such that [k ¢ E. Consider the feasible schedules in Figure
5.1(i) and Figure 5.1(j). Both lie in the face F' defined by (5.2) and, therefore, A,, = 0. ¢

This sequence of claims shows that A is a multiple of the coefficient vector of (5.2), hence
this clique inequality induces a facet of P(G,1,s,0). The same argumentation (omitting
Claim 2) applies to R(G,1,s,0). O

If A CV, we denote by G4 the subgraph of G induced by A. Notice that K U {i} is a
maximal clique of G if and only if K is a maximal clique of G ;). The inequality (5.2) is
stronger than the inequality (5.1), but does not define a facet of the polytopes in the general
case d > 1, even if K is a maximal clique.

Example 5.1 Consider the graph K 3 in Figure 5.2(a) (called “claw”), with node weights
dy = dy = dg =1 and d3 = 2. The inequality [; > z9; is a clique inequality (take 7 = 1 and
K = {2}). No feasible solution satisfying this inequality at equality can have z;3 = 0, since
in this case we would have [ > d3 = 2 > z9; (see Figure. 5.2(b)). Therefore, z;3 = 1 in
every integer solution in the face defined by this inequality, and this shows that [; > 9 is
not facet-defining for s > 4. <

In order to construct a class of facet-defining inequalities for the general case d > 1, we
shall introduce the following definition.
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Definition 5.2 (covering clique) Let A CV, and let K C A be a clique. We say that K
covers A if every node k € A\K satisfies dy, < Doiek\N(k) di-

Proposition 5.3 FEvery node subset admits a covering clique, and such a clique can be found
1 polynomial time.

Proof. Let A C 'V, and let 41,42, ...,%, be an ordering of the nodes in A such that d;, > d;, -
Consider every node in this sequence and construct K iteratively as follows. At step k, we
must decide whether i; has to be inserted into K or not. If there is some ¢; € K with ipi; & E,
then do not insert i; into K. Otherwise, insert 7; into K. Note that in both cases K is a
covering clique of {i1,...,ix} due to the ordering of the nodes, so upon termination of the
algorithm K is a clique covering A. This procedure gives an O(m + nlogn) algorithm. O

Definition 5.3 (covering-clique inequalities) Let i € V' be a node of G, and let K be a
clique covering N (i). We define
Z dk Tki S li (5.3)
keK

to be the covering-clique inequality associated with i and K.

Covering-clique inequalities are, as special clique inequalities, valid for P(G,d,s,g) and
R(G,d,s,g) by Lemma 5.1 and define facets if s is large enough.

Theorem 5.4 If s > spin(G,d,0) + 3dmax, then the covering-clique inequalities (5.3) define
facets of P(G,d,s,0) and R(G,d, s,0).

Proof. To prove that covering-clique inequalities are facet-inducing, suppose that Az = \g
for every z € P(G,d,s,0) N Z*"™ satisfying (5.3). Claims 1, 2 and 3 from the proof of
Theorem 5.2 imply A, = 0 for every j # i, \,; =0 for every j € V, and Ay, = 0 for jt & (i)
Moreover, Claim 4 from Theorem 5.2 implies \;,, = —di ), for every k € K.

So it is left to verify A;,; = 0 for every j € S = N(i)\K. To this end, consider a node set
U; C K\N(j) such that d; < d(U;) (note that such a set U; exists by the construction of the
covering clique K). The feasible schedule z resp. 2z’ depicted in Figure 5.3(a) resp. Figure
5.3(b) satisfies (5.3) at equality. Hence

0 = >‘$Cji + Z Az —"_Zzi)\li

keU;
= Aoyt D (=de) + D di,
kEUj kEUJ‘

S

shows that (A, \g) is a multiple of the coefficient vector of inequality (5.3) and, therefore, this
inequality defines a facet of P(G,d, s,0). The same argumentation applies to R(G,d, s,0). O
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Figure 5.3: Constructions for the proof of Theorem 5.4.

Remark. An alternative proof can be given for Theorem 5.4 by considering the interval
bound constraint 0 < /; and lifting the variables zy; for (a) £ € K and (b) £ € N(i)\K.
The interval bound is facet-inducing for P(G,d,s,0) N {z € R*T™ . 2, = 0 Vk € N(i)}.
Moreover, the maximum lifting coefficient for the variable zy; is dj, if £ € K and 0 otherwise,
implying that the resulting covering-clique inequality is facet-inducing for P(G,d, s,0). These
maximum lifting coefficients are independent of the order in which the variables are lifted,
provided the variables xp; with k € K are lifted before the variables xy; for £k ¢ K. This
procedure provides a natural view of covering-clique inequalities as a strengthening of the
interval bound constraints. <

Recall from Section 4.1 that the symmetric inequality of a facet-inducing inequality is again
a facet-inducing inequality. The following corollary presents the symmetric construction of
covering-clique inequalities.

Corollary 5.5 Leti € V be a node of G, and let K be a clique covering N (i). The following
inequality is valid for P(G,d, s,0):

r, < §— Z di xif; (5.4)
keK
Moreover, if s > smin(G,d,0) + 3dmax, then this inequality defines a facet of P(G,d,s,0).
The same holds for R(G,d,s,0) if we replace r; by l; +d; in (5.4).

Remark. The covering-clique inequalities (5.3) describe the relation between the left bound
of the interval (i) and the left bound on the frequency span [0,s]. The corresponding
symmetric inequalities (5.4) describe the opposite relation between the right bound of I(7)
and the right bound of the frequency span. <

Covering-clique inequalities are facet-defining in many cases, but unfortunately there are
instances where they do not induce facets, as the following example shows. The construc-
tion presented in this counterexample is rather involved, suggesting that instances without
covering-clique facets may be unusual.

Example 5.2 Let G be the graph depicted in Figure 5.4, with node set V' = {1,...,13} and
the following node weights:

di,...,ds =
dg,dy = 4
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Figure 5.4: Counterexample for general facetness of covering-clique inequalities.

dr,ds
do,d13 =
di1,di2 =

(@)

(c) (d)
Figure 5.5: Possible configurations for intervals I(6) to I(13).

Consider the nonempty polytope P(G,d,5,0). Let y € P(G,d,5,0) N Z3! be a feasible
solution. Due to dg + d7 = 5 and 67 € E, there are only two possible assignments for
the interval I(6), namely I = 0 or [ = 5. Moreover, each of these assignments completely
determines the positions of the intervals I(7), I(8) and I(9). Thus, the intervals I(6),...,1(9)
only admit the two possible configurations depicted in Figure 5.5(a) and Figure 5.5(b). A
similar analysis applies to the intervals I(10),...,7(13), which only admit the two possible
configurations presented in Figure 5.5(c) and Figure 5.5(d).

Hence we can assign the intervals I(6),...,(9) according to two possible configurations,
and the intervals I(10),...,I(13) according to two other configurations. Moreover, these
configurations uniquely determine the positions of intervals I(1), ..., I(5), so that P(G,d,5,0)
has only the 4 feasible solutions presented in Figure 5.6.

Consider now the following covering-clique inequality, being valid for P(G,d, 5,0):

la > ma2 + x50 (5.5)

Having listed all the feasible solutions of P(G,d,5,0), it is not difficult to verify that the
polytope P(G,d,5,0) has dimension 2, but only the feasible schedule presented in Figure
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Figure 5.6: Feasible solutions of P(G,d,5,0).

5.6(a) satisfies (5.5) at equality, and thus the face defined by (5.5) has dimension 0. Therefore,
this covering-clique inequality does not define a facet of P(G,d,5,0). <

5.1.1 Complexity of the separation problem

Given a point in the linear relaxation of an integer programming model, the separation prob-
lem for a family of valid inequalities consists in deciding whether this point violates some
inequality belonging to the family or not. This problem is of practical interest, since efficient
separation procedures are required for the implementation of cutting plane methods. This
section explores the separation problem for covering-clique inequalities, and the main theorem
states the negative result that this problem is N'P-complete. If Ppp(G,d,s,g) denotes the
linear relaxation of P(G,d,s,g), i.e., the solution space of constraints (2.1)-(2.6), then the
separation problem for covering-clique inequalities can be defined as follows.

COVERING-CLIQUE INEQUALITIES SEPARATION
Instance: A point y € P p(G,d,s,0)
Question: Does y violate some covering-clique inequality?

Note that the separation problem takes as input a point in the linear relaxation of the inte-
ger programming model, since this is the common situation within a branch&cut framework.
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Moreover, note that the separation of the constraints (2.1)-(2.6) can be performed in O(n+m)
time by exhaustive inspection. The proof of NP-completeness for this separation problem
involves MAX-CLIQUE and a special case of this problem, called MAX MAJORITY-CLIQUE.

MAX-CLIQUE
Instance: A graph G on n nodes, and an integer £ > 0
Question: Does G contain a clique of size k or greater?

MAX MAJORITY-CLIQUE
Instance: A graph G on n nodes, and an integer k > n/2 + 1
(we may assume w.l.o.g. that n > 2 and k£ < n)
Question: Does G contain a clique of size k or greater?

We denote by w(G) the clique number of G, i.e., the size of a clique of G of maximum car-
dinality. Note that MAX-CLIQUE and MAX MAJORITY-CLIQUE consist in deciding whether
w(@) > k or not, but under different conditions. MAX-CLIQUE is a well-known N P-complete
problem [20], and we now prove that MAX MAJORITY-CLIQUE is also N'P-complete.

Lemma 5.6 MAX MAJORITY-CLIQUE is N'P-complete.

Proof. Note that the set of instances of MAX MAJORITY-CLIQUE is contained in the set of
instances of MAX-CLIQUE, and since the latter belongs to NP, then MAX MAJORITY-CLIQUE
also belongs to N'P. To prove N P-completeness, we construct a polynomial reduction from
MAX-CLIQUE. Let (H,t) be an instance of MAX-CLIQUE, and define an instance (G, k) of
MAX MAJORITY-CLIQUE as follows. The graph G is constructed from H by adding m + 2
universal nodes w1, ..., Umn+2, and k is defined as k = t +m + 2. Note that G has n = 2m + 2
nodes and k > n/2 + 1. We finally verify that w(H) > ¢ if and only if w(G) > k.

=) If w(H) > t, then H has a t-clique K, and it can be extended to the (¢ +m + 2)-clique
K U{uy,...,umt2} of G. Hence G has a k-clique and so w(G) > k.

<) Conversely, suppose that w(G) > k and let K be a k-clique of G. Therefore, the node
set K\{u1,...,umt2} is a clique of H with at least k — (m +2) = ¢ nodes, so w(H) > t.

Thus, MAX MAJORITY-CLIQUE is N'P-complete. O

Theorem 5.7 COVERING-CLIQUE INEQUALITIES SEPARATION is N'P-complete.

Proof. Tt is not difficult to verify that the problem belongs to the class NP, since we can
nondeterministically generate a clique K and verify in polynomial time whether K is a cover-
ing clique and the clique inequality defined by K is violated by y. To complete the proof we
construct a polynomial reduction from MAX MAJORITY-CLIQUE. Let (H, k) be an instance
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of MAX MAJORITY-CLIQUE, given by a graph H on n nodes and an integer k& > n/2. Define
a new weighted graph (G,d) = (V, E,1) from H by the addition of a universal node, i.e.,

V = Vgul{i}
E = Egu{ij:jeVy}

Set further g = 0 and s = n/2 + 1. Finally, construct the point y € Prp(G,d, s,0) as follows:

N
_ g ifj#i :

Y, = Yy, tdj VIEV

Yoo = 1/2 VeceFE

This construction is polynomial in the size of H. To show that (G, k) is a well-defined instance
of COVERING-CLIQUE INEQUALITIES SEPARATION we must verify that y € Prp(G,d,s,0) by
checking that y satisfies all the constraints of this relaxed polytope.

a) We first verify that the antiparallelity constraints [; + d; <l + sz are satisfied by y,
considering the following three cases:

Case 1: j,k # i. (recall that n > 2)

n n n/2+1
yl]+d:§+1§§+ /2 :ylk+8ya2kj

Case 2: j # ¢ and k = ¢. (recall that the hypothesis of MAX MAJORITY-CLIQUE
asserts k > n/2+1)

n k—1 mn/2+1
u, +d; = 5—1—1 < 5 + 5 = Y, + SYxy;
Case 3: j =1t and k # <.
k—1 n n/24+1
yptdi = ——+1 < o+ /2 = Yu T Yz,

b) The bounds 0 <l < s — dj, on variables [} are trivially satisfied, since

max{y, :keV} = g < g—l-l = s—d.

c¢) The relaxed constraints 0 < z, < 1 are also satisfied, since y,, = 1/2 for all e € E.

To complete the proof, we show that w(H) > k if and only if there exists some covering-
clique inequality violated by .

=) If w(H) > k, let K C Vg be a maximum k-clique of H. Since ¢ is a universal node
of G, then K C N¢(i), and moreover d = 1 implies that K covers N¢(i). Hence the
covering-clique inequality defined by K is violated by y:
K| k-1

keK 2 2
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<) Conversely, suppose that the covering-clique inequality defined by the node j and the
covering clique K C N¢(j) is violated by v, i.e.,

> dyey, > u (5.6)
keK

holds. Note that the LHS of this inequality is >y jc dkYuy,;, = %|K| This implies j = 1,
for otherwise [; = %, and thus (5.6) would not be violated (because |K| < n). Hence
j =t and thus K C Ng(4), implying that K is a clique of H. But y;, = % and, therefore,
(5.6) reads:
|12(_| = dilYay > Uy, = %

keK

Thus, |K| > k, and so w(H) > k.

This finally shows that the polynomial transformation maps affirmative instances of MAX
MAJORITY-CLIQUE onto affirmative instances of COVERING-CLIQUE INEQUALITIES SEPARA-
TION and conversely. Therefore, the latter is N'P-complete. O

5.1.2 Covering-clique inequalities in the case g > 0

The covering-clique inequalities (5.3) are valid for every instance, but Theorem 5.4 shows
facetness only if g = 0. In the case g > 0 these inequalities remain valid but may no longer be
facet-defining if the associated covering clique covers nodes in more than one sector. In this
setting a more general version of covering-clique inequalities can be given, and this section is
devoted to presenting these general inequalities.

Definition 5.4 Fori €V, let a(i) denote the sector to which node i belongs (i.e., i € Sy(;))-

Definition 5.5 (general covering-clique inequalities) Fiz an arbitrary node i € V and
let K be a clique covering N (i). Assume w.l.o.g. that K = {1,...,t} and, for k =1,...,t,
let A, ={i} U{l,...,k—1}. Partition the clique K into K = N UC, with

N = {k € K :a(k) # a(t) for every t € Ay}
C = {keK:a(k)=a(t) for somet e Ay}

We define

> (dr+ 9k + Y drze; < (5.7)
kEN keC

to be the general covering-clique inequality associated with the node @, the clique K and the
ordering K = {1,...,t}.

The proof of facetness for the general covering-clique inequalities goes along the argu-
mentation of the proof of facetness for the standard covering-clique inequalities presented in
Theorem 5.4.
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Theorem 5.8 The general covering-clique inequalities (5.7) are valid for P(G,d,s,g) and
R(G,d,s,q), and define facets for both polytopes if s > smin(G,d, g) + 3(dmax + 9)-

Under the same setting as before, the following symmetric inequality

ri < s— Y (dr+9)zik — Y dpTix
kEN keC

is valid for P(G,d, s, g) and facet-inducing if s > spin(G, d, g) + 3(dmax + g). The same result
holds for R(G,d, s, g) if we replace r; by l; + d;.

Remark. These general inequalities arise as a natural strengthening of the interval bound
constraints 0 < [; for every 7 € V', by lifting the variables zy;, for £ € N(4). In the case g = 0,
we first lift the variables zy; for k € K, and afterwards we lift the variables zy; for k & K.
The lifting of variables z; for k € K resp. k ¢ K is sequence-independent and originates
the standard covering-clique inequalities (5.3). In the case g > 0, however, the lifting is not
independent of the sequence, requiring different definitions for the coefficients for £ € N and
keC. <

5.2 Double covering-clique inequalities

We now turn to the antiparallelity constraints. Recall that these constraints are given by the
following inequalities:

r, < lj + 8(1 - .’I?Z'j) Vij € BEr, 1 <J (2.4)
ri+g < lij+s(l—wzy) VijeEx, i<j (2.5)
r; < l; + STij Vij € BEr, 1 <jJ (26)
ri+g <1+ sw Vij € Ex, 1 <j (2.7)

Proposition 5.9 Every point z € P(G,d,s,g) N Z*"™™ satisfying the antiparallelity con-
straint (2.4) at equality must have 2y, — 2y, = —2g;; for every k € N(i) N N(j).

ik
Proof. Let z € P(G,d,s,g) N Z*"™™ be a point satisfying (2.4) at equality, and let k €
N(@) N N(j).

Case 1: zg,; = 1. Since z satisfies (2.4) at equality, we have z,, = 2;;, implying 2, = 2z,
and hence 2, — 2z, = 0= —2zg,.

Case 2: zg,; = 0. In this case, we have z;, = s and 7, = 0, implying z;,, =1 and z;;, = 0.
Therefore, z;,, — 24, =1 = —24;,. O

If P(G,d,s,g) is full-dimensional, then this proposition shows that the face defined by
(2.4) cannot have the required dimension for being a facet. The same is true for the other
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antiparallelity constraints, showing that these inequalities do not define facets of P(G,d, s, g)
for arbitrary instances if N (i) N N (j) # 0.

Fortunately, we can strengthen these inequalities by considering a covering clique in the
common neighborhood of the nodes whose intervals are separated by the constraint. This
process can be viewed as a lifting from the antiparallelity constraints into a new class of facet-
defining inequalities, resembling the covering-clique inequalities presented in the previous
section. The resulting inequalities describe the interaction between these two nodes, involving
many similarities with the construction of covering-clique inequalities.

Definition 5.6 (double covering-clique inequalities) Let ij € E be an edge of G, and
let K be a clique covering N (i) N N(j). We define

r; + Z dk(xzk — xjk;) < lj + (S — d(K)).’Eﬂ (58)
keK

to be the double covering-clique inequality associated with ij and K, where d(K) = ¥ ,.c i di.
Proposition 5.10 The double covering-clique inequalities (5.8) are valid for P(G,d, s, g).

Proof. Let y € P(G,d,s,g) N Z*"T™ be a feasible integer solution, and consider two cases:

Case 1: y,;; = 0. In this case, the interval I(7) is located to the left of I(j). Let M C K
be the set of nodes k such that the interval I(k) is between the intervals I(i) and I(j), i.e.,
M ={k € K : yz;, = L and y,;, = 0}. Since K U {4,5} is a clique, then the corresponding
intervals cannot overlap, and thus y;, — y,, > d(M), implying that y satisfies (5.8). <

Case 2: y,,;, = 1. Here, the interval I(j) is before I(i). Partition K = LUM UR as
follows:

L = {(keK:y,, =0}

M = {k€K:yy, =1andy,, =0}

R = {keK:y,, =1}

Note that d(L) < y;; and y,, < s —d(R). Moreover, » ¢y dk (Y, — Yz;;,) = —d(M). These
observations imply

Yri — Yi; + E : dk(yl’zk - yIjk) < 85— d(R) - d(L) - d(M)
keK
= s—d(K).0

Since y was arbitrarily chosen, (5.8) is valid for P(G,d,s,g). O

Theorem 5.11 Ifs > spin(G,d,0)+4dmax, then the double covering-clique inequalities (5.8)
define facets of P(G,d,s,0).
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Figure 5.7: Constructions for the proof of Theorem 5.11.
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Proof. By Proposition 5.10, the double covering-clique inequalities are valid for P(G,d, s, 0).
We now prove that, under these hypotheses, they define facets of this polytope. Note first
that any feasible solution satisfying I; = r; is tight for inequality (5.8). Such points exist
whenever s > spin(G,d,0) + 2dmax, hence this inequality defines a nonempty face in this
case. Let F' be the face of P(G,d,s,0) defined by (5.8), and suppose that ATy < A¢ defines a
facet containing F'. We will show that (X, \g) is in fact a multiple of (5.8), thus proving that
this inequality is facet-inducing, i.e., that F' is not contained in any other facet. To this end,
we prove the following sequence of claims:

Claim 1: XA, = 0 for k£ # j. Let k # j and let y € F be an integer solution with
Yr, — Y1, > dj, (which exists because s > spip (G, d,0) + 2dmax). Define 3’ to be the solution
obtained from y by just setting y{k =y, + 1. Note that this new solution is feasible. Both
points lie in F, implying ATy = ATy’ = \y. Moreover, they only differ in their I;-coordinates,
hence

Ay, = Ay, = A (i, + 1)

Thus A\;, = 0, proving the claim. ¢

Claim 2: A, = 0 for k # ¢. A similar construction, with points y,y’ € F such that
Yrp — Y1, > di, and y, =y, — 1 shows that A, =0 for k #i. &

Claim 3: Ag,, = 0 if both k,t differ from ¢,j. Let y € F be a feasible solution with
y, = 0, y, = dj, and all the remaining intervals to the right of I(k) (such a y exists by
$ > Smin(G,d,0) +4dmax). Let ¢’ be a new feasible solution obtained from y by switching the
intervals I(k) and I(I) (see Figure 5.7(a), (b)). Both solutions are in F, and thus X'y = ATy
These two feasible solutions only differ in their ly-, l-, -, 74— and xg-coordinates. Moreover,

we know from the previous claims that \;, = A, = X, = A, =0, implying A,,, = 0. <

Claim 4: A, = —A;. Let y € F be a feasible solution with y,, = y;;, such that
both intervals I(:) and I(j) can be moved one unit to the right (this is possible since s >
Smin (G, d,0) + 2dmax). Let 3’ be the solution obtained by this shifting. Since both solutions
are in F' and A;, = Arj = 0, we obtain

A Ay = Ay (yr + 1)+ X (i + 1),
This implies that A, + A;; = 0, thus justifying the claim. &
Claim 5: Az, = diAs; for k € K. Let y be an integer point in I with y,, = y;,, and let

y' be a feasible solution with only intervals k£ and j changed in such a way that yék =y, and
yfj =Yy, =Y, +di (see Figure 5.7(c) and Figure 5.7(d)). This construction is possible since

$ > spmin(G, d,0) +d; + dj + dj. Both solutions lie in F, so ATy = ATy’ = Xy, and thus
Ay Ay = Ay, + Aljyéj + Az
But A\, =0 and yfj = Yy, +dj, imply A,,, = di Ay, proving the claim. ¢

Claim 6: Ay, = —dgAr, for k € K. A similar construction verifies this claim, by
considering the solutions presented in Figure 5.7(e), (f). <©

Claim 7: Ay, = Ag;, =0 for k € [N(¢) NN(j)]\K. Let Ay C K be a set of nodes not
adjacent to k such that d(Ag) > di. Such a set exists by the definition of the covering clique
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K of N(i) N N(j). The two feasible solutions depicted in Figure 5.7(g) and Figure 5.7(h)
show that Ay, =0, and the opposite construction implies A, = 0. &

Claim 8: Az, = 0 for k € N(¢)\N(j). Lety € F be a solution with y;, =0, y;;, = d,
Y, =d;+dj and y;, > dj+dj+dy for t & {3, j,k}. Construct a new solution y' € F from y by
setting y; = 0, y;, = dj and y{j = dj + d;. Since both solutions are tight for F', we conclude
that \;,, =0. &

Claim 9: Az, = 0 for k € N(§)\N(¢). If k is adjacent to j and not adjacent to 7, the
construction applied in Claim 8 also shows A;,, =0. <

Claim 10: Ao = 0 and Agz;; = —(s —d(K))As,. Lety € F be any integer solution with
Yr; = Y1;, and let y' be a solution with y; = s—d; and y{j = 0 (and thus y;:]_i = 1), as in Figure
5.7(i) and Figure 5.7(j). Note that y,,, —yz;, =0, y;,, =0, and y;jk =1for ke N(i)NN(j).
This implies that y' satisfies (5.8) at equality, and, therefore, y' € F. Moreover, we have that

)\0 = >\Ty = >\T‘¢y1“i + Aljyl]- + Z (szkyxzk + )\:C]kydijk) =
keK
= A Ur —yr) + Z diAr, (ywzk - ywjk) =0
T kK ST
keK
= )\ris + Z )\;pjk + iji -
keK
= Ay (8 + Z (—dk)) + Az
keK

(5.9)
We conclude \;;, = —(s — d(K))A;,;, proving the claim. &

This way, we have that

)\Ty = [ym — Y + Z dk(yxik - yxjk) - (S - d(K))ya?ji ]>‘7‘i'
keK

Then A is a multiple of the LHS of inequality (5.8), implying that Ao = 0. Thus, the face F'
defined by (5.8) cannot be contained in any other facet of P(G,d, s,0) and defines, therefore,
itself a facet of the (full-dimensional) polytope P(G,d,s,0). O

Remark. An alternative proof can be given for Theorem 5.11 by considering the antiparal-
lelity constraint r; < I; + szj; and lifting the variables z;, and zj;, for & € N(i). We first
lift the variables x;;, and zj; for & € K, and afterwards lift the remaining variables. The
antiparallelity constraint is facet-inducing for P(G,d,s,0) N {z € R*"™ : 2, = zjr = 0}.
Moreover, the maximum lifting coefficient for variable x;;, resp. i is dj resp. —dj, and, there-
fore, the resulting double covering-clique inequality is facet-inducing for P(G,d, s,0). Thus,
we naturally arise double covering-clique inequalities as a strengthening of the antiparallelity
constraints. <
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Corollary 5.12 Letij € E be an edge of G such that N(i1)NN(5) = 0. If s > spin(G,d,0) +
ddmax, then the antiparallelity constraints (2.4)-(2.7) define facets of P(G,d,s,0).

Corollary 5.13 Let ij5 € E. The double covering-clique inequality

I, +d; + Z dk(.’ll'zk — .’L'jk) < lj + (8 — d(K)).’L'ﬂ (5.10)
keK

is valid for R(G,d,s,qg) and defines a facet of R(G,d,s,0) if s > $min(G,d,0) + 4dmax.

Proposition 5.14 The symmetric inequality of a double covering-clique inequality is again
a double covering-clique inequality.

Proof. Consider first the polytope R(G,d,s,g). Let a’y < b be the double covering-clique
inequality (5.8) associated with (K, S). Recall that the symmetric inequality of a’'y < b is
2aTp — b < a’y, where p = %(31 —d, 1) is the symmetry point of R(G,d, s, g). We have that

2aTp—b = 2((3—2dz’)_(5—2dj)+2(%_%)+d(K)—5)+di

ek 2 2 2
= dj—i-d(K)—s

holds. This implies that 2a”p — b < a’y is the inequality:

dj + dK)—s < l; — l; + Z di(zi — xjk) —(s— d(K)):Iin,
keK

which can be rewritten as

lj+d; + Z dk(.’L‘jk —zik) < lLi+(s—d(K))(1— a;ﬂ) (5.11)
keK

Recalling the notation z;; = 1 — x;;, we obtain that (5.11) is again a double covering-clique
inequality. A similar argumentation applies to P(G,d,s,g). O

5.2.1 Double covering-clique inequalities are not always facet-defining

As we have seen previously, the covering-clique inequalities presented in Section 5.1 are not
always facet-defining, although they do induce facets in many instances. Example 5.1 suggests
that it is difficult to construct instances in which these inequalities do not induce facets. We
shall see in this section that double covering-clique inequalities do not always induce facets,
but the counterexamples are more straightforward.

Example 5.3 Let (G,d) = (V,E,d) be the weighted graph depicted in Figure 5.8, and
consider the polytope R(G,d,4,0). By inspection, this polytope has dimension 4. We shall
verify that the double covering-clique inequality [4+dy4 < l3+4x24 does not induce a facet. All
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Figure 5.8: Interference graph for Example 5.3.
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Figure 5.9: The only four feasible solutions in the double covering-clique face.

the feasible solutions satisfying this inequality at equality are the 4 points y1, ..., y4 depicted
in Figure 5.9, and it is not difficult to verify y4 = y; —y2+ys3. Hence y4 is an affine combination
of the other three solutions, and so the dimension of the face defined by the inequality is at
most 2, implying that this face is not a facet of the polytope. <

Double covering-clique inequalities may not define facets even if the polytope is full-
dimensional. The following counterexample shows an instance inducing a full-dimensional
polytope with a double covering-clique inequality that does not define a facet.

Example 5.4 Consider the weighted graph (G,d) = (V, E,d) presented in Figure 5.10, and
consider the polytope P(G,d,9,0). It is straigthforward to verify that this polytope has full
dimension.

Consider now the edge 26 € E. The face F' defined by the double covering-clique inequality
ro <lg + 9zg2 is the convex hull of all feasible solutions satisfying it at equality, which either
have (i) 296 = 1 and ro =l or (ii) z96 = 0, l[s = 0 and 79 = 9. Every point of group (i) has
intervals (2) and I(6) in parallel, and therefore:

e It cannot hold z;2 = x39 = 1 because there would be no space left for the interval I(6)
after the interval 1(2), as required by 6 = 1.
o If T12 = I32 = 0, then T46 75 I56 (see Figure 511b)

o If 215 # w39, then Iy > 2 and thus lg = r9 > 5. This implies that lg > 7, and therefore
T46 — Tr6 — 1.
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Figure 5.11: Instance for Example 5.4.

Hence every point of group (i) either has z19 = x39 = 0 and x4 # 56, Or T12 # x32 and
x46 = x56 = 1. Consider now any point of group (ii). Such a point has z9¢ = 0, implying that
intervals I(1) and I(3) are located before the intervals I(2) and I(4), and the intervals I(4)
and I(5) are located after I(6) (see Figure 5.11(d)). Thus, z12 = x32 = 1 and x4 = x56 = 0.
Having enumerated all the possible cases, we can now verify that every feasible solution in F'
satisfies

T45 + x56 + 3(1 — 96) = 1 + (212 + 232).

This shows dim(F) < 18, and since P(G,d,9,0) C R'¥ has full dimension, F is not a facet of
this polytope. <

The final example shows an instance where a certain double covering-clique inequality
defines a facet of P(G,d, s,0) but not of P(G,d,s+1,0). At first sight, one would expect that
a facet-inducing inequality for P(G,d, s,0) should also be facet-inducing for P(G,d, s + 1,0),
but the following example shows that this is, surprisingly, not the case.

Example 5.5 Let (G,d) = (V, E,d) be the weighted graph depicted in Figure 5.12. The
polytope P(G,d,5,0) has only 4 integer solutions, and has dimension 2. It is not difficult to
verify by inspection that ro < l5+ 559 defines a face of P(G,d,5,0) of dimension 1, which is
a facet.

Consider now the polytope P(G,d,6,0) and the feasible solution depicted in Figure
5.13(a)). Starting from this solution, alternatively shift the interval bounds to the right
(repeating the proof of Lemma 3.8 and Lemma 3.9) to construct 10 affinely independent
points. Moreover, Figure 5.13(b), Figure 5.13(c) and Figure 5.13(d) present three affinely
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independent points w.r.t. the preceding constructions, showing that dim(P(G,d,6,0)) > 13.
Conversely, it is not hard to prove that every feasible solution satisfies the equations:

I13 = I23 (512)
o5 — T45 (513)
T23 = T43 (5.14)

Since P(G,d,6,0) € RS, then dim(P(G,d,6,0)) < 16—3 = 13, and thus dim(P(G, d, 6,0)) =
13.

di

Il
[\

d3=1 da=4

Figure 5.12: Interference graph for Example 5.5.
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Figure 5.13: Feasible solutions for Example 5.5.

Let F' denote the face of P(G,d,6,0) defined by ro < l5 + 6x52. Every feasible solution
in F satisfies this inequality at equality, by definition. Since F' C P(G,d,6,0), the feasible
solutions lying on F also satisfy (5.12), (5.13) and (5.14). We now claim that every integer
point in F' also has interval I(1) before interval I(2):

(i) If z95 = 1, then z45 = 1 and so ro =I5 > 4. This leaves no space to assign I(1) after
1(2).

(ii) If z95 = 0 then 7y = 6, hence (1) must be before I(2).

Therefore, every feasible solution in F' satisfies z19 = 1, and we have 6 equations for every
point in F. This proves that dim(F) < 11 (in fact, dim(F) = 11), and thus F is not a facet

of P(G,d,6,0). <
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5.2.2 Complexity of the separation problem

This section addresses the computational complexity of the separation problem for dou-
ble covering-clique inequalities. Recall that Prp(G,d,s,g) denotes the linear relaxation of
P(G,d,s,g). With this definition, the separation problem for this class of inequalities can be
defined as follows:

DOUBLE COVERING-CLIQUE INEQUALITIES SEPARATION
Instance: A point y = (I,r,z) € PLp(G,d,s,g)
Question: Does y violate some double covering-clique inequality?

Theorem 5.15 DOUBLE COVERING-CLIQUE INEQUALITIES SEPARATION is N'P-complete.

Proof. We can easily check that this problem belongs to the class NP, since we can nondeter-
ministically generate an edge ij € E and a clique K C N(i)NN(j) and verify in deterministic
polynomial time whether K covers N(i) N N(j) and the double covering-clique inequality
associated with 75 and K is violated by the point y. To complete the proof, we construct a
polynomial reduction from MAX-CLIQUE. An instance of the latter is given by a pair (H,p),
where H = (Vig, Egr) is a graph and p € Z is an integer such that 1 < p < |Vjy|, and consists
in deciding whether H has a clique of size at least p. Assume w.l.o.g. |[Vy| > 2 and that H is
noncomplete. We construct a graph G = (V, E) from H by adding two universal nodes 7 and
7, thus

E = EpU{titj:teVy)U/lij}

Also set d =1, g =0 and s = 2n, where n = |V/|. Finally, define a point y as follows:

0 ift #3j
Yry = Y1, + 1 VteV
1 ife=tjforsomet eV
Yoo = { % otherwise Veekl

This construction is polynomial in the size of H. We first verify that y € P.p(G,1,2n,0) by
checking that the point y satisfies all the constraints of this relaxed polytope. The demand
constraints, the interval bounds and the relaxed constraints 0 < z. < 1 for every e € E are
trivially satisfied by construction. So we are left to verify that the antiparallelity constraints
Ik + di. < Iy + sxyy are also satisfied. Consider the following cases:

1. If k,t # j, then y,,, = 1/2 and, therefore,
Yy, +dp =1 <n =y, + syz,.
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2.

3.

If k = j, then y,,, = 1 and we have that

p+1
yi,; +dj _T+1<2n—ylt+syazt]

If t = j, then y,,, =0 and

p+1
Y, +dp=1< o =Y T Ve

Therefore, y € Prp(G,1,2n,0). To complete the proof, we must show that the prescribed
transformation maps affirmative instances of M AX-CLIQUE onto affirmative instances of DoOU-
BLE COVERING-CLIQUE INEQUALITIES SEPARATION and conversely, i.e., w(H) > p if and only
if y violates some double covering-clique inequality.

=)

Let K C Vi be a maximal clique of H of size at least p. Since ¢ and j are universal nodes,
then K C Ng(i) N Ng(j). Moreover, d = 1 implies that K covers Ng(i) N Ng(j) = Vy.
The construction of y implies that the double covering-clique inequality associated with
(K,Vy\K) is violated by this point:

d(K p+1
keK

Conversely, suppose that the double covering-clique inequality defined by the nodes k
and t and the clique K C N¢(k) N Ng(t) is violated, i.e.,

Yy, + dk + Z dl(yd?k[ - yditl) > Y, + (3 - d(K))yItk (515)
lEK

Claim: t = j. Suppose t # j and consider two cases.

— If & # j, then y,,, — ys, = 0 for every | € V\{k,t}, and therefore (5.15) has
LHS = 1 and RHS = (s — d(K)) > 1(2n — w(H)) > 1. Hence (5.15) does not
hold, a contradiction.

— On the other hand, if £ = j then LHS = 1+ (p+1 —|K|) and RHS = 2n — d(K).
Again, we have LHS < RHS, contradicting the fact that(5.15) holds. <

This claim proves that, in this setting, violated double covering-clique inequalities must
have I(j) as the right hand side interval. Since ¢ = j, theny;, = p+ and yg,, — Yy, = 1/2

follows for every [ € K. Hence (5.15) reads 1+ ‘K| > L ‘QH, 1mply1ng |K| > p. Therefore
K is a clique of G with at least p nodes. Now, 1fz ¢ K then K C Viy and w(H) > p. On
the other hand, if i € K then (K\{i}) U {k} is a clique of H on p nodes, also implying

w(H) > p.

Hence the transformation maps affirmative instances of MAX-CLIQUE onto affirmative in-
stances of DOUBLE COVERING-CLIQUE INEQUALITIES SEPARATION and conversely. Therefore,
the latter is N'P-complete. O
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5.2.3 Double covering-clique inequalities in the case g > 0

Theorem 5.11 shows that the double covering-clique inequalities (5.8) are facet-defining when
g = 0. Clearly, these inequalities are still valid if g > 0, but may not define facets in this case
since the set of feasible solutions can be much smaller. This section presents a generalization
of double covering-clique inequalities for this case, such that the resulting inequalities are
valid for every instance, and facet-inducing if s > w(G,d) + 4(g + dmax). Recall that we
denote by a(i) the sector to which the node 7 belongs, for i € V.

Definition 5.7 (general double covering-clique inequalities) Letij € E, and let K be
a clique covering N (i) NN(j). Fiz K = {1,...,t} as order of the nodes in K and, for k € K,
let A, ={i,j} U{l,...,k—1}. We define

rit+ > r(@in — z) + 05 < i+ (s + 6+ > (,Dk;).'L'ji (5.16)
keK keEK

to be the general double covering-clique inequality associated with the edge ij, the clique K
and the ordering K = {1,...,t}, where the coefficients i are defined as follows. Let

N = {keK:alk)#a(t) forallt € A }
C = {keK:a(k)=a(t) for sometec Ay }

and consider two cases. If N = (), then @ = dj. for every k € K. On the other hand, if
N # 0, let kg be some fized node of N and, for every k € K,

dp +29 ifk =k
or = § di+g ifkeN\{ko}
dy, ifkeC

The proof of facetness for the general double covering-clique inequalities goes along the
argumentation of the proof of facetness for the standard double covering-clique inequalities
presented in Theorem 5.11.

Theorem 5.16 The general double covering-clique inequalities (5.16) are valid for the poly-
tope P(G,d,s,g), and define facets if s > smin(G,d, g) + 4(dmax + 9)-

Remark. A similar result holds for R(G,d, s, g) if we replace r; by [; + d; in (5.16). Notice
that these inequalities arise as a natural strengthening of the antiparallelity constraints by
lifting the variables z;; and z;;, for ¥ € K. In the case g = 0, this lifting is sequence-
independent and originates the standard double covering-clique inequalities (5.8). In the case
g > 0, however, the lifting depends on the sequence, requiring the different definitions of the
coefficients ¢y for k = ko, k € N\{ko} and k € C. <
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5.3 Generalizations and extensions of clique inequalities

This section presents families of facet-defining inequalities arising from the covering-clique
inequalities as generalizations (containing the covering-clique inequalities as particular cases)
or extensions (defined over slightly different structures). The first family, introduced in Section
5.3.1, fixes a clique in N(7) and considers a clique covering the remaining nodes of this
neighborhood. We also provide a generalization of double covering-clique inequalities based
on these ideas. The second family, presented in Section 5.3.2, considers a subset of nodes
from N[N (7)], introducing coefficients for the edges linking N(7) to these nodes. We show
that both classes of valid inequalities are facet-inducing for s > spin(G,d,g) + O(1)dmax,
and that they contain the covering-clique inequalities as special cases. Finally, we discuss
in Section 5.3.3 three classes of facet-defining inequalities arising as variations of the double
covering-clique inequalities.

5.3.1 Reinforced covering-clique inequalities

Definition 5.8 If K CV and j € V\K, we define ck(j) = max{0, dj — Y pcx\n(j) Dk} (see
Figure 5.14).

Definition 5.9 (reinforced covering-clique inequalities) Let i € V' be a node of G and
fix a cliqgue K' C N(i). Furthermore, let K be a clique covering N(i)\K'. We define

Z dpxr; + Z cx(B)zg, < [ (5.17)
keK keK'

to be the reinforced covering-clique inequality associated with K and K'.

Note that the existence of a clique K covering N (i)\ K’ is guaranteed by Proposition 5.3.
The standard covering-clique inequalities discussed in Section 5.1 can be obtained as a special
case of these reinforced covering-clique inequalities by setting K' = (.

.

KANQ) @ KANG) (b)

0
—

Figure 5.14: (a) Example of cx(j) = 0, and (b) example of cx(j) > 0.
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Proposition 5.17 The reinforced covering-clique inequalities are wvalid for R(G,d,s,g)
and P(G,d,s,g).

Proof. Let y € P(G,d,s,g) N Z*"™™ be an arbitrary schedule, and define the node sets
A={keK':y,, =1andck(k) >0} and B={t € K : y,,, = 1}. Since K resp. K' is a
clique, the intervals corresponding to nodes in K resp. K’ do not overlap. Moreover, define
Q={teK: tk € EVk € A}. Note that AU Q is a clique, hence AU (BN Q) is also a
clique. The following chain of inequalities establishes the validity of (5.17):

v > Y det+ Y dy

keA teBNQ
= > de+ D> di— D> di+ D dy
keA teBNQ teB\Q teB\Q
- Ya4- Y dt+( Sood+ Y dt)
keA teB\Q teBNQ teB\Q
> > (dg— Y, d)+ D d
keA te K\N (k) teB
kEA teB
= > ck(k) Yoo + D i Yay,
kEK' kEK

Theorem 5.18 The reinforced covering-clique inequalities induce facets of R(G,d,s,g) and
P(Gad75ag) ZfS > smin(Gada g) + 3dmax-

Proof. Suppose A\Tz = )g for every feasible schedule z € P(G,d,s,0) N Z*"T™ satisfying
(5.17) at equality. Claims 1, 2 and 3 from the proof of Theorem 5.2 show Ai; = 0 for every
j # i, Ay; = 0 for every j € V and Ay;, = 0 for jt € d(i). Moreover, Claim 4 from the proof
of Theorem 5.2 implies A\, = —d )\, for every k € K and Theorem 5.4 implies A\, = 0 for
every k € N(i)\(K U K'). So it is left to prove that X\;,, = —cg(k)A;, for every k € K'. To
this end, consider two cases.

Case 1: ckx(k) > 0. Let z € P(G,d,s,0) N Z* "™ be a feasible solution with z, =
0. Now construct a feasible solution z' € P(G,d,s,0) N Z*"*™ by setting z, = 0 and
z;, = dg, and assigning every interval I(t), for t € K\N(k), to the left of the interval I(7)
(see Figure 5.15(a)). These two feasible solutions satisfy (5.17) at equality and, therefore,
Aoy, = —ci (B) A, ©

ki

Case 2: cx(k) = 0. As in the previous case, let z € P(G,d,s,0) N Z*>"*™ be a feasible
solution with z;, = 0. Now construct a feasible solution 2’ € P(G,d, s,0) N Z*"*™ by setting
zi, = 0, 21, = Yjex\n(k) 41, and assigning every interval I(¢), for ¢ € K\N(k), to the left
of the interval I(i) (see Figure 5.15(b)). Again, these two points satisfy (5.17) at equality,
implying A;,, = 0. <
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Figure 5.15: Constructions for the proof of Theorem 5.18.

Hence we verify that A is a multiple of the coefficient vector of (5.17) and thus this
inequality induces a facet of P(G,d,s,0). Since both P(G,d,s,0) and R(G,d, s,0) are full-
dimensional, and the inequality does not involve the r-variables, it is also facet-inducing for
R(G,d,s,0). O

The symmetric inequalities of the reinforced covering-clique inequalities describe the in-
teraction between the right bound of the interval I(i) and the right bound of the frequency
spectrum [0, s]. Under the same setting as in Theorem 5.18, the symmetric inequality

ri < s— Y dpwgp— Y cx(k)zig
kEK keK'

is valid and facet-inducing for P(G,d,s,0), and the same holds for R(G,d, s,0) if we replace
r; by l; + d;. Note that this result generalizes Corollary 5.5 for covering-clique inequalities.

Definition 5.10 (reinforced double covering-clique inequalities) Let 7,5 € V be two
adjacent nodes of G and fiz a cligue K' C N(i) N N(j). Furthermore, let K be a clique
covering [N (i) N N(§)]\K'. Finally, for k € K', let U, = {l € K : lk & E} (i.e., the set of
nodes in K not adjacent to k). We define

T + Z di(xi — :I?j]g) + Z ci (k) (zi — :Ejk) < lj+ (S — Z dy — Z CK(k)):Eij (5.18)

keK keK’ keK keK’

to be the reinforced double covering-clique inequality associated with K and K'.

The proof of facetness for the reinforced double covering-clique inequalities is similar to
the proof of Theorem 5.11.

Theorem 5.19 The reinforced double covering-clique inequalities are valid for P(G,d, s,0),
and define facets if s > smin(G,d,0) + 4dmax-

5.3.2 Replicated covering-clique inequalities

Definition 5.11 (replicated covering-clique inequalities) Fiz a node i € V and let K
be a clique covering N (i). Consider a cligue Q = {q1,...,q} € V\N(i) and a subset K' =
{k1,...,ki} € K such that kj gj € E for j =1,...,t (see Figure 5.16). We define

> dpri + Y, ek () (@pk — i) < L (5.19)
kek ek
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to be the replicated covering-clique inequality associated with the cliques K and Q.

Note that the definition of the replicated covering-clique inequalities allows edges between
K and @ other than k; ¢;, j = 1,...,t. In the case @ = (), the replicated covering-clique
inequality (5.19) is equivalent to the standard covering-clique inequality (5.3). Moreover,
when both K and @ are singletons, these inequalities are equivalent to the path inequalities
introduced in [21].

Proposition 5.20 The replicated covering-clique inequalities (5.19) are valid for R(G,d, s, g)
and P(G,d,s,g).

Proof. Let y € P(G,d,s,g) N Z*"™ denote an arbitrary integer solution, and define A =
{k € K:yy, =1 and B={k € K :yy,, =1, yn,, =1, cx(pe) > 0}. Also define
T ={k € K : kt € EVt € Q}, and note that Q UT is a clique. The following chain of
inequalities establishes the validity of (5.19):

y,, = dek+ Z dy

keB keTnA

= dek—l- de—i- de— de
keB keTNA keA\T keA\T

- dek_ de+( Z d + de)
keB ke A\T keTNA ke A\T

2 Z(dpk_ Z dt)+zdk
keB te K\ N(py) keA

= > cx(pr) + Y di
keB keA
keB keK

Theorem 5.21 If s > syin(G,d,0) + 3dmax, then the replicated covering-clique inequality
(5.19) defines a facet of P(G,d,s,0) and R(G,d, s,0).

Proof. Let F be the face of P(G,d,s,0) defined by (5.19), and suppose that every point
y € I satisfies \Ty < \g. We will show that X is a multiple of the coefficient vector of (5.19),
implying that this inequality induces a facet.

We show first A;; = A,; = 0 with the help of the constructions illustrated in Figure 5.17(a)
and Figure 5.17(b). Points y; and y, (Figure 5.17(a) and Figure 5.17(b), respectively) are
constructed with /; = 0, and thus zx; = 0 for all £ € K. We also take care of assigning every
k € K' after its associated node py, so that ZTp.k — Tik = 0. This implies that y; and yo are in
F, and thus ATy; = A\g = AT'yp. These points only differ in their lj-coordinates, hence A, =0
for j # i. A similar argument shows A, = 0 for every j (including node 7).
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Figure 5.16: Structure for replicated covering-clique inequalities.

Consider now any edge jl € E such that jl # ik for k € K and jl # pik for k € K'. We
construct the points depicted in Figure 5.17(c) and Figure 5.17(d), which belong to F. Since
>\lj = )\r]. =N, = Ay, =0, we have Amﬂ =0.

It remains to prove that the nonzero coefficients of A can be obtained as a multiple of
(5.19). To this end, we rewrite (5.19) as

> (dk +CK(Pk))$kz'+ > ek Pe)Tpk + Y dietr < li+ Y ek (pr)-

keK' keK' kZK' keK'

Let k € K', and suppose K N N(p) = {ki1,...,kt}, so that cx(pr) = dp, — Pi<o<t Ak, -
Consider the pair of points depicted in Figure 5.17(e) and Figure 5.17(f). Since both points
belong to F' they satisfy ATz = )¢ at equality, and we have

(di + di, +...+ dkt)>\li = Aﬂ?pkk + (dpk + dk)>\li7
implying

Awpkk = (dg, +.. +di, — dpk)Ali
= —ck(pr)N;- (5.20)

Now, for any k € K, consider the two following cases:

Case 1: k € K . The points depicted in Figure 5.17(g) and Figure 5.17(h) satisfy (5.19)
at equality, hence A\;,, +dpA;, =0. &

Lhi

Case 2: kK € K . The two points depicted in Figure 5.17(i) and Figure 5.17(j) satisfy (5.19).
Since A;; = A;; = 0, we have A“’pkk = Awki + diAj;. From (5.2) we have Awpkk = —ck (pr) ;)

implying A, = —(d/rg + cK(pk)))\li. &

Therefore, we have A = —\;, 7, where 7 denotes the coefficient vector of (5.19). Hence
the replicated covering-clique inequality (5.19) defines a facet of P(G,d,s,0). The same
argumentation applies to R(G,d,s,0) O

The symmetric inequalities of the replicated covering-clique inequalities describe the in-
teraction between the interval I(i) and the cliques K and K’ with the right bound of the
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Figure 5.17: Constructions for the proof of Theorem 5.21.
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frequency spectrum [0,s]. Under the same setting as in Theorem 5.21, the following symmet-
ric inequality is valid and facet-inducing for P(G,d, s,0):

ri < 5= dpzi+ Y, cx(pr)(@rp, — Thi)-
kEK kEK!

If we replace r; by [; +d; in this inequality, the resulting inequality is valid and facet-defining
for R(G,d,s,0).

5.3.3 Extensions of double covering-clique inequalities

The ideas involved in the development of double covering-clique inequalities do not restrict
to that particular family of inequalities, but can be further exploited to find new classes of
facet-inducing inequalities based on similar concepts. In this section we explore facet-defining
valid inequalities over slightly different structures, analyzing the effect of these structure
changes in the resulting inequalities. The constructions presented in this section resemble
the development of the reinforced fence inequalities from the fence inequalities for the linear
ordering polytope, adding a node to the subgraph that supports the inequality and adjusting
the coefficients to maintain validity while enforcing facetness [38].

Definition 5.12 If K CV and t € V, we define A(K,t) to be the set

A(K,t) = argmax{d(B): B C K\N(t) and d(B) < d;}.

That is, A(K,t) C V is the maximum demand of a node subset of K that can be assigned
inside the interval [0, d;] in a schedule with [; = 0. Note that the exact calculation of A(K,t)
is N'P-hard, since this problem generalizes the feasibility problem for chromatic scheduling
polytopes.

Definition 5.13 (extended double covering-clique inequalities) Let i,5 € V be two
adjacent nodes, and let K be a clique covering N (i) N N(j). Furthermore, fix some node
t € N(j)\N(i) (see Figure 5.18(a)). We define

i + Z di(xi — :Ejk) < lj + pxj; + oyt (5.21)
keK

to be the extended double covering-clique inequality associated with K and t, where ¢ =
s —d(K\A(K,t)) and ¢y = dy — d(A(K,t)).

Proposition 5.22 The extended double covering-clique inequalities (5.21) are valid for the
polytope P(G,d,s,q).

Proof. Let y € P(G,d,s,g) be an integer solution. If y,,, = 0, then the inequality (5.21) is
dominated by the standard double covering-clique inequality (5.8), and thus is satisfied by y.
On the other hand, if y,,; = 1 consider two cases:
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Case 1: y;;, = 1. In this case, the inequality (5.21) admits the form

r; + Z dk(xzk - xjk) < Yi; + (plyivji + PtYz;e

keK
= yl]‘ + o+ @
=y, +(s— > di)
keK
= ylj + (S - Z dk)yzl,‘]l
keK

Thus, the inequality reads as a standard double covering-clique inequality, and is therefore
satisfied by y. ¢

Case 2: yz;, = 0. In this case, the interval I(j) is located before I(i), which in turn is
located before I(t). Note that y,, < s —d; and y;; > d({k € K : yz,; = 1}). Moreover, for
every k € K we have yy,, — y.;, = —1 only if I(j) is located before I(k) and I(k) is located
before I(i), and yz,, — yz,, = 0 otherwise. Combining these observations, we get

Yr; + Z dk(ymlk - yCL‘]k) - ylj
keK

< (s—dy) —d{k € K: yYu;, =Yy, = 1}) —d({k € K : yg,; = 1})
(s — dy) — d(K\A(K, t))

¥

= WYaj; T PtYz; @

Since y is an arbitrary integer solution, we conclude that the extended double covering-
clique inequality (5.21) is valid for P(G,d,s,g). O

The proofs of all the facetness results in this section go along the argumentation of the
proof of facetness for the standard double covering-clique inequalities presented in Theorem
5.11.

Theorem 5.23 If s > spin(G,d, 0)+4dmax, then the extended double covering-clique inequal-
ities (5.21) induce facets of P(G,d,s,0), and the same holds for R(G,d, s,0) if we replace ;
by l; + d; in (5.21).

It is interesting to compare the standard double covering-clique inequalities (5.8) with the
extended inequalities (5.21). The coeflicient of z; is smaller in the extended inequality, which
in turn has a new positive coefficient in the RHS, corresponding to z;;. This means that we
cannot reinforce the original inequalities with a nonnegative coefficient in z;; for free: when
we force this variable to have a nonzero coefficient, variable x;; decreases its coefficient to
maintain validity.

Moreover, it is worthwhile to compute the dual inequality of this new class. The dual of
a double covering-clique inequality is again a double covering-clique inequality, but the dual
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Figure 5.18: Supports for extended double covering-clique inequalities

of this extension is a new valid inequality:

r; + Z di (x4 — l’jk) < i+ oz + iy (5.22)
keK

In this case, the inequality is reinforced by adding a coefficient associated with the edge
tj € E, but now the interval I(j) is the left interval in the inequality. These inequalities can
be generalized to the case g > 0. In this setting, a more general definition for the coefficients
accompanying variables z;; and z;; must be given.

Definition 5.14 (2-extended double covering-clique inequalities) Leti,j € V be two
adjacent nodes of G, and let K be a clique covering N (i) N (j). Moreover, let p € N(i)\N(j)
and t € N(j)\N (%) (see Figure 5.18(b)). We define

rit+ Y de(zie — zjp) < U+ @' wji + opapi + oy (5.23)
keK

to be the 2-extended double covering-clique inequality associated with K and nodes t and p,
where

¢ = s—dK\(AK,1) UA(K,p)) —d, —d,
or = dy—d(A(K,1))
op = dp— d(A(K,p))

Note that the 2-reinforced double covering-clique inequalities are obtained by “combining”
inequalities (5.21) and (5.22) into a new valid one. Now we have two new nodes, namely p
and t, adjacent to nodes ¢ and j, respectively. The standard double covering-clique inequality
is reinforced with nonzero coefficients associated with the variables x;, and ;.

Theorem 5.24 If s > spin(G,d,0) + 4dmax, then the 2-extended double covering-clique in-
equalities are facet-inducing for P(G,d,s,0), and the same holds for R(G,d, s,0) if we replace
r; by l; + d;.
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Definition 5.15 (closed double covering-clique inequalities) Leti,j € V' be two adja-
cent nodes of G, and let K be a clique covering N (i) N N(j). Moreover, let p € N(i)\N(j)
and t € N(j)\N(3) such that pt € E and pk,tk € E for all k € K. We define

rit+ > de(zik — zjr) < U+ @550 + @pTpi + 01T — Ppipe (5.24)
kEK

to be the closed double covering-clique inequality associated with K and nodes t and p, where

¢ = s—d(K)—(dp+di)
oy = dy +min{d,,d;}

Yp = dp
wpt = min{dy,,d;}

Theorem 5.25 If s > spin(G,d,0) + 4dmax, then the closed double covering-clique inequali-
ties (5.24) induce facets of P(G,d,s,0), and the same holds for R(G,d,s,0) if we replace ;
by l; + d;.

Example 5.6 It is worth comparing the inequalities presented in this section arising from the
same graph structure. Suppose N (i) N N(j) = 0 (so that K = () and take d = 1. Moreover,
set s = 4 and suppose that P(G,d,4,0) is nonempty. In this setting, the standard and the
extended double covering-clique inequalities have the following form:

standard — ri < I 4+ 4z
extended — ri < lj + 3mji + 0 T
extended (symm.) — ri < I 4+ 3z + Ty
2-extended — ri < lj 4+ 2wy + T+ T
closed — ri < I + 2z + 2z + 0 Ty — Ty
closed — ri < lj + 2z + i+ 2%y — Ty

These inequalities show an interesting interplay among the coeflicients of the ordering vari-
ables involving the new nodes ¢ and p. The RHS of the extended inequalities gets more and
more strengthened and, at the same time, the coefficient of z;; decreases to maintain facetness
(but not too much in order to keep validity).

It is remarkable that all these inequalities are facet-inducing for P(G,d, s,0), showing that
the ideas leading to the covering-clique inequalities appear in many different facet-defining
inequalities of this polytope. These results give another hint of the hardness of chromatic
scheduling polytopes, since so many variations of a same idea are present as facets. It would
be interesting to search for further variations of covering-clique inequalities involving more
than two nodes outside the standard clique structure. <
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Chapter 6

Further classes of valid inequalities

The results of this paper suggest that, in applying linear
programming to a combinatorial problem, the number of
relevant inequalities is not important but their combina-
torial structure is.

— Jack Edmonds (1965)

Chapter 5 presented facet-inducing inequalities coming from strengthenings and variations
of the interval bound constraints and the antiparallelity contraints, mainly based on covering
cliques of the interference graph. We now turn our attention to the development of facet-
inducing inequalities based on different graph structures.

Section 6.1 opens the chapter with the so-called 4-cycle inequalities, an interesting class
with an unusual structure. These inequalities combine a 4-cycle with a clique in the interfer-
ence graph, involving two interval bounds and a number of ordering variables. A constructive
proof of facetness is given for the uniform case d = 1. Section 6.2 analyses valid inequalities
over cycles of the interference graph involving the ordering variables only. The main result
of this section asserts that a cycle inequality is facet-inducing if and only if the associated
cycle does not contain a chord, and it is worth noting that this result does not depend on the
parity of the cycle.

Cycles in the interference graph also allow to construct inequalities only involving the
interval variables. Section 6.3 presents a class of valid inequalities defined over odd holes of G.
These inequalities are valid for every interference graph, and we prove that they define facets
of P(Cok41,1,s,0) whenever the polytope is nonempty. We also devise sufficient conditions
for this inequality to be facet-inducing for arbitrary graphs.

The analysis of the polytope P(K,,d, s,0), defined over a complete graph, is of theoretical
interest and can also lead to facets for the general case. Sections 6.4 and 6.5 present two
classes of facets for this polytope, along with the corresponding generalizations for arbitrary
interference graphs. We also prove that the associated separation problems are N'P-complete.
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6.1 4-Cycle inequalities

Chromatic scheduling polytopes over cycles are interesting and complex objects. For example,
the polytope R(C4,1,4,0) has 2.738 feasible solutions and 160 facets, whereas the polytope
R(C5,1,4,0) admits 17.500 feasible solutions and 644 facets. The following example presents
a remarkable inequality that originated the results of this section.

Example 6.1 Consider the interference graph (Cy,1) and suppose s > 4. The following
inequality is valid for the polytope P(Cy,1,s,0):

2034 — 2214+ 1 < L1+ 1o (61)

This inequality can be viewed as a strenghtening of 1 < [; + I, which is trivially valid if
12 € E, but does not define a facet if this edge 12 belongs to a larger clique. It is interesting
to analyze the validity of inequality (6.1). The only nontrivial case is z34 = 1 and z14 = 0,
where we have the two possible situations illustrated by Figure 6.1, depending on whether
x93 = 0 or w3 = 1. In both cases, inequality (6.1) is satisfied. Furthermore, this inequality
defines a facet of the full-dimensional polytope P(Cy, 1,4,0), implying that it is facet-defining
for all polytopes P(Cy, 1,s,0) with s > 4. It is remarkable that a valid inequality having only
these nontrivial cases for validity still defines a facet of full-dimensional polytopes. <

(a) (b)
Figure 6.1: Possible cases for 34 = 1 and z14 = 0.
In the remaining of this section we construct a class of valid inequalities containing (6.1),
and we prove that they are facet-defining when g = 0 and s > s;,in (G, d,0) + O(1)dpax. The
construction of these inequalities takes a 4-cycle and replaces one of its nodes by a clique (see

Figure 6.2). Recall that dpax stands for the maximum demand in the weighted interference
graph.

K

Figure 6.2: Structure for 4-cycle inequalities.
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Definition 6.1 (4-cycle inequalities) Let 1,2,3 € V be three nodes such that 12,23 € E
and 13 ¢ E. Let K be a clique covering N(1)NN(3), and assume w.l.o.g. that K = {4,...,t}.
We define
lh+1l, > Z ag(z3k — 1) + . (6.2)
keK
dp + ds lf k=4
dy, if k>4

to be the 4-cycle inequality associated with these nodes, where oy = { and

f = min{d;,ds,ds}.

We now prove that the 4-cycle inequalities are always valid but facet-inducing only if there
are no edges between node 2 and the clique K.

Proposition 6.1 The j-cycle inequalities are valid for P(G,d,s,qg) and R(G,d,s,q).

Proof. Let z € P(G,d, s,g)NZ*"™ be an integer feasible solution, and consider the following
cases:

Case 1: z,, < 2z;,. Let A={ke€ K:z, =1andz,, =0} By definition, AU{3}isa
clique in G, and so the corresponding intervals do not overlap, hence 2, > 2, +d3+ > pc 4 di-
Moreover, 12 € E implies z;, + z;, > min{d;,ds} > . Adding these two inequalities we get

a2, > ds+ Y dp+p
kEA

keK

Case 2: z,; > z;,. In this case, 2z, — 2z, <0, and thus the inequality (6.2) is dominated
by 8 < 2, + #,, which holds because the intervals I(1) and I(2) do not overlap in a feasible
schedule. <

In both cases the 4-cycle inequality (6.2) is satisfied, so it is valid for P(G,d,s,g) and
R(Ga da S, g) o

Theorem 6.2 Assume that N(1)NN(2)NN(3) = 0. If s > spin(G,1,0)+4, then the 4-cycle
inequality (6.2) defines a facet of P(G,1,s,0).

Proof. Let F be the face of P(G,1,s,0) defined by (6.2). To prove that F is a facet, we shall
construct the required number of affinely independent points in F'.

1. Let H be the graph obtained from G by deleting the nodes 1, 2 and 3. Counsider a
feasible schedule z € P(H,1,s — 2,0), and construct a point y € P(G,1,s,0) N Z>"t™

as follows.
2, +2 ifi#1,2,3 zp, +2 if0#1,2,3
Y, = 1 ifi=1,3 Yr, = 2 ifi=1,3
0 ifi1=2 1 ifi=2
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Figure 6.3(a) shows this construction. This new solution is feasible and satisfies (6.2)
at equality. We can construct many such solutions. In fact, there is a bijection between
this set of solutions and the feasible integer solutions of P(H,1,s — 2,0). Since s >
Smin(G,1,0) 4+ 4, the polytope P(H,1,s — 2,0) is full-dimensional, hence there are
2(n —3) + (m —|E({L,2,3})|) such affinely independent points.

Notice that these points satisfy the following conditions:

Yy 1 (6.3)
Yzoy = 1 (6.4)
Yp,, = 1 for k € N(1) (6.5)
Yy, = 1 for k € N(3) (6.6)
Ypye = 1 for k € N(2) (6.7)
Y, — Y, = 1 fori=1,2,3 (6.8)

For each of these equations in sequence, we now construct a feasible schedule in F' not sat-
isfying it at equality but satisfying the remaining ones, thus showing that F' is a facet of
P(G,1,s,0).

2. The feasible solution depicted in Figure 6.3(b) satisfies (6.2) at equality and has z91 = 0,
thus violating (6.3). Note that this solution satisfies conditions (6.4) to (6.8).

3. Similarly, the feasible solution in Figure 6.3(c) satisfies (6.2) at equality and has x93 = 0,
thus violating (6.4) and being affinely independent w.r.t. the previous points. This
solution satisfies conditions (6.5) to (6.8).

4. We now construct feasible solutions violating condition (6.5). To this end, for every
k € N(1) construct a feasible solution according to the following cases:

— If k = 4, consider the solution of Figure 6.3(d). Note that this construction is
feasible since there are no edges between node 2 and K.
If kK € K but k # 4, construct the feasible solution depicted in Figure 6.3(e).

— If k € N(3)\K, consider the feasible solution presented in Figure 6.3(f). Note that
2k ¢ E since N(1) N N(2)NN(3) = () and 4k ¢ E by the definition of the covering
clique K.

— Finally, if k& € N(3), consider the feasible solution presented in Figure 6.3(g).

Each of these feasible points satisfies (6.2) at equality but does not satisfy condition
(6.5), thus being affinely independent w.r.t. the previous points. Note that conditions
(6.6) to (6.8) hold for these solutions.

5. For every k € N(3), we now construct a feasible solution in F' not satisfying (6.6). If
k & N(2) consider the solution depicted in Figure 6.3(h), and if & ¢ N(1) consider
Figure 6.3(i). Note that & must satisfy one of these conditions, for otherwise k£ €
N(1) N N(2) N N(3), contradicting the hypothesis. Moreover, these solutions are in F
and violate condition (6.6), thus being affinely independent w.r.t. the preceding points.
Note that these points satisfy conditions (6.7) and (6.8).

100



N

@

(e)

(2)

(m)

(@

®

0

M

()

Figure 6.3: Feasible points for the proof of Theorem 6.2.



6. Now, for each k € N(2) we shall construct a feasible solution with z9;, = 0, hence
violating (6.7). If &k ¢ N(3) construct the solution presented in Figure 6.3(j), otherwise
consider Figure 6.3(k) (in this case we have k ¢ N(1) by our hypothesis N (1) N N(2) N
N(3) = (). These points do not satisfy condition (6.7), and therefore are affinely
independent with the previous points. Moreover, note that these points satisfy (6.8).

7. To construct a feasible solution y € F' with y,, —y;, > d; for ¢ = 1,2,3 (thus finally
violating condition (6.8)), we can consider any of the previous constructions having
the interval I(7) to the right of intervals {1,2,3}\{:}, and extend the interval I(i) one
unit to the right. Figure 6.3(1), Figure 6.3(m) and Figure 6.3(n) show three feasible
solutions that can be constructed that way. These three solutions are obviously affinely
independent w.r.t. the previous points.

This way we construct the required number of affinely independent points in the face F' of
P(G,d, s,0) defined by (6.2). Thus, this inequality induces a facet of both P(G,d,s,0) and
R(G,d,s,0). O

6.2 Cycle-order inequalities

Definition 6.2 (cycle-order inequalities) Let C = {1,...,k} be a k-cycle in G. The
following inequality is the cycle-order inequality associated with C':

Tig+ T3+ ... +Tp—1k + Tk < k-1 (69)

Note that the triangle inequalities 4.1 are a special kind of cycle-order inequalities. It is not
difficult to verify that cycle-order inequalities are valid for both P(G,d, s,g) and R(G,d, s, g),
since they are valid for the linear ordering polytope and every partial ordering given by
the ordering variables can be extended to a linear ordering (which satisfies the cycle-order
inequalities by definition).

However, these inequalities are facet-defining for the linear ordering polytope only if k = 3,
due to the equality constraints z;; + z;; = 1 [23]. Due to this fact, we cannot expect cycle-
order inequalities to be facet-defining for chromatic scheduling polytopes in general. This
section shows that the cycle-order inequalities are facet-defining if and only if C' is a chordless
cycle, provided the frequency spectrum [0, s] is large enough. These results do not depend
on the parity of the number of nodes of C. It is worth noting that cycle-order inequalities
do define facets of the associated acyclic subdigraph polytope, where the weaker constraints
zi; + xj; < 1 are imposed [24].

Definition 6.3 If C = {1,...,k} CV is a cycle, we define v(C) = #{ij € E(C) : i and j
belong to different sectors}.

Theorem 6.3 If C is a chordless cycle and s > syin (G\C, d, g) +d(C) + gv(C) + dmax, then
the cycle-order inequality (6.9) defines a facet of P(G,d,s,g) and R(G,d,s,g).
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Figure 6.4: Constructions for the proof of Theorem 6.3.

Proof. Let F be the face of R(G,d,s,g) defined by (6.9), suppose ATz = )¢ for every
z € P(G,d,s,g) N Z*"™. Since s > spin(G,d, g), we have \;, = \,, = 0 for every i € V by
Lemma 3.8 and Lemma 3.10. To complete the proof, we show that A;,; = 0 for every ij € E.

Claim 1: Mg, ,,, = 0 for i,i +1 € E(C). Consider the feasible schedules z' and z?
depicted in Figure 6.4(a) and Figure 6.4(b) respectively, where the intervals {I(k)}rcc are
assigned within the interval [0, kd(C) + v(C)]. Both points belong to F, hence Az = \g =
AT2? and thus Ay, ,,, =0. O

Claim 2: Az, = 0 for i € E(C). The feasible solutions presented in Figure 6.4(c)
and Figure 6.4(d) show that A\, = 0. Note that these constructions are feasible since s >
Smin(G\Ca d, g) + Smin(ca d, g) + dmax. ©

Claim 3: Az, = 0ifs € C and j ¢ C. To prove this claim, consider the feasible solutions
depicted in Figure 6.4(e) and Figure 6.4(f). Both points belong to F, hence A;,; = 0. ¢

This sequence of claims shows A = 0, hence F' is a facet of P(G,d,s,g) and R(G,d,s,g).
O
Proposition 6.4 If C' has a chord and P(G,d,s,q) resp. R(G,d,s,g) is full-dimensional,
then the cycle-order inequality (6.9) does not define a facet of P(G,d,s,qg) resp. R(G,d,s,q).
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Proof. Let ij € E be a chord of C (e, 1 < i < j < kandj # i+ 1 (mod k)), and
consider an arbitrary point z € P(G,d, s, g) N Z*" ™™ satisfying (6.9) at equality. This implies
Zprs+. .. +2g,, = k—1, hence all variables z;,,, ..., 2, but oneareset to 1. Lett € {1,...,k}
such that z;, ,, , = 0. Therefore, the intervals corresponding to the nodes in C are assigned
intheorder t+1—t+2...k—-1—2,...,t. Let P={i,i+1,...,5 —1,7} denote the path
from ¢ to 5 in C. We shall show that z satisfies

Zyy = zz. — (|E(P)] — 1). (6.10)
ecE(P)

Case 1: 2z, = 1. In this case, I(i) is located before I(j). But this means that I(:) is
located before I(i + 1), I(i + 1) is located before I(i +2), ..., and I(j — 1) is located before
I1(j), implying z,, = 1 for every edge e € E(P). Hence }_.c jypy zs. = |E(P)|, so we conclude
that z satisfies (6.10). <

Case 2: z;;; = 0. Here, I(j) is located before I(i), and thus we have z;, ,,, = ... = 2z, , , =
1, 23, =0and 25 ,0p = ... = 2z ,; = 1. But now we have 3" cp(p) 2z, = [E(P)] — 1
and so (6.10) is again satisfied. <

Therefore, the point z satisfies (6.10) and (6.9) at equality, and it is not difficult to check
that these equations are linearly independent. Hence the dimension of the face of P(G,d, s, g)
defined by (6.9) is at most 2n + m — 2. Since P(G,d, s, g) is full-dimensional, (6.9) does not
define a facet. The same argumentation applies to the fixed-length case. O

Corollary 6.5 If s > syin(G\C,d,g) +d(C)+ g v(C) + dmax, then the cycle-order inequality
associated with a cycle C is facet-defining if and only if C' is chordless.

It is interesting to generate the symmetric inequalities of cycle-order inequalities. By
Theorem 4.3 we can verify that the symmetric inequality of (6.9) is given by

I < w2+ mo3+ ... +Tp_1 %+ Tp1-

It is worth noting that this symmetric inequality gives the opposite lower bound on the
ordering variables along the cycle. By Theorem 4.3, this new inequality is facet-defining for
s > $min(G\C,d, g) + kdmax if and only if C' is a chordless cycle.

6.2.1 Complexity of the separation problem

We now address the complexity of the separation problem for the cycle-order inequalities.
Given a point z € Prp(G,d, s, g), this problem consists in deciding whether there exists some
cycle-order inequality violated by z or not.

CYCLE-ORDER INEQUALITIES SEPARATION
Instance: A point z = (I,7,z) € Prp(G,d,s,g)
Question: Does z violate some cycle-order inequality?
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G D

Figure 6.5: Construction of D from G.

The main result of this section asserts that this problem is polynomially solvable, by
providing a number of reductions to the minimum mean cycle problem [3, 33]. The latter
takes as input a directed graph D with edge costs ¢ : Ep — R and consists in finding a
directed cycle C such that ‘—é' Yije E(C) Cij 18 minimum among all directed cycles in D. Such
a cycle is called a minimum mean cycle of D. The minimum mean cycle problem arises as a
special case of the minimum cost-to-time ratio problem [3] and can be solved in O(nm) time
[31, 32].

Theorem 6.6 The cycle-order inequalities can be separated in O(nm?) time.

Proof. Let e € E be a directed edge of the interference graph, and construct a digraph
D = (V, Ep) by replacing every (nondirected) edge of G by two directed edges with the same
endpoints and opposite directions. The only exception is the edge e, which is transformed
into only one directed edge in D:

Ep = {ij,ji:ij € E and e #ij} U {e}.

Figure 6.5 shows this construction. Now define edge costs ¢ : Ep — R as the values of the
ordering variables in z, according to the orientation of the corresponding directed edge (again,
the edge e is an exception):

o ey ifij=e
Yo —Zuy; otherwise

Claim: The point z € P.p(G,d, s, g) violates a cycle-order inequality such that the associ-
ated cycle contains the edge e if and only if the digraph D has a directed cycle C such that

e Dijeno) Gij < —L.

=) Let C be a directed cycle with ﬁ Yijer(c) i < —1 and call k = |C[. Such a cycle
contains e, since otherwise ¢;; > —1 for every edge ij € E(C), implying 3=, ;¢ B(C) 0_1ch >
—1. Consider now the cycle-order inequality associated with the directed cycle C. We
have 3 iicp(c)cij < —k, and moreover — 3 ey ¢ij = 1+ Xijen(c) %a;> hence the
cycle-order inequality associated with C' is violated by the point z.
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<) Let C' CV be a directed k-cycle such that e € E(C) and ;¢ gy 2z;; > k — 1. By the
construction of D, it is not difficult to verify that C is a cycle with mean strictly less

than —1:
Cij 1
X = gpler X )
ijEE(C) ij€E(C)\{e}
1
= - (1+z$e+” > za;])
ij€E(C)\{e}
1
= ~Z (1+”Z in])
iJEE(C)
< —% (14 (1)) = —10

Now, for each 75 € E, apply the preceding procedure twice to decide whether some cycle-
order inequality containing ij resp. ji violates the point z € Prp(G,d,s,g). The overall
running time of this algorithm is clearly O(nm?). O

6.3 Odd hole inequalities

This section presents a class of valid inequalities defined over odd holes of the interference
graph. The integer solutions in the face of R(G,d,s,0) defined by these inequalities have a
very particular combinatorial structure that can be exploited to show that these inequalities
induce facets of R(Co11,1,s,0) for k& > 2. Throughout this section we assume g = 0.

Definition 6.4 (odd hole inequalities) Let C = {1,...,2k + 1} be an induced odd cycle,
called an odd hole, of the interference graph. We define

2k+1
Sl > k+2 (6.11)
=1

to be the odd hole inequality associated with C.
Proposition 6.7 The odd hole inequalities are valid for P(G,1,s,0) and R(G,1,s,0).

Proof. Let z € P(G,1,5,0)NZ>"™™ be a feasible schedule. Since C is a nonbipartite graph, we
have z;;, > 2 for at least one node ¢ € C (otherwise we would be able to assign all the intervals
I(j), with j € C, within the frequency spectrum [0, 2], a contradiction). Assume w.l.o.g. that
C={1,...,2k+ 1} and z,, , > 2. For t = 1,...,k, the inequality zj,, + 2,,,, > 1 holds,
since 2t and 2t+1 are adjacent nodes. Summing up these inequalities, we obtain Z?ﬁl 2, > k.
Combining this last inequality with z;,, , > 2 we get Y°i' ; 2, > k + 2, hence z satisfies the
odd hole inequality associated with C'. Since (6.11) does not involve the r-variables, it is also
valid for R(G,1,s,0). O
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Figure 6.6: Feasible solution satisfying the odd hole inequality at equality.

We now analyze the faces induced by the odd hole inequalities. The feasible schedules
in these faces must satisfy ) ;-~l; = k + 2. This implies that k& nodes of C' are assigned
the interval [0, 1], and k distinct nodes receive the interval [1,2] in the schedule. In order to
maintain feasibility, the remaining node must be assigned the interval [2,3] (see Figure 6.6
for an example). This combinatorial structure was used in Section 3.2.3 to provide a proof
of full-dimensionality of R(Cs;41,1,3,0) for & > 2. The same arguments can be applied to
prove that the odd hole inequalities induce facets of chromatic scheduling polytopes.

Theorem 6.8 Let Coprq = {1,...,2k+1} be a hole on 2k+1 nodes. The odd hole inequality
associated with Copyq induces facets of R(Cori1,1,5,0) and P(Coky1,1,5,0) if k > 2 and
s> 3.

Proof. Fori=1,...,2k+1, define an order of the nodes by S; = (i,i+1,...,2k+1,1,...,i—1)
and let y° be the greedy solution associated with this sequence (see Section 3.2.3 for the
definition). Further define the opposite order S; = (i, — 1,...,1,2k + 1,...,4 + 1) and
let 7 be the associated greedy solution. It is not difficult to verify that these solutions lie
in the face of R(Co,11,1,s,0) defined by the odd hole inequality associated with Coyx. .
Moreover, following the proof of Theorem 3.27 in Section 3.2.3 we obtain that the solutions
{y,5" : i € Copy1} are affinely independent. Since R(Copy1,1,s,0) € R¥*+2 the existence
of these 4k + 2 affinely independent points shows that the odd hole inequality associated
with Co;y1 induces a facet of this polytope. Now, for ¢ = 1,...,2k 4 1, construct the two
feasible solutions presented in Figure 3.10(a), (b). These feasible schedules, together with the
previous constructions, show that the odd hole inequality associated with Cyx11 induces a
facet of P(Cogy1,1,8,0). O

Now we turn to arbitrary interference graphs. Let C' C V be an odd hole of G, and
suppose w.l.o.g. that C = {1,...,2k + 1}. We say that i ¢ C is parity nonadjacent to the
cycle C' if 7 is nonadjacent to a stable set of size k in Co 1. If this does not hold, we say that
1 is parity adjacent to the cycle C.

Corollary 6.9 Let C C V be an odd hole and suppose s > Smin(G,1,0) + 4. The odd hole
inequality associated with C' defines a facet of R(G,1,s,0) if and only if every node i & C is
parity nonadjacent to C.
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Proof. Since s > spin(G,1,0) + 4, R(G,1,s,0) and P(G,1,s,0) are full-dimensional by
Theorem 3.11. If 7 ¢ C is parity adjacent to C, then every feasible solution satisfying the odd
hole inequality at equality has zj; = 1 for every j € C'N N(i), hence the face defined by this
inequality cannot have the required dimension for being a facet.

Conversely, suppose that every node i ¢ C' is parity nonadjacent to C, and let A € R"™™
and )\g € R such that Ay = Ay for every y € R(G, 1,5,0). For every feasible schedule y €
R(C,1,3,0) and every feasible schedule y' € R(G\C,1,s,0), for s = spyin (G, 1,0), construct
a new schedule z € R(G, 1, s,0) by setting

. Yi; ifieC
Ty 43 ifigC

This set of feasible solutions shows \;, = 1 for i € C, A, = 0 for < € V\C, and A;;; = 0 for
ij € E(C) U E(V\C). To complete the proof, it remains to show A;,; = 0 for every ij € E
with i € C and 57 € C. For every such edge, construct a feasible solution satisfying the odd
hole inequality associated with C, such that I(j) = [2,3] and I(i) = [1,2]. Such a solution
exists since ¢ is parity nonadjacent to C. This new feasible solution shows A, = 0, hence
A is a multiple of the coefficient vector of the odd hole inequality associated with C' which,
therefore, defines a facet of R(G,1,s,0). A similar argumentation applies to P(G,1,s,0). O

We can devise a similar inequality for the nonuniform case d > 1. If C = {1,...,2k + 1}

is an odd hole of G, then
2k+1

li 2 dmin(C)(k +2) (6.12)

is valid for P(G,d, s,0) and R(G,d, s,0), where d i, (C) = min;cc d; is the minimum demand
among the nodes in C. Note that this inequality generalizes (6.11), since d,;, (C) = 1 if
d = 1. However, this inequality does not induce facets for arbitrary instances, since d; < dj4+1
implies z; ;41 = 1 for every feasible schedule satisfying (6.12) at equality.

6.3.1 Complexity of the separation problem

It is not difficult to verify that a superclass of the odd hole inequalities can be separated
in polynomial time, provided l; +1; > 1 for every ij € E. Consider a fractional solution
z € PLp(G,1,5,0) and assume z;, + 2;; > 1 for every ij € E (if this assumption is not
satisfied, we have detected the violated inequality /; + [; > 1). Consider the interference
graph G = (V, E) with edge weights ¢ : £ — R defined as ¢;j = z, + 2;; — 1 (note that
¢ij > 0 by the initial assumption). Under these assumptions, the odd hole inequality (6.11)

is equivalent to
2k-+1

Y ciit1 = 3,
i=1

where indices are taken modulo 2k + 1. Therefore, there is a violated odd cycle inequality
(associated with a not necessarily chordless cycle) if and only if there exists an odd hole with
weight strictly less than 3. The problem of finding a minimum odd cycle in an undirected
graph with nonnegative edge weights can be polynomially solved by successive applications
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of the shortest path algorithm [25]. Hence the odd hole inequalities can be separated in
O(m SP(n,m)) time, where SP(n,m) is the running time of a shortest path algorithm in a
graph with n nodes and m edges.

6.4 Interval-sum inequalities

This section presents a canonical valid inequality that constrains the total interval length in
the nonfixed case P(G,d, s,0). This inequality is facet-inducing for P(K,,d, s,0) if and only
if s >>L, d;, and is also facet-inducing for P(G,d,s,0) when s > w(G, d).

Assumption. Throughout this section we shall assume g = 0.

6.4.1 Interval-sum inequalities for complete interference graphs

Definition 6.5 (interval-sum inequalities) Let K,, be the complete graph on n nodes, and
consider the polytope P(K,,d,s,0). We define

n

D (re =) <s (6.13)

k=1

to be the interval-sum inequality associated with this instance.

Note that this inequality does not apply to the fixed-length polytope R(K,,d,s,0) since
the natural replacement r; = [; + d; for the fixed-length case would yield the trivial inequality
Yievdi < s. It is not difficult to verify that (6.13) is valid for P(Ky,d,s,0), since the
intervals {1(7) }7"_, cannot overlap. If s = }";"; d;, then every feasible schedule of P(K,,d, s,0)
satisfies (6.13) at equality, and so the corresponding face is not proper. On the other hand,
if s > >, d; then this inequality induces a facet of P(K,,d,s,0) as Theorem 6.10 shows.

Theorem 6.10 If s > Y, d; then (6.13) defines a facet of P(Ky,d,s,0).

Proof. Since s > 371" d;, Theorem 3.11 implies that P(K,,d, s,0) is full-dimensional. Let F'
be the face of this polytope defined by (6.13), and suppose Ay = \q for every point y € F.
We shall prove that A = am, where 7 is the coefficient vector of the inequality (6.13), thus
showing that this inequality induces a facet.

Let 4 and j be two different nodes and consider the points y' and y? depicted in Figure
6.7(a) and Figure 6.7(b). These points are in F' and thus ATy! = Xy = ATy2. Since y! and
y? only differ in their ;- and lj-coordinates, we have

didr, + did; = (di + 1) A, + (di + 1)\
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Figure 6.7: Constructions for the proof of Theorem 6.10.

and, therefore, A;; = —\;;. Since 7 and j are arbitrary, there exists some a € R such that
Arg « kE=1,...,n (6.14)
A, = —« k=1,...,n (6.15)

Consider now the two points depicted in Figure 6.7(c) and Figure 6.7(d). Again, these
points are in F', and thus we have

dirr; + di>\l]- + (d; + dj)>\rj = dj)\rj +djN; + (d; + dj)>\ri + )\xji.

But we know that A,;, = —A;;, and so d;A,; + diA;; = 0. We obtain djA,; +djA;, = 0in a
similar way, and thus

>‘$Cji = (d; + dj)()\,«j —A;) =0.

Since ¢ and j are arbitrarily chosen, we have A;, = 0 for every edge e of K,,. Hence A = a,
and this implies A\g = as. Therefore, the inequality (6.13) defines a facet of P(K,,d,s,0). O

6.4.2 Interval-sum inequalities for arbitrary interference graphs

We now analyze the interval-sum inequalities in the general case P(G,d, s,0) for an arbitrary
interference graph G. If K C V is a clique (recall that a clique is not necessarily a maximal
complete subgraph), then
S (rk—1le) <s (6.16)
keK
is valid for P(G,d, s,0). We are interested in characterizing the cases for which this inequality
is facet-inducing. To this end, note that if K is not a maximal clique then no feasible schedule
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can satisfy (6.16) at equality, hence the associated face is empty. So K must be maximal if
(6.16) is supposed to define a facet of P(G,d, s,0).

However, the maximality of K is necessary but not sufficient for facetness. If there exists
some node ¢ ¢ K having a unique nonneighbor k& € K, then y,., = vy,,, V [,t € K\{k} for
every integer point y in the face defined by (6.16), so this face is not maximal if P(G,d, s,0)
is full-dimensional. Therefore, if K is not maximal or if there exists some i ¢ K with
IN(i)N K| = |K|—1, then (6.16) does not define a facet of P(G,d, s,0). Theorem 6.11 shows
that the converse is also true.

Nodes not Nodes not Nodes not Nodes not
adjacent to ki adjacent to k2 adjacent to k3 adjacent to ks

Sy

I Iy |
Figure 6.8: Construction of feasible solutions in F'.

ka

clique K —> || ki

Theorem 6.11 If s > >, d;, K CV is a clique, and every node © € K has at least two
nonneighbors p(i),p' (i) € K, then (6.16) defines a facet of P(G,d, s,0).

Proof. Let F denote the face of P(G,d,s,0) defined by (6.16), and suppose \''y = )¢ for
every point y € F. We shall prove A = am, for some « € R, where 7 is the coefficient vector
of the inequality. Note first that we can construct a feasible solution y € F' by covering [0, s]
with nonoverlapping intervals corresponding to the nodes in K, and assigning every node
¢ ¢ K inside the interval [y, . ,yr, ] (see Figure 6.8). The intervals assigned to the nodes
in K must be large enough to allow this construction (note that this construction is feasible
since we are considering the general polytope P(G,d,s,0) and s > 3",y d;).

Similar configurations as in Figure 6.7(a) and Figure 6.7(b) can be used to show A, = A,
for i,7 € K. We construct two points in F', assigning I(k), for k¥ ¢ K, “inside” the interval
I(p(k)) or I(p'(k)), as in Figure 6.9(a). If {p(k),p'(k)} = {i,j}, then we assign I(k) in
[0,yr;], as in Figure 6.9(b). This way we show \,, = —\;, = @ € R Vi € K. Similarly, the
construction of Figure 6.7(c) and Figure 6.7(d) can be adapted to this case to prove A;;; =0
fori,j5 € K.

It only remains to show A, = A\, =0 for k ¢ K, and A;;; =0 for i ¢ K or j ¢ K (or
both). Figure 6.9(c) and Figure 6.9(d) show how to construct two points in F' that only differ
in their rj-coordinate, thus proving A,, = 0. We can show );, = 0 for every k£ ¢ K similarly.

Finally, we verify that A\;, = 0 holds for every edge e ¢ E, by considering two cases.
If e = ik with 4 € K and k ¢ K, define y' and y? as in Figure 6.9(e) and Figure 6.9(f)
respectively, and if e = kr with k,r ¢ K, define ' and y? as depicted in Figure 6.9(g) and
Figure 6.9(h), respectively. The points 3! and y? are in F, so AI'y! = ATy? and thus

yllk >\lk + y%kArk + )\xe = yl2k >\lk + y?kArk
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Figure 6.9: Constructions for the proof of Theorem 6.11.

But A, = A, =0 for k € K, hence \;, = 0. Therefore, the inequality (6.16) defines a facet
of P(G,d,s,0). O

As we have already noted, if there exists some ¢ € K with at most one nonneighbor in K
(which implies that K is a maximal clique), then (6.16) is not facet-inducing for P(G, d, s,0).
Combining this observation with Theorem 6.11 yields the following result.

Corollary 6.12 Let s > >,y d;. Then, the interval-sum inequality (6.16) defines a facet of
P(G,d,s,0) if and only if | K\N(i)| > 2 for everyi ¢ K.

Remark. Suppose that |[K\N(7)| > 2 for every ¢ ¢ K, and partition V\K into V\K =
Ukex Vi such that Vi N N(k) = 0. Moreover, let G be the subgraph of G induced by
Vi. Under these definitions, we can strengthen the bound s > 37,y d; from Theorem 6.11.
Under these definitions, the interval-sum inequality (6.16) defines a facet of P(G,d,s,0) if
s> max{d(K), ZkEK Smin(Gkada 0)} g
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6.4.3 Complexity of the separation problem

The separation problem for the interval-sum inequalities takes as input a point in the linear
relaxation Ppp(G,d,s,0), and consists in deciding whether this point is violated by some
interval-sum inequality or not. We may state this problem as follows:

INTERVAL-SUM INEQUALITIES SEPARATION
Instance: A point y € PLp(G,d,s,0).
Question: Is there any maximal clique K such that >, xyr, — 1y, > s7

Theorem 6.13 INTERVAL-SUM INEQUALITIES SEPARATION is N'P-complete in the strong
sense.

Proof. Consider the WEIGHTED MAX-CLIQUE problem, defined as follows:

Instance: A graph H = (Vy, Eg), a weight w; € Z for each ¢ € V, and an integer k
(me way assume k >3 and 1 < w; <k —1).
Question: Is there a clique K of H with weight at least k7

WEIGHTED MAX-CLIQUE is N'P-complete in the strong sense [20], and we will construct a
pseudopolynomial reduction from this problem to INTERVAL-SUM INEQUALITIES SEPARATION.
Given an instance (H,w,k) of WEIGHTED MAX-CLIQUE, we construct an instance of the
separation problem as follows. Let D = {i € Vg : w; > %} We define a new graph
G = (V, E) by taking H and splitting the nodes in D.

V = {i:ieVyg} U {i':ieD}
E = Ey U {i'j:ij€Ep,icD}
U{i'j':ij € By andi,j € D} U {i' :i € D}

We take s = k — 1 and set d = 1. Now, define the point y € Prp(G,d,s,0) by setting y;, =0
for every ¢ € V and
[ w; fori gD
Yrs = {wi/2 forie D

Furthermore, let y,, = w;/2 for i € D, and y,,; = 1/2 for every ij € E. Note that 0 <

y,; < yr, < sandy, —y, > 1=d;, so the bound constraints and the demand constraints are

satisfied. Moreover, y,, = w; < kgl for j ¢ D, and y,; = Yr, = % < % if 7 € D, and thus

k—1
Yr, < T=0+8/2=yzi+8$ij,

k —

1
Yr; < 5 =0+5/2=y; +s(1 —z5).

Hence the antiparallelity constraints are also satisfied and, therefore, y € Ppp(G,d, s,0). We
finally show that H has a clique of weight k or greater if and ouly if there is some clique
K C V such that the inequality (6.16) defined by K is violated by y.
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If. Let K C Vi be a clique with weight at least k and define K' = K U{i' : « € K N D}.
The construction of G implies that K’ is a clique of G, and moreover

> (e —wi)

1€K'
= Z (yh - yll) + Z (yn - yll) + (yTi/ - yli/)
i€K\D i€ KND
= > wi+ Y (wi/2+wi/2)
iEK\D ieKND
= Zwizk:5+1>s.
€K

Hence the inequality > ;1 — I; < s is violated by y.

Only if. Suppose that Y ;cx yr, — y;, > s for some clique K C V. Define K' = {i:1 € K
ori € K} C Vy. Again, we have Y ;e wi > Y i Yr; — Y1, > s =k — 1, and since w; € Z,
we conclude that w(K') > k.

This reduction from WEIGHTED MAX-CLIQUE to the separation problem for (6.16) is
polynomial, and thus it is also pseudopolynomial. Therefore, INTERVAL-SUM INEQUALITIES
SEPARATION is strongly N'P-complete. O

6.5 Clique-interval inequalities

This section introduces an interesting class of valid inequalities, namely the clique-interval
inequalities as a combination of the clique inequalities and the interval-sum inequalities. The
full potential of the ideas giving rise to this family appears in chromatic scheduling polytopes
defined over complete interference graphs, and Section 6.5.1 is devoted to these results. It
is worth noting that although complete interference graphs are not interesting in practice,
chromatic scheduling polytopes defined over complete interference graphs admit a complex
combinatorial structure. Unfortunately, a generalization of the clique-interval inequalities
to arbitrary instances is not straightforward, involving coefficients whose exact calculation is
NP-hard. Sections 6.5.2 and 6.5.3 present this generalization, together with some preliminary
results for heuristically generating bounds on these coefficients.

6.5.1 Clique-interval inequalities for complete interference graphs

Definition 6.6 For j =1,...,n, define Jj = 8 — Dk dk- Note that every integer feasible
solution y € P(K,,d,s,0) N Z*"™ has Yr; —Yi; < d;.

Definition 6.7 (clique-interval inequalities) Consider a complete interference graph
(Kp,d). Fiz a node i € V ={1,...,n}, and partition V\{i} = K UK’ arbitrarily, where K
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or K' may be empty. We define

Sy -1+ Y diwi < L+ Y djay. (6.17)

jeK jEK’ jeK

to be the clique-interval inequality associated with K and K'.

Example 6.2 Consider the polytope P(Ky,1,5,0), associated with a uniform complete in-
terference graph on 4 nodes. Take i = 1 and define K = {2} and K' = {3,4}. Then,

(7“2 — l2) + (.’E31 + .’E41) S l1 + 2:E12

is the clique-interval inequality associated with this partition. It is not difficult to verify that
this inequality is valid for this particular instance. <

Proposition 6.14 The clique-interval inequalities are valid for P(Ky,d,s,0).

Proof. Let y € P(K,,d,s,0) N Z*"*™ be a feasible solution, and define the following sets:

A = {jeK:yg; =0},
B = {jeK':y,, =0},
C = {jeK:yy =1},
(6.18)

Since the intervals do not overlap, > ;c4(yr; — ui;) + 2 e dj < yi; holds. Moreover, each
j € C has y,; —yi; < dj (by definition of dj), and so 3 ;cc(yr; — yi;) < ¥ jec dj. Combining
these two inequalities, we obtain

Z (yT‘j - ylj) + Z d]y:L’]l

JjeEK JEK'
= > e =)+ > Wy )+ Y dy
JEA jecC jEB
= [Zw—w)+ X d] + [ Xy — )]
jeEA jEB jec
< oy + ) dj
jecC
= y, + Z ijxij-
JEK

Therefore, the clique-interval inequality (6.17) is valid for P(K,,d,s,0). O

If s =31 | d;, then every feasible solution satisfies (6.17) at equality, and so this inequality
does not define a proper face of P(K,,d,s,0). On the other hand, if s > >";*; d; we can show
that the clique-interval inequalities define facets of P(K,,d, s,0). Theorem 6.15 can be proved
in a similar way as the facetness results presented in the previous sections. Note that these
results do not apply to the fixed-length polytope R(K,,d,s,0).
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Theorem 6.15 The clique-interval inequality (6.17) defines a facet of P(Ky,d,s,0) if and
only if s > > 71, d;.

Remark. It is worth noting that the separation of the clique-interval inequalities over a com-
plete interference graph is a polynomially solvable problem. Given a point z € Prp(K,,d, s, g)
and a fixed node i € {1,...,n}, we partition V\{i} = K UK’ as follows. For each j € V\{i},
insert j into K if 2z, — 2z, — szxi]. > djzy,;;, otherwise insert j into K ’. Repeating the pro-
cedure for ¢+ = 1,...,n, we construct n clique-interval inequalities. If the point z violates
some clique-interval inequality then it must violate some of the constructed inequalities, and
conversely. <

6.5.2 Clique-interval inequalities for arbitrary interference graphs

The purpose of this section is to provide a generalization of the clique-interval inequalities
(6.17) for arbitrary interference graphs. Proposition 6.16 presents a straightforward gener-
alization giving valid inequalities for this case, but unfortunately these inequalities are not
facet-inducing for P(G,d, s,0). The same arguments from the proof of Proposition 6.14 can
be applied to establish this result.

Proposition 6.16 Let i € V and consider disjoint cliques K, K' C N(i) (K or K' may be
empty). The inequality

Srj—1) + 3 djwi < L+ Y djay (6.19)
jEK JEK' JEK

is valid for P(G,d,s,g).

Unfortunately, inequality (6.19) does not necessarily define a facet of P(G,d,s,g) since
we may not be able to find feasible solutions satisfying it at equality with some interval I(j),
with j € K, located to the right of I(7). The rest of this section provides a stronger inequality
for this case, by applying lifting procedures for the coefficients on the variables xz;;, for j € K.
As we shall see, the calculation of these coefficients is a difficult task, and we devise in Section
6.5.3 a procedure for heuristically bounding their values.

Theorem 6.17 Let i € V and consider disjoint cliques K, K' C N(i) such that for every
node j ¢ K U K'U {i} there exists some node k € K with jk ¢ E. Then, the inequality

Z(Tj =)+ Z djzy; < 1 (6.20)

jeK jeK’
defines a facet of P(G,d,s,0) N {y € R+ . Yo;; = 1V € K} if s> w(G,d).
Proof. Let P' = {y € P(G,d,s,0) : yz;, = 1 Vj € K}, and let F be the face of P’ defined by

(6.20). Suppose Ay = )¢ for every point y € F. We will prove that (X, \o) is a multiple of
(6.20), thus showing that this inequality induces a facet of P'.
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The technique applied in the proof of Theorem 6.10 can be used to prove that there exists
some o € R such that A\, = —A;; = afor j € K, and A;;, =0 for j,k € K. Moreover, it is
not hard to see that \;, = —a.

[ ] L]
- 5 ] i b

< 4 i < / F—di—
(2 (b)
dK1) - d(Kn +di dKn)  dKD+dj
v
L] L)
1 1] N N I ER
Ki K1

(©) (d)
Figure 6.10: Constructions for the proof of Theorem 6.17.

We now prove A;; = Ap; =0 for j ¢ KU {i}. To this end, consider the points y' and
y? defined in Figure 6.10(a) and Figure 6.10(b), respectively. These points are in F, hence
Ai; = 0. A similar argumentation yields A, = 0 for j ¢ K (note that A, = 0).

For any node j € K', consider now the two points depicted in Figure 6.10(c) and Figure
6.10(d). Both points satisfy (6.20) at equality, and we know A, = A, = A;; = 0, implying
d(K)\; = [d(K) + dj] A, + Mgy,

Since A;; = —a, we conclude A, = ad.
To complete the proof, we must show Ay, = 0 for the remaining edges jk:

Case 1: j,k € KU{i}. Asin the previous cases, we can construct a point in F' with K to
the left of I(), K’ to the right of I(i), and no space between the intervals I(j) and I(k), I(j)
being before I(k). If we now swap these two intervals, we get another point in F', showing
Ay, =0. O

Case 2: j =i7and k € K U K . By the hypothesis, there exists some ky € K such that
kok ¢ E. We can construct a feasible solution y € P’ with Yrey — Yiny = D (Figure 6.11(a)),
so that we can put I(k) “inside” Ky (Figure 6.11(b)). These two points satisfy (6.20) at
equality, hence Ay, = 0. &

Case 3: 7 € K and k € K. Applying the same procedure used in the previous case, we
can construct two points with I(j) located to the left and to the right of I(k), respectively.
Case 2 implies Agz;; = 0, hence Ay, =0. ¢
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Figure 6.11: Constructions for the proof of Theorem 6.17.

Case 4: j € K, k € K. Consider the two points depicted in Figure 6.11(c) and Figure
6.11(d). These points are in F', and we know \;; = \,; =0, so

Mo Y dit A Y di=N(di+ Y d) A (44 Y )+ Ay,

le K\{k} IeK leK\{k} IEK
But A;, = —a and A, = «, hence ijk =0. <
Therefore, we show A\ = am, proving that (6.20) defines a facet of P'. O

Note that we do not need a covering clique in order to establish Theorem 6.17. To obtain
a valid and facet-defining inequality for P(G,d, s,0) from (6.20), we can consider a lifting
procedure over the variables z;; (j € K), that are set to 0 in P(G,d,s,0) N {y € R**™ .
Yz;; = 1 Vj € K}. Consider any fixed lifting sequence, and let a; denote the maximum
lifting coefficient for z;; with j € K. We then get the following inequality, defining a facet of

P(G,d,s,0):
Sy -1+ S djwyi < L+ Y iy, (6.21)
jEK jeK' JEK

Unfortunately, the calculation of these lifting coefficients is NP-hard. Consider the first lifted
variable x;;, and define the decision problem associated with «; as follows:

CLIQUE-INTERVAL INEQUALITY LIFTING
Instance: A graph G = (V, E) and integers k and s. A node i € V,
node sets K, K’ C V as above, and some node j € K.
Question: Is o (defined as above) greater or equal than k7

Theorem 6.18 CLIQUE-INTERVAL INEQUALITY LIFTING is N'P-hard.

Proof. Consider the feasibility problem for chromatic scheduling polytopes:
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(a) (b)
Figure 6.12: Construction of H from G.

CHROMATIC SCHEDULING FEASIBILITY
Instance: A weighted graph (G,d) and an integer s'.
Question: Is P(G,d,s',0) nonempty?

Recall that Corollary 1.2 implies that CHROMATIC SCHEDULING FEASIBILITY is N'P-complete.
We shall construct a reduction of this problem to CLIQUE-INTERVAL INEQUALITY LIFTING.
Given (G,d) and s', construct a new graph H = (Vi, Ey) with Vi = V U {i,j} and Ey =
EU{jk: ke V}U{ij} (see Figure 6.12). Define K = {j} and K' = 0, and take s = s’ + d;
and k = d;. We claim that P(G,d,s’,0) # 0 if and only if a; > k.

If. Suppose that aj > k. If we define P; = {y € P(G,d,s,0) : y,; = 1}, the maximum
lifting coefficient «; for x;; is:

@j = max [g}:{(yn —y1,) +tEZK, dyYz,; — yzi] = max [Yr; =y, — ]
Suppose that y* realizes this maximum, and that y;fj — yz; —y;. 2 k = d;. This solution must
have yj. = 0, otherwise we could shift I(i) to the left, obtaining a better value for a; (note
that this shifting is feasible since the only neighbor of the node i is j, and I(j) is located to
the right of I(7)). Since Yr; — yf‘j > dj and jk € Ey for all k € V, we can construct a feasible
solution 4’ of P(G,d,s’,0) in the following way (see Figure 6.13):

* . * _

yz = { % y{kk N lf ywjk _ 0
k Y, — (yrj — yl].) otherwise
b = { L Y e =0
T Yr, — (yrj - ylj) otherwise

Yo = Y
This construction shifts the intervals located to the right of I(j) at least d; units to the left.

Now maxgey (yy,) < s implies maxgey (y;,) < s —dj = s', hence 3 € P(G,d,s',0) and so
P(G,d,s',0) is nonempty.

Only if. If P(G,d,s',0) is nonempty, then we can transform any feasible solution into a
point y € P; by adding the interval I(i) with [; = 0 and r; = d;, and interval j with I; = &'
and r; = s. This new solution y' has y;j — yzj — vy =s—s' =d; =k, showing that o > k.

Therefore, CLIQUE-INTERVAL INEQUALITY LIFTING is NP-complete. O
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s=s’+dj s

(a) (b)

Figure 6.13: Construction of ¥ (fig. (b)) from y* (fig. (a)).
6.5.3 Upper bounds for the lifting coefficients

Since the lifting coefficients «; introduced above are difficult to calculate, we can consider to
replace each coefficient by an upper bound, thus maintaining validity (although not neces-
sarily facetness). This section shows a simple procedure for calculating such upper bounds.
Note that this is a priori a nontrivial issue, since the generation of upper bounds for these
coefficients is in a sense the dual of the lifting maximization problem. This section devel-
ops, by combinatorial arguments, a dual for this problem whose feasible solutions are easy
to calculate, so they can be used for heuristically generating upper bounds for the lifting
coefficients.

Lemma 6.19 «; > 0 for every j € K.

Proof. Suppose that the variables z; for [ € L have already been lifted, and define P, = {y €
P(G,d,s,0) : y,, =0for I € K\L}. Then, oj = MaXyec Py, g(y), with

g(y) = Z (ka - ylk) + Z dkycrlk —Yi,; — Z ApYz,). -

keK keK' keL

We now construct a point ¢ with g(¢) > 0, thus proving «; > 0. The point y has all intervals
corresponding to K'U K\{j} located to the left of I(7), each with length equal to its demand
(i.e., ¥r, — 41, = dj). Furthermore, we leave no empty space between them, and no empty
space between the last interval and (i) (see Figure 6.14), so that

Z (Yry, — glk) + Z dkgwij < Y-

keK\{j} keK’

Ki\j} K2

Figure 6.14: Construction of .
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Moreover, we have §,,, = 0 for every t € L, and so ) ;1 oYz, = 0. Thus,

g(g) = Z ka ylk Z dkyrlrlk - gli - Zatlgwit

keK keK' teL
= Wy =)+ Y. e —0)+ Y kg —
keK\{j} keK'
gT‘j _glj Z 0

Therefore g(y) > 0, implying a; > 0. O

Using Lemma 6.19 we can now obtain a lower bound for each «;. As in the previous
proof, assume that the variables z; for [ € L have been lifted and let y € Pryg;3 N Z2ntm
be a point with y,,, = 1. Partition K = A, U B, such that A, = {t € K : y,, = 1} and
By ={t € K : y,,, =0} (note that j € By). Then,

Z(yrt - ylt) + Z dty:vti - yli - Zatxit (622)
teK teK' teL
< Z(yrt —y,) + Z Yz — Y1,
teK teK'
= [ Z (Yre — Y1) + Z diYzy; — ] + Z Yre — Yi,)
teAy teK’ teBy
S Z (yT't - ylt)
tEBy

The first inequality holds because «; > 0 (by Lemma 6.19), and the last inequality holds
since Ay U K' is a clique and all its corresponding intervals are allocated to the left of I(4),
hence

Z (Yre — Y1) + Z dtYay; < Y1;-

teA, teK!

Let C(y) ={T'CV : By, CT and T is a clique} and consider any T € C(y). We obtain

S Wre—w) < s— > (Y —w)

teB, teV\B,
< s— Z (Yre — Y1) (6.23)
teT\B,
< s— Z dy
teT\B,

This last inequality is valid for any T € By, so

9ly) < min (s —ar\By))

Define S = {T'C V : T is a clique and T'N K # 0}. For every T € S, we have that T' € C(z)
for some point z such that z;,, = 1 for t € T N K. Moreover, s — d(T\By) < s — d(T\K),
since By, C K. Then,

min (s —d(r\By)) < min (s - d(1\K)). (6.24)
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Thus, by combining (6.22), (6.23) and (6.24), we get:

a; < min [ s —d(T\K) ] (6.25)
We can compute an upper bound on «; by heuristically generating cliques in S and taking
the minimum of s — d(T\ K) over all the generated cliques.

6.5.4 Complexity of the separation problem

To conclude our analysis of the clique-interval inequalities, we state in this section a negative
result concerning the complexity of the associated separation problem. Since the proof of this
fact is similar to the complexity analyses presented previously for other families of inequalities,
we only give the reduction that establishes this result.

CLIQUE-INTERVAL INEQUALITIES SEPARATION
Instance: A point z € PLp(G,d, s, g).
Question: Does z violate a clique-interval inequality?

Theorem 6.20 CLIQUE-INTERVAL INEQUALITIES SEPARATION is N P-complete.

Sketch of proof. Let (H, k) be an instance of MAX-CLIQUE (that consists in deciding whether
w(H) > k or not). Construct a graph G = (V, E) from H = (Vg, Ex) by the addition of a
universal node i, i.e., V. =VyU{i} and E = Eg U{ij : j € Viz}. Furthermore, set s = 2n+1
and define the point z € PLp(G,1,s,9) by z; = n for j € Vg and z, = k/2. Moreover, set
zr; = z;; + 1 for every j € V and 2z, = 1/2 for every jk € E. The point z violates some
clique-interval inequality if and only if w(H) > k. O
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Chapter 7

Concluding remarks
and open problems

Very recent mathematical work on the traveling salesman
problem (...) indicates that the problem is fundamentally
complex. It seems very likely that quite a different ap-
proach from any yet used may be required for successful
treatment of the problem. In fact, there may well be no
general method for treating the problem and impossibil-
ity results would also be valuable.

~ M. Flood (1956)

This thesis contributes an initial study of chromatic scheduling polytopes by partially
uncovering their combinatorial structure, presenting first classes of valid and facet-defining
inequalities, and addressing the associated separation problems. We briefly review now the
results presented in the preceding chapters and point out some important open problems in
this topic.

Emptyness/nonemptyness

Solving the bandwidth allocation problem in PMP-Systems amounts to determining whether
the polytopes are empty or not, hence emptyness/nonemptyness is a crucial issue with strong
practical implications. The clique bound resp. chromatic bound gives a certificate of emp-
tyness resp. nonemptyness, but it would be interesting to strengthen or refine these bounds
in order to have more precise conditions ensuring feasibility /infeasibility of the associated
bandwidth allocation problem.

Dimension

A central issue in polyhedral combinatorics is to calculate the dimension of the polytopes
in question. As we have seen, obtaining the dimension of chromatic scheduling polytopes
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is a difficult task, both computationally and theoretically. We know that the dimension is
a nondecreasing function of the frequency span and that P(G,d,s,g) and R(G,d,s,qg) are
full-dimensional if s > (G, d,g), but there are many open questions concerning the case
s < v(G,d,g). Section 3.2 provides partial results for the uniform case and for particular
classes of interference graphs. One important case is given by the instances with uniform
demand d = 1, but even in this setting we do not have a complete characterization of the
dimension yet (note that this case corresponds to the usual graph coloring problem, which is
already a hard problem). Recall that v(G,1,0) = x(G) + 2 holds in this setting.

Problem 1 Can we characterize the dimension of the polytopes R(G,1,s,0) and P(G,1,s,0)
for s = x(G) and s = x(G) +1°?

We know that both polytopes have full dimension if s > x(G)+2 and, furthermore, Section
3.2 provides a partial characterization of the dimension of R(G,1,s,0) when s = x(G) + 1.
However, a complete characterization of the dimension in the uniform case is still not known.
A more modest problem is to provide conditions ensuring full-dimensionality in the uniform
case. Here, the following question remains unanswered.

Problem 2 For which interference graph G are R(G,1,x(G),0) and P(G,1,x(G),0) full-
dimensional?

These open questions are particular cases of a more general unsolved problem concerning
chromatic scheduling polytopes, namely the existence of a formula for the dimension of the
polytopes for arbitrary interference graphs and general node weights. The most general
question is the following.

Problem 3 Do there exist formulas for the dimension of P(G,d,s,g) and R(G,d,s,g) in
terms of standard graph parameters? How does the node weighting affect such a formula?

It is not clear whether this question can be answered affirmatively, since calculating the
dimension proves to be a difficult issue even for uniform instances. Having a complete char-
acterization of the dimension would help to establish facetness properties of valid inequalities
for these polytopes. Based on the bounds given in Section 3.2, we have been able to provide
facetness results for a number of valid inequalities in the case s > spin(G,d, g) + O(1)dmax-
However, full knowledge of the dimension would help to give complete characterizations of
the facet-defining cases of each valid inequality.

Combinatorial stability

Section 3.3 shows that the polytopes R(G,d, s,g) and R(G,d,s + 1,g) resp. P(G,d,s,g) and
P(G,d,s + 1,g) are affinely isomorphic if s > 27(G,d,g), but empirical evidence suggests
that only s > 7(G,d, g) is needed to establish this isomorphism. As shown in that section, if
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every connected component of G is a clique, then R(G,d, s,g) = R(G,d,s + 1, ¢g) if and only
if s > 7(G,d, g). Therefore, it is natural to ask whether this is the case for arbitrary graphs.

Problem 4 Is R(G,d,s,g) = R(G,d,s+ 1,g) for s > 7(G,d,g)?%.

The proof technique presented in Section 3.3 constrains the condition to be s > 27(G, d, g),
so a different idea should be employed to prove this more general assertion.

Symmetry

The symmetry of chromatic scheduling polytopes is a very particular theoretical property.
The most remarkable aspect of this property is that it provides results for proving facetness
independently of the dimension of the associated polytopes. This turns out to be a valuable
tool for identifying facet-inducing inequalities in a context where the dimension of the poly-
topes is still unknown. It would be interesting to develop further implications of symmetry
related to the search for facets.

Problem 5 Can we further exploit the special symmetry of P(G,d,s,g) and R(G,d,s,g) to
provide theoretical tools for identifying facet-defining inequalities?

Valid inequalities and facets

Since the bandwidth allocation problem in PMP-Systems is NP-complete, we cannot ex-
pect a complete characterization of chromatic scheduling polytopes unless NP = co-N"P[42].
However, many families of facet-inducing inequalties are obtained here, which encourages
the use of cutting plate methods for solving this problem. Covering cliques prove to be a
useful construction for the development of facets, and Chapter 5 introduces several classes
of facet-inducing inequalities arising from such structures in the interference graph. Hence,
developing these ideas further seems to be a promising line for future studies of chromatic
scheduling polytopes.

Problem 6 Can we devise further generalizations (as in Section 5.3) of covering-clique in-
equalities?

Problem 7 Can we devise further extensions (as in Section 5.8.3) of the standard double
covering-clique inequalities?

On the other hand, Chapter 6 presents a number of classes of facet-inducing inequalities
based on different structures of the interference graph. Some families arise as variations
of inequalities from the linear ordering polytope, whereas the remaining ones seem to be
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particular to chromatic scheduling polytopes. The families presented in Section 4.3, which
only are valid for small frequency spectrums, are of practical importance as they could serve
as cutting planes for the hardest instances in practice.

Problem 8 Find new classes of facet-inducing inequalities, either arising as variations of
known facets for related polyhedra or being particular to chromatic scheduling polytopes.

Problem 9 Find classes of valid inequalities for small frequency spectrums, and characterize
the cases where these inequalities induce facets.

The last issue seems to be a difficult one, since facetness is hard to analyze when the
frequency spectrum is small. When [0, s] is large, we can easily construct feasible solutions
and prove facetness this way. However, when s = w(G, d) + O(1), the construction of feasible
solutions becomes more involved and, therefore, it is more difficult to prove facetness in this
case. The only known way to accomplish this task relies on symmetry arguments. This shows
how important the special symmetry of chromatic scheduling polytopes is for our purposes.

Separation problems

The practical implementation of a cutting plane approach involves routines for efficiently
identifying violated valid inequalities. Therefore, the separation problem for the known classes
of inequalities is not only of theoretical interest but also of practical importance in a cutting
plane environment. Throughout this work we proved that many of the nontrivial families of
valid inequalities have NP-complete separation problems. This implies that a more detailed
study must be carried out concerning these separation problems.

Problem 10 For each class of valid inequalities, identify particular cases where the separa-
tion problem is polynomially solvable.

Problem 11 For each class of valid inequalities with N'P-complete separation problems, de-
velop effective and fast heuristics for the corresponding separation problem.

Problem 12 Find polynomially separable superclasses of valid inequalities with N'P-complete
separation problems.

X k%

The recent progress at exactly solving combinatorial optimization problems by integer
programming techniques and the consequent interest that these activities have generated are
a motivation to multiply the efforts within this field. This work constitutes a contribution in
this direction, by continuing the polyhedral study of a problem with important applications,
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namely the bandwidth allocation problem in PMP-Systems. Such polyhedral investigations
are the first steps for the successful implementation of cutting plane approaches, and we hope
that this work may contribute to the practical solution to optimality of real-world instances
of this problem in a near future.
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Appendix A

Summary of valid inequalities

This problem is of course a linear programming problem,
and hence may be solved by Dantzig’s simplex algorithm.
However, for the flow problem, we shall describe what
appears to be a considerably more efficient algorithm; it
is, moreover, readily learned by a person with no special
training, and may easily be mechanized for handling large
networks.

— L. Ford and D. Fulkerson (1955)

This appendix summarizes the facet-inducing inequalities presented in Chapter 4, Chapter
5, and Chapter 6. We also provide a short comment on facetness results and the complexity
of the associated separation problems, for the families where this information is known.

Triangle inequalities. Let T' = {7, j,k} be a triangle of G. The following are the triangle
1nequality associated with 7" and its symmetric inequality, respectively.

Tij + Tjp + Tk <2
Tij +Tjg TR > 1
If P(G,d,s,g) # 0, then both inequalities define facets of R(G,d,s,g) and P(G,d,s,g),
independently of the dimension of the polytopes (see Section 4.2). The separation problem

for triangle inequalities by complete enumeration is clearly polynomial.

4-path inequalities. Let ¢,7,k,l € V be four nodes of G such that ¢j, jk, kl € E and no
feasible solution of P(G,d, s, g) has the ordering i — j — k — [. The inequality

Tij + Tjk + T < 2

is the 4-path inequality associated with the path {7, j, k,[}, and is valid and facet-inducing for
R(G,d,s,g) and P(G,d, s, g) (see Section 4.3). The separation problem for 4-path inequalities
can be solved in polynomial time by complete enumeration.

Paw inequalities. Let i,7,k,] € V be four distinct nodes of G such that {i,7,k} induces a
triangle and jl € E. Furthermore, suppose that no feasible solution of P(G,d, s, g) has the
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ordering ¢ = 7 — k and 5 — [. The inequality
T+ < 14 xj

is the paw inequality associated with the nodes {i,j,k,l}, and is valid and facet-inducing
for R(G,d,s,g) and P(G,d,s,g) (see Section 4.3). Again, the separation problem for paw
inequalities is polynomially solvable by complete enumeration.

Extended paw inequalities. Let 1,...,5 € V be five distinct nodes such that 12, 23 € E
and {3,4,5} form a triangle in G. Moreover, assume that no feasible solution has the orderings
1-2—-3—-41—-2—->3—5and 2= 3 — 4 — 5. The inequality

T34 + T35 — To1 < 2T390 (A.1)

is the extended paw inequality associated with the nodes {1,...,5}. The extended paw in-
equalities are valid and facet-inducing for R(G, d, s, g) and P(G,d, s, g), and the corresponding
separation problem can be solved in polynomial time by complete enumeration (see Section
4.3).

Covering-clique inequalities. Let ¢ € V be a node of G, and let K be clique covering
N (7). The covering-clique inequality associated with ¢ and K, and its symmetrical inequality
are

S diw <l
keK
s— > dp zipy > T

keK
If s > smin(G,d,0) + 3dmax, the covering-clique inequalities define facets of P(G,d, s,0)
(see Section 5.1). The same result holds for R(G,d,s,0) if we replace r; by [; + d; in the
symmetric inequality. The separation problem for covering-clique inequalities is N'P-complete
(see Section 5.1.1). These inequalities are also valid if g > 0 but may not define facets in this
case. A generalization of covering-clique inequalities for the case g > 0 such that the resulting
inequalities are facet-inducing is presented in Section 5.1.2.

Double covering-clique inequalities. Let ij € F be an edge of G, and let K be a clique
covering N (i) N N(j). The double covering-clique inequality associated with ij and K is
ri + Z di(wik —xje) < 1+ (s — d(K))zj;.
keK

If s > spmin(G, d, 0)+4dmax, the double covering-clique inequalities define facets of P(G, d, s,0),
and the same holds for R(G,d, s,0) if we replace r; by [; +d; (see Section 5.2). The symmetric
inequality of a double covering-clique inequality is again a double covering-clique inequality.
Again, this construction can be generalized for the case g > 0, and the resulting facet-inducing
inequalities are presented in Section 5.2.3. The separation problem for double covering-clique
inequalities is N'P-complete (see Section 5.2.2).

Reinforced covering-clique inequalities. Let ¢ € V be a node of G and fix a clique
K C N(i). Furthermore, let K be a clique covering N (i)\ K. The inequality

> drzri+ Y, e (ko < L

keK keK’

130



is the reinforced covering-clique inequality associated with K and K’. These inequalities
induce facets of P(G,d,s,0) and R(G,d, s,0) if s > spin(G,d,0) + 3dmax (see Section 5.3.1).
The reinforced double covering-clique inequalities are defined similarly.

Replicated covering-clique inequalities. Fix a node 1 € V and let K be a clique covering
N(i). Consider a clique ) € V\N(i) and a subset K’ C K with |K'| = |Q| such that every
node k € K' is adjacent to some node p; € @, and such that these adjacencies form a bijection
between K’ and ). The inequality

> dewri+ Y, ek (Pe)(@pk — i) <l
keK keK'

is the replicated covering-clique inequality associated with the cliques K and Q. If s >
Smin (G, d,0) + 3dmax, the replicated covering-clique inequalities define facets of P(G,d, s,0)
and R(G,d, s,0) (see Section 5.3.2).

Extended double covering-clique inequalities. Let ¢,5 € V' be two adjacent nodes, and
let K be a clique covering N (i) N N(j). Furthermore, fix some node t € N(5)\N (7). The
inequality
T + Z dk(xik — :Ejk) < lj + YT + Tyt
keK

is the extended double covering-clique inequality associated with K and ¢ where ¢ = s —
d(K\A(K,t)) and ¢; = dy — d(A(K,t)). If s > smin(G,d,0) + 4dmax, then this inequality
induces a facet of P(G,d,s,0), and the same holds for R(G,d, s,0) if we replace r; by l; + d;
(see Section 5.3.3). The symmetric family is a new family of facets.

2-extended double covering-clique inequalities. Let 7,7 € V be two adjacent nodes of
G, and let K be a clique covering N (i) N (j). Moreover, let p € N(i)\N(j) and t € N(j)\K.
The following is the 2-extended double covering-clique inequality associated with K and nodes
t and p
ri+ Y (e — k) < U+ Qe+ oppi + @i,
keK

where the coefficients ¢', ¢, and ¢, are defined in Section 5.3.3. If s > syin (G, d, 0) + 4dmax,

then the 2-extended double covering-clique inequalities are facet-inducing for P(G,d, s,0),
and the same holds for R(G,d, s,0) if we replace r; by l; + d;.

Closed double covering-clique inequalities. Let 7,7 € V be two adjacent nodes of G, and
let K be a clique covering N (i) N N(j). Moreover, let p € N(i)\N(¢) and ¢t € N(j)\K such
that pt € E and pk,tk € E for all k € K. The following is the closed double covering-clique
1nequality associated with K and the nodes t and p

T + Z dy (x4, — ﬂijk) < I+ so"wji + ©pTpi + PtTjt — PptTpt,
keK

where the coefficients for the ordering variables in the RHS are defined in Section 5.3.3. If
$ > Smin(G,d,0) + 4dpax, then these inequalities (5.24) induce facets of P(G,d, s,0), and the
same is true for R(G,d, s,0) if we replace r; by [; + d;.
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4-cycle inequalities. Let 1,2,3 € V be three nodes such that 12,23 € E, and let K be a
clique covering N (1) N N(3). Assume w.l.o.g. that K = {4,...,¢}. The inequality

L+l > ) aples, — o) + 8
keK

is the 4-cycle inequality associated with these nodes, where ap = dj, +d3 if kK = 4 and o = di,
otherwise, and f = min{d;,ds,d3}. If N(1) N N(2) N N(3) = () and s > spin(G,d,0) +
O(1)dmax, then these inequalities define facets of P(G,1,s,0) and R(G,1,s,0) (see Section
6.1).

Cycle-order inequalities. Let C = {1,...,k} be a k-cycle in G. The following inequalities
are the cycle-order inequality associated with C and its symmetrical inequality, respectively.

Tio+ T3+ ... +Tp 1 t+Tpn < k-1
T2t xoz+ ...+ T 1k t+Tpr > 1
These inequalities are facet-defining for s > s1in(G,d, g) + O(1)dmax if and only if C is a

chordless cycle (see Section 6.2). The separation problem for cycle-order inequalities can be
solved in O(m?n) time.

Odd hole inequalities. Let C = {1,...,n} be an odd hole of the interference graph.
The following inequalities are the odd hole inequality associated with C' and its symmetrical
inequality, respectively.

3
Zli > n—+
1=1 2
n

3

Zri < S_n-i—
, 2
=1

Both inequalities induce facets of P(G,1,s,0) for s > spin(G,d,0) + 3. In the particular
case G = C,, (with n > 5 an odd integer), the odd hole associated with (), induces facets of
P(Cp,1,s5,0) for s > 3 (see Section 6.3). The same results apply to the fixed-length polytope
R(G,1,s,0) if we replace r; by [; + d; in the second inequality. A superclass of the odd hole
inequalities can be separated in polynomial time.

Interval-sum inequalities. If K C V is a not necessarily maximal clique, then the inequal-

ity

dork—lp < s

keK
is the interval-sum inequality associated with K. If the interference graph is complete and we
take K =V, then this inequality induces a facet of P(K,,d,s,0) if and only if s > Y i d;.
For arbitrary interference graphs and s > w(G, d), the interval-sum inequality defines a facet
of P(G,d,s,0) if and only if K is a maximal clique and |[K\N(¢)| > 2 for every i ¢ K (see
Section 6.4). The separation problem for the interval-sum inequalities is N'P-complete.

Clique-interval inequalities. Assume that G is a complete graph. Fix any node 1 € V and
partition V' = K U K' U {i}, where K or K' may be empty. The inequality

Z(T‘j — lj) + Z dj.’L'ji <li+ Z CZjQ}ij

jeK jEK’ jeK
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is the clique-interval inequality associated with K and K'. This inequality is valid for
P(G,d,s,0) and it is facet-inducing if and only if s > 31", d;. If G is an arbitrary graph we
can generalize this inequality, but this construction involves coefficients whose calculation is
NP-hard (see Section 6.5).
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Appendix B

Basics

The largest example tried was a 20x20 optimal assign-
ment problem. For this example, the simplex method
required well over an hour, the present method about
thirty minutes of hand computation.

— L. Ford and D. Fulkerson (1956)

B.1 Graph theory

A graph G = (V, E) consists of a finite nonempty set V' of nodes and a finite set F of unordered
pairs of distinct points of V', called edges. If e = {i,j} € E is an edge, we say that e joins the
nodes ¢ and j, and we briefly write ¢ = 45. Two nodes that are joined by an edge are called
adjacent or neighbors. The neighborhood of a node i € V is Ng(i) = {j € V :ij € E}. If
there is no danger of confusion, we just denote this neighborhood by N(i). A node i € V is
universal if N (i) = V\{i}, i.e., if it is adjacent to all the remaining nodes.

If A CV, we define the neighborhood of A as N(A) = {j € V :ij € E for some i € A}.
We also define the edge sets E(A) ={ij€ E:i€ Aand j€ A} and §(A) ={ije E:i€ A
and j ¢ A}. We also use the notation 6(i) = 0({i}). If A,B C V are disjoint node sets,
we define E(A,B) = {ij € E:i € Aand j € B}. A graph G' = (V',E') is a subgraph of
G = (V,E)if V! CV and E' C E. The subgraph of G induced by a node set A C V is
Ga = (A, E'), with E' = E(A). Such a graph is called an induced subgraph of G.

A sequence of distinct nodes v1,...,v; is a path in G if vv;4, € Efori=1,...,k—1.
The number k is the length of this path. For n > 1, we denote by P, = (V, E) the graph on
n nodes such that V. ={1,... ., n}and E={i,i+1:1=1,...,n—1}. A sequence of distinct
nodes vy,...,v; is a cycle in G if vjv;4 € Efori=1,...,k—1and vyvy € E. The number &
is the length of this cycle. A cycle with length 3 is called a triangle. A cycle is odd resp. even
if its length is odd resp. even. Every edge v;v; in the subgraph of G induced by the nodes
v1,...,U With j # 4+ 1 is a chord of the cycle. A cycle with no chords is called a chordless
or induced cycle or a hole, if it has length at least 4. An odd chordless cycle is called an odd
hole. For n > 1, we denote by C;, = (V, E) the graph on n nodes such that V = {1,... ,n}
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and E={i,i+1:i=1,...,n—1}U{In}. A graph is called a wheel if it is composed by a
cycle with the addition of a universal node. We denote by W, the wheel on n nodes.

A graph is called complete if every two nodes are joined by an edge. A clique in a graph G
is a set of nodes inducing a complete subgraph of G (note that we do not require this set to be
maximal). We denote by w(G) the size of a largest clique of G, also called the cliqgue number
of G. We denote by K, the complete graph on n nodes. A stable set is a set of nodes any two
of which are nonadjacent. A coloring of G is a partition of V into disjoint stable sets. We
call a coloring using k stable sets a k-coloring, and denote by x(G) the minimum number of
stable sets needed for such a partition of V. This number is also called the chromatic number
of G.

A weighted graph is a pair (G,d) such that G = (V, E) is a graph and d € RVl is a node
weighting, associating a number d; to every node ¢ € V. This number is called the weight
of the node 7. The weight of a node subset A C V' is d(A) = > ;c 4 di- The weighted clique
number w(G,d) is the largest weight of a clique in G.

A directed graph or digraph D = (V, A) consists of a finite nonempty set V' of nodes and
a finite set A of ordered pairs of distinct points of V', called arcs. If e = (i,5) € A is an arc
of D, we simply write e = ij, and we refer to node ¢ resp. j as the tail resp. head of the arc.
The arc %5 is an outgoing arc of node 4 and an incoming arc of node j.

A directed cycle is a sequence of nodes vy, ..., v such that v;u;y; € Afori=1,...,k—1
and v, € A. A digraph which admits no cycles is called acyclic. A tournament is a complete
digraph, i.e., a digraph such that all of its nodes are pairwise adjacent. A tournament with
no cycles is called an acyclic tournament. A topological ordering of a digraph D = (V, A)
is an ordering vy,...,v, of D such that i < j whenever v;v; € A. Such an ordering can be
found in linear time [3].

A node-weighted digraph is a pair (D,w) such that D = (V, A) is a digraph and w € RV
is a node weighting, associating a number w; to every node ¢ € V. An arc-weighted digraph is
a pair (D,u) such that D = (V, A) is a digraph and u € R4 is an arc weighting, associating
a number u;; to every arc ¢j € A. For further definitions and results on graph theory, we
refer to [28].

B.2 Polyhedral theory

A vector set K is conver if for any two points z,y € K it also contains the straight line
segment [z,y] = { Az + (1 — ANy : 0 < X < 1} between them. For any vector set K, the convex
hull of K, denoted by conv(K), is the smallest (w.r.t. set inclusion) convex set containing K,
ie., conv(K) =N{K' CR" : K C K’ and K’ is convex}. If K = {z1,...,z;} is finite, we
can equivalently write conv(K) as the convex combinations of its vectors:

k k
conv(K) = { Z)\imi :A>0and Z)\i =1 }
i=1 i=1
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A cone C C R" is a nonempty set of vectors such that for any finite set of vectors of C
it also contains all their linear combinations with nonnegative coefficients. For an arbitrary
subset K C R", we define its conical hull cone(K) to be the intersection of all cones in R"
containing K. If K = {z,...,z} is finite, we can write:

k
cone(K) = { Z)\ixi :A>0 }
i=1
The Minkowsi sum or vector sum of two sets P,Q C R" is defined to be P+ Q = {z + y :
z € P, yeQ}.

A polyhedron P C R" is the intersection of a finite number of closed halfspaces, i.e.,
P ={z € R": Az < b} for a matrix A € R"™*" and a vector b € R™. Equivalently,
polyhedra can be described by the Minkowski sum of a finitely generated convex hull and a
finitely generated conical hull, i.e., P = conv(K) + cone(WW) for finite vector sets K, W C R".
A polytope is a bounded polyhedron. A polytope P can just be described by the convex hull
of a finite set of vectors, i.e., P = conv(K) for a finite set K € R".

The vectors z1,...,z; € R"™ are affinely independent if Zle a;z; = 0 and Zle a; =0
impliesa; =0 fori=1,...,k. If P C R" is a polyhedron and {zy,...,zt} C P is a maximal
subset of affinely independent vectors of P, then we denote by dim(P) = k the dimension of
P. If dim(P) = n, we say that P has full dimension or that P is a full-dimensional polytope.
The polytope P has dimension k if and only if a maximal system of linear equations for P
has exactly n — k linearly independent equations.

A linear inequality cx < ¢p is valid for a polyhedron P if it is satisfied by all vectors x € P.
A face of P is any set of the form ' = PN{z € R" : cx = ¢y}, where cz < ¢y is a valid
inequality for P. A face F is called proper if F # () and F' # P. The faces of dimensions 0, 1,
dim(P) — 2 and dim(P) — 1 are called extreme points, edges, ridges and facets, respectively.
In particular, the vertices are the minimal nonempty faces and the facets are the maximal
proper faces. The set of all extreme points of P is denoted by vert(P). Every polytope is the
convex hull of its vertices, and if P = conv(K) then vert(P) C K.

Two polytopes P C R™ and Q C R™ are affinely isomorphic, denoted by P = @, if there
exists an affine map f : R® — R™ that is a bijection between the points of the two polytopes.
The polytopes P and @) are combinatorially equivalent if there is a bijection between their
faces that preserves the inclusion relation. This is equivalent to a bijection between vert(P)
and vert(Q) such that the extreme points of faces of P correspond (under this bijection)
to the extreme points of faces of Q). If two polytopes are affinely isomorphic then they are
combinatorially equivalent. For a more thorough treatment of this topic we refer to [46].

B.3 Computational complexity

A decision problem II consists of a set Dy of instances and a subset Y C Dy of affirmative
instances. The set of instances is usually described by a general definition of all its parameters,
and the affirmative instances are defined by a yes-no question asked in terms of the problem
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parameters. In this setting, an instance of the problem is obtained by specifying particular
values for all the problem parameters. We assume that each problem has an associated
encoding scheme, which maps problem instances into finite strings from a given alphabet.
The input length of an instance I € Dy is defined to be the number of symbols in the
description obtained from the encoding scheme for the problem, and is denoted by Length([).
The length function Length : Dy — Z is used as the formal measure of the instance size.

The time complexity function T4 : Zy — Z, of an algorithm A expresses its time re-
quirements by giving, for each possible input length, the largest amount of time needed by
the algorithm to solve a problem of that size. An algorithm A is called a polynomial-time
algorithm if there exists a polynomial p : R — R such that T4(n) < p(n) for all n € Z. The
class P is composed by the problems solvable by a polynomial-time algorithm.

A nondeterministic algorithm is an algorithm composed of a guessing stage and a checking
stage. Given an instance of the problem, the guessing stage nondeterministically generates
some structure. We then provide this structure to the checking stage, which computes in
a normal deterministic manner and halts either with the answer “yes” or with the answer
“no”. A nondeterministic algorithm solves a decision problem if there exists some guessed
structure such that the checking stage answers “yes” if and only if the instance is affirmative.
A nondeterministic algorithm is said to operate in polynomial time if for every affirmative
instance there is some guessed structure that leads the checking stage to an affirmative answer
within time bounded by a polynomial in the input size. The class NP is defined to be the
class of all decision problems solvable by nondeterministic algorithms operating in polynomial
time. Clearly PCNP, but it is not known whether this inclusion is strict or not.

A polynomial transformation from a decision problem II to a decision problem II' is a
function f : Dg — Dy such that f is computable by a polynomial time deterministic
algorithm and, for every I € Dy, I € Yy if and only if f(I) € Y. If there is a polynomial
transformation from II to II', we write II oc II'. It is not difficult to verify that the relation
induced by o< is transitive and reflexive. A decision problem II is defined to be N'P-complete
if II eN'P and II' o< II for all II” eNP. To prove that a certain decision problem II is NP-
complete, it suffices to show that II eNP and that II' o II for some AN P-complete problem
IT'. If IT is N'P-complete, then there exists a polynomial-time algorithm solving IT if and only
if P=NP.

If IT is a decision problem, we define the function Max : Dy — Z4 such that Max(I)
denotes the magnitude of the largest number in I. An algorithm that solves a problem is
called a pseudo-polynomial time algorithm if its time complexity is bounded by a polynomial
on Length(7) and Max(I). A problem II is a number problem if there exists no polynomial
p: R — R such that Max(I) < p(Length(I)) for all I € Dy. For any decision problem II
and any polynomial p : Z — Z, let II, denote the subproblem of II obtained by restricting
IT to only those instances I satisfying Max(/) < p(Length(I)). The decision problem II is
NP-complete in the strong sense if IT belongs to NP and there exists a polynomial p : Z — Z
such that II,, is N"P-complete. If IT is N"P-complete in the strong sense, then there does not
exist any pseudo-polynomial time algorithm solving IT unless P=NP.
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Let IT and IT' denote arbitrary decision problems, with instance functions Length and
Max, resp. Length’ and Max’, A pseudo-polynomial transformation from II to II' is a function
f + Dp — D such that

(a) for all I € Dy, I € Yy if and only if f(I) € Y,
(b) f can be computed in time polynomial in the two variables Max(I) and Length(I),

(c) there exists a polynomial ¢; such that ¢;(Length'(f(I)) < Length(I) for all I € Dy,
and

(d) there exists a two-variable polynomial g3 such that Max'(f(I)) < g2(Max(I), Length([))
for all I € Dyy.

Every polynomial transformation is a pseudo-polynomial transformation. If IT is N’P-complete
in the strong sense, II' EN'P, and there exists a pseudo-polynomial transformation from II to
IT', then IT" is NP-complete in the strong sense.

A search problem II consists of a set Dy of instances and, for each instance I € Dy, a set
Su(f) of solutions. An algorithm is said to solve a search problem II if, given as input any
instance I € Dyy, it returns some solution belonging to Syj(I) whenever this set is nonempty.
A polynomial-time reduction from a search problem II to a search problem II’ is an algorithm
A that solves IT by using a hypothetical subroutine S for solving II' such that, if S is a
polynomial-time algorithm for IT" then A is a polynomial-time algorithm for II. If there exists
a polynomial-time reduction from II to IT', we write IT cg IT". A search problem II is NP-
hard if there exists some NP-complete problem II' such that IT" ocg II. An N'P-hard search
problem cannot be solved in polynomial time unless P=NP.
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Notation index

Tij

(i) = [li,ri]
XS
P(G,d,s,qg)
R(G,d,s,q)
PLP(Ga da S, g)
RLP(G7 d,s, g)
21,
Zr;
Za;j
2]
Zr

Zx

the set of real numbers

the set of integer numbers

the set of non-negative integer numbers
power set of F

vector (1,...,1)

set of customers

partition of 7 into sectors

interfering pairs of customers in different sectors

interference graph

set of pairs of nodes in the same sector
interfering pairs of nodes in different sectors
number of nodes of G

number of edges of G

demand vector

guard distance

length of the frequency spectrum
sector node 7 belongs to

neighbor set of node 4

neighbor set of the node set A

interval bound variables

ordering variables

interval assigned to customer i
incidence vector of a schedule §
chromatic scheduling polytope
fixed-length chromatic scheduling polytope
linear relaxation of P(G,d, s, g)

linear relaxation of R(G,d, s, g)
variable [; from the incidence vector z
variable r; from the incidence vector z
variable z;; from the incidence vector z
vector (zg,,...,2,)

vector (zp,,..-,2r,)

vector (2z,;,- -+, 2z;, )
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Smin(Ga da g)
Sfull(Ga d, g)
Smax(G,d, g)
dmax
dmin(c)
d(K)
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@
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S

< 2

ks
3

hS

SeaEEO
FEEQREE
e aw
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O

(P)

SD
S =
-+

g
Q

extension of a solution y € R(G,d, s, g)

reduction of a solution z € P(G,d, s, g)

symmetric solution

minimum frequency span such that P(G,d,s,g) # 0
lower bound ensuring full-dimensionality

lower bound ensuring combinatorial stability
maximum demand max;cy d;

minimum demand max;cc d;

summation ) ;. d;

number of sectors with nonempty intersection with K
number of sector changes in the cycle C

minimum distance between (i) and 1(j)

chromatic number of G

clique number of G

weighted clique number of (G, d)

minimum span generating a solution for each ordering
cycle on n nodes

path on n nodes

complete graph on n nodes

complete (n,m)-bipartite graph

subgraph induced by the node subset A

set of edges with both endpoints in A

set of edges with endpoints in A and B respectively
set of nodes ¢ with intervals greater than d;
dimension of the polyhedron P

lower bound for /; in [0, s|] under the ordering x
upper bound for /; in [0, s] under the ordering
fixed-length adjacency graph

general adjacency graph

affine isomorphism

extreme points of P

linear ordering polytope on n nodes

support of the inequality 7z < mp
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Index

4-cycle inequalities, 98 reinforced, 86
replicated, 88

acyclic tournament, 47 cycle-order inequalities, 102

adjacency graph, 40

affine independence, 23 digraph, 47

affine isomorphism, 42, 47 double covering-clique inequalities, 75
affine map, 42 2-extended, 94

affirmative instance, 73 closed, 94

extended, 92

bandwith allocation problem, 6 reinforced, 88

bipartite graphs, 29

border component, 38 extreme point, 37

channels, 2 face, 53

chordless cycle, 102 facial structure, 42

chromatic number, 23 parallel face, 53, 54

chromatic scheduling polytope, 14 facet, 53, 63
combinatorial equivalence, 16 feasible schedules, 13

dimension, 23
extreme points, 37
feasibility, 20
fixed-length polytope, 14
full dimension, 26
symmetry, 52

clique, 66

fixed-length symmetrical schedule, 53

greedy solution, 35

span-minimal, 13

symmetrical schedule, 54
fixed-length adjacency graph, 38
Fourier-Motzkin elimination, 44

frequency assignment, 2

covering clique, 66 feasibility FAP, 3
maximal clique, 66

clique inequalities, 64

clique number, 21
clique-interval inequalities, 114
combinatorial equivalence, 42

maximum service FAP, 3
minimum interference FAP, 4
minimum order FAP, 3
minimum span FAP, 4

conical hull, 136 general covering-clique inequalities, 73
connected component, 38 general double covering-clique ineq., 85
constraints, 12 graph, 135
antiparallelity constraints, 12, 52, 74 graph coloring, 8, 30
bound constraints, 12, 64 consecutive coloring, 8
demand constraints, 12, 57 consecutive interval coloring, 8
integrality constraints, 12, 57
convex hull, 14, 44, 45 heuristic, 9
covering-clique inequalities, 67 greedy heuristic, 9
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incidence vector, 12, 14
extension, 20
reduction, 20

induced subgraph, 66

interference, 2

interference graph, 3, 7
4-cycle, 23
asteroidal tripel, 22
bipartite, 29
claw, 66
complete, 15, 33, 48
cycle, 16, 22, 98
even cycle, 35
odd cycle, 35
path, 16, 35
star, 34
tree, 30
union of cliques, 45

interval-sum inequalities, 109

lifting, 67, 74, 85, 118
linear ordering polytope, 16, 47, 102
facets, 48
fence inequalities, 92
reinforced fence inequalities, 92
linear relaxation, 70

matrix, 37

matrix determinant, 37

Max CLIQUE, 71

MAX MAJORITY-CLIQUE, 71
minimum cost-to-time ratio, 105
minimum mean cycle, 105

NP-complete problem, 9

odd hole, 106
odd hole inequalities, 106
open shop scheduling, 9

parity nonadjacent node, 107
path inequalities, 89
PMP-Systems, 5
antiparallelity requirements, 8
frequency spectrum, 7
guard distance, 7
interference, 6
sectors, 5
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polyhedron, 136
polynomial reduction, 71
polytope, 136

PoRtaA, 15

precedence constraints, 8
precedence relation, 12, 52

scheduling, 8

separation between intervals, 38

separation problem, 70
complexity, 70

sequence-independent lifting, 67

shortest path, 109

singular matrix, 37

stable set, 26

strenghtening a valid inequality, 64

superperfect graph, 22

support of an inequality, 48

symmetry point, 52, 53

topological ordering, 25
tournament, 47
triangle inequalities, 57

valid inequality, 63
variables, 11
gap variables, 44
interval bounds, 11
notation, 14
ordering variables, 12
position variables, 42

weighted clique number, 21
WEIGHTED MAX-CLIQUE, 113
wireless communications, 1
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