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Abstra
tPoint-to-Multipoint systems are a kind of radio systems supplying wireless a

ess to voi
e/data
ommuni
ation networks. Su
h systems have to be run using a 
ertain frequen
y spe
trum,whi
h typi
ally 
auses 
apa
ity problems. Hen
e it is, on the one hand, ne
essary to reusefrequen
ies but, on the other hand, no interferen
e must be 
aused thereby. This leads tothe bandwidth allo
ation problem, a spe
ial 
ase of so-
alled 
hromati
 s
heduling problems.Both problems are NP-hard, and there exist no polynomial time algorithms with a �xedapproximation ratio for these problems. As algorithms based on 
utting planes have shownto be su

essful for many other 
ombinatorial optimization problems, the goal is to applysu
h methods to the bandwidth allo
ation problem. For that, knowledge on the asso
iatedpolytopes is required. The present thesis 
ontributes to this issue.We present an integer programming formulation for the bandwidth allo
ation problem andde�ne the asso
iated 
hromati
 s
heduling polytopes. We �rst study the 
ombinatorial stru
-ture of these polytopes, dis
ussing the di�erent stages {emptyness, non-emptyness but low-dimensionality, full-dimensionality but 
ombinatorial instability, and 
ombinatorial stability{as the frequen
y span in
reases. Moreover, we explore the relations of 
hromati
 s
hedulingpolytopes to the linear ordering polytope.From a geometri
al point of view, 
hromati
 s
heduling polytopes are of parti
ular interest dueto their symmetry. Outgoing from this symmetry, we develop an important tool for identifyingfa
et-de�ning inequalities without any knowledge on the dimension of the polytopes. Thisenables us to identify the fa
et-indu
ing 
onstraints from the integer programming model. Theother model 
onstraints need to be strengthened with the help of 
lique-based stru
tures inorder to yield fa
ets. In parti
ular, the so-
alled 
overing-
lique inequalities generate a broadnumber of fa
ets, and we also present several 
lasses of fa
ets 
oming from generalizationsand variations of these inequalities. We introdu
e further 
lasses of fa
et-indu
ing inequalitiesbased on di�erent 
on
epts, and study the 
omplexity of the asso
iated separation problems.Keywords: bandwidth allo
ation, polyhedral 
ombinatori
s
iii



ResumenLos sistemas de radio punto a multipunto son 
onjuntos de antenas de radio que proveena

eso inal�ambri
o a redes de 
omuni
a
i�on de voz y datos. Este tipo de sistemas debe seroperado utilizando un 
ierto espe
tro de fre
uen
ias de radio, lo 
ual normalmente produ
eproblemas de 
apa
idad. Por lo tanto es ne
esario reutilizar fre
uen
ias, pero este reusono debe generar interferen
ia entre las se~nales. El problema de determinar las fre
uen
iaspara los enla
es se 
ono
e 
omo el problema de asigna
i�on de fre
uen
ias, y en este tipo desistemas es un 
aso espe
ial de los problemas de plani�
a
i�on 
rom�ati
a. Estos problemasson NP-hard, y no existen algoritmos aproximados polinomiales 
on una garant��a de 
alidad�ja. Como los m�etodos de planos de 
orte han demostrado ser efe
tivos para mu
hos otrosproblemas de optimiza
i�on 
ombinatoria, el objetivo es apli
ar estos m�etodos al problema deasigna
i�on de fre
uen
ias en sistemas punto a multipunto. Para esto, es ne
esario estudiarpreviamente los politopos aso
iados 
on el problema. El presente trabajo 
ontribuye a esteestudio.Introdu
imos una formula
i�on del problema de asigna
i�on de fre
uen
ias en sistemas puntoa multipunto 
omo un problema de programa
i�on lineal entera, y de�nimos los politopos deplani�
a
i�on 
rom�ati
a aso
iados a esta formula
i�on. Estudiamos en primer lugar la estru
-tura 
ombinatoria de estos politopos, analizando los distintos estados {va
uidad, no va
uidadpero dimensi�on in
ompleta, dimensi�on 
ompleta pero inestabilidad 
ombinatoria, y estabil-idad 
ombinatoria{ a medida que el an
ho de banda disponible aumenta. Por otra parte,exploramos las rela
iones de los politopos de plani�
a
i�on 
rom�ati
a 
on el politopo de orde-namiento lineal.Desde el punto de vista geom�etri
o, los politopos de plani�
a
i�on 
rom�ati
a son de un in-ter�es parti
ular debido a su simetr��a. Como 
onse
uen
ia de esta propiedad, desarrollamosuna importante herramienta para identi�
ar desigualdades que de�nen fa
etas sin requeririnforma
i�on sobre la dimensi�on del politopo. Esto nos permite identi�
ar las restri

iones delmodelo de programa
i�on lineal entera que de�nen fa
etas del politopo aso
iado. Las restantesrestri

iones del modelo deben ser reforzadas mediante estru
turas basadas en 
liques del grafode interferen
ia para obtener desigualdades que de�nen fa
etas. En parti
ular, las desigual-dades de 
lique en 
ubrimiento generan una gran familia de fa
etas, y adem�as presentamosvarias 
lases de fa
etas que provienen de generaliza
iones y varia
iones de estas desigualdades.Introdu
imos 
lases adi
ionales de fa
etas basadas en distintos 
on
eptos, y estudiamos la
omplejidad de los problemas de separa
i�on aso
iados.Palabras 
lave: asigna
i�on de fre
uen
ias, 
ombinatoria poliedraliv



Introdu
tion For pra
ti
al purposes the di�eren
e between algebrai
and exponential order is often more 
ru
ial than the dif-feren
e between �nite and non-�nite.{ Ja
k Edmonds (1965)Sin
e the advent of wireless 
ommuni
ations, the ele
tromagneti
 spe
trum has beenwidely explored for many appli
ations, the most popular today being 
ellular phone net-works. The development of new wireless servi
es led to s
ar
ity of usable frequen
ies in theradio spe
trum, and this introdu
ed the need to reuse frequen
ies. A 
ru
ial problem in thiskind of 
ommuni
ation is the interferen
e in
urred whenever two nearby transmitters operateat 
lose frequen
ies. Depending on many fa
tors (in
luding the power and orientation of thesignal, geographi
al 
onstraints and even wheather 
onditions), the re
eived signal may be ofuna

eptable poor quality. Therefore, interferen
e must be avoided by a 
areful assignmentof frequen
ies to ea
h transmitter operating in the same area. It turned out that su
h assign-ments are 
omputationally diÆ
ult to �nd, and this fa
t has motivated a steady interest onthis topi
 [1, 2, 9, 17, 34, 35℄.Point-to-Multipoint radio a

ess systems (PMP-Systems) are one kind of wireless networksproviding voi
e/data a

ess to a set of 
ustomers. Base stations form the a

ess points to theba
kbone network, and 
ustomer terminals are linked to the base stations by means of radiosignals. In 
ontrast to 
ellular phone networks, ea
h 
ustomer has a �xed lo
ation on a 
ertainse
tor and is therefore served by a prespe
i�ed base antenna. Moreover, ea
h 
ustomer mustbe assigned a frequen
y interval instead of single 
hannels, subje
t to the 
onstraint thatno interferen
e is originated by the use of overlapping frequen
ies. In this setting there aretwo sour
es of possible interferen
e, given by (i) 
ustomers allo
ated to the same se
tor and(ii) 
ertain pairs of potentially interfering 
ustomers in di�erent se
tors. To guarantee aninterferen
e-free 
ommuni
ation, a parti
ular bandwidth allo
ation problem must be solvedwhen operating a PMP-System.This kind of problems is known as 
hromati
 s
heduling problem [15℄ or, in some parti
-ular 
ases, as 
onse
utive 
oloring problem [16℄ and interval 
oloring problem [22, 36℄. Su
hproblems are NP-
omplete and 
annot be polynomially approximated with a guaranteedquality [36℄. Small and medium-sized instan
es 
ould be su

essfully handled by greedy-likeheuristi
s [7℄, but in order to ta
kle real world instan
es, algorithms have to be designed thatrely on a deeper insight of the problem stru
ture. Cutting plane methods have shown to bevery e�e
tive at solving hard 
ombinatorial optimization problems [6, 30, 42, 45℄. For that,v



knowledge of the polyhedra arising in 
onne
tion to an integer programming formulation ofthe problem is needed. This thesis is devoted to the study of the polytopes de�ned by the in-teger programming formulation of the bandwidth allo
ation problem in PMP-Systems. Su
ha polyhedral study is the starting point for the pra
ti
al 
omputational solution of real-sizedinstan
es based on 
utting planes.The thesis is organized as follows. Chapter 1 gives an overview of wireless 
ommuni
ationand frequen
y assignment problems, and introdu
es PMP-Systems and the asso
iated band-width allo
ation problem in detail. Chapter 2 presents an integer programming formulationfor this problem, and provides the de�nition of the asso
iated polytopes, 
alled 
hromati
s
heduling polytopes. Chapter 3 dis
usses the di�erent 
ombinatorial stages of these polyhe-dra, as well as some relations to the linear ordering polytope. Finally, Chapter 4, Chapter 5and Chapter 6 
on
entrate on the sear
h for valid inequalities and fa
ets, and address the 
or-responding separation problems, the 
ornerstone of a su

essful implementation of a 
uttingplane approa
h.OutlineChapter 1 starts with a brief survey of the history and main appli
ations of wireless 
om-muni
ations. Se
tion 1.1 introdu
es the frequen
y assignment problem (FAP) and presents anumber of relevant models for di�erent kinds of appli
ations. In all these models we are givena set of 
ustomers and a set of 
hannels (frequen
ies) for ea
h 
ustomer, and the obje
tive isto assign a 
ertain number of 
hannels to ea
h 
ustomer, either avoiding or minimizing inter-feren
e. In the feasibility FAP the obje
tive is to �nd an assignment providing ea
h 
ustomerwith the exa
t number of 
hannels that he demands. This problem may be infeasible, and inthis 
ase the maximum servi
e FAP model is of interest. This model asks for an assignmentproviding to every 
ustomer at most the demanded number of 
hannels, maximizing the to-tal number of assigned 
hannels. On the other hand, if feasible solutions to the feasibilityFAP exist, one is usually interested in the assignments minimizing the total number of used
hannels (minimum order FAP) or the span of the assignment (minimum span FAP). We�nally introdu
e the minimum interferen
e FAP, whi
h 
onsiders a more realisti
 s
enario byseeking an assignment that minimizes the total amount of interferen
e. This model is usefulin situations where interferen
e-free frequen
y plans do not exist, and hen
e the obje
tive isto minimize the quality loss due to interferen
e.Se
tion 1.2 introdu
es PMP-Systems in detail. We give a pre
ise de�nition of the band-width allo
ation model and state this problem in graph-theoreti
al terms by introdu
ing theweighted interferen
e graph (G; d). The node set of this graph represents the 
ustomer ter-minals, and edges join pairs of interfering 
ustomers. In this parti
ular model we have twotypes of edges, representing the two sour
es of possible interferen
e (i.e., interferen
e among
ustomers in the same se
tor, and interferen
e between 
ertain pairs of 
ustomers in di�er-ent se
tors). The 
ustomers do not have a uniform 
ommuni
ation demand but individualones, hen
e we 
onsider a node weighting d re
e
ting these demands. We further have theavailable radio frequen
y spe
trum [0; s℄, with s 2 Z, where all the frequen
y intervals haveto be pla
ed in. Finally, a guard distan
e g 2 Z+ must be kept between the intervals ofvi



interfering 
ustomers in di�erent se
tors, due to te
hni
al reasons. Thus, every instan
e ofthe bandwidth allo
ation problem is given by a quadruple (G; d; s; g). This problem may beinterpreted as a spe
ial s
heduling problem, where the se
tors 
orrespond to ma
hines andthe frequen
y intervals to the jobs to be s
heduled. In this setting, the assignment of jobs toma
hines is �xed in advan
e, and we have antiparallelity requirements with 
hangeover timesinstead of the usual pre
eden
e 
onstraints. We prove that this problem is NP-
omplete byproviding a straightforward redu
tion from Graph 
oloring, and alternatively by a redu
-tion from Open shop s
heduling. The 
hapter 
loses with a dis
ussion motivating thestudy of 
hromati
 s
heduling polytopes in the forth
oming 
hapters.Chapter 2 introdu
es a natural integer programming formulation for the bandwidth al-lo
ation problem in PMP-Systems. This formulation 
ontains two integer variables for ea
h
ustomer {the interval bounds{ representing the interval assigned to the 
ustomer, and a bi-nary variable for ea
h pair of interfering 
ustomers {the ordering variables{ representing theordering among the intervals. The latter are needed to des
ribe the feasible solutions, sin
eotherwise the 
onvex hull of all integer feasible solutions would 
ontain infeasible but integralpoints. Se
tion 2.1 
loses with the de�nition of the asso
iated polytopes. For any instan
e(G; d; s; g), we de�ne the 
hromati
 s
heduling polytope P (G; d; s; g) to be the 
onvex hull ofall the integer ve
tors 
orresponding to feasible solutions. A spe
ial 
ase of this problem is ofparti
ular interest, namely, the 
ase where ea
h 
ustomer re
eives an interval whi
h has pre-
isely the length of its demand. We also de�ne the �xed-length 
hromati
 s
heduling polytopeR(G; d; s; g) to be the 
onvex hull of the feasible solutions satisfying this additional 
ondition.Se
tion 2.2 presents some preliminary 
omputational studies regarding the 
omplete lin-ear des
ription of the easier 
ase R(G;1; s; 0) for several small graphs. On the one hand,these experiments show that simple instan
es of the bandwidth allo
ation problem generatepolytopes with a rather 
omplex stru
ture, admitting huge numbers of extreme points andfa
ets. On the other hand, the reported results also suggest that 
hromati
 s
heduling poly-topes pass through several stages as the frequen
y span s in
reases: from a nonempty butlow-dimensional stage to full-dimensionality and, �nally, to a 
ombinatorially steady state.The purpose of Chapter 3 is to dis
uss these di�erent 
ombinatorial stages. A �rst impor-tant issue is to �nd 
onditions for the existen
e/nonexisten
e of feasible solutions resp. forthe nonemptyness/emptyness of the polytopes, as knowing one feasible solution enables usto run a PMP-System properly. We de�ne smin(G; d; g) to be the minimum frequen
y spanmaking the polytopes nonempty, and Se
tion 3.1 provides some straightforward bounds onthis threshold. Note that the NP-
ompleteness of the bandwidth allo
ation problem impliesthat the exa
t 
al
ulation of smin(G; d; g) is an NP-hard problem. We 
ombine the weighted
lique number of the weighted graph (G; d) with se
torization arguments to devise a 
erti�
ateof infeasibility, whereas a lower bound on s for feasibility arises from the 
hromati
 numberof G.We explore in Se
tion 3.2 the dimension of 
hromati
 s
heduling polytopes, a 
ru
ialproperty for de
iding whi
h valid inequalities are fa
ets (and, therefore, the best possible
utting planes). It turns out that the dimension of these polytopes is hard to 
hara
terize,be
ause it strongly depends on the graph stru
ture, the node weighting and the availablefrequen
y spe
trum [0; s℄. It is not diÆ
ult to verify that the dimension is a nonde
reasingvii



fun
tion of the frequen
y span and that P (G; d; s; g) and R(G; d; s; g) are full-dimensional ifs� !(G; d). We thus introdu
e the threshold sfull(G; d; g) de�ned as the minimum frequen
yspan s making P (G; d; s; g) full-dimensional. Se
tion 3.2.1 presents further results related tofull-dimensionality. In parti
ular, we give a lower bound 
(G; d; g) on s guaranteeing full-dimensionality of both polytopes based on 
oloring arguments. The se
tion 
loses with aspe
ial analysis of the dimension of uniform instan
es, providing better bounds in terms ofthe 
hromati
 number of the interferen
e graph.In Se
tion 3.2.2 we dis
uss the 
omputational 
omplexity of the problem of determiningthe dimension of a parti
ular instan
e. The main result of this se
tion states that de
idingwhether a 
ertain instan
e generates a full-dimensional polytope is NP-
omplete. Hen
e,determining the dimension of 
hromati
 s
heduling polytopes is an NP-hard task. Finally,Se
tion 3.2.3 
ompletely 
hara
terizes the dimension of P (G; d; s; 0) and R(G; d; s; 0) as afun
tion of s for a number of graph 
lasses. In parti
ular, we are able to determine thedimension of both polytopes when the interferen
e graph is a 
omplete graph, a star, a path,and a 
y
le. These examples show that the dimension is a nontrivial parameter of the graphstru
ture.Se
tion 3.3 explores the 
ombinatorial steady state of 
hromati
 s
heduling polytopes. Ithas been experimentally observed in some instan
es that there exists a 
ertain smax(G; d; g) 2Z+ su
h that the polytopes fR(G; d; s; g)gs�smax(G;d;g) have the same number of extremepoints and fa
ets. This led to the question whether all the polytopes fR(G; d; s; g)gs�smax(G;d;g)are 
ombinatorially equivalent. In this se
tion we give an aÆrmative answer by provinga more general result: the polytopes R(G; d; s; g) and R(G; d; s + 1; g) resp. P (G; d; s; g)and P (G; d; s + 1; g) are aÆnely isomorphi
 (and therefore 
ombinatorially equivalent) fors � !(G; d). Moreover, we give an upper bound on smax(G; d; g), and this bound 
an beshown to be sharp when G is the disjoint union of 
liques.Se
tion 3.4 
loses the 
hapter establishing some relations between 
hromati
 s
hedul-ing polytopes and the linear ordering polytope P nLO. It is not surprising that 
hromati
s
heduling polytopes posess mu
h of the stru
ture of the linear ordering polytope, sin
e theordering variables have the same meaning in both settings. We prove that P (Kn; d; s; 0) andR(Kn; d; s; 0) are aÆnely isomorphi
 to P nLO when s =Pni=1 di, and we show that R(Kn; d; s; 0)is aÆnely isomorphi
 to P n+1LO when s >Pni=1 di. These results imply that even simple 
hro-mati
 s
heduling polytopes are hard to 
hara
terize, sin
e a 
omplete linear des
ription ofP (Kn; d; s; 0) in
ludes all the linear ordering fa
ets. We also study relations between the validinequalities of these polytopes over arbitrary interferen
e graphs, and the main result in thisdire
tion asserts that every fa
et-indu
ing inequality for the linear ordering polytope is alsofa
et-indu
ing for P (G; d; s; g) and R(G; d; s; g) provided that s � !(G; d) and the set ofedges with nonzero 
oeÆ
ients is 
ontained in E.Chapter 4, Chapter 5, and Chapter 6 
on
entrate on the sear
h for fa
et-indu
ing inequal-ities for 
hromati
 s
heduling polytopes. This issue has pra
ti
al impli
ations, sin
e strongvalid inequalities are the 
ornerstone of su

essful implementations of 
utting plane methods.In order to apply su
h methods to a 
ertain problem, a deep polyhedral study must be 
arriedout, so that families of strong inequalities are found. The asso
iated separation problems arealso of interest, sin
e good separation routines are required to eÆ
iently dete
t violated in-viii



equalities in order to 
ontribute to the pro
ess. It is worth noting that the NP-
ompletenessof the bandwidth allo
ation problem implies that �nding a 
omplete linear des
ription ofthese polytopes is virtually a hopeless task, unless NP = 
o-NP [42℄.Chapter 4 starts the sear
h of fa
ets of 
hromati
 s
heduling polytopes by exploring validinequalities de�ning fa
ets in all nonempty instan
es. To this end, Se
tion 4.1 dis
usses thespe
ial symmetry of 
hromati
 s
heduling polytopes, whi
h is a parti
ular property of thesepolyhedra. Re
all that we do not have pre
eden
e 
onstraints given in advan
e, but onlyantiparallelity 
onstraints. Hen
e, for every feasible solution, there is a symmetri
 feasiblesolution obtained by swapping all the intervals. The polytopes P (G; d; s; g) and R(G; d; s; g)
learly re
e
t this symmetry. The �xed-length polytope R(G; d; s; g) is even symmetri
 withrespe
t to a 
ertain point, and due to this symmetry there exists, for every fa
e, a parallelfa
e of the same dimension. There is a simple formula to 
ompute this parallel fa
e, using theknowledge of the symmetry point. A similar 
onstru
tion 
an be even given for P (G; d; s; g),although there is no symmetry point in this 
ase.This spe
ial symmetry also provides a theoreti
al tool for identifying fa
et-indu
ing in-equalities. Consider a fa
e F of R(G; d; s; g) su
h that any integer solution lies in F if andonly if its symmetri
al solution does not belong to F . The main result of Se
tion 4.1.3 showsthat su
h a fa
e is a fa
et of R(G; d; s; g) as long as this polytope is nonempty {regardless ofits dimension and parti
ular stru
ture. This is a powerful tool for identifying fa
et-de�ninginequalities, sin
e no knowledge on the dimension is needed. We point out that this theoremonly relies on symmetry 
onsiderations. A similar result holds for P (G; d; s; g) under somefurther te
hni
al assumptions.Based on these results, Se
tion 4.2 explores fa
ets 
oming from the integer programming
onstraints. We show that the binary bounds on the ordering variables are fa
et-indu
ing forevery nonempty instan
e, and we present a further 
lass of valid inequalities {the triangleinequalities{ that possess the same property. This se
tion also 
hara
terizes the polytopeswhi
h admit fa
ets 
oming from the demand 
onstraints. The remaining integer program-ming 
onstraints, i.e., the bounds on the interval variables and the antiparallelity 
onstraints,do not de�ne fa
ets in general and the purpose of Chapter 5 is to explore fa
et-indu
ingstrenghtenings of these 
onstraints.If s is 
lose to the weighted 
lique number !(G; d) of the interferen
e graph (G; d), itis usually diÆ
ult to pla
e all the intervals interferen
e-free within the available frequen
yspe
trum; thus su
h settings are the hardest ones in pra
ti
e. Se
tion 4.3 presents three 
lassesof valid inequalities for instan
es with small frequen
y spans, and we prove by symmetryarguments that they are fa
et-indu
ing regardless of the dimension of the polytope.Chapter 5 presents a number of 
lasses of fa
ets arising from strenghtenings of the intervalbound and the antiparallelity 
onstraints. A natural way to generalize the interval boundsis to 
onsider a 
lique in the neighborhood of the 
orresponding node of the interferen
egraph, but we show that the resulting valid inequalities, 
alled the 
lique inequalities, onlyare fa
et-indu
ing for parti
ular 
ases. In order to devise stronger inequalities, a so-
alled
overing 
lique must be 
onsidered instead of an arbitrary 
lique. Se
tion 5.1 presents this
onstru
tion and some algorithmi
 results 
on
erning the identi�
ation of 
overing 
liques.ix



Afterwards we prove that the so-
alled 
overing-
lique inequalities are fa
et indu
ing for bothpolytopes if s � smin(G; d; g) + 3(g + dmax). Interestingly, these inequalities are not fa
et-indu
ing for every instan
e, and we present a (rather involved) example. Finally, we alsodis
uss the asso
iated separation problem, showing NP-
ompleteness.Based on similar ideas, Se
tion 5.2 explores a strenghtening of antiparallelity 
onstraintsthat gives rise to a 
lass of fa
et-indu
ing inequalities, the double 
overing-
lique inequalities.It is interesting that the same 
onstru
tion of 
overing 
liques used for strenghtening theinterval bounds 
an su

essfully be applied to the antiparallelity 
onstraints. We prove thatthe resulting inequalities are valid for every instan
e and indu
e fa
ets if g = 0 and s �smin(G; d; 0)+4dmax. However, many examples 
an be found where these inequalities are notfa
et-de�ning for both polytopes. We also explore the 
omplexity of the asso
iated separationproblem, showingNP-
ompleteness. Finally, Se
tion 5.2.3 presents the 
onstru
tion of double
overing-
lique inequalities for the 
ase g > 0, that establishes that the resulting inequalitiesde�ne fa
ets of both polytopes.Se
tion 5.3 presents a number of further 
lasses of fa
ets arising as variations and gener-alizations of 
overing-
lique inequalities and double 
overing-
lique inequalities. Se
tion 5.3.1and Se
tion 5.3.2 provide two generalizations of these families, originating two broader 
lassesof fa
ets. Se
tion 5.3.3 presents three further 
lasses of fa
et-indu
ing inequalities reinfor
ingthe double 
overing-
lique inequalities. These new families show an interesting balan
e in the
oeÆ
ients of double 
overing-
lique inequalities: when we try to strengthen the left-handside, we have to adjust the right-hand side in order to maintain both validity and fa
etness.This interplay is well exempli�ed by the reinfor
ed inequalities introdu
ed in this se
tion.Chapter 6 presents further families of fa
et-indu
ing inequalities based on other stru
turesof the interferen
e graph. Se
tion 6.1 presents the so-
alled 4-
y
le inequalities, arising from a
ombination of a 4-
y
le and a 
lique, and 
onstraining the relation between the left intervalbounds of two nonadja
ent nodes and the left border of the frequen
y spe
trum [0; s℄. A
onstru
tive proof of fa
etness is given for the uniform 
ase d = 1 and g = 0.Se
tion 6.2 
onsiders the 
y
le-order inequalities, de�ned over the ordering variables 
or-responding to 
y
les on the interferen
e graph. The main result of this se
tion asserts that,in the 
ase s � smin(G; d; g)+O(1)dmax, a 
y
le-order inequality is fa
et-indu
ing if and onlyif the asso
iated 
y
le does not 
ontain a 
hord. We prove that the 
y
le-order inequalities
an be separated in polynomial time.Cy
les in the interferen
e graph also originate valid inequalities over the interval bounds,and Se
tion 6.3 presents a 
onstru
tion over odd holes (i.e., odd 
y
les with no 
hords). Theodd hole inequalities are valid for arbitrary instan
es, and we prove that they de�ne fa
ets ofP (C2k+1;1; s; 0). We also provide 
onditions guaranteeing fa
etness for P (G;1; s; 0), and weprove that a super
lass of the odd hole inequalities 
an be separated in polynomial time.The analysis of the polytope P (Kn; d; s; g), de�ned over a 
omplete graph, is of theoreti
alinterest and 
an also lead to fa
ets for the general 
ase. Se
tions 6.4 and 6.5 
lose the 
hapterwith two 
lasses of fa
ets for this polytope, along with the 
orresponding generalizations forarbitrary interferen
e graphs. We also prove that the asso
iated separation problems areNP-
omplete. x
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Chapter 1
Frequen
y assignment

The stru
tural problems involving 
ombinatorial 
onsid-erations have only re
ently been studied in an intensivemanner. They involve mathemati
al diÆ
ulties of thehighest order even in what seem to be the simplest 
ases.{ Ri
hard Bellman (1956)Wireless 
ommuni
ation via radio waves dates ba
k to the pioneering work of the fren
hphysi
ist Edouard Branly and the italian physi
ist Guglielmo Mar
oni. As early as 1889,Branly was able to transmit signals over small distan
es, rea
hing on open air re
eivers lo
ated100 meters away from the transmitter. Based on this and his own experien
e, Mar
onisu

essfully transmitted in 1897 a Morse-
oded message to a ship at sea over a distan
e of29 kilometers. A 
ouple of years later a regular 
ommuni
ation was established a
ross theEnglish Channel, and already in 1902 it was possible to transmit signals a
ross the Atlanti
O
ean. The 
ontinuous development led to the �rst installations of telegraphi
 equipmenton ships 
rossing the Atlanti
 O
ean, and a few years later every ship was using wirelesstelegraphy to 
ommuni
ate with other ships and shore stations. The following 
omment fromthe 1921 addendum to the W. M. Ja
kson En
y
lopaedia [29℄ remarkably re
ords the extentof the new invention:Whatever the future of this kind of long-distan
e dire
t 
ommuni
ation between the twoContinents is, it is by now well-known that passengers on board 
an establish 
ommuni-
ation with New York and London, and all the ships that make the aforementioned routeare equipped with wireless telegraph ma
hines (...). This way it is possible to daily printon board a newspaper with the Sto
k Ex
hange re
ords and the most important newsfrom all over the world. [ Even more, ℄ the 
aptains of di�erent ships have fun by playing
hess over the telegraph.In the 1920s the �rst experimental transmissions of television signals were made, resultingin the �rst oÆ
ial television broad
ast in 1927. Radio broad
ast be
ame popular after WorldWar I, and television was su

essfully introdu
ed to the mass sin
e the end of the 1940s. To-day, the radio spe
trum is not only used for 
ellular telephony and mass broad
asting, but alsofor navigational systems, spa
e 
ommuni
ation, radio astronomy and military appli
ations.1



Wireless 
ommuni
ation between two points is established with the use of a transmitterand a re
eiver. The transmitter generates ele
tri
al os
illations at a 
ertain radio frequen
y,whi
h 
an be modulated either via the amplitude or the frequen
y itself. The re
eiver dete
tsthese os
illations and de
odes them ba
k to re
over the original signal. Every appli
ationuses a 
ertain part of the frequen
y spe
trum, and the availability of frequen
ies is regulatedworldwide by the International Tele
ommuni
ation Union (ITU) and lo
ally by the nationalgovernments.A 
ru
ial problem in wireless 
ommuni
ation is the interferen
e between transmitters.If two nearby transmitters use the same frequen
y, then the signals may interfere. Thelevel of interferen
e depends on the distan
e between them, the geographi
al position of thetransmitters, the power and dire
tion of the signal, and even weather 
onditions. When thelevel of interferen
e is high, the re
eived signal may have an una

eptable poor quality. Hen
ethere is a need for avoiding interferen
e.Operators of wireless servi
es are li
ensed to use one or more frequen
y bands in spe
i�
parts of a 
ountry. The development of new wireless servi
es and the addition of more andmore 
ustomers led to s
ar
ity of usable frequen
ies in the radio spe
trum. This introdu
edthe need for operators to develop frequen
y plans that not only avoided high interferen
e levelsbut also minimized the li
ensing 
osts. As a 
onsequen
e, an operator should 
arefully 
hoosethe frequen
ies on whi
h ea
h station transmits. This sele
tion of frequen
ies is 
alled thefrequen
y assignment problem or bandwidth allo
ation problem. The 
onditions that shouldbe satis�ed by the frequen
y plan may vary depending on the appli
ation. Therefore, manydi�erent approa
hes have been suggested in the literature to solve this problem. Se
tion 1.1brie
y surveys the most re
ent models, and in Se
tion 1.2 we introdu
e Point-To-Multipointradio a

ess systems and the asso
iated bandwidth allo
ation problem that motivated thework of this thesis.1.1 Frequen
y assignment modelsThis se
tion brie
y surveys alternative models for frequen
y assignment. For a more thoroughtreatment, we refer to [2, 17, 34, 35℄. In a typi
al frequen
y assignment problem, a set ofwireless links is given and frequen
ies must be assigned su
h that the data transmissionbetween the two endpoints of ea
h link is possible. Su
h frequen
ies must lie within a 
ertainfrequen
y spe
trum [fmin; fmax℄ available to the provider. This spe
trum is usually partitionedinto a set of intervals, all with the same bandwidth, determining an integer number of so-
alled 
hannels that ea
h link 
an use. A transmission may be subje
t to interferen
e if ageographi
ally nearby link uses frequen
ies 
lose on the ele
tromagneti
 spe
trum, and theproposed models handle this situation in di�erent ways.1.1.1 Feasibility and maximum servi
e FAPIn the feasibility frequen
y assignment problem, or shortly F-FAP, we are given a set of 
us-tomers along with an interferen
e relationship, and the obje
tive is to assign a number of single2



frequen
ies to ea
h 
ustomer while satisfying 
ertain interferen
e and availability 
onstraints.Problem input. Let F denote the (dis
rete) set of available 
hannels from the frequen
yspe
trum, and 
onsider a set V of 
ustomers (equivalently, a set of antennae). Ea
h 
ustomeri 2 V 
an only be assigned a 
hannel from a subset F (i) of F due to geographi
al reasons.Moreover, ea
h 
ustomer i 2 V must re
eive m(i) di�erent 
hannels from F (i). Interferen
eis modeled by an interferen
e graph G = (V;E) representing the pairs of 
ustomers that mayinterfere ea
h other. Ea
h pair of potentially interfering 
ustomers is joined by an edge inG. Finally, with ea
h edge ij 2 E we asso
iate a set Tij of forbidden distan
es between the
hannels assigned to 
ustomers i and j.Problem output. The desired output of F-FAP is an assignment t : V ! 2F su
h that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V , and(iii) if f 2 t(i) and g 2 t(j) then jf � gj 62 Tij for every ij 2 E.For ea
h pair of interfering 
ustomers ij 2 E, this model spe
i�es a set of forbiddendistan
es between the 
hannels assigned to ea
h one. A 
ommon setting is to take Tij =f0; : : : ;Dg for every ij 2 E, thus spe
ifying a minimum distan
e that must be obeyed between
hannels used by interfering antennae. Note that F-FAP redu
es to the standard graph
oloring problem by setting F (i) = F and m(i) = 1 for every i 2 V , and Tij = f0g for everyij 2 E. Therefore, F-FAP is NP-
omplete.Alternative formulations 
onsider di�erent interferen
e measures. One possibility is tode�ne pij(f; g) as the interferen
e level between the 
ustomers i and j if they use the frequen-
ies f and g, respe
tively. The interferen
e 
ondition jf � gj 62 Tij is then repla
ed by the
ondition pij(f; g) > pmin, where pmin is a threshold for the a

eptable level of interferen
e.In pra
ti
e, it might happen that feasible solutions to this problem are diÆ
ult to �nd.In this 
ase, we 
an de
ide to look for a partial solution assigning as many frequen
ies tothe nodes as possible. Under the same problem input as before, the desired output is nowan assignment t : V ! 2F satisfying jt(i)j � m(i) for every i 2 V along with 
onditions(ii) and (iii), and su
h that the total number of assigned 
hannels Pi2V jt(i)j is maximized.This problem is known as the maximum servi
e frequen
y assignment problem or, shortly,Max-FAP.1.1.2 Minimum order FAPThe obje
tive of F-FAP is to �nd a feasible frequen
y assignment. However, when manyfeasible solutions exist, we 
ould try to �nd the best one regarding the usage of frequen
ies.This model is 
alled the minimum order frequen
y assignment problem, or MO-FAP, and asksfor minimizing the total number of assigned 
hannels. The problem input is the same as forF-FAP. 3



Problem output. The desired output of MO-FAP is an assignment t : V ! 2F su
h that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V ,(iii) if f 2 t(i) and g 2 t(j) then jf � gj 62 Tij for every ij 2 E, and(iv) the assignment minimizes j [i2V t(i)j.The MO-FAP is the �rst frequen
y assignment problem that was dis
ussed in the literature[41℄. Again, this problem is a dire
t generalization of the standard graph 
oloring problemand is, therefore, NP-
omplete. The well-known T-
oloring and list 
oloring problems [17℄are also restri
ted versions of MO-FAP. It is worth noting that the latter is NP-
ompleteeven for interval graphs [5℄, a 
lass that 
an be 
olored in polynomial time.1.1.3 Minimum span FAPIn the minimum span frequen
y assignment problem (MS-FAP) the obje
tive is to minimizethe length of the frequen
y band needed to a

omodate all the 
hannels. The di�eren
ebetween the highest and the lowest used frequen
ies is 
alled the solution's span; the obje
tiveis to minimize the span in order to keep the li
ensing 
osts for the used frequen
y span low.The problem output is, therefore, the following.Problem output. The desired output of MS-FAP is an assignment t : V ! 2F su
h that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V ,(iii) if f 2 t(i) and g 2 t(j) then jf � gj 62 Tij for every ij 2 E, and(iv) the assignment minimizes max[i2V t(i)�min[i2V t(i).Note that MO-FAP asks for minimizing the number of used frequen
ies (whi
h are notne
essarily 
onse
utive), whereas the obje
tive of MS-FAP is to minimize the span of theassignment. It is worth noting that there exist general instan
es su
h that an optimal assign-ment for MO-FAP does not have minimum span and, in turn, an optimal solution to MS-FAPdoes not use the minimum possible number of 
hannels.1.1.4 Minimum interferen
e FAPAll the previous models ask for an assignment with no interferen
e at all. However, this maybe impossible in some situation for whi
h, moreover, the approa
h proposed by Max-FAPmay be infeasible as well. In this setting a more realisti
 model {the minimum interferen
efrequen
y assignment problem, or MI-FAP{ 
an be stated, looking for an assignment with theminimum possible interferen
e. 4



Problem input. As in the F-FAP, we are given a set F of available 
hannels and a set Vof 
ustomers. Ea
h 
ustomer i 2 V 
an only be assigned a 
hannel from a subset F (i) ofF and must re
eive m(i) 
hannels. Finally, for every pair of interfering 
ustomers ij 2 Eand for ea
h f 2 F (i) and g 2 F (j) we have a penalty value pij(f; g) that is in
urred whenthe 
ustomers i and j re
eive the interfering 
hannels f and g, respe
tively. These penaltiesmodel the interferen
e 
aused by the assignment.Problem output. The desired output of MI-FAP is an assignment t : V ! 2F su
h that(i) jt(i)j = m(i) for every i 2 V ,(ii) t(i) � F (i) for every i 2 V , and(iii) the assignment minimizes Pij2EPf2t(i)Pg2t(j) pij(f; g).As for all penalties pij(f; g) > 0 holds if and only if jf � gj 2 Tij , the optimum assignmenthas obje
tive value equal to 0 if and only if F-FAP is feasible. Hen
e this model generalizesF-FAP and is, therefore, an NP-hard optimization problem as well. A usual extension of thismodel arising from some instan
es from the CALMA ben
hmark [4℄ adds penalties for the
hoi
es of 
ertain frequen
ies for ea
h 
ustomer. This leads to an extra term in the obje
tivefun
tion. It is worth noting that MI-FAP has been widely used in re
ent years to modelreal-world appli
ations su
h as GSM Frequen
y Planning [18℄.1.2 Bandwidth allo
ation in Point-to-Multipoint systemsWe now turn our attention to Point-to-Multipoint radio a

ess systems and the asso
iatedbandwidth allo
ation problem. This se
tion des
ribes in detail the assignment model thatmust be solved when operating su
h a system, also addressing 
omplexity issues 
on
erningthis problem.The purpose of a Point-to-Multipoint radio a

ess system (PMP-System) is to supplywireless a

ess to voi
e/data 
ommuni
ation networks [7℄. Base stations form the a

esspoints to the network. Ea
h base station is lo
ated on a �xed position and serves a 
ertaingeographi
al area. This area served by the base station is divided into se
tors. Figure1.1 shows an example with three base stations, ea
h serving two, three and two se
tors,respe
tively.Customer terminals are linked to base stations by means of radio signals, where somespe
i�
 part of the radio frequen
y spe
trum has to be used to maintain the links. In 
on-trast to the usual setting for the previously mentioned FAPs, ea
h 
ustomer is provided a�xed antenna and is therefore assigned to a 
ertain se
tor of a base station (for example, inFigure 1.1 the 
ustomers t1 and t2 are assigned to se
tor A within the �rst base station). A
hara
teristi
 feature of PMP-Systems is that ea
h 
ustomer has an individual 
ommuni
a-tion demand, implying that ea
h 
ustomer needs a parti
ular bandwidth within the availablefrequen
y spe
trum. Hen
e the task is to assign frequen
y intervals instead of single 
hannels.5



Figure 1.1: Se
torization by base stations in PMP-Systems.A 
entral problem is that a link 
onne
ting a 
ustomer terminal and a base station maybe subje
t to interferen
e from another link, provided that the same frequen
ies are used.We 
onsider two sour
es of interferen
e in this model. Firstly, links to 
ustomers in the samese
tor must not use the same frequen
y. Se
ondly, some of the links to 
ustomers in di�erentse
tors may also 
ause interferen
es. This se
ond sour
e of interferen
e identi�es 
ertain pairsof 
ustomers that even being in di�erent se
tors might interfere ea
h other due to the power ofthe transmitted signals and geographi
al reasons (for example, in Figure 1.1 the 
ustomers t3and t4 are served by di�erent antennae but still may interfere ea
h other due to the alignmentwith the base station).Moreover, in base stations os
illators provide the di�erent frequen
ies with a possibledi�eren
e � to the required frequen
y. Hen
e, between the frequen
y intervals of possiblyinterfering links in di�erent se
tors, a guard distan
e of length g = 2� has to be obeyed.This makes it ne
essary to distinguish between \in-se
tor" and \inter-se
tor" interferen
e.To guarantee an interferen
e-free 
ommuni
ation, a parti
ular bandwidth allo
ation problemhas to be solved when operating a PMP-System.Problem input. The input of this problem is given as follows. Let T = ft1; : : : ; tng be theset of all 
ustomer terminals, and S = fS1; : : : ; Skg be a partition of T into se
tors, providingthe information to whi
h se
tor Sj the terminal ti 2 T belongs. Let d = (d1; : : : ; dn) be theve
tor of 
ommuni
ation demands asso
iated with the 
ustomer terminals, indi
ating that
ustomer ti 2 T has demand di 2 Z+. Additionaly, we have a set EX of unordered pairs(ti; tj) of terminals in di�erent se
tors that must not use the same frequen
y due to possibleinterferen
e.
6



This setting 
an be viewed as a weighted graph (G; d) = (V;E; d), where� V = fi : ti 2 T g is the node set,� E = EX [EI is the edge set withEI = fij : ti; tj in the same se
tor Sl 2 Sg;EX = fij : (ti; tj) 2 EXg;� d = (d1; : : : ; dn) is the node weighting.Thus, the node set represents 
ustomer terminals, the node weights re
e
t the 
ommuni
ationdemands, and the edge set indi
ates potential interferen
e between the 
ustomer terminals.The edge set is given by the set of external interferers EX and the partition of the node set V
orresponding to the se
torization of T . In graph theoreti
al terms, the partition of T intose
tors S = fS1; : : : ; Skg 
orresponds to a 
lique 
overing of G, i.e., to a partition of V intok subsets V1; : : : ; Vk su
h that the nodes in every Vi are pairwise adja
ent. We de�ne thisweighted graph (G; d) to be the interferen
e graph asso
iated with the parti
ular instan
e ofthe bandwidth allo
ation problem.Notation. Throughout this work we shall always denote by (G; d) = (V;E; d) the interferen
egraph. We also denote by n = jV j resp. m = jEj the number of nodes resp. edges of G.Moreover, a guard distan
e g 2 Z+ is given that must be kept between intervals ofterminals (ti; tj) 2 EX . Finally, we have the available radio frequen
y spe
trum [0; s℄, withs 2 Z+, where all the frequen
y intervals have to be pla
ed in. Thus, every instan
e of thebandwidth allo
ation problem is given by a quadruple (G; d; s; g).Problem output. The task is to provide, for ea
h 
ustomer ti 2 T , a 
ertain part1 of theavailable frequen
y spe
trum meeting the following two 
onditions. Firstly, the individual
ommuni
ation demand di is satis�ed. Se
ondly, the assignment does not 
ause interferen
e,i.e., no terminal within the same se
tor uses the same frequen
ies, and the guard distan
eis obeyed for ea
h external interferer tj , (ti; tj) 2 EX . The desired output is, therefore, anassignment of an interval I(i) = [li; ri℄ with li; ri 2 Z+ to ea
h 
ustomer ti 2 T su
h that:(i) ri � li � di for every i 2 V ,(ii) [li; ri℄ � [0; s℄ for every i 2 V ,(iii) maxfli; ljg �minfri; rjg � ( 0 if ti and tj belong to the same se
torg if (ti; tj) 2 EX .Figure 1.2 shows a fragment of a feasible assignment. Note that 
ustomers t1 and t2are assigned intervals of di�erent lengths (the demand of 
ustomer t1 being larger than the1The frequen
y interval assigned to a 
ustomer is typi
ally 
omposed by several 
onse
utive 
hannels. Thelength of an interval 
orresponds to the number of those 
hannels; the demand of a 
ustomer as well as thebounds of the assigned intervals are, therefore, represented as integers.7



Figure 1.2: Fragment of a feasible assignment.demand of 
ustomer t2). These intervals do not overlap sin
e both belong to the same se
tor ofthe same base station. On the other hand, 
ustomers t3 and t4 are lo
ated in di�erent se
torsbut are identi�ed in EX as interfering 
ustomers; the 
orresponding intervals are, therefore,separated by a distan
e of at least g.Remark. This setting may be interpreted as a k-ma
hine s
heduling problem, where the kse
tors 
orrespond to the k ma
hines, and the 
ustomer terminals to the jobs. In our 
ase, theassignment of jobs to ma
hines is �xed in advan
e. The pro
essing time of a job 
orrespondsto the 
ommuni
ation demand of the 
ustomer terminal. That no ma
hine 
an pro
ess twojobs at the same time is given by EI (re
all that S 
orresponds to a 
lique 
overing of G byk 
liques), where EX gives antiparallelity requirements between jobs pro
essed on di�erentma
hines. Moreover, g 
an be interpreted as 
hangeover time, and s as upper bound on theallowed makespan span(y) = maxfri : i 2 V g � minflj : j 2 V g with respe
t to a feasibles
hedule y (for more information on general s
heduling problems see, e.g., [10℄).This parti
ular kind of a s
heduling problem does not 
ontain the usual pre
eden
e 
on-straints, but antiparallelity 
onstraints are present instead. These 
onstraints prevent 
ertainpairs of tasks from overlapping, with a 
hangeover time between them. The a
tual orderamong the tasks is not important, as long as the antiparallelity 
onstraints are satis�ed. Thismodel 
an be applied as well to the 
onstru
tion of integrated 
ir
uits, the assembling ofhand
rafts and 
ertain timetabling problems. �Sin
e every graph is an interferen
e graph, this model is a generalization of the 
hromati
s
heduling problem [15℄ and, if g = 0, of the 
onse
utive 
oloring problem [16℄ and the interval
oloring problem [22, 36℄. All of these models, in turn, generalize the standard graph 
oloringproblem, de�ned as follows:Graph 
oloringInstan
e: A graph G = (V;E) and an integer k 2 Z+.Question: Does there exist a k-
oloring of G, i.e., a fun
tion f : V ! f1; : : : ; kgsu
h that f(i) 6= f(j) for every ij 2 E?8



Theorem 1.1 Let g = 0 and di = 1 for every i 2 V . The bandwith allo
ation problemin PMP-Systems is feasible if and only if the asso
iated interferen
e graph G admits an s-
oloring.Proof. Let f : V ! f1; : : : ; s � 1g be a 
oloring of G, and 
onstru
t a feasible s
hedule byassigning the interval I(i) = [f(i)�1; f(i)℄ to the 
ustomer ti 2 T . Sin
e f is a 
oloring, thenno interfering intervals overlap (and the guard distan
e g = 0 is trivially satis�ed), hen
e this
onstru
tion is feasible. Conversely, any feasible s
hedule assigns an interval I(i) = [li; ri℄ tothe 
ustomer ti 2 T , su
h that all pairs of interfering 
ustomers re
eive disjoint intervals.This indu
es an s-
oloring f(i) = ri for every i 2 V . 2Corollary 1.2 The bandwidth allo
ation problem in PMP-Systems is NP-
omplete.This equivalen
e between graph 
oloring and the bandwidth allo
ation problem inPMP-Systems for the 
ase g = 0 and d = 1 also shows that the latter problem 
annot beapproximated by a polynomial-time algorithm with a �xed approximation ratio [20℄. Fur-thermore, 
onsider the Open shop problem, de�ned as follows.Open shopInstan
e: A number p 2 Z+ of pro
essors, a set J of jobs, ea
h job j 2 J 
onsistingof p tasks t1j; : : : ; tpj (with tij to be exe
uted by pro
essor i), a lengthl(tij) 2 Z+ for ea
h su
h task, and an overall deadline k 2 Z+.Question: Is there a s
hedule for J that meets the deadline k?Open shop is NP-
omplete even for p = 3 [20℄. A straightforward redu
tion from Openshop to the bandwidth allo
ation problem in PMP-Systems 
an be given, and this redu
tionprovides a se
ond proof of Corollary 1.2. Given an instan
e of Open shop, de�ned as above,
onstru
t an interferen
e graph (G; d) = (V;E; d) with one node for ea
h task and su
h thattwo nodes are joined by an edge in E if and only if the 
orresponding tasks either belong tothe same job or must be exe
uted by the same pro
essor. The demand of ea
h node is de�nedto be the length of the 
orresponding task. Further, set g = 0 and s = k. There is a s
hedulemeeting the deadline k if and only if this instan
e of the bandwidth allo
ation problem isfeasible.Solving the bandwidth allo
ation problem is a 
ru
ial task when operating a PMP-System,but we have seen that this is a demanding 
omputational issue, sin
e this problem generalizesdiÆ
ult 
oloring resp. s
heduling problems. Suitable heuristi
s based on greedy argumentshave been developed, and these heuristi
s were able to produ
e span-minimal resp. feasiblesolutions for small resp. medium-sized problems [7℄. In order to ta
kle problem sizes of real-world instan
es, algorithms have to be designed that rely on a deeper insight of the problemstru
ture.Cutting plane methods have turned out to be su

essful for many other appli
ations[6, 30, 42, 45℄. In this framework, the 
onvex hull of the in
iden
e ve
tors of all feasible9



solutions is studied in order to derive fa
ets or, more modestly, valid inequalities for thispolyhedron representing the solution spa
e of the problem. A strong knowledge of thesepolyhedra provides the 
ornerstone of su

essful implementations of this approa
h. Therefore,we propose to investigate the polytopes arising from this bandwidth allo
ation problem, asa starting point for the pra
ti
al solution to optimality of real-world instan
es. This thesis
ontributes to this polyhedral issue.

10



Chapter 2
Chromati
 s
heduling polytopes

We hope that the feasibility of atta
king problems involv-ing a moderate number of points has been su

essfullydemonstrated, and that perhaps some of the ideas 
anbe used in problems of similar nature.{ G. Dantzig, R. Fulkerson and S. Johnson (1954)The study of 
hromati
 s
heduling polytopes is the topi
 of this thesis; the main purposeof this 
hapter is to introdu
e these polytopes and to dis
uss some basi
 properties. Se
tion2.1 gives an integer programming formulation for the bandwidth allo
ation problem in PMP-systems (BAP). We de�ne the 
hromati
 s
heduling polytope P (G; d; s; g) to be the 
onvexhull of all feasible solutions of this integer program and the �xed-length 
hromati
 s
hedulingpolytope R(G; d; s; g) as the spe
ial 
ase where no demand is oversatis�ed.Se
tion 2.2 reports some experiments regarding the 
omplete linear des
ription of theeasier 
ase R(G;1; s; g) for several small graphs G and in
reasing values of the frequen
yspan s. These experiments show that, on the one hand, the polytopes pass through severalstages as s in
reases and, on the other hand, that even simple instan
es of the problem giverise to polytopes with a 
omplex stru
ture, as the number of fa
ets and extreme points isalready huge for small graphs. This adds support to the belief that 
hromati
 s
hedulingpolytopes are hard to 
hara
terize by means of fa
et-de�ning inequalities.
2.1 Integer programming formulation for BAPWe now present an integer programming formulation for the bandwidth allo
ation problemin PMP-Systems. To represent a solution, we use two groups of variables. Firstly, for ea
hnode i 2 V we introdu
e the interval bounds li and ri, su
h that I(i) = [li; ri℄ represents thefrequen
y interval assigned to the 
orresponding 
ustomer. Both variables are 
onstrained tobe integer and nonnegative. In addition, for ea
h edge ij 2 E with i < j we de�ne the binary11



ordering variable xij = ( 1 if ri � lj0 otherwise,asserting whether the interval I(i) is lo
ated before the interval I(j) or not. In every feasiblesolution, the antiparallelity requirements for intervals 
orresponding to potential interferersare realized by a pre
eden
e relation (i.e., a partial order) on the set of intervals. Thispre
eden
e relation is represented by the ordering variables. Note that we need one orderingvariable for every ij 2 E, namely xij if i < j. For notational 
onvenien
e, we shall use xjias a shorthand for 1 � xij . A

ording to the variable de�nitions, the in
iden
e ve
tor of asolution S is given by: �S = (l1; : : : ; ln| {z }n ; r1; : : : ; rn| {z }n ; x1i; : : : ; xjn| {z }m ):A feasible solution is, therefore, an assignment of values to li; ri 8i 2 V and xij 8ij 2 E su
hthat the following 
onstraints are satis�ed:di � ri � li 8i 2 V (2.1)0 � li � ri � s 8i 2 V (2.2)ri � lj + s(1� xij) 8ij 2 EI ; i < j (2.3)ri + g � lj + s(1� xij) 8ij 2 EX ; i < j (2.4)rj � li + sxij 8ij 2 EI ; i < j (2.5)rj + g � li + sxij 8ij 2 EX ; i < j (2.6)xij 2 f0; 1g 8ij 2 E; i < j (2.7)li; ri 2 Z 8i 2 V (2.8)The demand 
onstraints (2.1) and the bound 
onstraints (2.2) assert that the interval I(i) =[li; ri℄ must satisfy the demand di and �t within the available frequen
y spe
trum [0; s℄.Inequalities (2.3) to (2.6) realize the antiparallelity 
onstraints, whi
h prevent interferingpairs of intervals from overlapping. Note that the intervals 
orresponding to the pairs of
ustomers in EI (lo
ated in the same se
tor) must not overlap, and there must be a distan
eof at least g between the intervals 
orresponding to pairs of interfering 
ustomers in di�erentse
tors (i.e., pairs of 
ustomers from EX). Finally, the integrality 
onstraints (2.7) resp. (2.8)for
e the x-variables to be binary resp. the interval bounds to be integral.Remark. It is ne
essary to in
lude the ordering variables xij , for ij 2 E, i < j in orderto en
ode a solution. A feasible s
hedule 
an 
ertainly be des
ribed by the interval boundsonly, but then the 
onvex hull of the in
iden
e ve
tors of all feasible s
hedules may 
ontaininfeasible integral points. Consider, e.g., the problem given by the graph (G; d) = (V;E; d)with V = f1; 2g, E = f12g, and d = (1; 2) and the frequen
y spe
trum [0; 4℄. Then the set ofall feasible solutions 
onsists of the following ten points.12



l1 l2 r1 r2 x12p0 0 1 1 3 1p1 0 1 1 4 1p2 0 2 1 4 1p3 0 2 2 4 1p4 1 2 2 4 1p5 2 0 3 2 0p6 2 0 4 2 0p7 3 0 4 2 0p8 3 0 4 3 0p9 3 1 4 3 0Dropping the information given by x12, the 
onvex hull of even the two points p00 =(0; 1; 1; 3) and p09 = (3; 1; 4; 3) would 
ontain two infeasible but integral points, namely x =(1; 1; 2; 3) and y = (2; 1; 3; 3), as Figure 2.1 shows. The ordering variables guarantee that the
onvex hull of the in
iden
e ve
tors of all feasible s
hedules does not 
ontain any su
h point.Hen
e these binary variables are essential to des
ribe the solution spa
e of the problem. �
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Figure 2.1: Convex hull of two feasible solutionsIn order to run a Point-to-Multipoint system, one is mainly interested in �nding feasiblesolutions satisfying all the 
onstraints above. It is not diÆ
ult to verify that the weighted
lique number !(G; d) is a 
anoni
al lower bound for the makespan span(y) of any feasiblesolution y. An instan
e of the bandwidth allo
ation problem is, therefore, hard to solve if thegap between !(G; d) and the available frequen
y span s is small. This 
auses the interest in�nding span-minimal solutions, i.e., we have to solve the 
ombinatorial optimization problemmin span(y), where y = (l; r; x) is taken over all feasible solutions satisfying the 
onstraints(2.1)-(2.8).Small and mid-size instan
es of the bandwidth allo
ation problem 
an be solved by greedy-like heuristi
s as in [7℄; large real-world instan
es require algorithms using deeper methods.Algorithms based on 
utting planes have shown to be su

essful for many other 
ombinatorialoptimization problems [6, 30, 42, 45℄. In order to apply su
h methods to the bandwidthallo
ation problem, we are interested in investigating the 
onvex hull of all feasible solutionssatisfying these 
onstraints. Re
all that n = jV j resp. m = jEj denotes the number of nodesresp. edges of the interferen
e graph G. 13



De�nition 2.1 (
hromati
 s
heduling polytope) Let (G; d) = (V;E; d) be a graph withnode weights d, let [0; s℄ be the available frequen
y spe
trum, and let g 2 Z+ be the guarddistan
e. The 
hromati
 s
heduling polytope P (G; d; s; g) � R2n+m is de�ned as the 
onvexhull of all integer solutions (l; r; x) 2 R2n+m satisfying 
onstraints (2.1)-(2.8).A spe
ial 
ase of the bandwidth allo
ation problem is of parti
ular interest, namely the
ase where ea
h 
ustomer re
eives an interval I(i) = [li; ri℄ whi
h has pre
isely the length ofits demand, i.e., ri � li = di for every i 2 V . This 
ase is in pra
ti
e easier to solve and thesolution spa
e has lower dimension sin
e the right interval bounds are no longer ne
essary.Hen
e only the l- and x-variables are required, and every solution ve
tor has only n + mentries instead of the 2n+m entries in the general 
ase. Therefore, the in
iden
e ve
tor of afeasible s
hedule SR is, in this 
ase:�SR = (l1; : : : ; ln| {z }n ; x1i; : : : ; xjn| {z }m ):De�nition 2.2 (�xed-length 
hromati
 s
heduling polytope) Let (G; d) = (V;E; d) bea graph with node weights d, let [0; s℄ be the available frequen
y spe
trum, and let g 2 Z+ bethe guard distan
e. The �xed-length 
hromati
 s
heduling polytope R(G; d; s; g) � Rn+m isde�ned as the 
onvex hull of all integer solutions (l; x) 2 Rn+m su
h that there exists somer 2 Rn satisfying ri = li + di and 
onstraints (2.2)-(2.8).The bandwidth allo
ation problem in PMP-Systems was �rst introdu
ed in [7℄, wheregreedy-like heuristi
s were developed for solving small and mid-sized instan
es. A �rst studyof the �xed-length polytope R(G; d; s; g) for the spe
ial 
ase with two se
tors was 
arried outin [21℄. Moreover, [26℄ presents initial results for the general polytope P (G; d; s; g).Notation. If z = (l1; : : : ; ln; r1; : : : ; rn; x1i; : : : ; xjn) 2 R2n+m is a feasible solution, we denoteby zli resp. zri its i-th resp. (n + i)-th 
oordinate. For ij 2 E, i < j, we denote by zxij theentry of z 
orresponding to the ordering variable asso
iated to the edge ij and, as notedpreviously, we de�ne zxji = 1� zxij as a notational shorthand. We also de�ne the proje
tionsof z onto the spa
es of ea
h group of variables aszl = (l1; : : : ; ln) 2 Rnzr = (r1; : : : ; rn) 2 Rnzx = (x1i; : : : ; xjn) 2 RmNote that z = (zl; zr; zx) 2 R2n+m. The same de�nitions apply to the �xed-length 
ase.Here, if y 2 Rn+m is a feasible solution, then yli resp. yxij denotes the left interval boundof the interval I(i) resp. the ordering variable asso
iated with the edge ij 2 E, i < j. Theproje
tions yl and yx are de�ned a

ordingly.2.2 Computational experimentsThis se
tion presents some preliminary 
omputational experiments generating the 
ompletelinear des
ription of the polytopes R(G;1; s; 0) asso
iated with small graphs G and in
reasing14



frequen
y spans s in order to have an idea of the number of extreme points and fa
ets involved.These experiments were 
arried out with Porta [11, 12℄ in 
ombination with an ad ho
program for eÆ
iently generating the feasible solutions. All the experiments were performedon a Sili
on Graphi
s Origin 200 ma
hine, with a 1024 MB RAM and four R12000 pro
essorsrunning at 400 MHz. The experiments were run with a CPU time limit of 5 days.Tables 2.1 and 2.2 show the number of fa
ets and extreme points of the �xed-length
hromati
 s
heduling polytope R(Kn;1; s; 0) de�ned over 
omplete interferen
e graphs, fordi�erent values of the number n of nodes and the frequen
y spe
trum length s (the emptyspa
es show the infeasible 
ases). The number of fa
ets is remarkably huge even for smallinstan
es, although the number of extreme points seems to grow more modestly. Moreover,the total number of feasible solutions is huge already for the smallest instan
es, e.g., thereexist 4410 solutions for n = 3 and s = 6, and 38976 solutions for n = 4 and s = 6.n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 {s = 2 2 {s = 3 8 8 {s = 4 8 20 20 {s = 5 8 20 40 40 {s = 6 8 20 40 910 910 {s = 7 8 20 40 910 87472 87472 {s = 8 8 20 40 910 87472 > 480� 106 > 480� 106s = 9 8 20 40 910 87472 > 480� 106 ?Table 2.1: Number of fa
ets of R(Kn;1; s; 0).n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 {s = 2 2 { {s = 3 6 6 {s = 4 6 24 24 {s = 5 6 24 120 120 {s = 6 6 24 120 720 720 {s = 7 6 24 120 720 5040 5040 {s = 8 6 24 120 720 5040 40320 40320s = 9 6 24 120 720 5040 40320 362880Table 2.2: Number of extreme points of R(Kn;1; s; 0).
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n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 8 24 48 72 96 120 144s = 4 8 24 54 110 222 454 ?s = 5 8 24 54 116 ? ? ?s = 6 8 24 54 ? ? ? ?Table 2.3: Number of fa
ets of R(Pn;1; s; 0).n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 6 12 24 48 96 192 384s = 4 6 18 50 138 378 1034 2826s = 5 6 18 58 172 528 1586 4802s = 6 6 18 58 182 570 1782 5566Table 2.4: Number of extreme points of R(Pn;1; s; 0).These tables also suggest that the polytopes from the family fR(Kn;1; s; g)gs�n+1 have thesame number of extreme points and fa
ets. The same holds for the polytopes R(Kn;1; n+1; 0)and R(Kn+1;1; n + 1; 0), for n � 2. These 
omputational results in fa
t re
e
t a deeprelationship between 
hromati
 s
heduling polytopes and the linear ordering polytope, andwill be explained by the results of Se
tion 3.4. It must be noted that the results for n � 6and s � 7 were not generated in the 
omputational environment des
ribed previously, butwere derived from the results in Se
tion 3.4 and the 
omputational experiments reported in[13℄ for the linear ordering polytope.Tables 2.3 and 2.4 show the number of fa
ets and extreme points for 
hromati
 s
hedulingpolytopes de�ned over paths. Again, the number of feasible solutions is huge even for smallinstan
es (98620 feasible solutions for n = 4 and s = 6, and 179150 solutions for n = 6 ands = 4). Finally, we present in Tables 2.5 and 2.6 the experiments on 
hromati
 s
hedulingpolytopes de�ned over 
y
les, showing a similar behavior. The number of fa
ets is moremodest in these 
ases, although it is worth to mention that the 
omputation time ex
eededthe time limit of 5 days even for n = 7 and s = 4. All 
ases whi
h 
ould not be 
omputedwithin this time limit are indi
ated by a question tag within the tables.The latter experiments imply again that the polytopes de�ned over the same interferen
egraph admit the same number of fa
ets and extreme points for s � n (but 
learly di�erentnumbers of feasible solutions). Similar observations were obtained in [21℄ for 
o-bipartiteinterferen
e graphs. This motivated our investigations on the 
ombinatorial equivalen
e ofpolytopes over the same interferen
e graph, explored in Se
tion 3.3.16



n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 8 8 72 274 816 8768 26634s = 4 8 20 160 644 9848 ? ?s = 5 8 20 242 1556 ? ? ?s = 6 8 20 242 ? ? ? ?Table 2.5: Number of fa
ets of R(Cn;1; s; 0).n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8s = 1 { { { { { { {s = 2 2 2 2 2 2 2 2s = 3 6 6 18 30 64 126 258s = 4 6 24 46 160 414 1120 3134s = 5 6 24 78 250 726 2296 6790s = 6 6 24 78 300 858 2940 8750Table 2.6: Number of extreme points of R(Cn;1; s; 0).
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Chapter 3
General properties of 
hromati
s
heduling polytopes

It is interesting to point out that these appli
ations relyon the deep theorems 
hara
terizing fa
ets of the 
orre-sponding polytope. This is in quite a 
ontrast to pre-viously known algorithms, whi
h typi
ally do not usethese 
hara
terizations but quite often give them as aby-produ
t.{ M. Gr�ots
hel, L. Lovasz and A. S
hrijver (1981)Chromati
 s
heduling polytopes admit interesting properties from a 
ombinatorial pointof view. As observed from the experiments in Se
tion 2.2, the 
hromati
 s
heduling polytopesare empty if the frequen
y span s is too small and pass through several stages as s in
reases:from a nonempty but low-dimensional stage to full-dimensionality and, �nally, to a 
ombi-natorially steady state. We dis
uss these di�erent stages and the 
orresponding \thresholds"smin(G; d; g), sfull(G; d; g), and smax(G; d; g) ensuring nonemptyness, full-dimensionality, and
ombinatorial stability, respe
tively.Se
tion 3.1 treats the problem of proving nonemptyness for the polytopes. This is an im-portant task as knowing one feasible solution enables us to run a PMP-System properly. Wepresent lower (resp. upper) bounds on smin(G; d; g) ensuring emptyness (resp. nonemptyness).Interestingly, the weighted 
lique number of the weighted graph (G; d) gives a 
erti�
ate of in-feasibility, whereas a lower bound on smin(G; d; g) arising from 
oloring arguments guaranteesfeasibility.Se
tion 3.2 deals with the nonempty 
ase and addresses the problem of 
al
ulating thedimension of 
hromati
 s
heduling polytopes. As the best 
utting planes are fa
ets, i.e.,inequalities de�ning a fa
e with dimension one less than the dimension of the polytope itself,the sear
h for fa
ets must usually be pre
eded by the study of the dimension. Unfortunately,determining the dimension of 
hromati
 s
heduling polytopes is NP-
omplete in general, asshown in this se
tion. However, partial results and bounds for sfull(G; d; g) 
ould be a
hieved.19



Se
tion 3.3 is devoted to the 
ombinatorial steady state, i.e., to the fundamental issuethat full-dimensional 
hromati
 s
heduling polytopes maintain, from a 
ertain value s �smax(G; d; g) of the frequen
y span on, the same number of fa
ets and extreme points. Wepresent su
h a lower bound smax(G; d; g) for s, give a 
hara
terization of the extreme pointsof R(G; d; s; g) resp. P (G; d; s; g) and, for s � smax(G; d; g), a natural bije
tion between theextreme points of R(G; d; s; g) and R(G; d; s + 1; g) resp. P (G; d; s; g) and P (G; d; s + 1; g)implying 
ombinatorial equivalen
e.The 
hapter 
loses with a dis
ussion relating 
hromati
 s
heduling polytopes with linearordering polytopes. In Se
tion 3.4 we prove that 
hromati
 s
heduling polytopes de�ned over
omplete interferen
e graphs are aÆnely isomorphi
 to linear ordering polytopes, implyingthat even these simple instan
es are hard to 
hara
terize. We also present some relationsbetween the valid inequalities and fa
ets of these polytopes, that 
an be exploited in a pra
ti
alframework for solving the bandwidth allo
ation problem in PMP-Systems.3.1 On emptyness/nonemptynessThe 
hara
terization of 
onditions that guarantee feasibility of the bandwidth allo
ation prob-lem is a 
entral issue. Clearly, if the frequen
y spe
trum [0; s℄ is too small, there exists nofeasible s
hedule for the frequen
y intervals at all, and so the polytopes P (G; d; s; g) andR(G; d; s; g) are empty. The results presented in this se
tion provide straightforward boundson the frequen
y span s that guarantee emptyness and nonemptyness. It is worth notingthat upper bounds for infeasibility arise from maximum weighted 
lique arguments, whereaslower bounds for feasibility 
ome from 
oloring assertions. We �rst establish the followingde�nitions, whi
h provide us a notation to make 
onversions ba
k and forth between feasiblesolutions of P (G; d; s; g) and R(G; d; s; g).De�nition 3.1 Let y 2 R(G; d; s; g). We de�ne the extension of y to be ext(y) 2 P (G; d; s; g)su
h that ext(y)li = yli 8i 2 Vext(y)ri = yli + di 8i 2 Vext(y)xij = yxij 8ij 2 EConversely, the redu
tion of a point z 2 P (G; d; s; g) is red(z) 2 R(G; d; s; g) de�ned byred(z)li = zli 8i 2 Vred(z)xij = zxij 8ij 2 EThe s
hedule represented by red(z) (for z 2 P (G; d; s; g)\Z2n+m) is obtained by shrinkingea
h interval I(i) to an interval of length di (and proje
ting down the ve
tor to Rn+m).Conversely, if y 2 R(G; d; s; g) \ Zn+m is a feasible solution, then ext(y) represents the sames
hedule than y, but in a spa
e of higher dimension that also 
ontains the r-variables. Notethat red(ext(y)) = y for every y 2 R(G; d; s; g), but ext(red(z)) di�ers from z if zri � zli > difor some i 2 V . 20



As a �rst simple observation, we may point out that P (G; d; s; g) 6= ; if and only ifR(G; d; s; g) 6= ;, implying that the feasibility problems for P (G; d; s; g) and R(G; d; s; g)are equivalent. We 
all projl;x(P (G; d; s; g)) = fred(z) : z 2 P (G; d; s; g)g � Rn+m to theproje
tion of P (G; d; s; g) onto the spa
e of the l- and x-variables.Proposition 3.1 R(G; d; s; g) = projl;x(P (G; d; s; g)).Proof. If y 2 R(G; d; s; g) \ Zn+m is an integer feasible solution of R(G; d; s; g), then ext(y)belongs to P (G; d; s; g), and thus R(G; d; s; g) � projl;x(P (G; d; s; g)). Conversely, if z 2P (G; d; s; g) \ Z2n+m is a feasible integer solution of P (G; d; s; g), then red(z) belongs toR(G; d; s; g), implying the 
onverse in
lusion. 2Corollary 3.2 P (G; d; s; g) is nonempty if and only if R(G; d; s; g) is nonempty.It is worth noting that Corollary 1.2 implies that determining whether R(G; d; s; g) isempty or not is a 
omputationally diÆ
ult task. Observe that if R(G; d; s0; g) is nonempty,then R(G; d; s; g) is nonempty for every s � s0. Similarly, if R(G; d; s0; g) is empty, then alsois R(G; d; s; g) for every s � s0.De�nition 3.2 (nonemptyness threshold) We denote by smin(G; d; g) the minimum fre-quen
y span s su
h that P (G; d; s; g) is nonempty.Note that P (G; d; s; g) is nonempty if and only if s � smin(G; d; g). Corollary 3.2 im-plies that smin(G; d; g) is also the minimum frequen
y span s guaranteeing feasibility forR(G; d; s; g). The exa
t 
al
ulation of this threshold is, by Corollary 1.2, an NP-hard prob-lem, hen
e we 
on
entrate on deriving bounds on this value. A 
erti�
ate of infeasibility 
anbe obtained by means of the weighted 
lique number !(G; d) of (G; d) (i.e., the weight of alargest weighted 
lique of G), as Proposition 3.3 shows.Proposition 3.3 If s < !(G; d), then R(G; d; s; g) and P (G; d; s; g) are empty.Proof. LetK � V be a largest weighted 
lique ofG (i.e., a 
liqueK su
h that d(K) = !(G; d)).The intervals fI(i) : i 2 Kg 
annot overlap in any feasible solution, sin
e all verti
es in Kare pairwise adja
ent. Hen
e we need at least a span of d(K) = !(G; d) for s
heduling theseintervals, and sin
e the length of the available spe
trum [0; s℄ is stri
tly less than this lowerbound, the problem is infeasible. 2However, s � !(G; d) does not provide a 
erti�
ate for feasibility, as there exist graphs(G; d) su
h that !(G; d) is stri
tly smaller than the span of any feasible solution. Su
hinstan
es 
learly exist for the spe
ial 
ase (G;1; s; 0) of usual graph 
oloring problems, e.g.,R(C2k+1;1; 2; 0) is empty for every odd hole C2k+1 with k � 2, sin
e !(C2k+1;1) = 2 < 3 =�(C2k+1) holds. Moreover, [7℄ reports real-world instan
es (G; d; s; 0) with d 6= 1, 
ontaining
riti
al 
on�gurations G0 � G with !(G0; d) < smin(G0; d; 0).21



Figure 3.1: Criti
al 
on�gurations from two real-world instan
es.Example 3.1 Consider the instan
e depi
ted in Figure 3.1(a), withG = C9 and the 
ustomerdemands presented in the �gure. This interferen
e graph has !(G; d) = 81 but smin(G; d; 0) =82 (see Figure 3.1(b)). Further, the weighted asteroidal tripel (G; d) presented in Figure 3.1(
)has !(G; d) = 80, but smin(G; d; 0) = 82, as Figure 3.1(d) shows. �Remark. Graphs G with !(G; d) = smin(G; d; 0) for all possible demand ve
tors d are intro-du
ed by Golumbi
 [22℄ as superperfe
t graphs. The previous example shows that interferen
egraphs arising from PMP-Systems are not superperfe
t in general. �Additionally, in the 
ase g > 0 we must also obey the guard distan
e between pairs ofadja
ent intervals in di�erent se
tors. This setting is more restri
tive, and Proposition 3.4gives a straightforward generalization of Proposition 3.3.De�nition 3.3 (
lique bound) If K � V is a 
lique, de�ne pK = jfi : Si \ K 6= ;gj tobe the number of se
tors with nonempty interse
tion with K. Let K(G) denote the set of all
liques of G, and de�ne the 
lique bound !(G; d; g) to be!(G; d; g) = maxK2K(G)�d(K) + g (pK � 1)�:Proposition 3.4 If s < !(G; d; g), then P (G; d; s; g) and R(G; d; s; g) are empty.22



Proof. Let K � V be a 
lique su
h that d(K) + g (pK � 1) = !(G; d; g). Sin
e K is a 
lique,then the intervals fI(i) : i 2 Kg must be disjoint. Moreover, in every feasible solution thereare at least pK � 1 adja
ent intervals belonging to di�erent se
tors, and sin
e K is a 
liquethey must obey the guard distan
e, hen
e at least pK�1 guard distan
es must o

ur betweenthe intervals assigned to the nodes of K. Therefore, we need a frequen
y span of at leastd(K) + g (pK � 1) to assign all these intervals. 2Again, s � !(G; d; g) does not imply that the polytopes are nonempty. In the oppositedire
tion, we 
an derive an upper bound for smin(G; d; g) that guarantees feasibility.De�nition 3.4 (
hromati
 bound) Let dmax = maxfdi : i 2 V g denote the maximumnode weight of (G; d). We de�ne the 
hromati
 bound �(G; d; g) to be�(G; d; g) = (dmax + g) �(G)� g:Proposition 3.5 If s � �(G; d; g), then R(G; d; s; g) and P (G; d; s; g) are nonempty.Proof. Let k = �(G) and let 
 : V ! f1; : : : ; kg be a 
oloring of G (i.e., a partition of Vinto disjoint independent subsets). Constru
t a feasible solution y 2 R(G; d; s; g) \ Zn+m bysetting yli = (
(i) � 1)(dmax + g), where 
(i) is the 
olor assigned to i by 
. Note that thisassignment is feasible and �ts in the frequen
y spe
trum [0; s℄. Thus R(G; d; s; g) is nonemptyand, by Corollary 3.2, P (G; d; s; g) is also nonempty. 2Note that the weighted 
hromati
 number �(G; d) (i.e., the minimum number of stablesets 
overing every node i at least di times) 
annot be used to obtain a better bound than�(G; d; g) sin
e the 
olors assigned to ea
h node 
annot be expe
ted to be 
onse
utive. Now,Proposition 3.4 and Proposition 3.5 imply that smin(G; d; g) 
an be bounded by the 
liquebound and the 
hromati
 bound:!(G; d; g) � smin(G; d; g) � �(G; d; g):In the uniform 
ase d = 1 with null guard distan
e (i.e., g = 0), we obtain smin(G;1; 0) =�(G;1; 0) = �(G) and !(G;1; 0) = !(G).3.2 On the dimension of the polytopesA 
ommon way of proving that a valid inequality is fa
et-de�ning for a 
ertain polytope is to
onstru
t as many aÆnely independent points in the parti
ular hyperplane as the dimensionof the polytope is. However, determining the dimension of 
hromati
 s
heduling polytopesturns out to be a diÆ
ult task. This se
tion presents partial results on this issue. We pointout as a �rst observation that nonempty polytopes may not be full-dimensional when theavailable frequen
y spe
trum [0; s℄ is not large.23



Figure 3.2: The polytope R(C4;1; 3; 0) is not full-dimensional.Example 3.2 Consider the polytope R(C4;1; 3; 0) � R8. Every integer feasible solution inthis polytope assigns the unit intervals I(1); : : : ; I(4) within the frequen
y span [0,3℄, and thuswe have that I(1) = I(3) or I(2) = I(4) (or both). Note that I(i) = I(j) implies that xik = xjkfor every k 2 V nfi; jg. We 
laim that every feasible s
hedule satis�es x14 � x12 = x34 � x32.� If I(1) = I(3), then the previous observation implies that x14 = x34 and x12 = x32 (seeFigure 3.2(a) and Figure 3.2(b), along with the symmetri
al 
onstru
tions). Subtra
tingthese equations we obtain x14 � x12 = x34 � x32.� If I(2) = I(4), then x12 = x14 and x32 = x34 (see Figure 3.2(
) and Figure 3.2(d), andthe symmetri
al 
onstru
tions). These two equations imply x14 � x12 = 0 = x34 � x32.Thus, every feasible point satis�es x14�x12 = x34�x32, hen
e dim(R(C4;1; 3; 0)) � 7 (in fa
t,the dimension is exa
tly 7). As we shall verify in Se
tion 3.2.3, the polytopes R(C4;1; s; 0)for s � 4 are full-dimensional. �The polytopes P (G; d; s; g) and R(G; d; s; g) are nonempty if and only if s � smin(G; d; g).The previous example shows that they may not be full-dimensional, even if s > smin(G; d; g).However, as the frequen
y span s in
reases, the dimension of both polytopes also in
reases (al-though not stri
tly), sin
e every feasible solution of R(G; d; s; g) is also feasible for R(G; d; s+1; g). This observation implies the following.Proposition 3.6 If s � smin(G; d; g), then R(G; d; s; g) � R(G; d; s+1; g) and P (G; d; s; g) �P (G; d; s+ 1; g).Corollary 3.7 If s � smin(G; d; g), then dim(R(G; d; s; g)) � dim(R(G; d; s + 1; g)) anddim(P (G; d; s; g)) � dim(P (G; d; s+ 1; g)).Hen
e the dimension is a nonde
reasing fun
tion of the frequen
y span s. When s �!(G; d), both polytopes are full-dimensional. We prove this fa
t in the next subse
tion, where24



we provide a lower bound on s that guarantees full-dimensionality. Se
tion 3.2.2 
ompletesthe analysis by showing that the exa
t 
al
ulation of the dimension is an NP-hard problem.Finally, Se
tion 3.2.3 
loses with 
hara
terizations of the dimension for spe
ial families ofinterferen
e graphs.3.2.1 The full-dimensional 
aseIt has been previously observed [26℄ that P (G; d; s; g) and R(G; d; s; g) are full-dimensionalwhen [0; s℄ is large enough. This subse
tion presents some results related to full-dimensionality.In parti
ular, we provide a lower bound 
(G; d; g) on s su
h that P (G; d; s; g) and R(G; d; s; g)are full-dimensional if s � 
(G; d; g). We present some examples where this bound is indeedtight.Next, we analyze the dimension in the uniform 
ase d = 1 with g = 0, where the boundsimpli�es to 
(G;1; 0) = �(G) + 2. We provide a 
hara
terization of full-dimensionality forbipartite graphs and s = �(G) + 1, proving that for a bipartite interferen
e graph G, thepolytope P (G;1; �(G) + 1; 0) is full-dimensional if and only if G does not 
ontain any 4-hole. Based on this result, we also provide a partial 
hara
terization of full-dimensionalityfor arbitrary graphs.Lemma 3.8 Let � 2 Rn+m and �0 2 R su
h that �T y = �0 for every y 2 R(G; d; s; g). Ifs > smin(G; d; g), then �lj = 0 for every j 2 V .Proof. Let y 2 R(G; d; s; g) \ Zn+m be an integer feasible solution su
h that all the intervalsare 
ontained in [0; smin(G; d; g)℄. Constru
t a digraph D = (V;ED) su
h that ij 2 ED ifand only if ij 2 E and I(j) is lo
ated before I(i). Note that D is a
y
li
. Now, let i1; : : : ; inbe a topologi
al ordering of the nodes of D and 
onstru
t n feasible solutions y1; : : : ; yn asfollows. Point yk is obtained from y by shifting the intervals I(ij) for j = 1; : : : ; k one unitto the right.These new points are feasible solutions. Indeed, if the interval I(ij) has been shiftedto the right in yk, then all the possible interfering intervals to the right of I(Ij) have alsobeen shifted, sin
e the 
orresponding nodes are before ij in any topologi
al ordering of D.Moreover, the pair of solutions yk and yk+1 for k = 0; : : : ; n� 1 (where we 
onsider y0 = y)only di�er in their lik-
oordinate, hen
e the lik -
oordinate of � must be zero. Therefore,�lj = 0 for every j 2 V . 2De�nition 3.5 Let Fs(G; d) denote the set of nodes i su
h that P (G; d; s; g) 
ontains somefeasible s
hedule su
h that the interval I(i) has length stri
tly greater than di. That is,Fs(G; d) = fi 2 V : zri � zli > di for some z 2 P (G; d; s; g)g:Note that Lemma 3.8 implies Fs(G; d) = V for s > smin(G; d; g). However, when s =smin(G; d; g) we may have Fs(G; d) � V . In both 
ases, Fs(G; d) states a relation betweenthe dimension of P (G; d; s; g) and the dimension of R(G; d; s; g).25



Lemma 3.9 If s � smin(G; d; g) then dim(P (G; d; s; g)) = dim(R(G; d; s; g)) + jFs(G; d)j.Proof. For ea
h i 2 Fs(G) let yi 2 P (G; d; s; g) be a solution su
h that yiri �yili > di and yirj �yilj = dj for j 6= i (su
h a solution exists by the de�nition of Fs(G; d)). Now, if w0; : : : ; wk 2R(G; d; s; g) is a set of aÆnely independent points, then ext(w0); : : : ; ext(wk) are also aÆnelyindependent, and moreover ea
h of these new points satis�es ri + li = di for every i 2 V .This implies that the point yi is aÆnely independent w.r.t. ext(w0); : : : ; ext(wk), for everyi 2 Fs(G; d). Hen
e the set fext(wi)gki=0[fyigi2Fs(G;d) is 
omposed by k+jFs(G; d)j aÆnely in-dependent points of P (G; d; s; g), and thus dim(R(G; d; s; g))+jFs(G; d)j � dim(P (G; d; s; g)).For the reverse inequality, let A 2 Rk�n, B 2 Rk�m and b0 2 Rk su
h that Al+Bx = b0is a maximal system of equations for R(G; d; s; g), implying dim(R(G; d; s; g)) = n +m � k.By Proposition 3.1, we have that Al + Bx = b0 is also a (possibly nonmaximal) system of kequations for P (G; d; s; g) and, in addition, every feasible solution z 2 P (G; d; s; g) satis�eszri�zli = di for ea
h i 62 Fs(G; d). Hen
e we 
onstru
t k+(n�jFs(G; d)j) linearly independentequations satis�ed by every feasible solution of P (G; d; s; g). Sin
e P (G; d; s; g) � R2n+m, we
on
lude that dim(P (G; d; s; g)) � (2n+m)� (k + n� jFs(G; d)j)= (n+m� k) + jFs(G; d)j= dim(R(G; d; s; g)) + jFs(G; d)j:2Lemma 3.10 Let �T z = �0 for every z 2 P (G; d; s; g). If s > smin(G; d; g), then �li = 0 and�ri = 0 for every i 2 V .Proof. Lemma 3.8 implies Fs(G; d) = V , hen
e dim(P (G; d; s; g)) = dim(R(G; d; s; g)) + n.Moreover, we have that projx(P (G; d; s; g)) = projx(R(G; d; s; g)), and thus �li = �ri = 0 forevery i 2 V . 2We are now able to provide a lower bound on s that ensures full-dimensionality in thegeneral 
ase.De�nition 3.6 (
oloring bound) We de�ne the 
oloring bound to be
(G; d; g) = smin(G; d; g) + maxjk2E(dj + dk) + 2g:Theorem 3.11 If s � 
(G; d; g) then R(G; d; s; g) and P (G; d; s; g) are full-dimensional.Proof. Let �T z = �0 for every z 2 P (G; d; s; g). By Lemma 3.10, we have �li = �ri =0 for every i 2 V . Now, let z 2 P (G; d; s; g) \ Z2n+m be a feasible solution su
h that26



Figure 3.3: Constru
tions for the proof of Theorem 3.11.maxi2V zri = smin(G; d; g) (su
h a solution exists by the de�nition of the nonemptynessthreshold smin(G; d; g)). Consider an arbitrary edge ij 2 E and 
onstru
t the feasible solutionz1 as follows: z1lk = 8><>: smin(G; d; g) + g if k = ismin(G; d; g) + di + 2g if k = jzlk otherwiseDe�ne further z1rk = z1lk + dk for every k 2 V . Now 
onstru
t a new feasible solution z2 fromz1 by swapping the intervals I(i) and I(j) (see Figure 3.3). These solutions only di�er intheir li-, ri-, lj-, rj- and xij-
oordinates and, therefore, �xij = 0. Sin
e ij is an arbitrarily
hosen edge, we have � = 0, and so we 
on
lude that P (G; d; s; g) is full-dimensional. Sin
eFs(G; d) = V , Lemma 3.9 implies that R(G; d; s; g) is also full-dimensional. 2Theorem 3.11 implies that for every instan
e (G; d; s; g) there exists a frequen
y span s0su
h that the polytopes fP (G; d; s; g)gs�s0 are full-dimensional. Hen
e we 
an introdu
e thefollowing threshold for full-dimensionality.De�nition 3.7 (full-dimensionality threshold) We denote by sfull(G; d; g) the minimumfrequen
y span s su
h that the polytope P (G; d; s; g) is full-dimensional.Under this de�nition, Theorem 3.11 
an be restated as sfull(G; d; g) � 
(G; d; g). Thisbound is sharp, in the sense that there exist in�nitelymany graphsG su
h that P (G; d; s�1; g),for s = 
(G; d; g), has not full dimension. For example, if the interferen
e graph is a 4-
y
le, we have sfull(C4;1; 0) = 
(C4;1; 0) = 4 but Example 3.2 shows that the polytopeR(C4;1; 3; 0) � R8 has dimension 7, thus not being full-dimensional. In Se
tion 3.2.3 weshall present further instan
es illustrating the same situation.27



Figure 3.4: R(W6;1; 4; 0) is full-dimensional whereas P (W6;1; 4; 0) is not.Note that sfull(G; d; g) is the minimum frequen
y span guaranteeing full-dimensionalityfor P (G; d; s; g) but not for the �xed-length polytope R(G; d; s; g). If P (G; d; s; g) has fulldimension, then 
learly R(G; d; s; g) is full-dimensional, but the 
onverse is not true as thefollowing example shows.Example 3.3 Consider the wheel W6 depi
ted in Figure 3.4(a), 
omposed by a 5-
y
le plusa universal node. Figure 3.4(b) shows smin(W6;1; 0) = 4. It is not diÆ
ult to verify byinspe
tion that R(W6;1; 4; 0) is full-dimensional. However, P (W6;1; 4; 0) does not have fulldimension, sin
e r1� l1 = 1 for every feasible solution. Moreover, for this parti
ular instan
ewe have sfull(W6;1; 0) = 5. �Hen
e the threshold sfull(G; d; g) for full-dimensionality in the general 
ase 
annot bedire
tly applied to the �xed-length 
ase. We obtain instead the following about the dimensionof the two polytopes.Corollary 3.12 Consider an instan
e (G; d; s; g).(i) If s < smin(G; d; g) then both polytopes P (G; d; s; g) and R(G; d; s; g) are empty.(ii) If s = smin(G; d; g) then P (G; d; s; g) is full-dimensional only if R(G; d; s; g) is full-dimensional.(iii) If s > smin(G; d; g) then P (G; d; s; g) is full-dimensional if and only if R(G; d; s; g) isfull-dimensional, by dim(P (G; d; s; g)) = n+ dim(R(G; d; s; g)).Thus, we 
an express the minimum frequen
y span su
h that R(G; d; s; g) has full dimen-sion in terms of sfull(G; d; g) as follows.Corollary 3.13 Let sR be the minimum frequen
y span s su
h that the polytope R(G; d; s; g)has full-dimension. Then, sR = sfull(G; d; g) if FsR(G; d) = V and sR = sfull(G; d; g) � 1otherwise. 28



In the remaining part of this se
tion, we dis
uss better bounds fo sfull(G; d; g) in the 
aseof usual graph 
oloring, i.e., if we assume d = 1 and g = 0.Corollary 3.14 The polytopes R(G;1; s; 0) and P (G;1; s; 0) are full-dimensional if and onlyif s � �(G) + 2.Corollary 3.14 provides a small range for in
omplete dimensionality in the uniform 
ase.Indeed, P (G;1; s; 0) is empty if s < �(G) and full-dimensional if s � �(G) + 2. So we areleft to analyze the 
ases s = �(G) and s = �(G) + 1. In what follows, our obje
tive is to givea partial 
hara
terization of full-dimensionality in the 
ase s = �(G) + 1. As we shall see,in
omplete dimension is related to the existen
e of indu
ed 4-
y
les in the interferen
e graph.We �rst analyze the 
ase of bipartite graphs.Theorem 3.15 If G is a bipartite graph, then P (G;1; 3; 0) is full-dimensional if and only ifG does not 
ontain C4 as an indu
ed subgraph.Proof. Assume �rst that G does not 
ontain any 4-hole as indu
ed subgraph, and suppose�T y = �0 for every y 2 P (G;1; 3; 0). Lemma 3.10 implies that �li = �ri = 0 for everyi 2 V . We will now verify that the same holds for the ordering variables, thus proving thefull-dimensionality of the polytope.Fix an edge ij 2 E and let 
 : E ! f1; 2g be a 2-
oloring of G. Assume w.l.o.g. that
(i) = 1 and 
(j) = 2. De�ne the node subsets A = N(i) and B = N(j) (see Figure 3.5).Note that 
(k) = 2 for every k 2 A and 
(t) = 1 for every t 2 B, hen
e A\B = ;. Moreover,E(A;B) = ;, otherwise a 4-hole would be 
reated. Partition now the remaining nodes asC [D, where C = fk 62 A [B [ fi; jg : 
(k) = 1gD = fk 62 A [B [ fi; jg : 
(k) = 2g

Figure 3.5: Partition of V into subsets.29



These sets de�ne the partition of V depi
ted in Figure 3.5. Noti
e that the sets A, B, C andD are stable sets. Moreover, E(A;D) = ; sin
e the nodes of A and D admit the same 
olor.The same argument shows E(B;C) = ;.We now de�ne the following subsets of edges:E1 = E(fig; A)E2 = E(A;C)E3 = E(C;D)E4 = E(B;D)E5 = E(fjg; B)By the previous observations, we have E = fijg [ E1 [ : : : [ E5. We now 
onstru
t thesequen
e of feasible solutions y0; : : : ; y6 depi
ted in Figure 3.6. For k = 1; : : : ; 6, 
onsider thepair of solutions y0 and yk. Both solutions are feasible, and thus �T y0 = �T yk, implying thefollowing equations. k = 1 ) 0 = �(E1) + �(E2)k = 2 ) 0 = �(E2) + �(E3)k = 3 ) 0 = �(E3) + �(E4)k = 4 ) 0 = �(E4) + �(E5)k = 5 ) 0 = �(E5) + �xjik = 6 ) 0 = �(E3) + �(E4) + �(E5)Solving these equations leads to �xji = 0 and �(Ek) = 0 for k = 1; : : : ; 5 (note that this doesnot imply � = 0). Thus, we have shown �xji = 0. Sin
e ij is an arbitrary edge of G, thispro
edure shows � = 0. Therefore, the polytope is full-dimensional.Now let us turn to the 
onverse. Let C � V be an indu
ed 4-hole in G. The proje
tionof P (G;1; 3; 0) over the variables li, ri for i 2 C and xij for ij 2 E(C) equals P (C;1; 3; 0),and we already know that this polytope is not full-dimensional. Hen
e, P (G;1; 3; 0) does nothave full dimension as well. 2Corollary 3.16 If G is a tree, then P (G;1; �(G) + 1; 0) is full-dimensional.Based on the previous results, we now provide a partial 
hara
terization of full-dimensio-nality for arbitrary graphs in the 
ase s = �(G)+1. Theorem 3.17 gives a suÆ
ient 
onditionfor P (G;1; �(G) + 1; 0) to be full-dimensional, whereas Theorem 3.18 provides a suÆ
ient
ondition ensuring in
omplete dimension. Although these 
onditions are similar, they are notthe 
onverse of ea
h other and so the 
hara
terization given here is only partial.Theorem 3.17 If there exists a k-
oloring of G with k � �(G)+1 and 
olor 
lasses I1; : : : ; Iksu
h that GIi[Ij does not 
ontain a 4-hole for every i 6= j, then P (G;1; �(G) + 1; 0) is full-dimensional. 30



Figure 3.6: Feasible solutions y0; : : : ; y6.
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Proof. Suppose that �T y = �0 for every y 2 P (G;1; �(G) + 1; 0). Lemma 3.10 implies that�li = �ri = 0 for every i 2 V . Now, for every pair Ii, Ij of 
olor 
lasses, with i 6= j, 
onsiderthe indu
ed subgraph Gij = GIi[Ij . By Theorem 3.15, the polytope P (Gij;1; 3; 0) is full-dimensional. Moreover, P (Gij;1; 3; 0) � projIi[Ij P (G;1; �(G) + 1; 0) implies �xe = 0 forevery e 2 Gij. Thus, �x = 0 and so P (G;1; �(G) + 1; 0) has full dimension. 2Theorem 3.18 If there exists a 4-hole C = f1; 2; 3; 4g � V su
h that every k-
oloring 
, withk � �(G)+1, has 
(1) = 
(3) or 
(2) = 
(4), then P (G;1; �(G)+1; 0) is not full-dimensional.Proof. Sin
e every feasible s
hedule (l; r; x) has either I(1) = I(3) or I(2) = I(4), thenx14 � x12 � x34 � x32, han
e P (G;1; �(G) + 1; 0) is not full-dimensional. 23.2.2 Determining the dimension is NP-
ompleteThe results of Se
tion 3.2.1 suggest that the dimension of 
hromati
 s
heduling polytopesis hard to 
hara
terize. The purpose of this se
tion is to show that its 
al
ulation is also a
omputationally hard problem, by proving that the asso
iated de
ision problems are NP-
omplete. As a starting point of our analysis, 
onsider the problem of de
iding whetherP (G; d; s; 0) has full dimension:Full-dimensionalityInstan
e: A weighted graph (G; d) and an integer s 2 Z+.Question: Has P (G; d; s; 0) full dimension?Theorem 3.19 Full-dimensionality is NP-
omplete.Proof. It is not hard to verify that this problem belongs to NP, sin
e we 
an nondeter-ministi
ally generate a set of integer feasible solutions and verify whether this set is a set ofaÆnely independent points with the required number of elements or not. Note we 
an 
he
kin polynomial time whether a set of ve
tors is aÆnely independent or not [42℄. To 
ompletethe proof, we shall redu
e Graph 
oloring to Full-dimensionality. Let G = (V;E) bean arbitrary graph and 
onstru
t a graph H = (VH ; EH) from G by taking:VH = V [ fv1; v2; v3; v4gEH = E [ fvi w : w 2 V; i = 1; : : : ; 4g[ fv1v2; v2v3; v3v4; v4v1gWe 
laim that �(G) � s if and only if P (H;1; s+4; 0) has full dimension. For the forwarddire
tion, if �(G) � s then 
(H; d; 0) = �(H) + 2 � �(G) + 4 � s+ 4, and P (H;1; s + 4; 0)is full-dimensional by Theorem 3.11. For the 
onverse dire
tion, suppose that �(G) � s+ 1.We shall prove that in this 
ase every integer feasible solution satis�esxv1v2 � xv1v4 = xv3v2 � xv3v4 ; (3.1)32



Figure 3.7: Illustration for the proof of Theorem 3.19.thus verifying that P (H;1; s + 4; 0) is not full-dimensional. Consider any feasible solutiony 2 P (H;1; s+ 4; 0) \Z2jVH j+jEH j. This solution must have at least s+ 1 
olors o

upied byintervals 
orresponding to nodes in V , and this leaves at most three 
olors left for the nodesfv1; : : : ; v4g. Thus, either v1 and v3 or v2 and v4 have the same 
olor, and only the four
on�gurations depi
ted in Figure 3.7 (along with their symmetri
al solutions) are possible.All of them satisfy (3.1), hen
e P (H;1; s+ 4; 0) is not full-dimensional. 2Corollary 3.20 Full-dimensionality for R(G; d; s; 0) is NP-
omplete.Proof. Given a graph G, repeat the 
onstru
tion from the proof of Theorem 3.19 to obtain anew graph H. The same argumentation 
an be applied in this 
ase to show that �(G) � s ifand only if R(G;1; s+ 4; 0) has full dimension. 2The 
omplexity of the general problem of 
al
ulating the dimension of 
hromati
 s
hedul-ing polytopes 
an now be addressed as a 
orollary to the previous results. To this end,
onsider the asso
iated de
ision problem:Chromati
 s
heduling polytope's dimensionInstan
e: A weighted graph (G; d), and integers k; s; g 2 Z+.Question: Has P (G; d; s; g) dimension greater or equal than k?Corollary 3.21 Chromati
 s
heduling polytope's dimension is NP-
omplete.3.2.3 Dimension for spe
ial interferen
e graphsThis subse
tion provides results about the dimension of 
hromati
 s
heduling polytopes forspe
ial 
lasses of interferen
e graphs. We present 
hara
terizations of the dimension of in-stan
es de�ned over 
omplete graphs Kn, stars K1;t, paths Pn, and holes Cn, the last onebeing the most involved 
ase. These theorems give the hint that formulating the dimensionin terms of standard graph parameters may be a nontrivial task. We start by analyzing thedimension of polytopes de�ned over 
omplete interferen
e graphs.33



Theorem 3.22 Call D =Pni=1 di. Then,dim�R(Kn; d; s; 0)� = ( m if s = Dn+m if s > Ddim�P (Kn; d; s; 0)� = ( m if s = Dn+ 2m if s > DProof. Clearly, R(Kn; d; s; 0) is nonempty if and only if s � D. When s = D, there areno empty spa
es among the intervals, hen
e every feasible solution satis�es the following nequations: li = Xj 6=i dj xji i = 1; : : : ; n (3.2)This implies dim(R(Kn; d;D; 0)) � m. Conversely, s = D allows every linear ordering amongthe intervals, so projx(R(Kn; d;D; 0)) 
ontains exa
tly m aÆnely independent points. Hen
ewe 
on
lude dim(R(Kn; d;D; 0)) = m. Moreover, FD(Kn; d) = ;, and thus Proposition 3.7implies that R(Kn; d;D; 0) and P (Kn; d;D; 0) have the same dimension.To 
omplete the proof, we verify that both polytopes are full-dimensional when s > D.Suppose �T y = �0 for every point y 2 R(G; d; s; 0). By Lemma 3.8, �li = 0 follows forevery i 2 V . Moreover, note that every point in R(Kn; d;D; 0) also belongs to R(Kn; d; s; 0),and dim(projx(R(Kn; d;D; 0)) = m, hen
e �x = 0. Therefore, � = 0 and R(Kn; d; s; 0) isfull-dimensional. Sin
e Fs(Kn; d) = f1; : : : ; ng, then P (Kn; d; s; 0) also has full dimension. 2The following theorem provides a 
hara
terization of the dimension of 
hromati
 s
hedul-ing polytopes de�ned over 
omplete and bipartite interferen
e graphs with no indu
ed 4-
y
les.This result enables us to fully understand the dimension of 
hromati
 s
heduling polytopesde�ned over stars, paths, and even holes.Theorem 3.23 Let G be a 
onne
ted and bipartite graph with at least two nodes, and su
hthat G does not 
ontain any 4-hole. Then, the polytopes R(G;1; s; 0) and P (G;1; s; 0) havedimension 1 if s = 2 and are full-dimensional if s � 3.Proof. Let 
 : V ! f1; 2g be a 2-
oloring of G. Sin
e G is 
onne
ted and bipartite, then this
oloring is unique up to 
olor renamings. Constru
t a feasible solution y 2 R(G;1; 2; 0)\Zn+mby setting yli = 
(i)� 1 for every i 2 V . By the uniqueness of 
, there only exist two feasiblesolutions, namely y and sym(y), hen
e dim(R(G;1; 2; 0)) = 1. Sin
e every node in G has atleast one neighbor, then no feasible solution z 2 P (G;1; 2; 0) 
an have zri � zli > 1, hen
eF2(G;1) = ; and Lemma 3.9 implies dim(P (G;1; 2; 0)) = 1.Consider now the 
ase s � 3. Sin
e G is a bipartite graph with no indu
ed 4-
y
le,Theorem 3.15 implies that R(G;1; s; 0) is full-dimensional. Sin
e s > smin(G;1; 0) = 2, thenFs(G;1) = V , implying that P (G;1; s; 0) also has full dimension. 234



Corollary 3.24 dim (R(K1;t;1; s; 0)) = ( 1 if s = 22t+ 1 if s � 3dim(P (K1;t;1; s; 0)) = ( 1 if s = 23t+ 2 if s � 3Corollary 3.25 dim (R(Pn;1; s; 0)) = ( 1 if s = 22n� 1 if s � 3dim (P (Pn;1; s; 0)) = ( 1 if s = 23n� 1 if s � 3Corollary 3.26 Let n � 6 be an even integer. Then,dim (R(Cn;1; s; 0)) = ( 1 if s = 22n if s � 3dim (P (Cn;1; s; 0)) = ( 1 if s = 23n if s � 3To 
lose this se
tion, we prove a similar result for odd 
y
les. The previous examplesmay suggest that P (G;1; s; 0) is not full-dimensional for s = smin(G;1; 0), but Theorem3.27 shows full-dimensionality for in�nitely many instan
es. Indeed, 
hromati
 s
hedulingpolytopes de�ned over odd 
y
les are empty if s � 2 and full-dimensional otherwise. In orderto prove this result, we introdu
e the following de�nition.De�nition 3.8 Given a linear ordering S = (i1; : : : ; in) of V , the greedy solution asso
iatedwith S is the feasible solution 
onstru
ted by the following pro
edure:For j = 1; : : : ; n do:Set I(ij) = [tj; tj + dij ℄, where tj is the minimum feasible starting timefor the interval I(ij), a

ording to the previous assignments.End (for)For example, Figure 3.8 shows two su
h solutions for odd 
y
les, asso
iated with thesequen
es (1; : : : ; n) and (n; 1; : : : ; n� 1), respe
tively.
35



Figure 3.8: Examples of greedy solutionsTheorem 3.27 Let n � 5 be an odd integer. The polytopes R(Cn;1; s; 0) and P (Cn;1; s; 0)are empty if s � 2 and have full dimension otherwise.Proof. Sin
e odd 
y
les are nonbipartite, we have that R(Cn;1; 2; 0) and P (Cn;1; 2; 0) areempty. To 
omplete the proof, we show that P (Cn;1; 3; 0) has full dimension (this implies thatR(Cn;1; s; 0) and P (Cn;1; s; 0) are full-dimensional for s � 3). Suppose �T z = �0 for everyz 2 P (Cn;1; 3; 0)\Z3n. We shall verify � = 0, implying that this polytope is full-dimensional.For i = 1; : : : ; n, 
onstru
t the two feasible solutions zi and �zi presented in Figure 3.10(a)and Figure 3.10(b). Sin
e �T zi = �0 = �T �zi, we have that �li = 0. A similar 
onstru
tionshows �ri = 0.It remains to verify that �x = 0. For i = 1; : : : ; n, de�ne the sequen
e Si = (i; i +1; : : : ; n; 1; : : : ; i � 1), and let yi be the asso
iated greedy solution. Also de�ne the oppositesequen
e �Si = (i; i � 1; : : : ; 1; n; n � 1; : : : ; i + 1) and let �yi denote the asso
iated greedysolution. For i = 1; : : : ; n, we have that �T yi = �T �yi. These n equations de�ne an (n � n)-system Dn�x = 0 of linear equations. The matrix Dn has two 
onse
utive diagonals withones, and the remaining diagonals are alternatively 
omposed by -1 and 1 (see Figure 3.9 foran example).
D7 = 0BBBBBBBBBB�

1 1 �1 1 �1 1 �1�1 1 1 �1 1 �1 11 �1 1 1 �1 1 �1�1 1 �1 1 1 �1 11 �1 1 �1 1 1 �1�1 1 �1 1 �1 1 11 �1 1 �1 1 �1 1
1CCCCCCCCCCA ; 0BBBBBBBBBB�

1 1 �1 1 �1 1 �10 2 0 0 0 0 00 0 2 0 0 0 00 0 0 2 0 0 00 0 0 0 2 0 00 0 0 0 0 2 00 0 0 0 0 0 2
1CCCCCCCCCCAFigure 3.9: A matrix arising from greedy solutions and its triangulation.It is not diÆ
ult to verify that Dn is a nonsingular matrix (re
all that n is an odd integer).To this end, for i = n; : : : ; 2 in de
reasing order, add row i� 1 to row i. The resulting matrix36



Figure 3.10: Feasible solutions of P (Cn;1; 3; 0) showing �li = 0.is upper triangular (see Figure 3.9 for an example with n = 7), thus proving that the onlysolution to Dn�x = 0 is �x = 0. Hen
e � = 0 and P (Cn;1; 3; 0) is full-dimensional. 2Remark. Consider the ve
tors fprojx(yi)gni=1 of the ordering variables 
orresponding to thegreedy solutions asso
iated with the n as
ending sequen
es S1; : : : ; Sn introdu
ed in the proofof Theorem 3.27. Let A be the quadrati
 0/1-matrix with these ve
tors as rows. Then A hasa spe
ial stru
ture, with the �rst two diagonals �lled with ones, and the remaining diagonalsalternating between zeros and ones, respe
tively. It is worth noting that A is nonsingular andhas determinant (n� 1)=2 (sin
e n is odd). �3.3 The 
ombinatorial steady stateThis se
tion explores a fundamental issue 
on
erning the 
ombinatorial stru
ture of 
hromati
s
heduling polytopes. It has been experimentally observed in [21℄ for some instan
es (G; d; s; 0)that, from a 
ertain value smax(G; d; 0) on, the polytopes fR(G; d; s; 0)gs�smax(G;d;0) rea
h a
ombinatorial steady state with the same number of extreme points and fa
ets. This led tothe question whether the polytopes fR(G; d; s; g)gs�smax(G;s;g) are pairwise 
ombinatoriallyequivalent. In this se
tion we give an aÆrmative answer by proving a more general result:the polytopes R(G; d; s; g) and R(G; d; s + 1; g) resp. P (G; d; s; g) and P (G; d; s + 1; g) areaÆnely isomorphi
 (and therefore 
ombinatorially equivalent) for s� !(G; d). Moreover, wegive a lower bound on s ensuring this isomorphism, and this bound 
an be shown to be sharpwhen G is the union of disjoint 
liques.3.3.1 A 
hara
terization of the extreme pointsWe start by providing a simple 
hara
terization of the extreme points of 
hromati
 s
hedulingpolytopes. For any valid ordering �x 2 projx(R(G; d; s; g)\Zn+m), de�ne the lower and upperbounds for the interval I(i) assigned to 
ustomer i 2 V as follows:37



Li(�x; s) = minfyli : y 2 R(G; d; s; g) \ Zn+m and yx = �xgUi(�x; s) = maxfyli : y 2 R(G; d; s; g) \ Zn+m and yx = �xgFor every ij 2 E, let Æij be the minimum gap required between the intervals I(i) and I(j),i.e., Æij = ( g if ij 2 EX0 otherwiseDe�nition 3.9 (�xed-length adja
en
y graph) Let y 2 R(G; d; s; g)\Zn+m be a feasibles
hedule. The adja
en
y graph asso
iated with this s
hedule is G(y) = (V 0; E0), with V 0 = Vand E0 = f ij 2 E : yli + di + Æij = ylj ; or ylj + dj + Æij = ylig.Nodes i and j are adja
ent in G(y) if they are adja
ent in G and there is a spa
e of exa
tlyÆij between the intervals I(i) and I(j). For example, if H is the interferen
e graph depi
tedin Figure 3.11(a), then Figure 3.11(b) shows a feasible s
hedule and Figure 3.11(
) presentsits asso
iated adja
en
y graph.De�nition 3.10 A 
onne
ted 
omponent C of G(y) is 
alled a border 
omponent if thereexists some i 2 C with yli = 0 or yli = s� di.Theorem 3.28 The ve
tor y 2 R(G; d; s; g) \ Zn+m is an extreme point of R(G; d; s; g) ifand only if every 
onne
ted 
omponent of G(y) is a border 
omponent.Proof. Only if. Consider a feasible solution y and its �xed-length adja
en
y graph G(y).Suppose that G(y) has a 
omponent C su
h that every node i 2 C has yli > 0 and yli < s�di.Then, we 
an 
onstru
t two feasible points y1; y2 2 R(G; d; s; g) by shifting all the intervalsassigned to nodes in C one unit to the left and one unit to the right, respe
tively:y1li = � yli if i 62 Cyli � 1 if i 2 C 8 i 2 Vy2li = � yli if i 62 Cyli + 1 if i 2 C 8 i 2 Vy1xij = yxij 8 ij 2 Ey2xij = yxij 8 ij 2 ENote that 0 � yilj � s�di (i = 1; 2), sin
e 0 < ylj < s�dj for all j 2 C. Moreover, this shiftingdoes not 
ause interval overlappings. Any su
h overlapping in y1 would be y1lj + dj + Æij > y1lifor i 2 C and j 62 C, but then ylj + dj + Æij = yli , and thus j 2 C. A similar analysis showsthat y2 is feasible. 38



Figure 3.11: Examples for Se
tion 3.3.1.But now we have that y = 12y1 + 12y2, and thus y is not an extreme point of R(G; d; s; g),
ontradi
ting the hypothesis.If. Let y be a feasible solution su
h that every 
onne
ted 
omponent of G(y) is a border
omponent. Further, suppose that z1; : : : ; zk 2 R(G; d; s; g) \ Zn+m are k extreme points ofR(G; d; s; g), su
h that y = Pki=1 �izi, with Pki=1 �i = 1 and �i > 0 for i = 1; : : : ; k. Sin
e0 � yxe ; zixe � 1 for every edge e 2 E, then yxe = zixe . This implies that y and zi (i = 1; : : : ; k)have the same ordering among the intervals.Consider now any 
onne
ted 
omponent C of G(y), and assume without loss of generalitythat ylt = 0 for some t 2 C. De�ne CL = fi 2 C : yli = Li(yx; s)g, whi
h is nonempty sin
et 2 CL. For ea
h node i 2 C, let 
i denote the distan
e from i to CL (i.e., the length of theshortest path from i to some node in CL). Note that 
i = 0, i 2 CL.Claim: zilj = ylj for every j 2 C and i = 1; : : : ; k. We shall prove this 
laim byindu
tion on the distan
e 
j from j to CL.� 
j = 0: Then j 2 CL, and so ylj = Lj(yx; s). But zi has the same ordering among theintervals than y, and thus zilj � Lj(yx; s), for i = 1; : : : ; k. Thus, zilj = Li(yx; s), sin
eotherwise Pi �izilj > Lj(yx; s) = ylj .� 
j > 0: Then ylj + dj + Æjp = ylp or ylp + dp+ Æjp = ylj for some p 2 C in the path fromj to CL (assume without loss of generality that the former holds). By the indu
tionhypothesis, zilp = ylp for i = 1; : : : ; k, sozilj + dj + Æjp � zilp = ylp :39



But ylj + dj + Æjp = ylp , and thus zilj = ylj . 3Hen
e zi = y for i = 1; : : : ; k, implying that y is an extreme point of R(G; d; s; g). 2Theorem 3.28 states that a feasible solution y 2 R(G; d; s; g)\Zn+m is an extreme point ifand only if every 
onne
ted 
omponent of G(y) has at least one interval lo
ated either to theleft or to the right bound of the spe
trum [0; s℄. In the example above, the feasible s
heduledepi
ted in Figure 3.11(b) is not an extreme point of R(H;1; s; g), whereas Figure 3.11(d)presents a solution whose in
iden
e ve
tor is an extreme point of R(H;1; s; g). Note that,in a border 
omponent C, not every node i 2 C has to satisfy li = Li(x; s) or li = Ui(x; s)(i.e., attain its leftmost or rightmost position). For example, 
onsider the border 
omponentC = f1; 2; 4; 5g from the s
hedule depi
ted in Figure 3.11(d). The intervals I(1), I(2) andI(4) are lo
ated in their leftmost position, but the interval I(5) is not, despite the fa
t thatit belongs to C sin
e l5 + d5 = l4.A similar 
onstru
tion 
an be given for the general 
ase ri � li � di, i 2 V . In this 
ase,the adja
en
y graph 
ontains two nodes for ea
h interval I(i) = [li; ri℄, representing the leftand the right bound, respe
tively. For i 2 V , the nodes li and ri are adja
ent if the intervalI(i) has lenght exa
tly di. For ij 2 E, the nodes li and rj are adja
ent if there exists a spa
eof exa
tly Æij between I(i) and I(j).De�nition 3.11 (adja
en
y graph) Let z 2 P (G; d; s; g) \ Z2n+m be a feasible s
hedule.The adja
en
y graph asso
iated with this s
hedule is H(z) = (V 0; E0), withV 0 = f li : i 2 V g [ f ri : i 2 V gE0 = f li ri : i 2 V and zri � zli = dig [f ri lj : ij 2 E and zri + Æij = zljg:De�nition 3.12 A 
onne
ted 
omponent C of H(z) is 
alled a border 
omponent if thereexists some li 2 C with zli = 0 or some ri 2 C with zri = s.Theorem 3.29 The point z 2 P (G; d; s; g) \ Z2n+m is an extreme point of P (G; d; s; g) ifand only if every 
onne
ted 
omponent of H(z) is a border 
omponent.Proof. Only if. Consider a feasible solution z and its adja
en
y graph H(z). Supposethat H(z) has a nonborder 
omponent C, and 
onstru
t two feasible s
hedules z1; z2 2P (G; d; s; g) \ Z2n+m from z by shifting the bounds in C one unit to the left resp. to theright, i.e., z1lj = ( zlj � 1 if lj 2 Czlj if lj 62 C z2lj = ( zlj + 1 if lj 2 Czlj if lj 62 Cz1rj = ( zrj � 1 if rj 2 Czrj if rj 62 C z2rj = ( zrj + 1 if rj 2 Czrj if rj 62 C40



Claim: z1; z2 2 P (G;d; s; g) \ Z2n+m. We �rst verify that z1rj � z1lj � dj for everyj 2 V . Suppose that rj 2 C but lj 62 C. The 
onstru
tion of H(z) implies zrj �zlj > dj , sin
eotherwise lj would belong to C. Hen
e z1 satis�es the demand 
onstraints. It is not diÆ
ultto verify that 0 � z1lj for every j 2 V , sin
e the left interval bound lj is shifted to the leftonly when lj belongs to a nonborder 
omponent, implying zlj > 0. The opposite 
onstraintsz1lj � s� dj are 
learly satis�ed.To 
omplete the proof of the 
laim we show that z1 satis�es the antiparallelity 
onstraints,by verifying that no overlappings are produ
ed by the shifting. In this setting, an overlapping
an o

ur only when zxjk = 1 (for jk 2 E) and zlk is shifted but zrj remains un
hanged. By
onstru
tion, this implies lk 2 C and rj 62 C, hen
e zrj + Æjk < zlk and so z1rj + Æij � z1lk . Thes
hedule z2 is de�ned similarly, and the same arguments show that it is feasible. 3But now we have z = 12(z1 + z2) and, therefore, z is not an extreme point.If. Let z be a feasible solution su
h that every 
onne
ted 
omponent of H(z) is a border
omponent. Further, suppose that z1; : : : ; zp 2 P (G; d; s; g) \ Z2n+m are p extreme points ofP (G; d; s; g) su
h that z = Ppi=1 �izi, with Ppi=1 �i = 1 and �i > 0 for i = 1; : : : ; p. Sin
ezxe ; zixe 2 f0; 1g for every edge e 2 E, then zxe = zixe .Let C be a 
onne
ted 
omponent of H(z). Sin
e C is a border 
omponent, then either(a) lt 2 C and zlt = 0 or (b) rt 2 C and zrt = s, for some t 2 V . Assume w.l.o.g. that theformer holds. For k 2 C, de�ne 
k to be the distan
e from node k to lt in H(z) (note that
lt = 0). We now verify by indu
tion on 
 that zlj = zilj for every lj 2 C and zrj = zirj forevery rj 2 C. Let k 2 C. If 
k = 0 then k = lt, so zlt = 0. But zilt � 0 for i = 1; : : : ; p,implying zilt = 0. On the other hand, if 
k > 0, then either k = lj or k = rj for some j 2 V .Suppose w.l.o.g. the former and 
onsider the following 
ases:� If there exists some rl 2 C su
h that zlj + Æjl = zrl and 
rl = 
lj � 1, by the indu
tionhypothesis we have zrl = zirl for i = 1; : : : ; p. Sin
e z and zi have the same orderingamong the intervals, then zilj � zirl � Æjl = zrl � Æjl = zlj , implying zilj = zlj fori = 1; : : : ; p.� On the other hand, if zrj � zlj = dj and 
rj = 
lj � 1, the indu
tion hypothesis implieszirj = zrj for i = 1; : : : ; p. Sin
e zilj � zirj � dj = zrj � dj = zlj , then zilj = zlj fori = 1; : : : ; p.The same arguments apply to the 
ase k = rj. This way we show that z = zi for i = 1; : : : ; pand, therefore, z is an extreme point of P (G; d; s; g). 23.3.2 Combinatorial equivalen
e for large frequen
y spansThe main result of this subse
tion asserts that for every interferen
e graph (G; d) and ev-ery guard distan
e g there exists a value smax(G; d; g) 2 Z+ su
h that the polytopes fromthe families fR(G; d; s; g)gs�smax(G;d;g) resp. fP (G; d; s; g)gs�smax(G;d;g) are pairwise aÆnely41



isomorphi
, hen
e being 
ombinatorially equivalent. We also provide an upper bound onsmax(G; d; g).De�nition 3.13 The polytopes P � Rn and Q � Rm are aÆnely isomorphi
, denoted byP �= Q, if there is a bije
tive aÆne map f : Rn ! Rm between the two polytopes.Note that the de�nition asks for an aÆne bije
tion between all the points of the polytopes,and this is equivalent to �nding an aÆne bije
tion between the extreme points of P and Q,sin
e aÆne bije
tions preserve 
onvex 
ombinations of points. Moreover, if f is a bije
tionin the ambient spa
es, then P and Q are basi
ally \the same polytope" with respe
t to anaÆne 
hange of 
oordinates. From the 
ombinatorial point of view, if P and Q are aÆnelyisomorphi
, then they share the same fa
ial stru
ture. In parti
ular, the aÆne map gives anisomorphism between their extreme points, and between their fa
ets [46℄.De�nition 3.14 Let �(G; d; g) denote the minimum frequen
y spe
trum length s su
h thatR(G; d; s; g) admits a solution for every possible ordering among the intervals.In order to prove the equivalen
e of R(G; d; s; g) and R(G; d; s + 1; g), we de�ne now adi�erent representation for feasible s
hedules, in terms of binary variables. For every nodei 2 V and every k 2 f0; : : : ; s� 1g, de�ne the binary position variable qik as:qik = ( 1 if li � k0 otherwise (3.3)We also 
onsider the ordering variables xij , for ij 2 E, with the usual meaning. If P is apolytope, we denote by vert(P ) the set of extreme points of P . Therefore, to every extremepoint y = (l; x) 2 vert(R(G; d; s; g)) we 
an asso
iate a point zy = (q; x) 2 Zns+m withzyx = yx and zyq de�ned by (3.3).De�nition 3.15 R(G; d; s; g) = 
onvfzy : y 2 vert(R(G; d; s; g))g.Sin
e the extreme points y1; : : : ; yt of R(G; d; s; g) are pairwise distin
t, then zy1 ; : : : ; zytare pairwise distin
t as well. Moreover, zy1 ; : : : ; zyt are binary ve
tors and, therefore, none ofthem 
an be written as a 
onvex 
ombination of the remaining ones. Hen
e R(G; d; s; g) hasexa
tly t = jvert(R(G; d; s; g))j extreme points.Lemma 3.30 R(G; d; s; g) �= R(G; d; s; g).Proof. Let 0d 2 R1�d resp. 1d 2 R1�d denote the d-dimensional row ve
tor with only 0-entries resp. 1-entries. Consider the aÆne map f : vert(R(G; d; s; g)) ! vert(R(G; d; s; g))42



de�ned by f(z) = Bz, where: B = 0BBBBBB� 1s 0s : : : 0s 0n0s 1s : : : 0s 0n... ... . . . ... 0n0s 0s : : : 1s 0n0s 0s : : : 0s In
1CCCCCCAThis fun
tion maps the point (q; x) to the pointB(q; x) = (l; x), with li =Ps�1k=1 qik. Therefore,f maps extreme points of R(G; d; s; g) onto extreme points of R(G; d; s; g). This mapping is
learly inje
tive and, sin
e the sets of the extreme points of both polytopes have the same
ardinality, it follows that f is a bije
tion between these sets. Sin
e f is an aÆne bije
tionbetween vert(R(G; d; s; g)) and vert(R(G; d; s; g)), then f is a bije
tion between R(G; d; s; g)and R(G; d; s; g) and, therefore, these polytopes are aÆnely isomorphi
. 2Lemma 3.31 If s > 2�(G; d; g), then R(G; d; s; g) �= R(G; d; s+ 1; g).Proof. Let y be an extreme point of R(G; d; s; g), and let C be a 
onne
ted 
omponent ofG(y). Sin
e C is a border 
omponent, there there exists some i 2 C su
h that either yli = 0 oryli = s�di holds. If yli = 0, s > 2�(G; d; g) implies maxj2C ylj < s=2. Similarly, if yli = s�di,s > 2�(G; d; g) implies minj2C ylj > s=2. Hen
e the interval set 
an be partitioned into twosubsets, namely the intervals lo
ated in [0; s=2℄ and the intervals lo
ated in [s=2; s℄.Now, if zy is a feasible solution of R(G; d; s; g), we denote by shift(zy) the 
orrespondingextreme point of R(G; d; s+1; g), whi
h has the same 
on�guration, but the intervals lo
atedin [s=2; s℄ are now shifted one unit to the right (i.e., these intervals are lo
ated in the rightpart of the new frequen
y spe
trum [0; s+ 1℄). The point shift(zy) 
an be written as:shift(zy)qik = ( yqik if k < bs=2
yqi;k�1 if k � bs=2
shift(zy)xij = yxijThis mapping shifts the intervals of y that are lo
ated in [s=2; s℄ (and therefore have qi;s=2 = 1)one unit to the right, and lets the remaining intervals un
hanged. Moreover, it is an aÆnebije
tion between the extreme points of R(G; d; s; g) and R(G; d; s+1; g) implying that theyare aÆnely isomorphi
. 2Theorem 3.32 If s > 2�(G; d; g), then R(G; d; s; g) �= R(G; d; s+ 1; g).Proof. From Lemma 3.30 and Lemma 3.31 follows R(G; d; s; g) �= R(G; d; s; g) �= R(G; d; s+1; g) �= R(G; d; s+ 1; g). 2Remark. The de�nition of R(G; d; s; g) presented in this se
tion was inspired by the 
on-stru
tion given in [37℄ for 
hara
terizing the integer hull of a general polytope. It is also worthnoting that an alternative proof of a weaker version of Theorem 3.32 was found by proving43



that the Fourier-Motzkin elimination method [43, 44, 46℄ performs the same operations onR(G; d; s; g) and R(G; d; s+ 1; g) when s� !(G; d). �The same 
onstru
tion 
an be applied to prove a similar result for the polytope P (G; d; s; g).To this end, we 
onsider a new set of binary variables uik for i 2 V and k 2 f1; : : : ; sg, de�nedby uik = ( 1 if ri � k0 otherwise (3.4)To every extreme point z = (l; r; x) 2 vert(P (G; d; s; g)) we 
an asso
iate a point wz =(q; u; x) 2 Z2ns+m with wzx = zx and wzq resp. wzu de�ned by (3.3) resp. (3.4). We de�neP(G; d; s; g) � R2ns+m to be the 
onvex hull of all the points 
onstru
ted this way. The samete
hniques from the previous lemmas 
an be applied to show the following result.Theorem 3.33 If s > 2�(G; d; g), then P (G; d; s; g) �= P (G; d; s+ 1; g).Hen
e, there exists a 
ertain value of the frequen
y span whi
h ensures 
ombinatorialstability for the general polytope P (G; d; s; g). We thus introdu
e the 
orresponding thresh-old for 
ombinatorialy stability of 
hromati
 s
heduling polytopes, whi
h is well-de�ned byTheorem 3.33.De�nition 3.16 (
ombinatorial stability threshold) We denote by smax(G; d; g) theminimum frequen
y span s su
h that the polytopes P (G; d; s; g) and P (G; d; s+1; g) are 
om-binatorially equivalent.Theorem 3.33 implies 2�(G; d; g) � smax(G; d; g), but the 
omputational experimentsfrom Se
tion 2.2 suggest smax(G; d; g) = �(G; d; g)+1. Moreover, this 
omputational eviden
esuggest that smax(G; d; g) is also the minimum frequen
y span ensuring 
ombinatorial stabilityfor the �xed-length polytope R(G; d; s; g).3.3.3 A better bound for the 
ase EX = ;If EX = ; (i.e., we have no inter-se
tor edges), thenG is the disjoint union of 
liques T1; : : : ; Tt,ea
h one 
orresponding to one se
tor. In this 
ase, we 
an prove the 
ombinatorial equiva-len
e of R(G; d; s; g) and R(G; d; s + 1; g) for s > �(G; d; g), thus giving a better bound forsmax(G; d; g) in this parti
ular setting.In order to state this result, we de�ne another representation for feasible solutions. Forea
h node i 2 V , 
onsider the gap variable pi measuring the total gap to the left of the intervalI(i) (not just the gap between I(i) and its immediate prede
essor, but the sum of all gapslo
ated to the left of I(i)). We also 
onsider the ordering variables xij , for ij 2 E, with theusual meaning. In this setting, a feasible solution is any assignment of integer values to these44



variables su
h that the following 
onstraints are satis�ed:pj � pi + s xij 8ij 2 E; i < j (3.5)pi � pj + s (1� xij) 8ij 2 E; i < j (3.6)0 � pi � s� Xj2Tk djxij 8k = 1; : : : ; t; 8i 2 Tk (3.7)2 � xij + xjk + (1� xik) 8ij; jk 2 E; i < j; j < k (3.8)xij 2 f0; 1g 8ij 2 E; i < j (3.9)De�nition 3.17 Let �R(G; d; s; g) � Rn+m denote the 
onvex hull of all feasible solutions(p; x) 2 Zn+m satisfying 
onstraints (3.5)-(3.9).Lemma 3.34 R(G; d; s; g) �= �R(G; d; s; g).Proof. We show that both polytopes are aÆnely isomorphi
 by verifying that the gap variablesp 
an be obtained from the interval bounds l and the ordering variables x by an aÆne map.If i 2 Tk, then pi = li � Xj2Tknfig djxji (3.10)Given any integer solution (l; x) 2 R(G; d; s; g) \ Zn+m, we 
an �nd its asso
iated solution(p; x) 2 �R(G; d; s; g) using 3.10. We 
an write this mapping in matrix form as (p; x)T =A(l; x)T , with A 2 R(n+m)�(n+m):� px� = � In M0 Im �� lx� ;where In is the n� n identity matrix and M is a (m�m)-matrix with integer entries. Giventhis stru
ture, it 
an be seen that A is nonsingular, and thus this mapping is an isomorphismon the ambient spa
es. Therefore, R(G; d; s; g) �= �R(G; d; s; g). 2Lemma 3.35 The point z 2 �R(G; d; s; g) is an extreme point of �R(G; d; s; g) if and only ifea
h 
lique Tk of G 
an be partitioned as Tk = T 0k [ T 00k in su
h a way that zpi = 0 for i 2 T 0kand zpi = s� !(Tk) for i 2 T 00k .Proof. Only if. If 0 < zpi < s � !(Tk) for some i 2 Tk, then the set of intervals asso
iatedwith nodes in Tk having no gap between them and in
luding I(i) 
an be shifted one unit tothe left and one unit to the right, thus 
onstru
ting two feasible solutions z1 and z2 su
h thatz = 12 (z1 + z2).If. Suppose that z = Ppi=1 �izi, with Ppi=1 �i = 1 and �i > 0. Sin
e x 2 f0; 1gm, thenzix = zx for i = 1; : : : ; p. Moreover, if j 2 T 0k then zipj � 0 = zpj , and if j 2 T 00k thenzipj � s� !(Tk) = zpj , for every i = 1; : : : ; p. Thus, zipj = zpj for all j 2 V , and then z is anextreme point of �R(G; d; s; g). 2 45



Lemma 3.36 If s > �(G; d; g), then �R(G; d; s; g) �= �R(G; d; s+ 1; g).Proof. Note �rst that s > �(G; d; g) if and only if s � !(Tk) + 1 for every k = 1; : : : ; t. Forea
h 
lique Tk of G, de�ne nk = jTkj and let Mk 2 Rnk�nk be the matrixMk = s+ 1� !(Tk)s� !(Tk) Ink :We now de�ne an aÆne map f : Rn+m ! Rn+m as f(y) = By, withB = 0BBBBB� M1 0n2�n2 : : : 0nt�nt 0m�m0n1�n1 M2 : : : 0nt�nt 0m�m... ... . . . ... ...0n1�n1 0n2�n2 : : : Mt 0m�m0n1�n1 0n2�n2 : : : 0nt�nt Im
1CCCCCA :Let z be an extreme point of �R(G; d; s; g). By Lemma 3.35, ea
h 
lique Tk � G has a partitionTk = T 0k [ T 00k su
h that zpi = 0 for i 2 T 0k and zpi = s � !(Tk) for i 2 T 00k . Thus, f(z)pi = 0for i 2 T 0k and g(z)pi = s + 1 � !(Tk). Moreover, f(z)x = zx, and so f(z) is the same pointthan z, but with the intervals 
orresponding to [kT 00k shifted one unit to the right (i.e., at theright of the new frequen
y spe
trum [0; s+ 1℄).Sin
e s � !(Tk) + 1 for k = 1; : : : ; t, we have that f maps every extreme point of�R(G; d; s; g) onto its 
orresponding extreme point of �R(G; d; s + 1; g). Note that the lowerbound on s ensures that all orderings among the intervals are feasible in �R(G; d; s; g) andthus no new interval ordering is introdu
ed in �R(G; d; s+ 1; g). Sin
e B is nonsingular, then�R(G; d; s; g) �= �R(G; d; s+ 1; g). 2Theorem 3.37 If s > �(G; d; g), then R(G; d; s; g) �= R(G; d; s+ 1; g).Proof. By Lemmas 3.34 and 3.36, we have that R(G; d; s; g) �= �R(G; d; s; g) �= �R(G; d; s +1; g) �= R(G; d; s+ 1; g). Hen
e R(G; d; s; g) �= R(G; d; s+ 1; g). 2Corollary 3.38 If s > �(G; d; g), then the polytopes R(G; d; s; g) and R(G; d; s + 1; g) are
ombinatorially equivalent.3.4 Relations to the linear ordering polytopeA linear ordering of a �nite set V = f1; : : : ; ng is a bije
tive mapping � : V ! f1; : : : ; ng.For i 2 V and j 2 V , we say that i is before j in � if �(i) < �(j). Given a linear ordering� of V , we 
an de�ne an a
y
li
 tournament T = (V;A) with ar
 set A = fij : �(i) < �(j)gand, 
onversely, every a
y
li
 tournament T = (V;A) indu
es a linear ordering of V . Forevery two elements i; j 2 V two values 
ij 2 R and 
ji 2 R are given, measuring the pro�t46



we obtain from having i before j resp. j before i in a linear ordering. The weight of a linearordering � is de�ned to be 
(�) =P�(i)<�(j) 
ij , and the problem of �nding a linear orderingof maximum weight is 
alled the linear ordering problem. This problem is NP-hard [20℄ and itis 
losely related to the so-
alled feedba
k ar
 set problem and the a
y
li
 subgraph problem[24℄. It has appli
ations in e
onomi
s (triangulation of input-output matri
es), s
heduling(minimizing average weighted 
ompletion time), sports (ranking of teams), mathemati
alpsy
hology, ar
heology and anthropology.We 
an asso
iate with ea
h linear ordering � a 
hara
teristi
 ve
tor x� 2 Rn(n�1), de�nedas follows. x�ij = ( 1 if �(i) < �(j)0 otherwiseThe linear ordering polytope P nLO on n nodes is the 
onvex hull of the 
hara
teristi
 ve
tors ofall linear orderings of f1; : : : ; ng. This polytope has attra
ted mu
h attention. Several 
lassesof fa
et-de�ning inequalities are known [8, 19, 23, 38℄, and the 
omplexity of the asso
iatedseparation problems has been studied in detail [39℄. Complete des
riptions of P nLO are knownfor n � 7, with 87.472 fa
ets for n = 7. A 
onje
tured 
omplete des
ription for n = 8 
ontainsover 480 million fa
ets [13℄.Chromati
 s
heduling polytopes share many stru
tural properties with the linear order-ing polytope, sin
e the ordering variables have the same meaning in both settings. Notsurprisingly, some of the simplest 
ases of 
hromati
 s
heduling polytopes, namely the in-stan
es de�ned over 
omplete graphs, are equivalent to P nLO. We show that R(Kn; d; s; 0) andP (Kn; d; s; 0) are aÆnely isomorphi
 to P nLO when s = Pni=1 di, and afterwards we present ageneralization of this result for the �xed-length 
ase when s >Pni=1 di.Re
all that two polytopes P 2 Rn and Q 2 Rm are aÆnely isomorphi
, denoted P �= Q,if there is an aÆne bije
tion f : Rn ! Rm between the points of the two polytopes.Theorem 3.39 If s =Pni=1 di, then P (Kn; d; s; 0) �= P nLO and R(Kn; d; s; 0) �= P nLO.Proof. Sin
e s = !(Kn; d) then P (Kn; d; s; 0) is nonempty. Moreover, all intervals I(i) haveexa
tly length di and there is no gap between two intervals left; thus the feasible solutionsdistinguish only in the order of the intervals. Therefore, the following linear equations aresatis�ed by every feasible solution of P (Kn; d; s; 0):li = Pj 6=i dj xji i = 1; : : : ; nri = Pj 6=i dj xji + di i = 1; : : : ; nHen
e the interval bound variables 
an be written as aÆne 
ombinations of the orderingvariables, whi
h are pre
isely the linear ordering variables. Moreover, this aÆne mappingis a bije
tion, sin
e every linear ordering generates a feasible s
hedule in P (Kn; d; s; 0) and
onversely. Thus, P (Kn; d; s; 0) �= P nLO. Sin
e every feasible s
hedule z 2 P (Kn; d; s; 0) \Z2n+m has zri � zli = di, then P (Kn; d; s; 0) �= R(Kn; d; s; 0), implying R(Kn; d; s; 0) �= P nLO.2 When s = !(Kn; d), every feasible solution of P (Kn; d; s; 0) is a linear ordering. TheaÆne mapping is possible sin
e there 
annot be empty spa
es between the intervals. If47



s > !(Kn; d), there will be some empty spa
e between the intervals or there exist intervalsI(i) with ri > li + di. We 
an still give a 
hara
terization of R(Kn; d; s; 0) in terms of thelinear ordering polytope, but not for P (Kn; d; s; 0) anymore.Theorem 3.40 If s >Pni=1 di, then R(Kn; d; s; 0) �= P n+1LO .Proof. By Theorem 3.28, every extreme point y of R(Kn; d; s; 0) has the following stru
ture.The node set is partitioned into V = Ly [Ry su
h thatyli = Xj2Ly yxjidj 8i 2 Lyyli = s� Xj2Ry yxijdj 8i 2 RyThat is, the intervals 
orresponding to nodes in Ly resp. Ry are lo
ated in the left resp. rightpart of the frequen
y spe
trum, and there is only one empty interval in between, namely[d(Ly); s � d(Ry)℄. We 
an regard this unique empty interval as a new interval with lengths�Pni=1 di, and so every extreme point of R(Kn; d; s; 0) represents a linear ordering on n+1nodes. Hen
e, given an extreme point x 2 vert(P n+1LO ) we 
an 
onstru
t an extreme point ofR(Kn; d; s; 0) by li = nXj=1djxji + �s� nXj=1 dj�xn+1;i i = 1; : : : ; nSin
e vert(R(Kn; d; s; 0)) in
ludes every linear ordering among the n+1 
onsidered intervals,then this mapping is an isomorphism and, therefore, R(Kn; d; s; 0) �= P n+1LO . 2These results imply that even simple 
hromati
 s
heduling polytopes, namely those de�nedover 
omplete graphs, are hard to 
hara
terize. A 
omplete des
ription of R(Kn; d; s; 0) interms of its fa
ets should in
lude all the linear ordering fa
ets, whi
h amount to severalmillions of valid inequalities even for small instan
es [13℄. One may expe
t that similarrelationships may hold for 
hromati
 s
heduling polytopes over arbitrary graphs, and this isindeed the 
ase. The remaining of this se
tion is devoted to presenting these results.De�nition 3.18 If �Tx � �0 is a valid inequality of P nLO, let S� denote the set of dire
tedar
s having nonzero 
oeÆ
ients in the inequality (i.e., S� = fe 2 E : �e 6= 0g).Proposition 3.41 Let �Tx � �0 be a valid inequality of P nLO with S� � E. Then theinequality Pij2S� �ijxij � �0 is valid for P (G; d; s; g) and R(G; d; s; g).Proof. Let (l; r; x) 2 P (G; d; s; g) \ Z2n+m be an integer feasible solution. The ve
tor xspe
i�es a partial ordering among the intervals, and 
an be extended into a linear orderingx0 2 P nLO satisfying �Tx0 � �0. Sin
e S� � E, then �Tx0 = Pij2S� �ijx0ij = Pij2S� �ijxij ,implying that Pij2S� �ijxij � �0 is valid for P (G; d; s; g). Sin
e this inequality only involvesthe ordering variables, it is also valid for R(G; d; s; g). 248



Theorem 3.42 Let �Tx � �0 be a fa
et-de�ning inequality of P nLO with S� � E. If s �!(G; d), then Pij2S� �ijxij � �0 de�nes a fa
et of P (G; d; s; g) and R(G; d; s; g).Proof. Sin
e the equations xij + xji = 1 8i 6= j are a maximal equation system for P nLO,there exist k = n(n � 1)=2 aÆnely independent integer points x1; : : : ; xk 2 P nLO su
h that�Txi = �0 for i = 1; : : : ; k. These points have n(n � 1)=2 
oordinates, one for ea
h edgeof Kn. Delete the 
oordinates 
orresponding to the edges that are not present in G. Thatway we obtain the new points projx(x1); : : : ;projx(xk) 2 Rm, and we 
an �nd m aÆnelyindependent points among them. Sin
e s � !(G; d), we 
an extend �xi = projx(xi) to afeasible s
hedule zi 2 P (G; d; s; g) \Z2n+m, by assigning the intervals in su
h a way that thepre
eden
e relation indi
ated by �xi is satis�ed, i.e., zilj = Lj(�xi; s) and zirj = Lj(�xi; s)+dj forj 2 V . By 
onstru
tion, this s
hedule is feasible.We now 
onstru
t 2n more aÆnely independent points from z1 as follows. Let D =(V;ED) be a digraph su
h that ij 2 ED if and only if ij 2 E and I(j) is lo
ated beforeI(i) in z1. Let i1; : : : ; in be a topologi
al ordering of D, and 
onstru
t n feasible solutionsu1; : : : ; un 2 P (G; d; s; g) by settinguilj = ( z1lj + 1 if j = it, for t � iz1lj if j = it, for t > iuirj = uilj + djNow, for j = 1; : : : ; n, 
onstru
t a point wj 2 P (G; d; s; g) from uj by enlarging the in-terval I(ij) one unit to the left. These new s
hedules are aÆnely independent with re-spe
t to z1; : : : ; zn. This way we 
omplete a set of 2n + m aÆnely points and, therefore,Pij2S� �ijxij � �0 de�nes a fa
et of the (full-dimensional) polytope P (G; d; s; g). The 
on-stru
tion of the s
hedules z1; : : : ; zk and u1; : : : ; un shows that this inequality also de�nes afa
et of R(G; d; s; g). 2
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Chapter 4
Fa
ets for all nonempty instan
es
oming from symmetry arguments

An algorithm whi
h is good in the sense used here is notne
essarily very good from a pra
ti
al viewpoint. How-ever, the good versus not-good di
hotomy is useful. (...)The 
lasses of problems whi
h are respe
tively known andnot known to have good algorithms are very interestingtheoreti
ally.{ Ja
k Edmonds (1967)Chromati
 s
heduling polytopes also admit interesting properties from a geometri
al pointof view. The main reason is that there are only antiparallelity requirements on the jobs butno pres
ribed partial orders, implying strong symmetry properties as addressed in Se
tion4.1. The main 
onsequen
e is a powerful tool for identifying fa
et-de�ning inequalities fornonempty polytopes without any knowledge on the dimension. This is of parti
ular interestas determining the dimension of 
hromati
 s
heduling polytopes is NP-
omplete.Based on this tool, we analyze in Se
tion 4.2 the demand 
onstraints, the binary boundson the ordering variables, and a further 
lass of valid inequalities showing that they indu
efa
ets whenever the polytopes are nonempty. We also observe that the remaining integerprogramming 
onstraints, i.e., the bounds on the interval variables and the antiparallelity
onstraints, do not de�ne fa
ets in general.Se
tion 4.3 presents three 
lasses of fa
et-de�ning inequalities for the polytopes P (G; d; s; g)where the frequen
y span s is small 
ompared to the weighted 
lique number !(G; d). Thissetting is the hardest 
ase in pra
ti
e, sin
e we 
annot expe
t to �nd feasible solutions ina straightforward manner. We explore three 
lasses of inequalities being valid only in low-dimensional polytopes, but being fa
et-indu
ing due to symmetry arguments.
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4.1 Symmetry of 
hromati
 s
heduling polytopesChromati
 s
heduling polytopes admit a parti
ular property: they are symmetri
. Re
all thatwe only have antiparallelity 
onstraints for potential interferers ij 2 E but no pre
eden
erelation given in advan
e. Hen
e, in a feasible solution either the interval I(i) has to bes
heduled before the interval I(j) or I(j) 
omes before I(i). Thus, for every feasible s
heduleS, there is a feasible s
hedule symmetri
 to S w.r.t. the available spe
trum [0; s℄, obtainedby swapping all intervals of S. This is obviously not true for s
heduling problems in general.Clearly, the polytopes P (G; d; s; g) and R(G; d; s; g) re
e
t the symmetry of the s
hedules.This was �rst observed in [21℄ and further explored in [26℄. In this se
tion we dis
uss thisproperty in more detail and study how it a�e
ts the sear
h for valid inequalities. We �rststate the main results 
on
erning the symmetry of R(G; d; s; g) resp. P (G; d; s; g) in Se
tion4.1.1 resp. Se
tion 4.1.2. This spe
ial symmetry provides tools for identifying fa
et-de�ninginequalities without any knowledge of the dimension of the polytopes, see Se
tion 4.1.3. Weshall apply these theorems in Se
tion 4.2 and Se
tion 4.3 to some 
lasses of valid inequalitiesshowing that they de�ne fa
ets whenever the polytopes are nonempty.4.1.1 Symmetry results for R(G; d; s; g)In the �xed-length 
ase, the polytope admits a symmetry point as observed in [21, 26℄.Theorem 4.1 ([26℄) The polytope R(G; d; s; g) is symmetri
 with respe
t to the pointp = �s� d12 ; : : : ; s� dn2| {z }n ; 12 ; : : : ; 12�| {z }m :Proof. Let S be a feasible s
hedule, representing an assignment of an interval I(i) = [li; li+di℄to ea
h 
ustomer i 2 V . We obtain a symmetri
 assignment of intervals I 0(i) = [l0i; l0i + di℄ =[s � li � di; s � li℄ in the reverse order if we mirror the interval I(i) with respe
t to theavailable spe
trum [0; s℄ for every i 2 V . Thus the s
hedule S0 given by the left intervalbounds l0i = s � li � di 8i 2 V and the pre
eden
e variables x0ij = 1 � xij 8ij 2 E, i < jdes
ribes a feasible s
hedule symmetri
 to S. Hen
eli + l0i2 = li + s� li � di2 = s� di2 and xij + x0ij2 = xij + 1� xij2 = 12implies that p = �s� d12 ; : : : ; s� dn2| {z }n ; 12 ; : : : ; 12�| {z }mis the symmetry point of R(G; d; s; g). 2 52



De�nition 4.1 If y = (l; x) 2 R(G; d; s; g) \ Zn+m is a feasible integer solution, thensym(y) = 2p� y denotes its symmetri
al solution, i.e.,sym lx! =  s 1� d1 !�  lx!:Due to the symmetry of the polytope R(G; d; s; g), to every fa
e exists a parallel fa
e ofthe same dimension and there is a simple formula to 
ompute this parallel fa
e.Theorem 4.2 ([26℄) Let b � aTx be a valid (fa
et-indu
ing) inequality of R(G; d; s; g). ThenaTx � 2aT p� b is also valid (fa
et-indu
ing) for R(G; d; s; g).Proof. We �rst prove that aTx � 2aT p � b is valid for R(G; d; s; g). Let y be a feasiblesolution and let y0 = sym(y) = 2p � y. Then aT y = aT (2p � y0) = 2aT p � aT y0 � 2aT p � b(sin
e y0 is feasible and aT y0 � b). Now, if there are k aÆnely independent points in H =fy 2 R(G; d; s; g) : aT y = 2aT p � bg, there are obviously k aÆnely independent points inH 0 = fy 2 R(G; d; s; g) : aT y = bg. Thus, if b � aTx is fa
et-indu
ing for R(G; d; s; g), thenaTx � 2aT p� b is fa
et-de�ning too. 24.1.2 Symmetry results for P (G; d; s; g)In the general 
ase, every feasible s
hedule is represented by the interval bounds l; r 2 Rnand the ordering variables x 2 Rm. Swapping all the intervals of a feasible solution z =(l; r; x) with respe
t to the spe
trum [0; s℄ 
onstru
ts a new point z0 whi
h is also feasible andsymmetri
 to the original one. Thereby, the swapping maps the left interval bounds li of z tothe right interval bounds r0i of z0, and reverses the order of the intervals:li ! r0i = s� li 8i 2 Vri ! l0i = s� ri 8i 2 Vxij ! x0ij = 1� xij 8ij 2 EHen
e, swapping the intervals yields(l1; : : : ; ln; r1; : : : ; rn; x1i; : : : ; xjn)! (r01; : : : ; r0n; l01; : : : ; l0n; x01i; : : : ; x0jn):The point �p with entries �pli = li+r0i2 = li+s�li2 = s2 8i 2 V�pri = ri+l0i2 = ri+s�ri2 = s2 8i 2 V�pxij = xij+x0ij2 = xij+1�xij2 = 12 8ij 2 Eis, therefore, the symmetry point for every pair of symmetri
 feasible solutions z and z0. Sin
e�p is independent of the spe
ial 
hoi
e of z, it 
an be seen as the symmetry point of P (G; d; s; g)with respe
t to swapping s
hedules. 53



De�nition 4.2 Let sym(z) denote the symmetri
al point of an integer solution z = (l; r; x) 2P (G; d; s; g) \ Z2n+m, wheresym0� lrx1A = 0� s 1� rs 1� l1� x 1A = 0� s 1s 11 1A�0� rlx1A :We again bene�t from the symmetry of the polytope in order to �nd, for every inequalityvalid for P (G; d; s; g), a symmetri
 valid inequality. For that, let S be a feasible s
hedule andlet zS 2 P (G; d; s; g) \ Z2n+m be its asso
iated ve
tor. Let b � aTx be a valid inequality ofP (G; d; s; g). The straight line through zS and the symmetry point �p meets the hyperplaneH = fx 2 R2n+m : aTx = bg in a point, say zSH . Let zS0 and zS0H be the images of zS and zSHobtained by the swapping. Then zS0H lies on the hyperplane H 0 = fx0 2 R2n+m : aTx0 = b0gwith x0 = (xr1 ; : : : ; xrn ; xl1 ; : : : ; xln ; xx1i ; : : : ; xxjn):Observe that aTx0 = a0Tx holds by(al; ar; ax)0B�xrxlxx1CA = (ar; al; ax)0B� xlxrxx1CA :Thus we may represent the hyperplane H 0 = fx 2 R2n+m : a0Tx = b0g witha0 = (ar1 ; : : : ; arn ; al1 ; : : : ; aln ; ax1i ; : : : ; axjn):By P (G; d; s; g) � fx 2 R2n+m : b � aTxg and the symmetry of the polytope, P (G; d; s; g) �fx 2 R2n+m : �b0 � �a0Txg follows, i.e., a0Tx � b0 is valid for P (G; d; s; g). We have todetermine b0. The previous observations imply zS0H = 2�p � zSH . Thus, from aT zSH = b andaT zS0H = b0 follows b0 = aT zS0H = aT (2�p� zSH) = 2aT �p� aT zSH = 2aT �p� band a0Tx � 2aT �p� b is, therefore, the valid upper bound inequality of P (G; d; s; g) symmetri
to b � aTx. (Note aT �p = a0T �p.) Further, if there are k aÆnely independent points inH\P (G; d; s; g), there are obviously k aÆnely independent points in H 0\P (G; d; s; g). Thus,if b � aTx is fa
et-indu
ing for P (G; d; s; g), so is a0Tx � 2aT �p� b and we have obtained thefollowing theorem:Theorem 4.3 ([26℄) Let b � aTx be a valid (fa
et-indu
ing) inequality of P (G; d; s; g) andlet �p be the symmetry point of P (G; d; s; g) with respe
t to swapping s
hedules. Then a0Tx �2aT �p� b is also valid (fa
et-indu
ing) for P (G; d; s; g) wherea0 = (ar1 ; : : : ; arn| {z }n ; al1 ; : : : ; aln| {z }n ; ax1i ; : : : ; axjn| {z }m ):54



4.1.3 Fa
ets arising from symmetry argumentsThe symmetry of 
hromati
 s
heduling polytopes provides us an important tool for identifyingfa
et-de�ning inequalities, where no knowledge on the dimension is required. The results ofthis subse
tion show that if F is a fa
e su
h that y 2 F , sym(y) 62 F , then F is a fa
et ofR(G; d; s; g). With some other minor assumptions, the same result applies to P (G; d; s; g).Theorem 4.4 Let F be a fa
e of R(G; d; s; g) su
h that y 2 F , sym(y) 62 F for everyy 2 R(G; d; s; g) \ Zn+m. Then F is a fa
et of R(G; d; s; g).Proof. Assume that dim(F ) = k, and let y0; : : : ; yk be a maximal set of aÆnely independentpoints in F . Let yk+1 62 F be any feasible solution outside F . Then, y0; : : : ; yk; yk+1 areaÆnely independent, be
ause y0; : : : ; yk satisfy the equation whi
h de�nes F and yk+1 doesnot.Now let yk+2 62 F be some other feasible solution not in F . Note that sym(yk+1) andsym(yk+2) are in F , and thus they 
an be written as aÆne 
ombinations of y0; : : : ; yk. Then,yk+2 � yk+1 =  s 1� d1 !� yk+1 �  s 1� d1 !+ yk+2= sym(yk+1)� sym(yk+2)= kXi=0 �iyi � kXi=0 �iyi= kXi=0(�i � �i)yi;where Pi �i =Pi �i = 1. But thenyk+2 = yk+1 + kXi=0(�i � �i)yiimplies that yk+2 is an aÆne 
ombination of the points y0; : : : ; yk; yk+1. This proves thatdim(R(G; d; s; g)) = dim(F ) + 1 holds, and thus F is a fa
et of R(G; d; s; g). 2The symmetry for the general 
ase provides some tools for identifying fa
et-de�ning in-equalities as well. In order to state these results, re
all Lemma 3.9, whi
h relates the dimensionof R(G; d; s; g) and P (G; d; s; g) by means of the node subset Fs(G; d).Theorem 4.5 Let F = fy 2 R(G; d; s; g) : aT y = bg be a fa
e of R(G; d; s; g) su
h thatred(z) 2 F , red(sym(z)) 62 F for every z 2 P (G; d; s; g) \ Z2n+m. Then F 0 = fz 2P (G; d; s; g) : aT red(z) = bg is a fa
et of P (G; d; s; g).Proof. If y 2 R(G; d; s; g), then ext(y) 2 P (G; d; s; g). By the hypothesis, we have thateither red(ext(y)) 2 F or red(sym(ext(y))) 2 F (but not both). But red(ext(y)) = y and55



red(sym(ext(y))) = sym(y) imply y 2 F , sym(y) 62 F . Therefore, F is a fa
et of R(G; d; s; g)by Theorem 4.4. Let r = dim(R(G; d; s; g)), then there exist r aÆnely independent ve
torsy1; : : : ; yr in the fa
et F (i.e., aT yk = b for k = 1; : : : ; r). Then, ext(y1); : : : ; ext(yr) areaÆnely independent points satisfying aT red(ext(yk)) = b by de�nition.Now, for ea
h k 2 Fs(G) let zk 2 P (G; d; s; g) be a solution su
h that zkrk � zklk > dk andzkrl � zkll = dl for l 6= k. We 
an assume that red(zk) 2 F 0 (otherwise, 
onsider the redu
tionof its symmetri
al point sym(zk)). De�ne the following set of feasible solutions:A = fext(y1); : : : ; ext(yr)g [ fzk : k 2 Fs(G)g:For every k 2 Fs(G), zk is aÆnely independent w.r.t. the points in Anfzkg, sin
e all thepoints in Anfzkg satisfy rk � lk = dk, but zk does not. This way we have by Lemma3.9 jAj = dim(R(G; d; s; g)) + jFs(G)j = dim(P (G; d; s; g)) aÆnely independent points inP (G; d; s; g) satisfying aT red(z) � b at equality and this inequality de�nes, therefore, a fa
etof P (G; d; s; g). 2Corollary 4.6 Let F = fy 2 R(G; d; s; g) : aT y = bg be a fa
e of R(G; d; s; g) su
h that y 2F , sym(y) 62 F for every y 2 R(G; d; s; g) \ Z2n+m and projl(a) = 0 (i.e. only x-variableshave nonnegative 
oeÆ
ients in aT y � b). Then F 0 = fz 2 P (G; d; s; g) : aT red(z) = bg isa fa
et of P (G; d; s; g).Proof. We verify that the assumptions of Theorem 4.5 are satis�ed. Consider any feasiblesolution z 2 P (G; d; s; g). By the hypothesis, we know that red(z) 2 F , sym(red(z)) 62 F .Moreover, aT red(sym(z)) = projx(a) projx(red(sym(z)))= projx(a) projx(sym(red(z)))= aT sym(red(z)):Then, we have that red(z) 2 F , aT red(z) = b, aT sym(red(z)) < b, aT red(sym(z)) < b, red(sym(z)) 62 F:So, the hypotheses of Theorem 4.5 are satis�ed, and thus F 0 is a fa
et of P (G; d; s; g). 24.2 Fa
ets 
oming from the model 
onstraintsWith the help of the results from the previous se
tion, we are now able to determine whi
hmodel 
onstraints de�ne fa
ets of 
hromati
 s
heduling polytopes. In this se
tion we showthat the lower and upper bounds on the ordering variables 0 � xij � 1 8ij 2 E implied56



by the binary 
onstraints xij 2 f0; 1g are always fa
et-de�ning whenever the polytopes arenonempty, and we present a further 
lass of valid inequalities whi
h admits the same property.We also give a 
hara
terization of the 
ases where the demand 
onstraints de�ne fa
ets ofP (G; d; s; g). We start with the bounds on the ordering variables.Theorem 4.7 If ij 2 E, then xij � 0 and xij � 1 de�ne fa
ets of R(G; d; s; g) andP (G; d; s; g), whenever the polytopes are nonempty.Proof. Let F = fy 2 R(G; d; s; g) : yxij = 1g be the fa
e de�ned by xij � 1, i.e., the 
onvexhull of the set of points having I(i) before I(j). A point has I(i) before I(j) if and only if itssymmetri
al point has I(j) before I(i), and thus y 2 F , sym(y) 62 F . Theorem 4.4 showsthat F is a fa
et of R(G; d; s; g), and Corollary 4.6 implies that F 0 = fz 2 P (G; d; s; g) : zxij =1g is a fa
et of P (G; d; s; g). The same argumentation applies to xij � 0. 2De�nition 4.3 (triangle inequalities) Consider a triangle T = fi; j; kg of G, i.e., a setof three pairwise adja
ent nodes of G. We de�nexij + xjk + xki � 2 (4.1)to be the triangle inequality asso
iated with T .It is easy to verify that triangle inequalities are valid for both polytopes, sin
e xij = xjk =xki = 1 is obviously not possible in any feasible solution. We now apply the results of Se
tion4.1.3 to prove fa
etness.Theorem 4.8 The triangle inequalities de�ne fa
ets of R(G; d; s; g) and P (G; d; s; g) when-ever the polytopes are nonempty.Proof. Let y 2 R(G; d; s; g) be an integer solution. Sin
e fi; j; kg is a 
omplete subgraph,the intervals I(i), I(j) and I(k) 
annot overlap in y. Thus y 
ontains one of the six 
on-�gurations depi
ted in Figure 4.1. Note that the 
ases (a), (b), and (
) satisfy (4.1) atequality, whereas the 
ases (d), (e), and (f) do not. Moreover, the 
ases (a), (b), resp. (
)are the symmetri
 
ases of (d), (e), resp. (f). Thus, if F is the fa
e de�ned by (4.1), theny 2 F , sym(y) 62 F holds. Theorem 4.4 resp. Corollary 4.6 implies that F is a fa
et ofR(G; d; s; g) resp. P (G; d; s; g). 2Corollary 4.9 If T = fi; j; kg is a triangle of G, then the inequality 1 � xij + xjk + xkisymmetri
 to (4.1) is fa
et-indu
ing for P (G; d; s; g) and R(G; d; s; g) whenever the polytopesare nonempty.Let us now analyze the demand 
onstraints li + di � ri for P (G; d; s; g) (re
all that these
onstraints are repla
ed by equalities in R(G; d; s; g)). Let i 2 V . If i 62 Fs(G; d), i.e., if57



Figure 4.1: Possible 
ases for y.every point in P (G; d; s; g) satis�es li + di = ri, then P (G; d; s; g) � fy : yli + di = yrig. Onthe other hand, if i 2 Fs(G; d), i.e., if there exists a feasible solution z 2 P (G; d; s; g) withzli + di < zri , then the demand 
onstraint for the node i de�nes a proper fa
e of P (G; d; s; g)and, moreover, this fa
e is a fa
et.Theorem 4.10 If i 2 Fs(G; g), then the demand 
onstraint li + di � ri de�nes a fa
et ofP (G; d; s; g).Proof. Call dim(P (G; d; s; g)) = k, and let y0; : : : ; yk 2 P (G; d; s; g) be k + 1 aÆnely in-dependent points in P (yj 2 R2n+m). For i = 0; : : : ; k, 
onsider the ve
tor �yj obtainedfrom yj by repla
ing its ri-entry by yjli + di. Note that this shrinks the interval I(i) to itsminimum length di in every yj , leaving the remaining intervals un
hanged, and thus keep-ing feasibility. These new points lie in the fa
e F of P (G; d; s; g) de�ned by li + di � ri.Moreover, from dimfy0; : : : ; ykg = k follows dimf�y0; : : : ; �ykg � k � 1. But there is a pointz 2 P (G; d; s; g) whi
h does not satisfy the demand 
onstraint li + di � ri at equality, andthus dimf�y0; : : : ; �ykg = k � 1, implying that this inequality de�nes a fa
et of P (G; d; s; g). 2It is natural to ask whether the remaining model 
onstraints, i.e., the bounds on theinterval variables and the antiparallelity 
onstraints, indu
e fa
ets. In Chapter 5 we shall seethat these 
onstraints do not indu
e fa
ets in general, and we shall devise strengthenings ofthe 
orresponding inequalities providing fa
et-indu
ing families of inequalities.4.3 Fa
et-de�ning inequalities for small frequen
y spansIf s is 
lose to the weighted 
lique number !(G; d) of the interferen
e graph, then the frequen
yspe
trum [0; s℄ does not allow every possible ordering among the intervals. This setting isthe hardest 
ase in pra
ti
e sin
e we 
annot expe
t to �nd feasible solutions easily. Thisse
tion presents valid inequalities that arise in this situation. The main idea is to identifystru
tures on the interferen
e graph that pre
lude every possible ordering, and to state a validinequality asserting this 
onstraint. The inequalities devised in this se
tion are amenable of58



Figure 4.2: Possible 
on�gurations of a feasible solution in the proof of Theorem 4.12.being analyzed with symmetry arguments, and we will use the results presented in Se
tion4.1.3 to show that these inequalities are fa
et-de�ning as long as the polytopes are nonempty.De�nition 4.4 (4-path inequalities) Let i; j; k; l 2 V be four nodes of G su
h that ij, jk,kl 2 E and no feasible solution of P (G; d; s; g) has the ordering i! j ! k ! l. We de�nexij + xjk + xkl � 2 (4.2)to be the 4-path inequality asso
iated with the path fi; j; k; lg.Proposition 4.11 If no feasible solution has the ordering i ! j ! k ! l, then the 4-pathinequality (4.2) is valid for R(G; d; s; g) and P (G; d; s; g).Proof. The 4-path inequality 
an only be violated by a solution z 2 P (G; d; s; g) \ Z2n+msu
h that zxij = zxjk = zxkl = 1, but this implies that z has the ordering i ! j ! k ! l,whi
h is ex
luded by the hypothesis. Hen
e (4.2) is valid for P (G; d; s; g) and, sin
e it doesnot involve the interval bounds, it is also valid for R(G; d; s; g). 2Theorem 4.12 If no feasible solution has the ordering i ! j ! k ! l, then the 4-pathinequality (4.2) is fa
et-indu
ing for R(G; d; s; g) and P (G; d; s; g).Proof. Let y 2 R(G; d; s; g) \ Zn+m be an integer feasible solution. Sin
e the orderingi ! j ! k ! l is not allowed, then y has one of the six forms depi
ted in Figure 4.2. Notethat 
ases 4.2(a), 4.2(b) and 4.2(
) satisfy (4.2) at equality, whereas 
ases 4.2(d), 4.2(e) and4.2(f) do not. Moreover, 
ases 4.2(a) and 4.2(d) are symmetri
al, 
ases 4.2(b) and 4.2(e)are symmetri
al, as well as 4.2(
) and 4.2(f). Thus, if F is the fa
e de�ned by (4.2), theny 2 F , sym(y) 62 F , and by Theorem 4.4 and Corollary 4.6, the inequality (4.2) de�nes afa
et of R(G; d; s; g) and P (G; d; s; g). 2Remark. The 4-path inequality appears only for small values of s preventing a linear orderingof the nodes fi; j; k; lg. This ordering is not feasible ifdi + dj + dk + dl + g (Æij + Æjk + Ækl) > s; (4.3)59



where Æij denotes the minimum possible distan
e between I(i) and I(j). Note that the
onverse is not true in general, i.e., it may happen that (4.3) is not satis�ed but still thestru
ture of G does not allow the ordering i ! j ! k ! l. This is the situation in theexample depi
ted in Figure 4.3, whi
h has g = 0 and di + dj + dk + dl � s, but does not allowthe ordering in question. �
Figure 4.3: The ordering i! j ! k ! l is not feasible but (4.3) does not hold.The 4-path inequalities 
annot be trivially generalized to fa
et-indu
ing inequalities asso-
iated with paths on more than 4 nodes. For example, let j1; : : : ; jk be a path in G on k > 4nodes, su
h that no feasible solution has xji;ji+1 = 1 for i = 1; : : : ; k� 1. Then, the inequalityk�1Xi=1 xji;ji+1 � k � 1 (4.4)is valid but may not de�ne a fa
et if s is too small.De�nition 4.5 (paw inequalities) Let i; j; k; l 2 V be four distin
t nodes of G su
h thatfi; j; kg indu
es a triangle and jl 2 E. Furthermore, suppose that no feasible solution ofP (G; d; s; g) has the ordering i! j ! k and j ! l. We de�nexjk + xjl � 1 + xji (4.5)to be the paw inequality asso
iated with the nodes fi; j; k; lg.Remark. Note that the de�nition of the paw inequalities allows il 2 E and kl 2 E, i.e., thenode set fi; j; k; lg is not supposed to de�ne an indu
ed paw. �Proposition 4.13 If no feasible solution has the ordering i ! j ! k and j ! l, then thepaw inequality (4.5) is valid for R(G; d; s; g) and P (G; d; s; g).Proof. The only 
ombination of values for variables xjk, xjl and xji violating inequality (4.5)is xjk = xjl = 1 and xji = 0, whi
h amounts to the forbidden ordering i! j ! k and j ! l.Thus, (4.5) is a valid inequality for R(G; d; s; g) and P (G; d; s; g). 2Theorem 4.14 If no feasible solution has the ordering i ! j ! k and j ! l, then the pawinequality (4.5) is fa
et-de�ning for R(G; d; s; g) and P (G; d; s; g).60



Proof. To show that this inequality de�nes a fa
et of these polytopes, it is enough to verifythat y is in the fa
e de�ned by (4.5) if and only if sym(y) is not, and then applying Theorem4.4 and Corollary 4.6. 2To 
lose this se
tion, we now present a fa
et-de�ning inequality for a 5-node stru
ture.De�nition 4.6 (extended paw inequalities) Let 1; : : : ; 5 2 V be �ve distin
t nodes su
hthat 12; 23 2 E and f3; 4; 5g form a triangle in G. Moreover, assume that no feasible solutionhas the orderings 1! 2! 3! 4, 1! 2! 3! 5 and 2! 3! 4! 5. We de�nex34 + x35 � x21 � 2x32 (4.6)to be the extended paw inequality asso
iated with the nodes f1; : : : ; 5g.Remark. Again, note that the de�nition of the extended paw inequalities allows 14; 15 2 Eand 24; 25 2 E. �Proposition 4.15 If no feasible solution has the orderings 1 ! 2 ! 3 ! 4, 1 ! 2 !3 ! 5 and 2 ! 3 ! 4 ! 5, the extended paw inequality (4.6) is valid for R(G; d; s; g) andP (G; d; s; g).Proof. Sin
e the LHS of (4.6) is bounded by 2, this inequality is satis�ed by any feasiblesolution y with yx32 = 1. So, let y be an integer solution with yx32 = 0. In this 
ase, (4.6)
an only be violated in one of the following 
ases:� LHS = 1: This 
an only happen in one of the following three situations:{ yx34 = 1, yx35 = 0 and yx21 = 0, but this amounts to the ordering 1! 2! 3! 4,whi
h is forbidden by the hypotheses.{ yx34 = 0, yx35 = 1 and yx21 = 0, but this yields the ordering 1! 2! 3! 5, whi
hagain is forbidden by the hypotheses.{ yx34 = 1, yx35 = 1 and yx21 = 1, but this 
orresponds to the ordering 2! 3! 4!5, whi
h 
annot appear in a feasible solution.� LHS = 2: This 
an only happen with yx34 = yx35 = 1 and yx21 = 0, but this impliesthat y has the orderings 1! 2! 3! 4 and 1! 2! 3! 5, whi
h are both forbiddenby the hypotheses.So, we 
an only have RHS = 0 when LHS = 0, thus verifying that (4.6) is a valid inequalityfor P (G; d; s; g) and R(G; d; s; g). 2Theorem 4.16 If no feasible solution has the orderings 1 ! 2 ! 3 ! 4, 1 ! 2 ! 3 ! 5and 2! 3! 4! 5, the extended paw inequality (4.6) is fa
et-indu
ing for R(G; d; s; g) andP (G; d; s; g). 61



Figure 4.4: Feasible 
on�gurations for the proof of Theorem 4.16.Proof. Consider all the possible 
on�gurations for the nodes 1 to 5 (i.e., ex
luding the forbid-den orderings given by the hypotheses). There are 8 possible 
on�gurations, 4 of whi
h satisfy(4.6) at equality and are depi
ted in Figure 4.4. The remaining 4 
on�gurations (whi
h donot satisfy (4.6) at equality) are exa
tly the symmetri
al 
on�gurations, so Theorem 4.4 andCorollary 4.6 imply that this inequality de�nes a fa
et of P (G; d; s; g) and R(G; d; s; g). 2
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Chapter 5
Clique inequalitiesand fa
et-de�ning variants

For a 
lass of dis
rete problems, formulated in a naturalway, one may hope then that equivalent linear 
onstraintsare pleasant enough though they are not expli
it in thedis
rete formulation{ Ja
k Edmonds (1965)This 
hapter provides 
onstru
tions of valid and fa
et-de�ning 
lasses of inequalities de-rived from the interval bound 
onstraints and the antiparallelity 
onstraints, respe
tively.Se
tion 5.1 presents the 
onstru
tion of the 
lique inequalities as a strengthening of the bound
onstraints for the interval variables. We prove that these new inequalities are fa
et-de�ningfor R(G;1; s; 0) and P (G;1; s; 0) if s � smin(G; d; 0) + 3, and analyze a parti
ular sub
lass,the 
overing-
lique inequalities, that indu
es fa
ets of nonuniform instan
es. We also addressthe asso
iated separation problem.Se
tion 5.2 analyzes the antiparallelity 
onstraints, showing that these inequalities do notde�ne fa
ets in general. We strengthen these inequalities with a 
lique stru
ture, obtainingthe so-
alled double 
overing-
lique inequalities, being valid for P (G; d; s; g) and R(G; d; s; g).These inequalities are fa
et-indu
ing for s � smin(G; d; 0) + 4dmax but not for instan
es withsmall frequen
y span in general. We present further examples suggesting that instan
es withsmall frequen
y spans 
an have fa
et-de�ning inequalities with unusual stru
tures.Se
tion 5.3 presents generalizations and extensions of the standard 
overing-
lique in-equalities. Se
tion 5.3.1 and Se
tion 5.3.2 provide two 
lasses of fa
et-indu
ing inequalitiesgeneralizing the 
overing-
lique inequalities, i.e., 
ontaining the 
overing-
lique inequalitiesas spe
ial 
ases. Finally, we dis
uss in Se
tion 5.3.3 three 
lasses of fa
et-de�ning inequalitiesarising as variations of the double 
overing-
lique inequalities.
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5.1 Clique inequalities and 
overing-
lique inequalitiesThe integer programming model for the bandwidth allo
ation problem in PMP-Systems in-
ludes the bound 
onstraints, asserting 0 � li and ri � s for i 2 V . The inequality 0 � li doesnot de�ne a fa
et in general, sin
e any feasible s
hedule z 2 P (G; d; s; g) \ Z2n+m satisfyingzli = 0 must have zxij = 1 for every j 2 N(i), implying that the 
orresponding fa
e 
annothave the required dimension for being a fa
et if the polytope is full-dimensional. The sameargumentation applies to the opposite 
onstraint.However, we 
an strengthen the interval bound 0 � li by 
onsidering a neighbor of thenode i. Let j 2 N(i) be su
h a neighbor and 
onsider the following simple inequality:dj xji � li: (5.1)This inequality is 
learly valid for R(G; d; s; g) and P (G; d; s; g), sin
e xji = 1 implies thatthe interval I(j) is lo
ated before the interval I(i), and thus li � dj . We 
an generalize thisinequality by 
onsidering a 
lique K in N(i) = fj 2 V : ij 2 Eg. As we shall see below, theresulting inequality is fa
et-indu
ing for P (G;1; s; 0) and R(G;1; s; 0) if K is maximal ands is large enough. However, this inequality does not de�ne a fa
et of 
hromati
 s
hedulingpolytopes in the general 
ase d � 1.De�nition 5.1 (
lique inequalities) If i 2 V and K � N(i) is a 
lique of G, then wede�ne Xk2K dk xki � li (5.2)to be the 
lique inequality asso
iated with i and K.Proposition 5.1 The 
lique inequalities are valid for R(G; d; s; g) and P (G; d; s; g).Proof. Let z 2 P (G; d; s; g)\Z2n+m be an integer feasible solution of P (G; d; s; g). Let L � Kbe the set of nodes k 2 K su
h that the interval I(k) is lo
ated before I(i). Sin
e K is a
lique, the intervals fI(k)gk2K are pairwise disjoint, implying zli �Pk2L dk =Pk2K zxkidk.Hen
e the 
lique inequality (5.2) is valid for P (G; d; s; g). Moreover, sin
e this inequality doesnot involve the r-variables, it is also valid for R(G; d; s; g). 2Theorem 5.2 Let K � N(i) be a maximal 
lique in N(i). If s � smin(G;1; 0) + 3, then the
lique inequality (5.2) de�nes a fa
et of R(G;1; s; 0) and P (G;1; s; 0).Proof. We already know that (5.2) is valid for P (G;1; s; 0) and R(G;1; s; 0), so it remainsto show that the 
orresponding fa
e F is maximal. To this end, suppose �T z = �0 for everyz 2 P (G; d; s; 0) satisfying (5.2) at equality. We will show that (�; �0) is in fa
t a multiple of(5.2), thus proving that this inequality indu
es a fa
et of P (G; d; s; 0).64



Figure 5.1: Constru
tions for the proof of Theorem 5.2.
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Figure 5.2: Clique inequalities do not de�ne fa
ets in general.Claim 1: �lj = 0 for j 6= i. Consider the feasible s
hedules z and z0 presented in Figure5.1(a) and Figure 5.1(b), respe
tively. It is not diÆ
ult to verify that z; z0 2 F and, therefore,�T z = �0 = �T z0. Sin
e these points only di�er in their lj-
oordinate, �lj = 0 follows. 3Claim 2: �rj = 0 for every j 2 V . The feasible s
hedules presented in Figure 5.1(
)and Figure 5.1(d) satisfy (5.2) at equality, implying �rj = 0. 3Claim 3: �xjt = 0 for every jt 2 EnÆ(i). Consider now the feasible solutionspresented in Figure 5.1(e) and Figure 5.1(f). Note that this 
onstru
tion is possible sin
es � smin(G;1; 0)+3. We know from the previous 
laims that �lj = �rj = 0 and �lt = �rt = 0,thus �xjt = 0. 3Claim 4: �xik = �dk�li for every k 2 K. The feasible integer solutions depi
ted inFigure 5.1(g) and Figure 5.1(h) satisfy (5.2) at equality. Hen
e, �xjk = 0. 3Claim 5: �xil = 0 for every l 2 N(i)nK. Sin
e K is a maximal 
lique in N(i), thereexists some node inK, say node k, su
h that lk 62 E. Consider the feasible s
hedules in Figure5.1(i) and Figure 5.1(j). Both lie in the fa
e F de�ned by (5.2) and, therefore, �xil = 0. 3This sequen
e of 
laims shows that � is a multiple of the 
oeÆ
ient ve
tor of (5.2), hen
ethis 
lique inequality indu
es a fa
et of P (G;1; s; 0). The same argumentation (omittingClaim 2) applies to R(G;1; s; 0). 2If A � V , we denote by GA the subgraph of G indu
ed by A. Noti
e that K [ fig is amaximal 
lique of G if and only if K is a maximal 
lique of GN(i). The inequality (5.2) isstronger than the inequality (5.1), but does not de�ne a fa
et of the polytopes in the general
ase d � 1, even if K is a maximal 
lique.Example 5.1 Consider the graph K1;3 in Figure 5.2(a) (
alled \
law"), with node weightsd1 = d2 = d4 = 1 and d3 = 2. The inequality l1 � x21 is a 
lique inequality (take i = 1 andK = f2g). No feasible solution satisfying this inequality at equality 
an have x13 = 0, sin
ein this 
ase we would have l1 � d3 = 2 > x21 (see Figure. 5.2(b)). Therefore, x13 = 1 inevery integer solution in the fa
e de�ned by this inequality, and this shows that l1 � x21 isnot fa
et-de�ning for s � 4. �In order to 
onstru
t a 
lass of fa
et-de�ning inequalities for the general 
ase d � 1, weshall introdu
e the following de�nition. 66



De�nition 5.2 (
overing 
lique) Let A � V , and let K � A be a 
lique. We say that K
overs A if every node k 2 AnK satis�es dk �Pi2KnN(k) di.Proposition 5.3 Every node subset admits a 
overing 
lique, and su
h a 
lique 
an be foundin polynomial time.Proof. Let A � V , and let i1; i2; : : : ; in be an ordering of the nodes in A su
h that dik � dik+1 .Consider every node in this sequen
e and 
onstru
t K iteratively as follows. At step k, wemust de
ide whether ik has to be inserted into K or not. If there is some it 2 K with ikit 62 E,then do not insert ik into K. Otherwise, insert ik into K. Note that in both 
ases K is a
overing 
lique of fi1; : : : ; ikg due to the ordering of the nodes, so upon termination of thealgorithm K is a 
lique 
overing A. This pro
edure gives an O(m+ n logn) algorithm. 2De�nition 5.3 (
overing-
lique inequalities) Let i 2 V be a node of G, and let K be a
lique 
overing N(i). We de�ne Xk2K dk xki � li (5.3)to be the 
overing-
lique inequality asso
iated with i and K.Covering-
lique inequalities are, as spe
ial 
lique inequalities, valid for P (G; d; s; g) andR(G; d; s; g) by Lemma 5.1 and de�ne fa
ets if s is large enough.Theorem 5.4 If s � smin(G; d; 0) + 3dmax, then the 
overing-
lique inequalities (5.3) de�nefa
ets of P (G; d; s; 0) and R(G; d; s; 0).Proof. To prove that 
overing-
lique inequalities are fa
et-indu
ing, suppose that �T z = �0for every z 2 P (G; d; s; 0) \ Z2n+m satisfying (5.3). Claims 1, 2 and 3 from the proof ofTheorem 5.2 imply �lj = 0 for every j 6= i, �rj = 0 for every j 2 V , and �xjt = 0 for jt 62 Æ(i).Moreover, Claim 4 from Theorem 5.2 implies �xik = �dk�li for every k 2 K.So it is left to verify �xij = 0 for every j 2 S = N(i)nK. To this end, 
onsider a node setUj � KnN(j) su
h that dj � d(Uj) (note that su
h a set Uj exists by the 
onstru
tion of the
overing 
lique K). The feasible s
hedule z resp. z0 depi
ted in Figure 5.3(a) resp. Figure5.3(b) satis�es (5.3) at equality. Hen
e0 = �xji + Xk2Uj �xki + z0li�li= �xji + Xk2Uj(�dk�li) + Xk2Uj dk�li= �xjishows that (�; �0) is a multiple of the 
oeÆ
ient ve
tor of inequality (5.3) and, therefore, thisinequality de�nes a fa
et of P (G; d; s; 0). The same argumentation applies to R(G; d; s; 0). 267



Figure 5.3: Constru
tions for the proof of Theorem 5.4.Remark. An alternative proof 
an be given for Theorem 5.4 by 
onsidering the intervalbound 
onstraint 0 � li and lifting the variables xki for (a) k 2 K and (b) k 2 N(i)nK.The interval bound is fa
et-indu
ing for P (G; d; s; 0) \ fz 2 R2n+m : zki = 0 8k 2 N(i)g.Moreover, the maximum lifting 
oeÆ
ient for the variable xki is dk if k 2 K and 0 otherwise,implying that the resulting 
overing-
lique inequality is fa
et-indu
ing for P (G; d; s; 0). Thesemaximum lifting 
oeÆ
ients are independent of the order in whi
h the variables are lifted,provided the variables xki with k 2 K are lifted before the variables xki for k 62 K. Thispro
edure provides a natural view of 
overing-
lique inequalities as a strengthening of theinterval bound 
onstraints. �Re
all from Se
tion 4.1 that the symmetri
 inequality of a fa
et-indu
ing inequality is againa fa
et-indu
ing inequality. The following 
orollary presents the symmetri
 
onstru
tion of
overing-
lique inequalities.Corollary 5.5 Let i 2 V be a node of G, and let K be a 
lique 
overing N(i). The followinginequality is valid for P (G; d; s; 0): ri � s�Xk2K dk xik (5.4)Moreover, if s � smin(G; d; 0) + 3dmax, then this inequality de�nes a fa
et of P (G; d; s; 0).The same holds for R(G; d; s; 0) if we repla
e ri by li + di in (5.4).Remark. The 
overing-
lique inequalities (5.3) des
ribe the relation between the left boundof the interval I(i) and the left bound on the frequen
y span [0; s℄. The 
orrespondingsymmetri
 inequalities (5.4) des
ribe the opposite relation between the right bound of I(i)and the right bound of the frequen
y span. �Covering-
lique inequalities are fa
et-de�ning in many 
ases, but unfortunately there areinstan
es where they do not indu
e fa
ets, as the following example shows. The 
onstru
-tion presented in this 
ounterexample is rather involved, suggesting that instan
es without
overing-
lique fa
ets may be unusual.Example 5.2 Let G be the graph depi
ted in Figure 5.4, with node set V = f1; : : : ; 13g andthe following node weights: d1; : : : ; d5 = 1d6; d9 = 468



Figure 5.4: Counterexample for general fa
etness of 
overing-
lique inequalities.d7; d8 = 1d10; d13 = 3d11; d12 = 2

Figure 5.5: Possible 
on�gurations for intervals I(6) to I(13).Consider the nonempty polytope P (G; d; 5; 0). Let y 2 P (G; d; 5; 0) \ Z31 be a feasiblesolution. Due to d6 + d7 = 5 and 67 2 E, there are only two possible assignments forthe interval I(6), namely l6 = 0 or l6 = 5. Moreover, ea
h of these assignments 
ompletelydetermines the positions of the intervals I(7), I(8) and I(9). Thus, the intervals I(6); : : : ; I(9)only admit the two possible 
on�gurations depi
ted in Figure 5.5(a) and Figure 5.5(b). Asimilar analysis applies to the intervals I(10); : : : ; I(13), whi
h only admit the two possible
on�gurations presented in Figure 5.5(
) and Figure 5.5(d).Hen
e we 
an assign the intervals I(6); : : : ; I(9) a

ording to two possible 
on�gurations,and the intervals I(10); : : : ; I(13) a

ording to two other 
on�gurations. Moreover, these
on�gurations uniquely determine the positions of intervals I(1); : : : ; I(5), so that P (G; d; 5; 0)has only the 4 feasible solutions presented in Figure 5.6.Consider now the following 
overing-
lique inequality, being valid for P (G; d; 5; 0):l2 � x42 + x52 (5.5)Having listed all the feasible solutions of P (G; d; 5; 0), it is not diÆ
ult to verify that thepolytope P (G; d; 5; 0) has dimension 2, but only the feasible s
hedule presented in Figure69



Figure 5.6: Feasible solutions of P (G; d; 5; 0).5.6(a) satis�es (5.5) at equality, and thus the fa
e de�ned by (5.5) has dimension 0. Therefore,this 
overing-
lique inequality does not de�ne a fa
et of P (G; d; 5; 0). �5.1.1 Complexity of the separation problemGiven a point in the linear relaxation of an integer programming model, the separation prob-lem for a family of valid inequalities 
onsists in de
iding whether this point violates someinequality belonging to the family or not. This problem is of pra
ti
al interest, sin
e eÆ
ientseparation pro
edures are required for the implementation of 
utting plane methods. Thisse
tion explores the separation problem for 
overing-
lique inequalities, and the main theoremstates the negative result that this problem is NP-
omplete. If PLP (G; d; s; g) denotes thelinear relaxation of P (G; d; s; g), i.e., the solution spa
e of 
onstraints (2.1)-(2.6), then theseparation problem for 
overing-
lique inequalities 
an be de�ned as follows.Covering-
lique inequalities separationInstan
e: A point y 2 PLP (G; d; s; 0)Question: Does y violate some 
overing-
lique inequality?Note that the separation problem takes as input a point in the linear relaxation of the inte-ger programming model, sin
e this is the 
ommon situation within a bran
h&
ut framework.70



Moreover, note that the separation of the 
onstraints (2.1)-(2.6) 
an be performed in O(n+m)time by exhaustive inspe
tion. The proof of NP-
ompleteness for this separation probleminvolves Max-Clique and a spe
ial 
ase of this problem, 
alled Max Majority-Clique.Max-CliqueInstan
e: A graph G on n nodes, and an integer k � 0Question: Does G 
ontain a 
lique of size k or greater?Max Majority-CliqueInstan
e: A graph G on n nodes, and an integer k � n=2 + 1(we may assume w.l.o.g. that n � 2 and k � n)Question: Does G 
ontain a 
lique of size k or greater?We denote by !(G) the 
lique number of G, i.e., the size of a 
lique of G of maximum 
ar-dinality. Note that Max-Clique and Max Majority-Clique 
onsist in de
iding whether!(G) � k or not, but under di�erent 
onditions. Max-Clique is a well-known NP-
ompleteproblem [20℄, and we now prove that Max Majority-Clique is also NP-
omplete.Lemma 5.6 Max Majority-Clique is NP-
omplete.Proof. Note that the set of instan
es of Max Majority-Clique is 
ontained in the set ofinstan
es ofMax-Clique, and sin
e the latter belongs toNP, thenMax Majority-Cliquealso belongs to NP. To prove NP-
ompleteness, we 
onstru
t a polynomial redu
tion fromMax-Clique. Let (H; t) be an instan
e of Max-Clique, and de�ne an instan
e (G; k) ofMax Majority-Clique as follows. The graph G is 
onstru
ted from H by adding m + 2universal nodes u1; : : : ; um+2, and k is de�ned as k = t+m+2. Note that G has n = 2m+2nodes and k > n=2 + 1. We �nally verify that !(H) � t if and only if !(G) � k.)) If !(H) � t, then H has a t-
lique K, and it 
an be extended to the (t+m+ 2)-
liqueK [ fu1; : : : ; um+2g of G. Hen
e G has a k-
lique and so !(G) � k.() Conversely, suppose that !(G) � k and let K be a k-
lique of G. Therefore, the nodeset Knfu1; : : : ; um+2g is a 
lique of H with at least k� (m+2) = t nodes, so !(H) � t.Thus, Max Majority-Clique is NP-
omplete. 2Theorem 5.7 Covering-
lique inequalities separation is NP-
omplete.Proof. It is not diÆ
ult to verify that the problem belongs to the 
lass NP, sin
e we 
annondeterministi
ally generate a 
lique K and verify in polynomial time whether K is a 
over-ing 
lique and the 
lique inequality de�ned by K is violated by y. To 
omplete the proof we
onstru
t a polynomial redu
tion from Max Majority-Clique. Let (H; k) be an instan
e71



of Max Majority-Clique, given by a graph H on n nodes and an integer k > n=2. De�nea new weighted graph (G; d) = (V;E;1) from H by the addition of a universal node, i.e.,V = VH [ figE = EH [ fij : j 2 VHgSet further g = 0 and s = n=2 + 1. Finally, 
onstru
t the point y 2 PLP (G; d; s; 0) as follows:ylj = � n2 if j 6= ik�12 if j = i 8 j 2 Vyrj = ylj + dj 8 j 2 Vyxe = 1=2 8 e 2 EThis 
onstru
tion is polynomial in the size of H. To show that (G; k) is a well-de�ned instan
eof Covering-
lique inequalities separation we must verify that y 2 PLP (G; d; s; 0) by
he
king that y satis�es all the 
onstraints of this relaxed polytope.a) We �rst verify that the antiparallelity 
onstraints lj + dj � lk + sxkj are satis�ed by y,
onsidering the following three 
ases:Case 1: j; k 6= i. (re
all that n � 2)ylj + dj = n2 + 1 � n2 + n=2 + 12 = ylk + syxkjCase 2: j 6= i and k = i. (re
all that the hypothesis of Max Majority-Cliqueasserts k > n=2 + 1)ylj + dj = n2 + 1 � k � 12 + n=2 + 12 = yli + syxijCase 3: j = i and k 6= i.yli + di = k � 12 + 1 � n2 + n=2 + 12 = ylk + syxkib) The bounds 0 � lk � s� dk on variables lk are trivially satis�ed, sin
emaxfylk : k 2 V g = n2 � n2 + 1 = s� dk:
) The relaxed 
onstraints 0 � xe � 1 are also satis�ed, sin
e yxe = 1=2 for all e 2 E.To 
omplete the proof, we show that !(H) � k if and only if there exists some 
overing-
lique inequality violated by y.)) If !(H) � k, let K � VH be a maximum k-
lique of H. Sin
e i is a universal nodeof G, then K � NG(i), and moreover d = 1 implies that K 
overs NG(i). Hen
e the
overing-
lique inequality de�ned by K is violated by y:Xk2K dkyxki = jKj2 > k � 12 = yli72



() Conversely, suppose that the 
overing-
lique inequality de�ned by the node j and the
overing 
lique K � NG(j) is violated by y, i.e.,Xk2K dkyxkj > ylj (5.6)holds. Note that the LHS of this inequality is Pk2K dkyxkj = 12 jKj. This implies j = i,for otherwise lj = n2 , and thus (5.6) would not be violated (be
ause jKj � n). Hen
ej = i and thus K � NG(i), implying that K is a 
lique of H. But yli = k2 and, therefore,(5.6) reads: jKj2 = Xk2K dkyxki > yli = k � 12Thus, jKj � k, and so !(H) � k.This �nally shows that the polynomial transformation maps aÆrmative instan
es of MaxMajority-Clique onto aÆrmative instan
es of Covering-
lique inequalities separa-tion and 
onversely. Therefore, the latter is NP-
omplete. 25.1.2 Covering-
lique inequalities in the 
ase g > 0The 
overing-
lique inequalities (5.3) are valid for every instan
e, but Theorem 5.4 showsfa
etness only if g = 0. In the 
ase g > 0 these inequalities remain valid but may no longer befa
et-de�ning if the asso
iated 
overing 
lique 
overs nodes in more than one se
tor. In thissetting a more general version of 
overing-
lique inequalities 
an be given, and this se
tion isdevoted to presenting these general inequalities.De�nition 5.4 For i 2 V , let a(i) denote the se
tor to whi
h node i belongs (i.e., i 2 Sa(i)).De�nition 5.5 (general 
overing-
lique inequalities) Fix an arbitrary node i 2 V andlet K be a 
lique 
overing N(i). Assume w.l.o.g. that K = f1; : : : ; tg and, for k = 1; : : : ; t,let Ak = fig [ f1; : : : ; k � 1g. Partition the 
lique K into K = N [ C, withN = fk 2 K : a(k) 6= a(t) for every t 2 AkgC = fk 2 K : a(k) = a(t) for some t 2 AkgWe de�ne Xk2N(dk + g)xki +Xk2C dkxki � li (5.7)to be the general 
overing-
lique inequality asso
iated with the node i, the 
lique K and theordering K = f1; : : : ; tg.The proof of fa
etness for the general 
overing-
lique inequalities goes along the argu-mentation of the proof of fa
etness for the standard 
overing-
lique inequalities presented inTheorem 5.4. 73



Theorem 5.8 The general 
overing-
lique inequalities (5.7) are valid for P (G; d; s; g) andR(G; d; s; g), and de�ne fa
ets for both polytopes if s � smin(G; d; g) + 3(dmax + g).Under the same setting as before, the following symmetri
 inequalityri � s�Xk2N(dk + g)xik �Xk2C dkxikis valid for P (G; d; s; g) and fa
et-indu
ing if s � smin(G; d; g)+3(dmax+ g). The same resultholds for R(G; d; s; g) if we repla
e ri by li + di.Remark. These general inequalities arise as a natural strengthening of the interval bound
onstraints 0 � li for every i 2 V , by lifting the variables xki, for k 2 N(i). In the 
ase g = 0,we �rst lift the variables xki for k 2 K, and afterwards we lift the variables xki for k 62 K.The lifting of variables xki for k 2 K resp. k 62 K is sequen
e-independent and originatesthe standard 
overing-
lique inequalities (5.3). In the 
ase g > 0, however, the lifting is notindependent of the sequen
e, requiring di�erent de�nitions for the 
oeÆ
ients for k 2 N andk 2 C. �5.2 Double 
overing-
lique inequalitiesWe now turn to the antiparallelity 
onstraints. Re
all that these 
onstraints are given by thefollowing inequalities: ri � lj + s(1� xij) 8ij 2 EI ; i < j (2:4)ri + g � lj + s(1� xij) 8ij 2 EX ; i < j (2:5)rj � li + sxij 8ij 2 EI ; i < j (2:6)rj + g � li + sxij 8ij 2 EX ; i < j (2:7)Proposition 5.9 Every point z 2 P (G; d; s; g) \ Z2n+m satisfying the antiparallelity 
on-straint (2.4) at equality must have zxik � zxjk = �zxji for every k 2 N(i) \N(j).Proof. Let z 2 P (G; d; s; g) \ Z2n+m be a point satisfying (2.4) at equality, and let k 2N(i) \N(j).Case 1: zxij = 1. Sin
e z satis�es (2.4) at equality, we have zri = zlj , implying zxki = zxkjand hen
e zxik � zxjk = 0 = �zxji .Case 2: zxij = 0. In this 
ase, we have zri = s and zlj = 0, implying zxik = 1 and zxjk = 0.Therefore, zxik � zxjk = 1 = �zxji . 2If P (G; d; s; g) is full-dimensional, then this proposition shows that the fa
e de�ned by(2.4) 
annot have the required dimension for being a fa
et. The same is true for the other74



antiparallelity 
onstraints, showing that these inequalities do not de�ne fa
ets of P (G; d; s; g)for arbitrary instan
es if N(i) \N(j) 6= ;.Fortunately, we 
an strengthen these inequalities by 
onsidering a 
overing 
lique in the
ommon neighborhood of the nodes whose intervals are separated by the 
onstraint. Thispro
ess 
an be viewed as a lifting from the antiparallelity 
onstraints into a new 
lass of fa
et-de�ning inequalities, resembling the 
overing-
lique inequalities presented in the previousse
tion. The resulting inequalities des
ribe the intera
tion between these two nodes, involvingmany similarities with the 
onstru
tion of 
overing-
lique inequalities.De�nition 5.6 (double 
overing-
lique inequalities) Let ij 2 E be an edge of G, andlet K be a 
lique 
overing N(i) \N(j). We de�neri +Xk2K dk(xik � xjk) � lj + (s� d(K))xji (5.8)to be the double 
overing-
lique inequality asso
iated with ij and K, where d(K) =Pk2K dk.Proposition 5.10 The double 
overing-
lique inequalities (5.8) are valid for P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) \ Z2n+m be a feasible integer solution, and 
onsider two 
ases:Case 1: yxji = 0. In this 
ase, the interval I(i) is lo
ated to the left of I(j). Let M � Kbe the set of nodes k su
h that the interval I(k) is between the intervals I(i) and I(j), i.e.,M = fk 2 K : yxik = 1 and yxjk = 0g. Sin
e K [ fi; jg is a 
lique, then the 
orrespondingintervals 
annot overlap, and thus ylj � yri � d(M), implying that y satis�es (5.8). 3Case 2: yxji = 1. Here, the interval I(j) is before I(i). Partition K = L [M [ R asfollows: L = fk 2 K : yxjk = 0gM = fk 2 K : yxjk = 1 and yxik = 0gR = fk 2 K : yxik = 1gNote that d(L) � ylj and yri � s� d(R). Moreover, Pk2K dk(yxik � yxjk) = �d(M). Theseobservations implyyri � ylj +Xk2K dk(yxik � yxjk) � s� d(R)� d(L)� d(M)= s� d(K):3Sin
e y was arbitrarily 
hosen, (5.8) is valid for P (G; d; s; g). 2Theorem 5.11 If s � smin(G; d; 0)+4dmax, then the double 
overing-
lique inequalities (5.8)de�ne fa
ets of P (G; d; s; 0). 75



Figure 5.7: Constru
tions for the proof of Theorem 5.11.76



Proof. By Proposition 5.10, the double 
overing-
lique inequalities are valid for P (G; d; s; 0).We now prove that, under these hypotheses, they de�ne fa
ets of this polytope. Note �rstthat any feasible solution satisfying lj = ri is tight for inequality (5.8). Su
h points existwhenever s � smin(G; d; 0) + 2dmax, hen
e this inequality de�nes a nonempty fa
e in this
ase. Let F be the fa
e of P (G; d; s; 0) de�ned by (5.8), and suppose that �T y � �0 de�nes afa
et 
ontaining F . We will show that (�; �0) is in fa
t a multiple of (5.8), thus proving thatthis inequality is fa
et-indu
ing, i.e., that F is not 
ontained in any other fa
et. To this end,we prove the following sequen
e of 
laims:Claim 1: �lk = 0 for k 6= j. Let k 6= j and let y 2 F be an integer solution withyrk � ylk > dk (whi
h exists be
ause s > smin(G; d; 0) + 2dmax). De�ne y0 to be the solutionobtained from y by just setting y0lk = ylk + 1. Note that this new solution is feasible. Bothpoints lie in F , implying �T y = �T y0 = �0. Moreover, they only di�er in their lk-
oordinates,hen
e �lkylk = �lky0lk = �lk(ylk + 1):Thus �lk = 0, proving the 
laim. 3Claim 2: �rk = 0 for k 6= i. A similar 
onstru
tion, with points y; y0 2 F su
h thatyrk � ylk > dk and y0rk = yrk � 1 shows that �rk = 0 for k 6= i. 3Claim 3: �xkt = 0 if both k; t di�er from i; j. Let y 2 F be a feasible solution withylk = 0, ylt = dk, and all the remaining intervals to the right of I(k) (su
h a y exists bys � smin(G; d; 0)+4dmax). Let y0 be a new feasible solution obtained from y by swit
hing theintervals I(k) and I(l) (see Figure 5.7(a), (b)). Both solutions are in F , and thus �T y = �T y0.These two feasible solutions only di�er in their lk-, lt-, rk-, rt� and xkt-
oordinates. Moreover,we know from the previous 
laims that �lk = �rk = �lt = �rt = 0, implying �xkt = 0. 3Claim 4: �ri = ��lj . Let y 2 F be a feasible solution with yri = ylj , su
h thatboth intervals I(i) and I(j) 
an be moved one unit to the right (this is possible sin
e s >smin(G; d; 0) + 2dmax). Let y0 be the solution obtained by this shifting. Sin
e both solutionsare in F and �li = �rj = 0, we obtain�riyri + �ljylj = �ri(yri + 1) + �lj (ylj + 1):This implies that �ri + �lj = 0, thus justifying the 
laim. 3Claim 5: �xik = dk�ri for k 2 K. Let y be an integer point in F with yri = ylj , and lety0 be a feasible solution with only intervals k and j 
hanged in su
h a way that y0lk = yri andy0lj = y0rk = y0lk + dk (see Figure 5.7(
) and Figure 5.7(d)). This 
onstru
tion is possible sin
es > smin(G; d; 0) + di + dj + dk. Both solutions lie in F , so �T y = �T y0 = �0, and thus�lkylk + �ljylj = �lky0lk + �ljy0lj + �xik :But �lk = 0 and y0lj = yri + dk imply �xik = dk�ri , proving the 
laim. 3Claim 6: �xjk = �dk�ri for k 2 K. A similar 
onstru
tion veri�es this 
laim, by
onsidering the solutions presented in Figure 5.7(e), (f). 3Claim 7: �xik = �xjk = 0 for k 2 [N(i)\N(j)℄nK. Let Ak � K be a set of nodes notadja
ent to k su
h that d(Ak) � dk. Su
h a set exists by the de�nition of the 
overing 
lique77



K of N(i) \ N(j). The two feasible solutions depi
ted in Figure 5.7(g) and Figure 5.7(h)show that �xik = 0, and the opposite 
onstru
tion implies �xjk = 0. 3Claim 8: �xik = 0 for k 2 N(i)nN(j). Let y 2 F be a solution with yli = 0, ylj = di,ylk = di+dj and ylt � di+dj+dk for t 62 fi; j; kg. Constru
t a new solution y0 2 F from y bysetting y0lk = 0, y0li = dk and y0lj = dk + di. Sin
e both solutions are tight for F , we 
on
ludethat �xik = 0. 3Claim 9: �xjk = 0 for k 2 N(j)nN(i). If k is adja
ent to j and not adja
ent to i, the
onstru
tion applied in Claim 8 also shows �xjk = 0. 3Claim 10: �0 = 0 and �xji = �(s�d(K))�ri . Let y 2 F be any integer solution withyri = ylj , and let y0 be a solution with y0li = s�di and y0lj = 0 (and thus y0xji = 1), as in Figure5.7(i) and Figure 5.7(j). Note that yxik�yxjk = 0, y0xik = 0, and y0xjk = 1 for k 2 N(i)\N(j).This implies that y0 satis�es (5.8) at equality, and, therefore, y0 2 F . Moreover, we have that�0 = �T y = �riyri + �ljylj + Xk2K(�xikyxik + �xjkyxjk) == �ri (yri � yri)| {z }= 0 + Xk2K dk�ri (yxik � yxjk)| {z }= 0 = 0�T y0 = �riy0ri + �ljy0lj + Xk2K �xjky0xjk + �xjiy0xji == �ris+ Xk2K �xjk + �xji == �ri�s+ Xk2K(�dk)�+ �xji (5.9)We 
on
lude �xji = �(s� d(K))�ri , proving the 
laim. 3This way, we have that�T y = h yri � ylj + Xk2K dk(yxik � yxjk)� (s� d(K))yxji i�ri :Then � is a multiple of the LHS of inequality (5.8), implying that �0 = 0. Thus, the fa
e Fde�ned by (5.8) 
annot be 
ontained in any other fa
et of P (G; d; s; 0) and de�nes, therefore,itself a fa
et of the (full-dimensional) polytope P (G; d; s; 0). 2Remark. An alternative proof 
an be given for Theorem 5.11 by 
onsidering the antiparal-lelity 
onstraint ri � lj + sxji and lifting the variables xik and xjk, for k 2 N(i). We �rstlift the variables xik and xjk for k 2 K, and afterwards lift the remaining variables. Theantiparallelity 
onstraint is fa
et-indu
ing for P (G; d; s; 0) \ fz 2 R2n+m : zik = zjk = 0g.Moreover, the maximum lifting 
oeÆ
ient for variable xik resp. xjk is dk resp. �dk and, there-fore, the resulting double 
overing-
lique inequality is fa
et-indu
ing for P (G; d; s; 0). Thus,we naturally arise double 
overing-
lique inequalities as a strengthening of the antiparallelity
onstraints. � 78



Corollary 5.12 Let ij 2 E be an edge of G su
h that N(i)\N(j) = ;. If s � smin(G; d; 0)+4dmax, then the antiparallelity 
onstraints (2.4)-(2.7) de�ne fa
ets of P (G; d; s; 0).Corollary 5.13 Let ij 2 E. The double 
overing-
lique inequalityli + di + Xk2K dk(xik � xjk) � lj + (s� d(K))xji (5.10)is valid for R(G; d; s; g) and de�nes a fa
et of R(G; d; s; 0) if s � smin(G; d; 0) + 4dmax.Proposition 5.14 The symmetri
 inequality of a double 
overing-
lique inequality is againa double 
overing-
lique inequality.Proof. Consider �rst the polytope R(G; d; s; g). Let aT y � b be the double 
overing-
liqueinequality (5.8) asso
iated with (K;S). Re
all that the symmetri
 inequality of aT y � b is2aT p� b � aT y, where p = 12 (s1� d;1) is the symmetry point of R(G; d; s; g). We have that2aT p� b = 20�(s� di)2 � (s� dj)2 + Xk2K(dk2 � dk2 ) + d(K)� s2 1A+ di= dj + d(K)� sholds. This implies that 2aT p� b � aT y is the inequality:dj + d(K)� s � li � lj + Xk2K dk(xik � xjk)� (s� d(K))xji;whi
h 
an be rewritten aslj + dj + Xk2K dk(xjk � xik) � li + (s� d(K))(1 � xji): (5.11)Re
alling the notation xij = 1 � xji, we obtain that (5.11) is again a double 
overing-
liqueinequality. A similar argumentation applies to P (G; d; s; g). 25.2.1 Double 
overing-
lique inequalities are not always fa
et-de�ningAs we have seen previously, the 
overing-
lique inequalities presented in Se
tion 5.1 are notalways fa
et-de�ning, although they do indu
e fa
ets in many instan
es. Example 5.1 suggeststhat it is diÆ
ult to 
onstru
t instan
es in whi
h these inequalities do not indu
e fa
ets. Weshall see in this se
tion that double 
overing-
lique inequalities do not always indu
e fa
ets,but the 
ounterexamples are more straightforward.Example 5.3 Let (G; d) = (V;E; d) be the weighted graph depi
ted in Figure 5.8, and
onsider the polytope R(G; d; 4; 0). By inspe
tion, this polytope has dimension 4. We shallverify that the double 
overing-
lique inequality l4+d4 � l2+4x24 does not indu
e a fa
et. All79



Figure 5.8: Interferen
e graph for Example 5.3.

Figure 5.9: The only four feasible solutions in the double 
overing-
lique fa
e.the feasible solutions satisfying this inequality at equality are the 4 points y1; : : : ; y4 depi
tedin Figure 5.9, and it is not diÆ
ult to verify y4 = y1�y2+y3. Hen
e y4 is an aÆne 
ombinationof the other three solutions, and so the dimension of the fa
e de�ned by the inequality is atmost 2, implying that this fa
e is not a fa
et of the polytope. �Double 
overing-
lique inequalities may not de�ne fa
ets even if the polytope is full-dimensional. The following 
ounterexample shows an instan
e indu
ing a full-dimensionalpolytope with a double 
overing-
lique inequality that does not de�ne a fa
et.Example 5.4 Consider the weighted graph (G; d) = (V;E; d) presented in Figure 5.10, and
onsider the polytope P (G; d; 9; 0). It is straigthforward to verify that this polytope has fulldimension.Consider now the edge 26 2 E. The fa
e F de�ned by the double 
overing-
lique inequalityr2 � l6 + 9x62 is the 
onvex hull of all feasible solutions satisfying it at equality, whi
h eitherhave (i) x26 = 1 and r2 = l6 or (ii) x26 = 0, l6 = 0 and r2 = 9. Every point of group (i) hasintervals I(2) and I(6) in parallel, and therefore:� It 
annot hold x12 = x32 = 1 be
ause there would be no spa
e left for the interval I(6)after the interval I(2), as required by x26 = 1.� If x12 = x32 = 0, then x46 6= x56 (see Figure 5.11b).� If x12 6= x32, then l2 � 2 and thus l6 = r2 � 5. This implies that l6 � 7, and thereforex46 = x56 = 1. 80



Figure 5.10: Interferen
e graph for Example 5.4.

Figure 5.11: Instan
e for Example 5.4.Hen
e every point of group (i) either has x12 = x32 = 0 and x46 6= x56, or x12 6= x32 andx46 = x56 = 1. Consider now any point of group (ii). Su
h a point has x26 = 0, implying thatintervals I(1) and I(3) are lo
ated before the intervals I(2) and I(4), and the intervals I(4)and I(5) are lo
ated after I(6) (see Figure 5.11(d)). Thus, x12 = x32 = 1 and x46 = x56 = 0.Having enumerated all the possible 
ases, we 
an now verify that every feasible solution in Fsatis�es x45 + x56 + 3(1 � x26) = 1 + (x12 + x32):This shows dim(F ) < 18, and sin
e P (G; d; 9; 0) � R19 has full dimension, F is not a fa
et ofthis polytope. �The �nal example shows an instan
e where a 
ertain double 
overing-
lique inequalityde�nes a fa
et of P (G; d; s; 0) but not of P (G; d; s+1; 0). At �rst sight, one would expe
t thata fa
et-indu
ing inequality for P (G; d; s; 0) should also be fa
et-indu
ing for P (G; d; s+1; 0),but the following example shows that this is, surprisingly, not the 
ase.Example 5.5 Let (G; d) = (V;E; d) be the weighted graph depi
ted in Figure 5.12. Thepolytope P (G; d; 5; 0) has only 4 integer solutions, and has dimension 2. It is not diÆ
ult toverify by inspe
tion that r2 � l5 +5x52 de�nes a fa
e of P (G; d; 5; 0) of dimension 1, whi
h isa fa
et.Consider now the polytope P (G; d; 6; 0) and the feasible solution depi
ted in Figure5.13(a)). Starting from this solution, alternatively shift the interval bounds to the right(repeating the proof of Lemma 3.8 and Lemma 3.9) to 
onstru
t 10 aÆnely independentpoints. Moreover, Figure 5.13(b), Figure 5.13(
) and Figure 5.13(d) present three aÆnely81



independent points w.r.t. the pre
eding 
onstru
tions, showing that dim(P (G; d; 6; 0)) � 13.Conversely, it is not hard to prove that every feasible solution satis�es the equations:x13 = x23 (5.12)x25 = x45 (5.13)x23 = x43 (5.14)Sin
e P (G; d; 6; 0) 2 R16, then dim(P (G; d; 6; 0)) � 16�3 = 13, and thus dim(P (G; d; 6; 0)) =13.
Figure 5.12: Interferen
e graph for Example 5.5.

Figure 5.13: Feasible solutions for Example 5.5.Let F denote the fa
e of P (G; d; 6; 0) de�ned by r2 � l5 + 6x52. Every feasible solutionin F satis�es this inequality at equality, by de�nition. Sin
e F � P (G; d; 6; 0), the feasiblesolutions lying on F also satisfy (5.12), (5.13) and (5.14). We now 
laim that every integerpoint in F also has interval I(1) before interval I(2):(i) If x25 = 1, then x45 = 1 and so r2 = l5 � 4. This leaves no spa
e to assign I(1) afterI(2).(ii) If x25 = 0 then r2 = 6, hen
e I(1) must be before I(2).Therefore, every feasible solution in F satis�es x12 = 1, and we have 6 equations for everypoint in F . This proves that dim(F ) � 11 (in fa
t, dim(F ) = 11), and thus F is not a fa
etof P (G; d; 6; 0). � 82



5.2.2 Complexity of the separation problemThis se
tion addresses the 
omputational 
omplexity of the separation problem for dou-ble 
overing-
lique inequalities. Re
all that PLP (G; d; s; g) denotes the linear relaxation ofP (G; d; s; g). With this de�nition, the separation problem for this 
lass of inequalities 
an bede�ned as follows:Double 
overing-
lique inequalities separationInstan
e: A point y = (l; r; x) 2 PLP (G; d; s; g)Question: Does y violate some double 
overing-
lique inequality?Theorem 5.15 Double 
overing-
lique inequalities separation is NP-
omplete.Proof. We 
an easily 
he
k that this problem belongs to the 
lass NP, sin
e we 
an nondeter-ministi
ally generate an edge ij 2 E and a 
lique K � N(i)\N(j) and verify in deterministi
polynomial time whether K 
overs N(i) \ N(j) and the double 
overing-
lique inequalityasso
iated with ij and K is violated by the point y. To 
omplete the proof, we 
onstru
t apolynomial redu
tion from Max-
lique. An instan
e of the latter is given by a pair (H; p),where H = (VH ; EH) is a graph and p 2 Z+ is an integer su
h that 1 � p � jVH j, and 
onsistsin de
iding whether H has a 
lique of size at least p. Assume w.l.o.g. jVH j � 2 and that H isnon
omplete. We 
onstru
t a graph G = (V;E) from H by adding two universal nodes i andj, thus V = VH [ fi; jgE = EH [ fti; tj : t 2 VHg [ fijgAlso set d = 1, g = 0 and s = 2n, where n = jV j. Finally, de�ne a point y as follows:ylt = ( 0 if t 6= jp+12 if t = j 8t 2 Vyrt = ylt + 1 8t 2 Vyxe = ( 1 if e = tj for some t 2 V12 otherwise 8e 2 EThis 
onstru
tion is polynomial in the size of H. We �rst verify that y 2 PLP (G;1; 2n; 0) by
he
king that the point y satis�es all the 
onstraints of this relaxed polytope. The demand
onstraints, the interval bounds and the relaxed 
onstraints 0 � xe � 1 for every e 2 E aretrivially satis�ed by 
onstru
tion. So we are left to verify that the antiparallelity 
onstraintslk + dk � lt + sxtk are also satis�ed. Consider the following 
ases:1. If k; t 6= j, then yxtk = 1=2 and, therefore,ylk + dk = 1 � n = ylt + syxtk :83



2. If k = j, then yxtk = 1 and we have thatylj + dj = p+ 12 + 1 � 2n = ylt + syxtj :3. If t = j, then yxtk = 0 andylk + dk = 1 � p+ 12 = ylj + syxjk :Therefore, y 2 PLP (G;1; 2n; 0). To 
omplete the proof, we must show that the pres
ribedtransformation maps aÆrmative instan
es of Max-
lique onto aÆrmative instan
es of Dou-ble 
overing-
lique inequalities separation and 
onversely, i.e., !(H) � p if and onlyif y violates some double 
overing-
lique inequality.)) LetK � VH be a maximal 
lique ofH of size at least p. Sin
e i and j are universal nodes,then K � NG(i)\NG(j). Moreover, d = 1 implies that K 
overs NG(i)\NG(j) = VH .The 
onstru
tion of y implies that the double 
overing-
lique inequality asso
iated with(K;VHnK) is violated by this point:yli + di +Xk2K dk(yxik � yxjk) = 1 + d(K)2 > p+ 12 = ylj + (s� d(K))yxji :() Conversely, suppose that the double 
overing-
lique inequality de�ned by the nodes kand t and the 
lique K � NG(k) \NG(t) is violated, i.e.,ylk + dk +Xl2K dl(yxkl � yxtl) > ylt + (s� d(K))yxtk : (5.15)Claim: t = j. Suppose t 6= j and 
onsider two 
ases.{ If k 6= j, then yxkl � yxtl = 0 for every l 2 V nfk; tg, and therefore (5.15) hasLHS = 1 and RHS = 12(s � d(K)) � 12(2n � !(H)) � 1. Hen
e (5.15) does nothold, a 
ontradi
tion.{ On the other hand, if k = j then LHS = 1+ 12(p+1� jKj) and RHS = 2n� d(K).Again, we have LHS � RHS, 
ontradi
ting the fa
t that(5.15) holds. 3This 
laim proves that, in this setting, violated double 
overing-
lique inequalities musthave I(j) as the right hand side interval. Sin
e t = j, then ylt = p+12 and yxkl�yxtl = 1=2follows for every l 2 K. Hen
e (5.15) reads 1+ jKj2 > p+12 , implying jKj � p. ThereforeK is a 
lique of G with at least p nodes. Now, if i 62 K then K � VH and !(H) � p. Onthe other hand, if i 2 K then (Knfig) [ fkg is a 
lique of H on p nodes, also implying!(H) � p.Hen
e the transformation maps aÆrmative instan
es of Max-Clique onto aÆrmative in-stan
es of Double 
overing-
lique inequalities separation and 
onversely. Therefore,the latter is NP-
omplete. 2 84



5.2.3 Double 
overing-
lique inequalities in the 
ase g > 0Theorem 5.11 shows that the double 
overing-
lique inequalities (5.8) are fa
et-de�ning wheng = 0. Clearly, these inequalities are still valid if g > 0, but may not de�ne fa
ets in this 
asesin
e the set of feasible solutions 
an be mu
h smaller. This se
tion presents a generalizationof double 
overing-
lique inequalities for this 
ase, su
h that the resulting inequalities arevalid for every instan
e, and fa
et-indu
ing if s � !(G; d) + 4(g + dmax). Re
all that wedenote by a(i) the se
tor to whi
h the node i belongs, for i 2 V .De�nition 5.7 (general double 
overing-
lique inequalities) Let ij 2 E, and let K bea 
lique 
overing N(i)\N(j). Fix K = f1; : : : ; tg as order of the nodes in K and, for k 2 K,let Ak = fi; jg [ f1; : : : ; k � 1g. We de�neri + Xk2K 'k(xik � xjk) + Æij � lj + �s+ Æij + Xk2K 'k�xji (5.16)to be the general double 
overing-
lique inequality asso
iated with the edge ij, the 
lique Kand the ordering K = f1; : : : ; tg, where the 
oeÆ
ients 'k are de�ned as follows. LetN = f k 2 K : a(k) 6= a(t) for all t 2 Ak gC = f k 2 K : a(k) = a(t) for some t 2 Ak gand 
onsider two 
ases. If N = ;, then 'k = dk for every k 2 K. On the other hand, ifN 6= ;, let k0 be some �xed node of N and, for every k 2 K,'k = 8><>: dk + 2g if k = k0dk + g if k 2 Nnfk0gdk if k 2 CThe proof of fa
etness for the general double 
overing-
lique inequalities goes along theargumentation of the proof of fa
etness for the standard double 
overing-
lique inequalitiespresented in Theorem 5.11.Theorem 5.16 The general double 
overing-
lique inequalities (5.16) are valid for the poly-tope P (G; d; s; g), and de�ne fa
ets if s � smin(G; d; g) + 4(dmax + g).Remark. A similar result holds for R(G; d; s; g) if we repla
e ri by li + di in (5.16). Noti
ethat these inequalities arise as a natural strengthening of the antiparallelity 
onstraints bylifting the variables xik and xjk, for k 2 K. In the 
ase g = 0, this lifting is sequen
e-independent and originates the standard double 
overing-
lique inequalities (5.8). In the 
aseg > 0, however, the lifting depends on the sequen
e, requiring the di�erent de�nitions of the
oeÆ
ients 'k for k = k0, k 2 Nnfk0g and k 2 C. �85



5.3 Generalizations and extensions of 
lique inequalitiesThis se
tion presents families of fa
et-de�ning inequalities arising from the 
overing-
liqueinequalities as generalizations (
ontaining the 
overing-
lique inequalities as parti
ular 
ases)or extensions (de�ned over slightly di�erent stru
tures). The �rst family, introdu
ed in Se
tion5.3.1, �xes a 
lique in N(i) and 
onsiders a 
lique 
overing the remaining nodes of thisneighborhood. We also provide a generalization of double 
overing-
lique inequalities basedon these ideas. The se
ond family, presented in Se
tion 5.3.2, 
onsiders a subset of nodesfrom N [N(i)℄, introdu
ing 
oeÆ
ients for the edges linking N(i) to these nodes. We showthat both 
lasses of valid inequalities are fa
et-indu
ing for s > smin(G; d; g) + O(1)dmax,and that they 
ontain the 
overing-
lique inequalities as spe
ial 
ases. Finally, we dis
ussin Se
tion 5.3.3 three 
lasses of fa
et-de�ning inequalities arising as variations of the double
overing-
lique inequalities.5.3.1 Reinfor
ed 
overing-
lique inequalitiesDe�nition 5.8 If K � V and j 2 V nK, we de�ne 
K(j) = maxf0; dj �Pk2KnN(j) dkg (seeFigure 5.14).De�nition 5.9 (reinfor
ed 
overing-
lique inequalities) Let i 2 V be a node of G and�x a 
lique K 0 � N(i). Furthermore, let K be a 
lique 
overing N(i)nK 0. We de�neXk2K dkxki + Xk2K0 
K(k)xki � li (5.17)to be the reinfor
ed 
overing-
lique inequality asso
iated with K and K 0.Note that the existen
e of a 
lique K 
overing N(i)nK 0 is guaranteed by Proposition 5.3.The standard 
overing-
lique inequalities dis
ussed in Se
tion 5.1 
an be obtained as a spe
ial
ase of these reinfor
ed 
overing-
lique inequalities by setting K 0 = ;.

Figure 5.14: (a) Example of 
K(j) = 0, and (b) example of 
K(j) > 0.86



Proposition 5.17 The reinfor
ed 
overing-
lique inequalities are valid for R(G; d; s; g)and P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) \ Z2n+m be an arbitrary s
hedule, and de�ne the node setsA = fk 2 K 0 : yxki = 1 and 
K(k) > 0g and B = ft 2 K : yxti = 1g. Sin
e K resp. K 0 is a
lique, the intervals 
orresponding to nodes in K resp. K 0 do not overlap. Moreover, de�neQ = ft 2 K : tk 2 E 8k 2 Ag. Note that A [ Q is a 
lique, hen
e A [ (B \ Q) is also a
lique. The following 
hain of inequalities establishes the validity of (5.17):yli � Xk2Adk + Xt2B\Q dt= Xk2Adk + Xt2B\Q dt � Xt2BnQ dt + Xt2BnQ dt= Xk2Adk � Xt2BnQ dt + � Xt2B\Q dt + Xt2BnQ dt�� Xk2A (dk � Xt2KnN(k) dt) +Xt2B dt= Xk2A 
K(k) +Xt2B dt= Xk2K0 
K(k) yxki + Xk2K dk yxki2Theorem 5.18 The reinfor
ed 
overing-
lique inequalities indu
e fa
ets of R(G; d; s; g) andP (G; d; s; g) if s � smin(G; d; g) + 3dmax.Proof. Suppose �T z = �0 for every feasible s
hedule z 2 P (G; d; s; 0) \ Z2n+m satisfying(5.17) at equality. Claims 1, 2 and 3 from the proof of Theorem 5.2 show �lj = 0 for everyj 6= i, �rj = 0 for every j 2 V and �xjt = 0 for jt 62 Æ(i). Moreover, Claim 4 from the proofof Theorem 5.2 implies �xik = �dk�li for every k 2 K and Theorem 5.4 implies �xik = 0 forevery k 2 N(i)n(K [K 0). So it is left to prove that �xki = �
K(k)�li for every k 2 K 0. Tothis end, 
onsider two 
ases.Case 1: 
K(k) > 0. Let z 2 P (G; d; s; 0) \ Z2n+m be a feasible solution with zli =0. Now 
onstru
t a feasible solution z0 2 P (G; d; s; 0) \ Z2n+m by setting zlk = 0 andzli = dk, and assigning every interval I(t), for t 2 KnN(k), to the left of the interval I(i)(see Figure 5.15(a)). These two feasible solutions satisfy (5.17) at equality and, therefore,�xki = �
K(k)�li . 3Case 2: 
K(k) = 0. As in the previous 
ase, let z 2 P (G; d; s; 0) \ Z2n+m be a feasiblesolution with zli = 0. Now 
onstru
t a feasible solution z0 2 P (G; d; s; 0) \ Z2n+m by settingzlk = 0, zli = Pl2KnN(k) dl, and assigning every interval I(t), for t 2 KnN(k), to the leftof the interval I(i) (see Figure 5.15(b)). Again, these two points satisfy (5.17) at equality,implying �xki = 0. 3 87



Figure 5.15: Constru
tions for the proof of Theorem 5.18.Hen
e we verify that � is a multiple of the 
oeÆ
ient ve
tor of (5.17) and thus thisinequality indu
es a fa
et of P (G; d; s; 0). Sin
e both P (G; d; s; 0) and R(G; d; s; 0) are full-dimensional, and the inequality does not involve the r-variables, it is also fa
et-indu
ing forR(G; d; s; 0). 2The symmetri
 inequalities of the reinfor
ed 
overing-
lique inequalities des
ribe the in-tera
tion between the right bound of the interval I(i) and the right bound of the frequen
yspe
trum [0; s℄. Under the same setting as in Theorem 5.18, the symmetri
 inequalityri � s� Xk2K dkxik � Xk2K0 
K(k)xikis valid and fa
et-indu
ing for P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we repla
eri by li + di. Note that this result generalizes Corollary 5.5 for 
overing-
lique inequalities.De�nition 5.10 (reinfor
ed double 
overing-
lique inequalities) Let i; j 2 V be twoadja
ent nodes of G and �x a 
lique K 0 � N(i) \ N(j). Furthermore, let K be a 
lique
overing [N(i) \ N(j)℄nK 0. Finally, for k 2 K 0, let Uk = fl 2 K : lk 62 Eg (i.e., the set ofnodes in K not adja
ent to k). We de�neri + Xk2K dk(xik � xjk) + Xk2K0 
K(k)(xik � xjk) � lj + �s� Xk2K dk � Xk2K0 
K(k)�xij (5.18)to be the reinfor
ed double 
overing-
lique inequality asso
iated with K and K 0.The proof of fa
etness for the reinfor
ed double 
overing-
lique inequalities is similar tothe proof of Theorem 5.11.Theorem 5.19 The reinfor
ed double 
overing-
lique inequalities are valid for P (G; d; s; 0),and de�ne fa
ets if s � smin(G; d; 0) + 4dmax.5.3.2 Repli
ated 
overing-
lique inequalitiesDe�nition 5.11 (repli
ated 
overing-
lique inequalities) Fix a node i 2 V and let Kbe a 
lique 
overing N(i). Consider a 
lique Q = fq1; : : : ; qtg 2 V nN(i) and a subset K 0 =fk1; : : : ; ktg � K su
h that kj qj 2 E for j = 1; : : : ; t (see Figure 5.16). We de�neXk2K dkxki + Xk2K0 
K(pk)(xpkk � xik) � li (5.19)88



to be the repli
ated 
overing-
lique inequality asso
iated with the 
liques K and Q.Note that the de�nition of the repli
ated 
overing-
lique inequalities allows edges betweenK and Q other than kj qj, j = 1; : : : ; t. In the 
ase Q = ;, the repli
ated 
overing-
liqueinequality (5.19) is equivalent to the standard 
overing-
lique inequality (5.3). Moreover,when both K and Q are singletons, these inequalities are equivalent to the path inequalitiesintrodu
ed in [21℄.Proposition 5.20 The repli
ated 
overing-
lique inequalities (5.19) are valid for R(G; d; s; g)and P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) \ Z2n+m denote an arbitrary integer solution, and de�ne A =fk 2 K : yxki = 1g and B = fk 2 K 0 : yxpkk = 1; yxki = 1; 
K(pk) > 0g. Also de�neT = fk 2 K : kt 2 E 8t 2 Qg, and note that Q [ T is a 
lique. The following 
hain ofinequalities establishes the validity of (5.19):yli � Xk2B dpk + Xk2T\Adk= Xk2B dpk + Xk2T\Adk + Xk2AnT dk � Xk2AnT dk= Xk2B dpk � Xk2AnT dk + � Xk2T\A dk + Xk2AnT dk�� Xk2B(dpk � Xt2KnN(pk) dt) +Xk2A dk= Xk2B 
K(pk) +Xk2Adk� Xk2B 
K(pk)(yxpkk � yxik) + Xk2K dkyxki2Theorem 5.21 If s � smin(G; d; 0) + 3dmax, then the repli
ated 
overing-
lique inequality(5.19) de�nes a fa
et of P (G; d; s; 0) and R(G; d; s; 0).Proof. Let F be the fa
e of P (G; d; s; 0) de�ned by (5.19), and suppose that every pointy 2 F satis�es �T y � �0. We will show that � is a multiple of the 
oeÆ
ient ve
tor of (5.19),implying that this inequality indu
es a fa
et.We show �rst �lj = �rj = 0 with the help of the 
onstru
tions illustrated in Figure 5.17(a)and Figure 5.17(b). Points y1 and y2 (Figure 5.17(a) and Figure 5.17(b), respe
tively) are
onstru
ted with li = 0, and thus xki = 0 for all k 2 K. We also take 
are of assigning everyk 2 K 0 after its asso
iated node pk, so that xpkk�xik = 0. This implies that y1 and y2 are inF , and thus �T y1 = �0 = �T y2. These points only di�er in their lj-
oordinates, hen
e �lj = 0for j 6= i. A similar argument shows �rj = 0 for every j (in
luding node i).89



Figure 5.16: Stru
ture for repli
ated 
overing-
lique inequalities.Consider now any edge jl 2 E su
h that jl 6= ik for k 2 K and jl 6= pkk for k 2 K 0. We
onstru
t the points depi
ted in Figure 5.17(
) and Figure 5.17(d), whi
h belong to F . Sin
e�lj = �rj = �ll = �rl = 0, we have �xjl = 0.It remains to prove that the nonzero 
oeÆ
ients of � 
an be obtained as a multiple of(5.19). To this end, we rewrite (5.19) asXk2K0 �dk + 
K(pk)�xki + Xk2K0 
K(pk)xpkk + Xk 62K0 dkxki � li + Xk2K0 
K(pk):Let k 2 K 0, and suppose K \ �N(pk) = fk1; : : : ; ktg, so that 
K(pk) = dpk � P1�v�t dkv .Consider the pair of points depi
ted in Figure 5.17(e) and Figure 5.17(f). Sin
e both pointsbelong to F they satisfy �Tx = �0 at equality, and we have(dk + dk1 + : : :+ dkt)�li = �xpkk + (dpk + dk)�li ;implying �xpkk = (dk1 + : : : + dkt � dpk)�li= �
K(pk)�li : (5.20)Now, for any k 2 K, 
onsider the two following 
ases:Case 1: k 62 K . The points depi
ted in Figure 5.17(g) and Figure 5.17(h) satisfy (5.19)at equality, hen
e �xki + dk�li = 0. 3Case 2: k 2 K . The two points depi
ted in Figure 5.17(i) and Figure 5.17(j) satisfy (5.19).Sin
e �lj = �rj = 0, we have �xpkk = �xki + dk�li : From (5.2) we have �xpkk = �
K(pk)�li ,implying �xki = ��dk + 
K(pk)��li . 3Therefore, we have � = ��li�, where � denotes the 
oeÆ
ient ve
tor of (5.19). Hen
ethe repli
ated 
overing-
lique inequality (5.19) de�nes a fa
et of P (G; d; s; 0). The sameargumentation applies to R(G; d; s; 0) 2The symmetri
 inequalities of the repli
ated 
overing-
lique inequalities des
ribe the in-tera
tion between the interval I(i) and the 
liques K and K 0 with the right bound of the90



Figure 5.17: Constru
tions for the proof of Theorem 5.21.91



frequen
y spe
trum [0,s℄. Under the same setting as in Theorem 5.21, the following symmet-ri
 inequality is valid and fa
et-indu
ing for P (G; d; s; 0):ri � s�Xk2K dkxik + Xk2K0 
K(pk)(xkpk � xki):If we repla
e ri by li+ di in this inequality, the resulting inequality is valid and fa
et-de�ningfor R(G; d; s; 0).5.3.3 Extensions of double 
overing-
lique inequalitiesThe ideas involved in the development of double 
overing-
lique inequalities do not restri
tto that parti
ular family of inequalities, but 
an be further exploited to �nd new 
lasses offa
et-indu
ing inequalities based on similar 
on
epts. In this se
tion we explore fa
et-de�ningvalid inequalities over slightly di�erent stru
tures, analyzing the e�e
t of these stru
ture
hanges in the resulting inequalities. The 
onstru
tions presented in this se
tion resemblethe development of the reinfor
ed fen
e inequalities from the fen
e inequalities for the linearordering polytope, adding a node to the subgraph that supports the inequality and adjustingthe 
oeÆ
ients to maintain validity while enfor
ing fa
etness [38℄.De�nition 5.12 If K � V and t 2 V , we de�ne A(K; t) to be the setA(K; t) = argmaxfd(B) : B � KnN(t) and d(B) � dtg:That is, A(K; t) � V is the maximum demand of a node subset of K that 
an be assignedinside the interval [0; dt℄ in a s
hedule with lt = 0. Note that the exa
t 
al
ulation of A(K; t)is NP-hard, sin
e this problem generalizes the feasibility problem for 
hromati
 s
hedulingpolytopes.De�nition 5.13 (extended double 
overing-
lique inequalities) Let i; j 2 V be twoadja
ent nodes, and let K be a 
lique 
overing N(i) \ N(j). Furthermore, �x some nodet 2 N(j)nN(i) (see Figure 5.18(a)). We de�neri +Xk2K dk(xik � xjk) � lj + 'xji + 'txjt (5.21)to be the extended double 
overing-
lique inequality asso
iated with K and t, where ' =s� d(KnA(K; t)) and 't = dt � d(A(K; t)).Proposition 5.22 The extended double 
overing-
lique inequalities (5.21) are valid for thepolytope P (G; d; s; g).Proof. Let y 2 P (G; d; s; g) be an integer solution. If yxji = 0, then the inequality (5.21) isdominated by the standard double 
overing-
lique inequality (5.8), and thus is satis�ed by y.On the other hand, if yxji = 1 
onsider two 
ases:92



Case 1: yxjt = 1. In this 
ase, the inequality (5.21) admits the formri +Xk2K dk(xik � xjk) � ylj + '0yxji + 'tyxjt= ylj + '+ 't= ylj + (s�Xk2K dk)= ylj + (s�Xk2K dk)yxjiThus, the inequality reads as a standard double 
overing-
lique inequality, and is thereforesatis�ed by y. 3Case 2: yxjt = 0. In this 
ase, the interval I(j) is lo
ated before I(i), whi
h in turn islo
ated before I(t). Note that yri � s � dt and ylj � d(fk 2 K : yxkj = 1g). Moreover, forevery k 2 K we have yxik � yxjk = �1 only if I(j) is lo
ated before I(k) and I(k) is lo
atedbefore I(i), and yxik � yxjk = 0 otherwise. Combining these observations, we getyri +Xk2K dk(yxik � yxjk)� ylj� (s� dt)� d(fk 2 K : yxjk = yxki = 1g) � d(fk 2 K : yxkj = 1g)= (s� dt)� d(KnA(K; t))= '= 'yxji + 'tyxjt 3Sin
e y is an arbitrary integer solution, we 
on
lude that the extended double 
overing-
lique inequality (5.21) is valid for P (G; d; s; g). 2The proofs of all the fa
etness results in this se
tion go along the argumentation of theproof of fa
etness for the standard double 
overing-
lique inequalities presented in Theorem5.11.Theorem 5.23 If s � smin(G; d; 0)+4dmax, then the extended double 
overing-
lique inequal-ities (5.21) indu
e fa
ets of P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we repla
e riby li + di in (5.21).It is interesting to 
ompare the standard double 
overing-
lique inequalities (5.8) with theextended inequalities (5.21). The 
oeÆ
ient of xji is smaller in the extended inequality, whi
hin turn has a new positive 
oeÆ
ient in the RHS, 
orresponding to xjt. This means that we
annot reinfor
e the original inequalities with a nonnegative 
oeÆ
ient in xjt for free: whenwe for
e this variable to have a nonzero 
oeÆ
ient, variable xji de
reases its 
oeÆ
ient tomaintain validity.Moreover, it is worthwhile to 
ompute the dual inequality of this new 
lass. The dual ofa double 
overing-
lique inequality is again a double 
overing-
lique inequality, but the dual93



Figure 5.18: Supports for extended double 
overing-
lique inequalitiesof this extension is a new valid inequality:rj +Xk2K dk(xik � xjk) � li + 'xij + 'txtj : (5.22)In this 
ase, the inequality is reinfor
ed by adding a 
oeÆ
ient asso
iated with the edgetj 2 E, but now the interval I(j) is the left interval in the inequality. These inequalities 
anbe generalized to the 
ase g > 0. In this setting, a more general de�nition for the 
oeÆ
ientsa

ompanying variables xji and xjt must be given.De�nition 5.14 (2-extended double 
overing-
lique inequalities) Let i; j 2 V be twoadja
ent nodes of G, and let K be a 
lique 
overing N(i)\N(j). Moreover, let p 2 N(i)nN(j)and t 2 N(j)nN(i) (see Figure 5.18(b)). We de�neri +Xk2K dk(xik � xjk) � lj + '0xji + 'pxpi + 'txjt (5.23)to be the 2-extended double 
overing-
lique inequality asso
iated with K and nodes t and p,where '0 = s� d(Kn(A(K; t) [A(K; p))) � dt � dp't = dt � d(A(K; t))'p = dp � d(A(K; p))Note that the 2-reinfor
ed double 
overing-
lique inequalities are obtained by \
ombining"inequalities (5.21) and (5.22) into a new valid one. Now we have two new nodes, namely pand t, adja
ent to nodes i and j, respe
tively. The standard double 
overing-
lique inequalityis reinfor
ed with nonzero 
oeÆ
ients asso
iated with the variables xip and xjt.Theorem 5.24 If s � smin(G; d; 0) + 4dmax, then the 2-extended double 
overing-
lique in-equalities are fa
et-indu
ing for P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we repla
eri by li + di. 94



De�nition 5.15 (
losed double 
overing-
lique inequalities) Let i; j 2 V be two adja-
ent nodes of G, and let K be a 
lique 
overing N(i) \ N(j). Moreover, let p 2 N(i)nN(j)and t 2 N(j)nN(i) su
h that pt 2 E and pk; tk 2 E for all k 2 K. We de�neri +Xk2K dk(xik � xjk) � lj + '00xji + 'pxpi + 'txjt � 'ptxpt (5.24)to be the 
losed double 
overing-
lique inequality asso
iated with K and nodes t and p, where'00 = s� d(K)� (dp + dt)'t = dt +minfdp; dtg'p = dp'pt = minfdp; dtgTheorem 5.25 If s � smin(G; d; 0) + 4dmax, then the 
losed double 
overing-
lique inequali-ties (5.24) indu
e fa
ets of P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we repla
e riby li + di.Example 5.6 It is worth 
omparing the inequalities presented in this se
tion arising from thesame graph stru
ture. Suppose N(i) \N(j) = ; (so that K = ;) and take d = 1. Moreover,set s = 4 and suppose that P (G; d; 4; 0) is nonempty. In this setting, the standard and theextended double 
overing-
lique inequalities have the following form:standard ! ri � lj + 4xjiextended ! ri � lj + 3xji + xjtextended (symm.) ! ri � lj + 3xji + xpi2-extended ! ri � lj + 2xji + xjt + xpi
losed ! ri � lj + 2xji + 2xjt + xpi � xpt
losed ! ri � lj + 2xji + xjt + 2xpi � xptThese inequalities show an interesting interplay among the 
oeÆ
ients of the ordering vari-ables involving the new nodes t and p. The RHS of the extended inequalities gets more andmore strengthened and, at the same time, the 
oeÆ
ient of xji de
reases to maintain fa
etness(but not too mu
h in order to keep validity).It is remarkable that all these inequalities are fa
et-indu
ing for P (G; d; s; 0), showing thatthe ideas leading to the 
overing-
lique inequalities appear in many di�erent fa
et-de�ninginequalities of this polytope. These results give another hint of the hardness of 
hromati
s
heduling polytopes, sin
e so many variations of a same idea are present as fa
ets. It wouldbe interesting to sear
h for further variations of 
overing-
lique inequalities involving morethan two nodes outside the standard 
lique stru
ture. �
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Chapter 6
Further 
lasses of valid inequalities

The results of this paper suggest that, in applying linearprogramming to a 
ombinatorial problem, the number ofrelevant inequalities is not important but their 
ombina-torial stru
ture is.{ Ja
k Edmonds (1965)Chapter 5 presented fa
et-indu
ing inequalities 
oming from strengthenings and variationsof the interval bound 
onstraints and the antiparallelity 
ontraints, mainly based on 
overing
liques of the interferen
e graph. We now turn our attention to the development of fa
et-indu
ing inequalities based on di�erent graph stru
tures.Se
tion 6.1 opens the 
hapter with the so-
alled 4-
y
le inequalities, an interesting 
lasswith an unusual stru
ture. These inequalities 
ombine a 4-
y
le with a 
lique in the interfer-en
e graph, involving two interval bounds and a number of ordering variables. A 
onstru
tiveproof of fa
etness is given for the uniform 
ase d = 1. Se
tion 6.2 analyses valid inequalitiesover 
y
les of the interferen
e graph involving the ordering variables only. The main resultof this se
tion asserts that a 
y
le inequality is fa
et-indu
ing if and only if the asso
iated
y
le does not 
ontain a 
hord, and it is worth noting that this result does not depend on theparity of the 
y
le.Cy
les in the interferen
e graph also allow to 
onstru
t inequalities only involving theinterval variables. Se
tion 6.3 presents a 
lass of valid inequalities de�ned over odd holes of G.These inequalities are valid for every interferen
e graph, and we prove that they de�ne fa
etsof P (C2k+1;1; s; 0) whenever the polytope is nonempty. We also devise suÆ
ient 
onditionsfor this inequality to be fa
et-indu
ing for arbitrary graphs.The analysis of the polytope P (Kn; d; s; 0), de�ned over a 
omplete graph, is of theoreti
alinterest and 
an also lead to fa
ets for the general 
ase. Se
tions 6.4 and 6.5 present two
lasses of fa
ets for this polytope, along with the 
orresponding generalizations for arbitraryinterferen
e graphs. We also prove that the asso
iated separation problems are NP-
omplete.
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6.1 4-Cy
le inequalitiesChromati
 s
heduling polytopes over 
y
les are interesting and 
omplex obje
ts. For example,the polytope R(C4;1; 4; 0) has 2.738 feasible solutions and 160 fa
ets, whereas the polytopeR(C5;1; 4; 0) admits 17.500 feasible solutions and 644 fa
ets. The following example presentsa remarkable inequality that originated the results of this se
tion.Example 6.1 Consider the interferen
e graph (C4;1) and suppose s � 4. The followinginequality is valid for the polytope P (C4;1; s; 0):2x34 � 2x14 + 1 � l1 + l2 (6.1)This inequality 
an be viewed as a strenghtening of 1 � l1 + l2, whi
h is trivially valid if12 2 E, but does not de�ne a fa
et if this edge 12 belongs to a larger 
lique. It is interestingto analyze the validity of inequality (6.1). The only nontrivial 
ase is x34 = 1 and x14 = 0,where we have the two possible situations illustrated by Figure 6.1, depending on whetherx23 = 0 or x23 = 1. In both 
ases, inequality (6.1) is satis�ed. Furthermore, this inequalityde�nes a fa
et of the full-dimensional polytope P (C4;1; 4; 0), implying that it is fa
et-de�ningfor all polytopes P (C4;1; s; 0) with s � 4. It is remarkable that a valid inequality having onlythese nontrivial 
ases for validity still de�nes a fa
et of full-dimensional polytopes. �
Figure 6.1: Possible 
ases for x34 = 1 and x14 = 0.In the remaining of this se
tion we 
onstru
t a 
lass of valid inequalities 
ontaining (6.1),and we prove that they are fa
et-de�ning when g = 0 and s � smin(G; d; 0) +O(1)dmax. The
onstru
tion of these inequalities takes a 4-
y
le and repla
es one of its nodes by a 
lique (seeFigure 6.2). Re
all that dmax stands for the maximum demand in the weighted interferen
egraph.

Figure 6.2: Stru
ture for 4-
y
le inequalities.98



De�nition 6.1 (4-
y
le inequalities) Let 1; 2; 3 2 V be three nodes su
h that 12; 23 2 Eand 13 62 E. Let K be a 
lique 
overing N(1)\N(3), and assume w.l.o.g. that K = f4; : : : ; tg.We de�ne l1 + l2 � Xk2K �k(x3k � x1k) + �: (6.2)to be the 4-
y
le inequality asso
iated with these nodes, where �k = � dk + d3 if k = 4dk if k > 4 and� = minfd1; d2; d3g.We now prove that the 4-
y
le inequalities are always valid but fa
et-indu
ing only if thereare no edges between node 2 and the 
lique K.Proposition 6.1 The 4-
y
le inequalities are valid for P (G; d; s; g) and R(G; d; s; g).Proof. Let z 2 P (G; d; s; g)\Z2n+m be an integer feasible solution, and 
onsider the following
ases:Case 1: zr3 � zl1. Let A = fk 2 K : zx3k = 1 and zx1k = 0g. By de�nition, A [ f3g is a
lique in G, and so the 
orresponding intervals do not overlap, hen
e zl1 � zl3 +d3+Pk2A dk.Moreover, 12 2 E implies zl1 + zl2 � minfd1; d2g � �. Adding these two inequalities we getzl1 + zl2 � d3 +Xk2A dk + �� Xk2K �k(zx3k � zx1k) + � 3Case 2: zr3 > zl1. In this 
ase, zx3k � zx1k � 0, and thus the inequality (6.2) is dominatedby � � zl1 + zl2 , whi
h holds be
ause the intervals I(1) and I(2) do not overlap in a feasibles
hedule. 3In both 
ases the 4-
y
le inequality (6.2) is satis�ed, so it is valid for P (G; d; s; g) andR(G; d; s; g). 2Theorem 6.2 Assume that N(1)\N(2)\N(3) = ;. If s � smin(G;1; 0)+4, then the 4-
y
leinequality (6.2) de�nes a fa
et of P (G;1; s; 0).Proof. Let F be the fa
e of P (G;1; s; 0) de�ned by (6.2). To prove that F is a fa
et, we shall
onstru
t the required number of aÆnely independent points in F .1. Let H be the graph obtained from G by deleting the nodes 1, 2 and 3. Consider afeasible s
hedule z 2 P (H;1; s� 2; 0), and 
onstru
t a point y 2 P (G;1; s; 0) \ Z2n+mas follows.yli = 8><>: zli + 2 if i 6= 1; 2; 31 if i = 1; 30 if i = 2 yri = 8><>: zri + 2 if i 6= 1; 2; 32 if i = 1; 31 if i = 299



Figure 6.3(a) shows this 
onstru
tion. This new solution is feasible and satis�es (6.2)at equality. We 
an 
onstru
t many su
h solutions. In fa
t, there is a bije
tion betweenthis set of solutions and the feasible integer solutions of P (H;1; s � 2; 0). Sin
e s �smin(G;1; 0) + 4, the polytope P (H;1; s � 2; 0) is full-dimensional, hen
e there are2(n� 3) + (m� jE(f1; 2; 3g)j) su
h aÆnely independent points.Noti
e that these points satisfy the following 
onditions:yx21 = 1 (6.3)yx23 = 1 (6.4)yx1k = 1 for k 2 N(1) (6.5)yx3k = 1 for k 2 N(3) (6.6)yx2k = 1 for k 2 N(2) (6.7)yri � yli = 1 for i = 1; 2; 3 (6.8)For ea
h of these equations in sequen
e, we now 
onstru
t a feasible s
hedule in F not sat-isfying it at equality but satisfying the remaining ones, thus showing that F is a fa
et ofP (G;1; s; 0).2. The feasible solution depi
ted in Figure 6.3(b) satis�es (6.2) at equality and has x21 = 0,thus violating (6.3). Note that this solution satis�es 
onditions (6.4) to (6.8).3. Similarly, the feasible solution in Figure 6.3(
) satis�es (6.2) at equality and has x23 = 0,thus violating (6.4) and being aÆnely independent w.r.t. the previous points. Thissolution satis�es 
onditions (6.5) to (6.8).4. We now 
onstru
t feasible solutions violating 
ondition (6.5). To this end, for everyk 2 N(1) 
onstru
t a feasible solution a

ording to the following 
ases:{ If k = 4, 
onsider the solution of Figure 6.3(d). Note that this 
onstru
tion isfeasible sin
e there are no edges between node 2 and K.{ If k 2 K but k 6= 4, 
onstru
t the feasible solution depi
ted in Figure 6.3(e).{ If k 2 N(3)nK, 
onsider the feasible solution presented in Figure 6.3(f). Note that2k 62 E sin
e N(1)\N(2)\N(3) = ; and 4k 62 E by the de�nition of the 
overing
lique K.{ Finally, if k 62 N(3), 
onsider the feasible solution presented in Figure 6.3(g).Ea
h of these feasible points satis�es (6.2) at equality but does not satisfy 
ondition(6.5), thus being aÆnely independent w.r.t. the previous points. Note that 
onditions(6.6) to (6.8) hold for these solutions.5. For every k 2 N(3), we now 
onstru
t a feasible solution in F not satisfying (6.6). Ifk 62 N(2) 
onsider the solution depi
ted in Figure 6.3(h), and if k 62 N(1) 
onsiderFigure 6.3(i). Note that k must satisfy one of these 
onditions, for otherwise k 2N(1) \ N(2) \ N(3), 
ontradi
ting the hypothesis. Moreover, these solutions are in Fand violate 
ondition (6.6), thus being aÆnely independent w.r.t. the pre
eding points.Note that these points satisfy 
onditions (6.7) and (6.8).100



Figure 6.3: Feasible points for the proof of Theorem 6.2.101



6. Now, for ea
h k 2 N(2) we shall 
onstru
t a feasible solution with x2k = 0, hen
eviolating (6.7). If k 62 N(3) 
onstru
t the solution presented in Figure 6.3(j), otherwise
onsider Figure 6.3(k) (in this 
ase we have k 62 N(1) by our hypothesis N(1) \N(2) \N(3) = ;). These points do not satisfy 
ondition (6.7), and therefore are aÆnelyindependent with the previous points. Moreover, note that these points satisfy (6.8).7. To 
onstru
t a feasible solution y 2 F with yri � yli > di for i = 1; 2; 3 (thus �nallyviolating 
ondition (6.8)), we 
an 
onsider any of the previous 
onstru
tions havingthe interval I(i) to the right of intervals f1; 2; 3gnfig, and extend the interval I(i) oneunit to the right. Figure 6.3(l), Figure 6.3(m) and Figure 6.3(n) show three feasiblesolutions that 
an be 
onstru
ted that way. These three solutions are obviously aÆnelyindependent w.r.t. the previous points.This way we 
onstru
t the required number of aÆnely independent points in the fa
e F ofP (G; d; s; 0) de�ned by (6.2). Thus, this inequality indu
es a fa
et of both P (G; d; s; 0) andR(G; d; s; 0). 26.2 Cy
le-order inequalitiesDe�nition 6.2 (
y
le-order inequalities) Let C = f1; : : : ; kg be a k-
y
le in G. Thefollowing inequality is the 
y
le-order inequality asso
iated with C:x12 + x23 + : : :+ xk�1;k + xk1 � k � 1 (6.9)Note that the triangle inequalities 4.1 are a spe
ial kind of 
y
le-order inequalities. It is notdiÆ
ult to verify that 
y
le-order inequalities are valid for both P (G; d; s; g) and R(G; d; s; g),sin
e they are valid for the linear ordering polytope and every partial ordering given bythe ordering variables 
an be extended to a linear ordering (whi
h satis�es the 
y
le-orderinequalities by de�nition).However, these inequalities are fa
et-de�ning for the linear ordering polytope only if k = 3,due to the equality 
onstraints xij + xji = 1 [23℄. Due to this fa
t, we 
annot expe
t 
y
le-order inequalities to be fa
et-de�ning for 
hromati
 s
heduling polytopes in general. Thisse
tion shows that the 
y
le-order inequalities are fa
et-de�ning if and only if C is a 
hordless
y
le, provided the frequen
y spe
trum [0; s℄ is large enough. These results do not dependon the parity of the number of nodes of C. It is worth noting that 
y
le-order inequalitiesdo de�ne fa
ets of the asso
iated a
y
li
 subdigraph polytope, where the weaker 
onstraintsxij + xji � 1 are imposed [24℄.De�nition 6.3 If C = f1; : : : ; kg � V is a 
y
le, we de�ne �(C) = #fij 2 E(C) : i and jbelong to di�erent se
torsg.Theorem 6.3 If C is a 
hordless 
y
le and s > smin(GnC; d; g)+d(C)+g �(C)+dmax, thenthe 
y
le-order inequality (6.9) de�nes a fa
et of P (G; d; s; g) and R(G; d; s; g).102



Figure 6.4: Constru
tions for the proof of Theorem 6.3.Proof. Let F be the fa
e of R(G; d; s; g) de�ned by (6.9), suppose �T z = �0 for everyz 2 P (G; d; s; g) \ Z2n+m. Sin
e s > smin(G; d; g), we have �li = �ri = 0 for every i 2 V byLemma 3.8 and Lemma 3.10. To 
omplete the proof, we show that �xij = 0 for every ij 2 E.Claim 1: �xi;i+1 = 0 for i; i + 1 2 E(C). Consider the feasible s
hedules z1 and z2depi
ted in Figure 6.4(a) and Figure 6.4(b) respe
tively, where the intervals fI(k)gk2C areassigned within the interval [0; kd(C) + �(C)℄. Both points belong to F , hen
e �T z1 = �0 =�T z2 and thus �xi;i+1 = 0. 3Claim 2: �xij = 0 for ij 62 E(C). The feasible solutions presented in Figure 6.4(
)and Figure 6.4(d) show that �xij = 0. Note that these 
onstru
tions are feasible sin
e s >smin(GnC; d; g) + smin(C; d; g) + dmax. 3Claim 3: �xij = 0 if i 2 C and j 62 C. To prove this 
laim, 
onsider the feasible solutionsdepi
ted in Figure 6.4(e) and Figure 6.4(f). Both points belong to F , hen
e �xij = 0. 3This sequen
e of 
laims shows � = 0, hen
e F is a fa
et of P (G; d; s; g) and R(G; d; s; g).2Proposition 6.4 If C has a 
hord and P (G; d; s; g) resp. R(G; d; s; g) is full-dimensional,then the 
y
le-order inequality (6.9) does not de�ne a fa
et of P (G; d; s; g) resp. R(G; d; s; g).
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Proof. Let ij 2 E be a 
hord of C (i.e., 1 � i < j � k and j 6= i + 1 (mod k)), and
onsider an arbitrary point z 2 P (G; d; s; g)\Z2n+m satisfying (6.9) at equality. This implieszx12+: : :+zxk1 = k�1, hen
e all variables zx12 ; : : : ; zxk1 but one are set to 1. Let t 2 f1; : : : ; kgsu
h that zxt;t+1 = 0. Therefore, the intervals 
orresponding to the nodes in C are assignedin the order t+1! t+2 : : : k ! 1! 2; : : : ; t. Let P = fi; i+1; : : : ; j� 1; jg denote the pathfrom i to j in C. We shall show that z satis�eszxij = Xe2E(P ) zxe � (jE(P )j � 1): (6.10)Case 1: zxij = 1. In this 
ase, I(i) is lo
ated before I(j). But this means that I(i) islo
ated before I(i+ 1), I(i+ 1) is lo
ated before I(i + 2), : : :, and I(j � 1) is lo
ated beforeI(j), implying zxe = 1 for every edge e 2 E(P ). Hen
e Pe2E(P ) zxe = jE(P )j, so we 
on
ludethat z satis�es (6.10). 3Case 2: zxij = 0. Here, I(j) is lo
ated before I(i), and thus we have zxi;i+1 = : : : = zxt�1;t =1, zxt;t+1 = 0 and zxt+1;t+2 = : : : = zxj�1;j = 1. But now we have Pe2E(P ) zxe = jE(P )j � 1and so (6.10) is again satis�ed. 3Therefore, the point z satis�es (6.10) and (6.9) at equality, and it is not diÆ
ult to 
he
kthat these equations are linearly independent. Hen
e the dimension of the fa
e of P (G; d; s; g)de�ned by (6.9) is at most 2n+m� 2. Sin
e P (G; d; s; g) is full-dimensional, (6.9) does notde�ne a fa
et. The same argumentation applies to the �xed-length 
ase. 2Corollary 6.5 If s > smin(GnC; d; g)+d(C)+ g �(C)+dmax, then the 
y
le-order inequalityasso
iated with a 
y
le C is fa
et-de�ning if and only if C is 
hordless.It is interesting to generate the symmetri
 inequalities of 
y
le-order inequalities. ByTheorem 4.3 we 
an verify that the symmetri
 inequality of (6.9) is given by1 � x12 + x23 + : : :+ xk�1;k + xk1:It is worth noting that this symmetri
 inequality gives the opposite lower bound on theordering variables along the 
y
le. By Theorem 4.3, this new inequality is fa
et-de�ning fors > smin(GnC; d; g) + kdmax if and only if C is a 
hordless 
y
le.6.2.1 Complexity of the separation problemWe now address the 
omplexity of the separation problem for the 
y
le-order inequalities.Given a point z 2 PLP (G; d; s; g), this problem 
onsists in de
iding whether there exists some
y
le-order inequality violated by z or not.Cy
le-order inequalities separationInstan
e: A point z = (l; r; x) 2 PLP (G; d; s; g)Question: Does z violate some 
y
le-order inequality?104



Figure 6.5: Constru
tion of D from G.The main result of this se
tion asserts that this problem is polynomially solvable, byproviding a number of redu
tions to the minimum mean 
y
le problem [3, 33℄. The lattertakes as input a dire
ted graph D with edge 
osts 
 : ED ! R and 
onsists in �nding adire
ted 
y
le C su
h that 1jCjPij2E(C) 
ij is minimum among all dire
ted 
y
les in D. Su
ha 
y
le is 
alled a minimum mean 
y
le of D. The minimum mean 
y
le problem arises as aspe
ial 
ase of the minimum 
ost-to-time ratio problem [3℄ and 
an be solved in O(nm) time[31, 32℄.Theorem 6.6 The 
y
le-order inequalities 
an be separated in O(nm2) time.Proof. Let e 2 E be a dire
ted edge of the interferen
e graph, and 
onstru
t a digraphD = (V;ED) by repla
ing every (nondire
ted) edge of G by two dire
ted edges with the sameendpoints and opposite dire
tions. The only ex
eption is the edge e, whi
h is transformedinto only one dire
ted edge in D:ED = fij; ji : ij 2 E and e 6= ijg [ feg:Figure 6.5 shows this 
onstru
tion. Now de�ne edge 
osts 
 : ED ! R as the values of theordering variables in z, a

ording to the orientation of the 
orresponding dire
ted edge (again,the edge e is an ex
eption): 
ij = ( �(1 + zxij ) if ij = e�zxij otherwiseClaim: The point z 2 PLP (G; d; s; g) violates a 
y
le-order inequality su
h that the asso
i-ated 
y
le 
ontains the edge e if and only if the digraph D has a dire
ted 
y
le C su
h that1jCjPij2E(C) 
ij < �1.)) Let C be a dire
ted 
y
le with 1jCjPij2E(C) 
ij < �1 and 
all k = jCj. Su
h a 
y
le
ontains e, sin
e otherwise 
ij � �1 for every edge ij 2 E(C), implying Pij2E(C) 
ijk ��1. Consider now the 
y
le-order inequality asso
iated with the dire
ted 
y
le C. Wehave Pij2E(C) 
ij < �k, and moreover �Pij2E(C) 
ij = 1 +Pij2E(C) zxij , hen
e the
y
le-order inequality asso
iated with C is violated by the point z.105



() Let C � V be a dire
ted k-
y
le su
h that e 2 E(C) and Pij2E(C) zxij > k� 1. By the
onstru
tion of D, it is not diÆ
ult to verify that C is a 
y
le with mean stri
tly lessthan �1: Xij2E(C) 
ijk = 1k �
e + Xij2E(C)nfeg 
ij�= �1k �1 + zxe + Xij2E(C)nfeg zxij�= �1k �1 + Xij2E(C) zxij�< �1k (1 + (k � 1)) = �13Now, for ea
h ij 2 E, apply the pre
eding pro
edure twi
e to de
ide whether some 
y
le-order inequality 
ontaining ij resp. ji violates the point z 2 PLP (G; d; s; g). The overallrunning time of this algorithm is 
learly O(nm2). 26.3 Odd hole inequalitiesThis se
tion presents a 
lass of valid inequalities de�ned over odd holes of the interferen
egraph. The integer solutions in the fa
e of R(G; d; s; 0) de�ned by these inequalities have avery parti
ular 
ombinatorial stru
ture that 
an be exploited to show that these inequalitiesindu
e fa
ets of R(C2k+1;1; s; 0) for k � 2. Throughout this se
tion we assume g = 0.De�nition 6.4 (odd hole inequalities) Let C = f1; : : : ; 2k + 1g be an indu
ed odd 
y
le,
alled an odd hole, of the interferen
e graph. We de�ne2k+1Xi=1 li � k + 2 (6.11)to be the odd hole inequality asso
iated with C.Proposition 6.7 The odd hole inequalities are valid for P (G;1; s; 0) and R(G;1; s; 0).Proof. Let z 2 P (G;1; s; 0)\Z2n+m be a feasible s
hedule. Sin
e C is a nonbipartite graph, wehave zli � 2 for at least one node i 2 C (otherwise we would be able to assign all the intervalsI(j), with j 2 C, within the frequen
y spe
trum [0; 2℄, a 
ontradi
tion). Assume w.l.o.g. thatC = f1; : : : ; 2k + 1g and zl2k+1 � 2. For t = 1; : : : ; k, the inequality zl2t + zl2t+1 � 1 holds,sin
e 2t and 2t+1 are adja
ent nodes. Summing up these inequalities, we obtainP2ki=1 zli � k.Combining this last inequality with zl2k+1 � 2 we get Pni=1 zli � k + 2, hen
e z satis�es theodd hole inequality asso
iated with C. Sin
e (6.11) does not involve the r-variables, it is alsovalid for R(G;1; s; 0). 2 106



Figure 6.6: Feasible solution satisfying the odd hole inequality at equality.We now analyze the fa
es indu
ed by the odd hole inequalities. The feasible s
hedulesin these fa
es must satisfy Pi2C li = k + 2. This implies that k nodes of C are assignedthe interval [0; 1℄, and k distin
t nodes re
eive the interval [1; 2℄ in the s
hedule. In order tomaintain feasibility, the remaining node must be assigned the interval [2; 3℄ (see Figure 6.6for an example). This 
ombinatorial stru
ture was used in Se
tion 3.2.3 to provide a proofof full-dimensionality of R(C2k+1;1; 3; 0) for k � 2. The same arguments 
an be applied toprove that the odd hole inequalities indu
e fa
ets of 
hromati
 s
heduling polytopes.Theorem 6.8 Let C2k+1 = f1; : : : ; 2k+1g be a hole on 2k+1 nodes. The odd hole inequalityasso
iated with C2k+1 indu
es fa
ets of R(C2k+1;1; s; 0) and P (C2k+1;1; s; 0) if k � 2 ands � 3.Proof. For i = 1; : : : ; 2k+1, de�ne an order of the nodes by Si = (i; i+1; : : : ; 2k+1; 1; : : : ; i�1)and let yi be the greedy solution asso
iated with this sequen
e (see Se
tion 3.2.3 for thede�nition). Further de�ne the opposite order �Si = (i; i � 1; : : : ; 1; 2k + 1; : : : ; i + 1) andlet �yi be the asso
iated greedy solution. It is not diÆ
ult to verify that these solutions liein the fa
e of R(C2k+1;1; s; 0) de�ned by the odd hole inequality asso
iated with C2k+1.Moreover, following the proof of Theorem 3.27 in Se
tion 3.2.3 we obtain that the solutionsfyi; �yi : i 2 C2k+1g are aÆnely independent. Sin
e R(C2k+1;1; s; 0) � R4k+2, the existen
eof these 4k + 2 aÆnely independent points shows that the odd hole inequality asso
iatedwith C2k+1 indu
es a fa
et of this polytope. Now, for i = 1; : : : ; 2k + 1, 
onstru
t the twofeasible solutions presented in Figure 3.10(a), (b). These feasible s
hedules, together with theprevious 
onstru
tions, show that the odd hole inequality asso
iated with C2k+1 indu
es afa
et of P (C2k+1;1; s; 0). 2Now we turn to arbitrary interferen
e graphs. Let C � V be an odd hole of G, andsuppose w.l.o.g. that C = f1; : : : ; 2k + 1g. We say that i 62 C is parity nonadja
ent to the
y
le C if i is nonadja
ent to a stable set of size k in C2k+1. If this does not hold, we say thati is parity adja
ent to the 
y
le C.Corollary 6.9 Let C � V be an odd hole and suppose s � smin(G;1; 0) + 4. The odd holeinequality asso
iated with C de�nes a fa
et of R(G;1; s; 0) if and only if every node i 62 C isparity nonadja
ent to C. 107



Proof. Sin
e s � smin(G;1; 0) + 4, R(G;1; s; 0) and P (G;1; s; 0) are full-dimensional byTheorem 3.11. If i 62 C is parity adja
ent to C, then every feasible solution satisfying the oddhole inequality at equality has xji = 1 for every j 2 C \N(i), hen
e the fa
e de�ned by thisinequality 
annot have the required dimension for being a fa
et.Conversely, suppose that every node i 62 C is parity nonadja
ent to C, and let � 2 Rn+mand �0 2 R su
h that �T y = �0 for every y 2 R(G;1; s; 0). For every feasible s
hedule y 2R(C;1; 3; 0) and every feasible s
hedule y0 2 R(GnC;1; s; 0), for s = smin(G;1; 0), 
onstru
ta new s
hedule z 2 R(G;1; s; 0) by settingzli = ( yli if i 2 Cy0li + 3 if i 62 CThis set of feasible solutions shows �li = 1 for i 2 C, �li = 0 for i 2 V nC, and �xij = 0 forij 2 E(C) [ E(V nC). To 
omplete the proof, it remains to show �xij = 0 for every ij 2 Ewith i 62 C and j 2 C. For every su
h edge, 
onstru
t a feasible solution satisfying the oddhole inequality asso
iated with C, su
h that I(j) = [2; 3℄ and I(i) = [1; 2℄. Su
h a solutionexists sin
e i is parity nonadja
ent to C. This new feasible solution shows �xij = 0, hen
e� is a multiple of the 
oeÆ
ient ve
tor of the odd hole inequality asso
iated with C whi
h,therefore, de�nes a fa
et of R(G;1; s; 0). A similar argumentation applies to P (G;1; s; 0). 2We 
an devise a similar inequality for the nonuniform 
ase d � 1. If C = f1; : : : ; 2k + 1gis an odd hole of G, then 2k+1Xi=1 li � dmin(C)(k + 2) (6.12)is valid for P (G; d; s; 0) and R(G; d; s; 0), where dmin(C) = mini2C di is the minimum demandamong the nodes in C. Note that this inequality generalizes (6.11), sin
e dmin(C) = 1 ifd = 1. However, this inequality does not indu
e fa
ets for arbitrary instan
es, sin
e di < di+1implies xi;i+1 = 1 for every feasible s
hedule satisfying (6.12) at equality.6.3.1 Complexity of the separation problemIt is not diÆ
ult to verify that a super
lass of the odd hole inequalities 
an be separatedin polynomial time, provided li + lj � 1 for every ij 2 E. Consider a fra
tional solutionz 2 PLP (G;1; s; 0) and assume zli + zlj � 1 for every ij 2 E (if this assumption is notsatis�ed, we have dete
ted the violated inequality li + lj � 1). Consider the interferen
egraph G = (V;E) with edge weights 
 : E ! R+ de�ned as 
ij = zli + zlj � 1 (note that
ij � 0 by the initial assumption). Under these assumptions, the odd hole inequality (6.11)is equivalent to 2k+1Xi=1 
i;i+1 � 3;where indi
es are taken modulo 2k + 1. Therefore, there is a violated odd 
y
le inequality(asso
iated with a not ne
essarily 
hordless 
y
le) if and only if there exists an odd hole withweight stri
tly less than 3. The problem of �nding a minimum odd 
y
le in an undire
tedgraph with nonnegative edge weights 
an be polynomially solved by su

essive appli
ations108



of the shortest path algorithm [25℄. Hen
e the odd hole inequalities 
an be separated inO(m SP (n;m)) time, where SP (n;m) is the running time of a shortest path algorithm in agraph with n nodes and m edges.6.4 Interval-sum inequalitiesThis se
tion presents a 
anoni
al valid inequality that 
onstrains the total interval length inthe non�xed 
ase P (G; d; s; 0). This inequality is fa
et-indu
ing for P (Kn; d; s; 0) if and onlyif s >Pni=1 di, and is also fa
et-indu
ing for P (G; d; s; 0) when s� !(G; d).Assumption. Throughout this se
tion we shall assume g = 0.6.4.1 Interval-sum inequalities for 
omplete interferen
e graphsDe�nition 6.5 (interval-sum inequalities) Let Kn be the 
omplete graph on n nodes, and
onsider the polytope P (Kn; d; s; 0). We de�nenXk=1(rk � lk) � s (6.13)to be the interval-sum inequality asso
iated with this instan
e.Note that this inequality does not apply to the �xed-length polytope R(Kn; d; s; 0) sin
ethe natural repla
ement ri = li+di for the �xed-length 
ase would yield the trivial inequalityPi2V di � s. It is not diÆ
ult to verify that (6.13) is valid for P (Kn; d; s; 0), sin
e theintervals fI(i)gni=1 
annot overlap. If s =Pni=1 di, then every feasible s
hedule of P (Kn; d; s; 0)satis�es (6.13) at equality, and so the 
orresponding fa
e is not proper. On the other hand,if s >Pni=1 di then this inequality indu
es a fa
et of P (Kn; d; s; 0) as Theorem 6.10 shows.Theorem 6.10 If s >Pni=1 di then (6.13) de�nes a fa
et of P (Kn; d; s; 0).Proof. Sin
e s >Pni=1 di, Theorem 3.11 implies that P (Kn; d; s; 0) is full-dimensional. Let Fbe the fa
e of this polytope de�ned by (6.13), and suppose �T y = �0 for every point y 2 F .We shall prove that � = ��, where � is the 
oeÆ
ient ve
tor of the inequality (6.13), thusshowing that this inequality indu
es a fa
et.Let i and j be two di�erent nodes and 
onsider the points y1 and y2 depi
ted in Figure6.7(a) and Figure 6.7(b). These points are in F and thus �T y1 = �0 = �T y2. Sin
e y1 andy2 only di�er in their ri- and lj-
oordinates, we havedi�ri + di�lj = (di + 1)�ri + (di + 1)�lj109



Figure 6.7: Constru
tions for the proof of Theorem 6.10.and, therefore, �ri = ��lj . Sin
e i and j are arbitrary, there exists some � 2 R su
h that�rk = � k = 1; : : : ; n (6.14)�lk = �� k = 1; : : : ; n (6.15)Consider now the two points depi
ted in Figure 6.7(
) and Figure 6.7(d). Again, thesepoints are in F , and thus we havedi�ri + di�lj + (di + dj)�rj = dj�rj + dj�li + (di + dj)�ri + �xji :But we know that �ri = ��lj , and so di�ri + di�lj = 0. We obtain dj�rj + dj�li = 0 in asimilar way, and thus �xji = (di + dj)(�rj � �ri) = 0:Sin
e i and j are arbitrarily 
hosen, we have �xe = 0 for every edge e of Kn. Hen
e � = ��,and this implies �0 = �s. Therefore, the inequality (6.13) de�nes a fa
et of P (Kn; d; s; 0). 26.4.2 Interval-sum inequalities for arbitrary interferen
e graphsWe now analyze the interval-sum inequalities in the general 
ase P (G; d; s; 0) for an arbitraryinterferen
e graph G. If K � V is a 
lique (re
all that a 
lique is not ne
essarily a maximal
omplete subgraph), then Xk2K(rk � lk) � s (6.16)is valid for P (G; d; s; 0). We are interested in 
hara
terizing the 
ases for whi
h this inequalityis fa
et-indu
ing. To this end, note that if K is not a maximal 
lique then no feasible s
hedule110




an satisfy (6.16) at equality, hen
e the asso
iated fa
e is empty. So K must be maximal if(6.16) is supposed to de�ne a fa
et of P (G; d; s; 0).However, the maximality of K is ne
essary but not suÆ
ient for fa
etness. If there existssome node i 62 K having a unique nonneighbor k 2 K, then yxil = yxit 8 l; t 2 Knfkg forevery integer point y in the fa
e de�ned by (6.16), so this fa
e is not maximal if P (G; d; s; 0)is full-dimensional. Therefore, if K is not maximal or if there exists some i 62 K withjN(i)\Kj = jKj � 1, then (6.16) does not de�ne a fa
et of P (G; d; s; 0). Theorem 6.11 showsthat the 
onverse is also true.
Figure 6.8: Constru
tion of feasible solutions in F .Theorem 6.11 If s � Pi2V di, K � V is a 
lique, and every node i 62 K has at least twononneighbors p(i); p0(i) 2 K, then (6.16) de�nes a fa
et of P (G; d; s; 0).Proof. Let F denote the fa
e of P (G; d; s; 0) de�ned by (6.16), and suppose �T y = �0 forevery point y 2 F . We shall prove � = ��, for some � 2 R, where � is the 
oeÆ
ient ve
torof the inequality. Note �rst that we 
an 
onstru
t a feasible solution y 2 F by 
overing [0; s℄with nonoverlapping intervals 
orresponding to the nodes in K, and assigning every nodei 62 K inside the interval [ylp(i) ; yrp(i) ℄ (see Figure 6.8). The intervals assigned to the nodesin K must be large enough to allow this 
onstru
tion (note that this 
onstru
tion is feasiblesin
e we are 
onsidering the general polytope P (G; d; s; 0) and s �Pi2V di).Similar 
on�gurations as in Figure 6.7(a) and Figure 6.7(b) 
an be used to show �ri = �ljfor i; j 2 K. We 
onstru
t two points in F , assigning I(k), for k 62 K, \inside" the intervalI(p(k)) or I(p0(k)), as in Figure 6.9(a). If fp(k); p0(k)g = fi; jg, then we assign I(k) in[0; yrj ℄, as in Figure 6.9(b). This way we show �ri = ��li = � 2 R 8i 2 K. Similarly, the
onstru
tion of Figure 6.7(
) and Figure 6.7(d) 
an be adapted to this 
ase to prove �xij = 0for i; j 2 K.It only remains to show �lk = �rk = 0 for k 62 K, and �xij = 0 for i 62 K or j 62 K (orboth). Figure 6.9(
) and Figure 6.9(d) show how to 
onstru
t two points in F that only di�erin their rk-
oordinate, thus proving �rk = 0. We 
an show �lk = 0 for every k 62 K similarly.Finally, we verify that �xe = 0 holds for every edge e 62 E, by 
onsidering two 
ases.If e = ik with i 2 K and k 62 K, de�ne y1 and y2 as in Figure 6.9(e) and Figure 6.9(f)respe
tively, and if e = kr with k; r 62 K, de�ne y1 and y2 as depi
ted in Figure 6.9(g) andFigure 6.9(h), respe
tively. The points y1 and y2 are in F , so �T y1 = �T y2 and thusy1lk�lk + y1rk�rk + �xe = y2lk�lk + y2rk�rk :111



Figure 6.9: Constru
tions for the proof of Theorem 6.11.But �lk = �rk = 0 for k 62 K, hen
e �xe = 0. Therefore, the inequality (6.16) de�nes a fa
etof P (G; d; s; 0). 2As we have already noted, if there exists some i 2 K with at most one nonneighbor in K(whi
h implies that K is a maximal 
lique), then (6.16) is not fa
et-indu
ing for P (G; d; s; 0).Combining this observation with Theorem 6.11 yields the following result.Corollary 6.12 Let s �Pi2V di. Then, the interval-sum inequality (6.16) de�nes a fa
et ofP (G; d; s; 0) if and only if jKnN(i)j � 2 for every i 62 K.Remark. Suppose that jKnN(i)j � 2 for every i 62 K, and partition V nK into V nK =[k2KVk su
h that Vk \ N(k) = ;. Moreover, let Gk be the subgraph of G indu
ed byVk. Under these de�nitions, we 
an strengthen the bound s � Pi2V di from Theorem 6.11.Under these de�nitions, the interval-sum inequality (6.16) de�nes a fa
et of P (G; d; s; 0) ifs > maxfd(K);Pk2K smin(Gk; d; 0)g. � 112



6.4.3 Complexity of the separation problemThe separation problem for the interval-sum inequalities takes as input a point in the linearrelaxation PLP (G; d; s; 0), and 
onsists in de
iding whether this point is violated by someinterval-sum inequality or not. We may state this problem as follows:Interval-sum inequalities separationInstan
e: A point y 2 PLP (G; d; s; 0).Question: Is there any maximal 
lique K su
h that Pi2K yri � yli > s?Theorem 6.13 Interval-sum inequalities separation is NP-
omplete in the strongsense.Proof. Consider the Weighted Max-Clique problem, de�ned as follows:Instan
e: A graph H = (VH ; EH), a weight wi 2 Z+ for ea
h i 2 VH , and an integer k(me way assume k � 3 and 1 � wi � k � 1).Question: Is there a 
lique K of H with weight at least k?Weighted Max-Clique is NP-
omplete in the strong sense [20℄, and we will 
onstru
t apseudopolynomial redu
tion from this problem to Interval-sum inequalities separation.Given an instan
e (H;w; k) of Weighted Max-Clique, we 
onstru
t an instan
e of theseparation problem as follows. Let D = fi 2 VH : wi > k�12 g. We de�ne a new graphG = (V;E) by taking H and splitting the nodes in D.V = fi : i 2 VHg [ fi0 : i 2 DgE = EH [ fi0j : ij 2 EH ; i 2 Dg[ fi0j0 : ij 2 EH and i; j 2 Dg [ fii0 : i 2 DgWe take s = k� 1 and set d = 1. Now, de�ne the point y 2 PLP (G; d; s; 0) by setting yli = 0for every i 2 V and yri = � wi for i 62 Dwi=2 for i 2 DFurthermore, let yri0 = wi=2 for i 2 D, and yxij = 1=2 for every ij 2 E. Note that 0 �yli � yri � s and yri � yli � 1 = di, so the bound 
onstraints and the demand 
onstraints aresatis�ed. Moreover, yrj = wj � k�12 for j 62 D, and yrj = yrj0 = wj2 � k�12 if j 2 D, and thusyrj � k � 12 = 0 + s=2 = yli + sxij;yri � k � 12 = 0 + s=2 = ylj + s(1� xij):Hen
e the antiparallelity 
onstraints are also satis�ed and, therefore, y 2 PLP (G; d; s; 0). We�nally show that H has a 
lique of weight k or greater if and only if there is some 
liqueK � V su
h that the inequality (6.16) de�ned by K is violated by y.113



If. Let K � VH be a 
lique with weight at least k and de�ne K 0 = K [ fi0 : i 2 K \Dg.The 
onstru
tion of G implies that K 0 is a 
lique of G, and moreoverXi2K0(yri � yli)= Xi2KnD(yri � yli) + Xi2K\D(yri � yli) + (yri0 � yli0 )= Xi2KnDwi + Xi2K\D(wi=2 + wi=2)= Xi2Kwi � k = s+ 1 > s:Hen
e the inequality Pi2K0 ri � li � s is violated by y.Only if. Suppose that Pi2K yri � yli > s for some 
lique K � V . De�ne K 0 = fi : i 2 Kor i0 2 Kg � VH . Again, we have Pi2K0 wi � Pi2K yri � yli > s = k � 1, and sin
e wi 2 Z,we 
on
lude that w(K 0) � k.This redu
tion from Weighted Max-Clique to the separation problem for (6.16) ispolynomial, and thus it is also pseudopolynomial. Therefore, Interval-sum inequalitiesseparation is strongly NP-
omplete. 26.5 Clique-interval inequalitiesThis se
tion introdu
es an interesting 
lass of valid inequalities, namely the 
lique-intervalinequalities as a 
ombination of the 
lique inequalities and the interval-sum inequalities. Thefull potential of the ideas giving rise to this family appears in 
hromati
 s
heduling polytopesde�ned over 
omplete interferen
e graphs, and Se
tion 6.5.1 is devoted to these results. Itis worth noting that although 
omplete interferen
e graphs are not interesting in pra
ti
e,
hromati
 s
heduling polytopes de�ned over 
omplete interferen
e graphs admit a 
omplex
ombinatorial stru
ture. Unfortunately, a generalization of the 
lique-interval inequalitiesto arbitrary instan
es is not straightforward, involving 
oeÆ
ients whose exa
t 
al
ulation isNP-hard. Se
tions 6.5.2 and 6.5.3 present this generalization, together with some preliminaryresults for heuristi
ally generating bounds on these 
oeÆ
ients.6.5.1 Clique-interval inequalities for 
omplete interferen
e graphsDe�nition 6.6 For j = 1; : : : ; n, de�ne �dj = s �Pk 6=j dk. Note that every integer feasiblesolution y 2 P (Kn; d; s; 0) \ Z2n+m has yrj � ylj � �dj.De�nition 6.7 (
lique-interval inequalities) Consider a 
omplete interferen
e graph(Kn; d). Fix a node i 2 V = f1; : : : ; ng, and partition V nfig = K [K 0 arbitrarily, where K114



or K 0 may be empty. We de�neXj2K(rj � lj) + Xj2K0 djxji � li + Xj2K �djxij: (6.17)to be the 
lique-interval inequality asso
iated with K and K 0.Example 6.2 Consider the polytope P (K4;1; 5; 0), asso
iated with a uniform 
omplete in-terferen
e graph on 4 nodes. Take i = 1 and de�ne K = f2g and K 0 = f3; 4g. Then,(r2 � l2) + (x31 + x41) � l1 + 2x12is the 
lique-interval inequality asso
iated with this partition. It is not diÆ
ult to verify thatthis inequality is valid for this parti
ular instan
e. �Proposition 6.14 The 
lique-interval inequalities are valid for P (Kn; d; s; 0).Proof. Let y 2 P (Kn; d; s; 0) \ Z2n+m be a feasible solution, and de�ne the following sets:A = fj 2 K : yxij = 0g;B = fj 2 K 0 : yxij = 0g;C = fj 2 K : yxij = 1g; (6.18)Sin
e the intervals do not overlap, Pj2A(yrj � ylj ) +Pj2B dj � yli holds. Moreover, ea
hj 2 C has yrj � ylj � �dj (by de�nition of �dj), and so Pj2C(yrj � ylj ) �Pj2C �dj . Combiningthese two inequalities, we obtainXj2K(yrj � ylj ) + Xj2K0 djyxji= Xj2A(yrj � ylj ) +Xj2C(yrj � ylj ) +Xj2B dj= hXj2A(yrj � ylj ) +Xj2B dji+ hXj2C(yrj � ylj )i� yli +Xj2C �dj= yli + Xj2K �djyxij :Therefore, the 
lique-interval inequality (6.17) is valid for P (Kn; d; s; 0). 2If s =Pni=1 di, then every feasible solution satis�es (6.17) at equality, and so this inequalitydoes not de�ne a proper fa
e of P (Kn; d; s; 0). On the other hand, if s >Pni=1 di we 
an showthat the 
lique-interval inequalities de�ne fa
ets of P (Kn; d; s; 0). Theorem 6.15 
an be provedin a similar way as the fa
etness results presented in the previous se
tions. Note that theseresults do not apply to the �xed-length polytope R(Kn; d; s; 0).115



Theorem 6.15 The 
lique-interval inequality (6.17) de�nes a fa
et of P (Kn; d; s; 0) if andonly if s >Pni=1 di.Remark. It is worth noting that the separation of the 
lique-interval inequalities over a 
om-plete interferen
e graph is a polynomially solvable problem. Given a point z 2 PLP (Kn; d; s; g)and a �xed node i 2 f1; : : : ; ng, we partition V nfig = K [K 0 as follows. For ea
h j 2 V nfig,insert j into K if zrj � zlj � �djzxij � djzxji , otherwise insert j into K 0. Repeating the pro-
edure for i = 1; : : : ; n, we 
onstru
t n 
lique-interval inequalities. If the point z violatessome 
lique-interval inequality then it must violate some of the 
onstru
ted inequalities, and
onversely. �6.5.2 Clique-interval inequalities for arbitrary interferen
e graphsThe purpose of this se
tion is to provide a generalization of the 
lique-interval inequalities(6.17) for arbitrary interferen
e graphs. Proposition 6.16 presents a straightforward gener-alization giving valid inequalities for this 
ase, but unfortunately these inequalities are notfa
et-indu
ing for P (G; d; s; 0). The same arguments from the proof of Proposition 6.14 
anbe applied to establish this result.Proposition 6.16 Let i 2 V and 
onsider disjoint 
liques K;K 0 � N(i) (K or K 0 may beempty). The inequality Xj2K(rj � lj) + Xj2K0 djxji � li +Xj2K �djxij (6.19)is valid for P (G; d; s; g).Unfortunately, inequality (6.19) does not ne
essarily de�ne a fa
et of P (G; d; s; g) sin
ewe may not be able to �nd feasible solutions satisfying it at equality with some interval I(j),with j 2 K, lo
ated to the right of I(i). The rest of this se
tion provides a stronger inequalityfor this 
ase, by applying lifting pro
edures for the 
oeÆ
ients on the variables xij , for j 2 K.As we shall see, the 
al
ulation of these 
oeÆ
ients is a diÆ
ult task, and we devise in Se
tion6.5.3 a pro
edure for heuristi
ally bounding their values.Theorem 6.17 Let i 2 V and 
onsider disjoint 
liques K;K 0 � N(i) su
h that for everynode j 62 K [K 0 [ fig there exists some node k 2 K with jk 62 E. Then, the inequalityXj2K(rj � lj) + Xj2K0 djxji � li (6.20)de�nes a fa
et of P (G; d; s; 0) \ fy 2 R2n+m : yxji = 1 8j 2 Kg if s� !(G; d).Proof. Let P 0 = fy 2 P (G; d; s; 0) : yxji = 1 8j 2 Kg, and let F be the fa
e of P 0 de�ned by(6.20). Suppose �T y = �0 for every point y 2 F . We will prove that (�; �0) is a multiple of(6.20), thus showing that this inequality indu
es a fa
et of P 0.116



The te
hnique applied in the proof of Theorem 6.10 
an be used to prove that there existssome � 2 R su
h that �rj = ��lj = � for j 2 K, and �xjk = 0 for j; k 2 K. Moreover, it isnot hard to see that �li = ��.

Figure 6.10: Constru
tions for the proof of Theorem 6.17.We now prove �lj = �rj = 0 for j 62 K [ fig. To this end, 
onsider the points y1 andy2 de�ned in Figure 6.10(a) and Figure 6.10(b), respe
tively. These points are in F , hen
e�lj = 0. A similar argumentation yields �rj = 0 for j 62 K (note that �ri = 0).For any node j 2 K 0, 
onsider now the two points depi
ted in Figure 6.10(
) and Figure6.10(d). Both points satisfy (6.20) at equality, and we know �ri = �lj = �rj = 0, implyingd(K)�li = [d(K) + dj ℄�li + �xji :Sin
e �li = ��, we 
on
lude �xji = �dj .To 
omplete the proof, we must show �xjk = 0 for the remaining edges jk:Case 1: j; k 62 K [fig. As in the previous 
ases, we 
an 
onstru
t a point in F with K tothe left of I(i), K 0 to the right of I(i), and no spa
e between the intervals I(j) and I(k), I(j)being before I(k). If we now swap these two intervals, we get another point in F , showing�xjk = 0. 3Case 2: j = i and k 62 K [K . By the hypothesis, there exists some k0 2 K su
h thatk0k 62 E. We 
an 
onstru
t a feasible solution y 2 P 0 with yrk0 � ylk0 � dk (Figure 6.11(a)),so that we 
an put I(k) \inside" K0 (Figure 6.11(b)). These two points satisfy (6.20) atequality, hen
e �xjk = 0. 3Case 3: j 62 K and k 2 K. Applying the same pro
edure used in the previous 
ase, we
an 
onstru
t two points with I(j) lo
ated to the left and to the right of I(k), respe
tively.Case 2 implies �xij = 0, hen
e �xjk = 0. 3 117



Figure 6.11: Constru
tions for the proof of Theorem 6.17.Case 4: j 2 K , k 2 K. Consider the two points depi
ted in Figure 6.11(
) and Figure6.11(d). These points are in F , and we know �lj = �rj = 0, so�lk Xl2Knfkg dl + �rk Xl2K dl = �lk�dj + Xl2Knfkg dl�+ �rk�dj +Xl2K dl�+ �xjk :But �lk = �� and �rk = �, hen
e �xjk = 0. 3Therefore, we show � = ��, proving that (6.20) de�nes a fa
et of P 0. 2Note that we do not need a 
overing 
lique in order to establish Theorem 6.17. To obtaina valid and fa
et-de�ning inequality for P (G; d; s; 0) from (6.20), we 
an 
onsider a liftingpro
edure over the variables xij (j 2 K), that are set to 0 in P (G; d; s; 0) \ fy 2 R2n+m :yxji = 1 8j 2 Kg. Consider any �xed lifting sequen
e, and let �j denote the maximumlifting 
oeÆ
ient for xij with j 2 K. We then get the following inequality, de�ning a fa
et ofP (G; d; s; 0): Xj2K(rj � lj) + Xj2K0 djxji � li + Xj2K �jxij : (6.21)Unfortunately, the 
al
ulation of these lifting 
oeÆ
ients is NP-hard. Consider the �rst liftedvariable xij , and de�ne the de
ision problem asso
iated with �j as follows:Clique-Interval inequality liftingInstan
e: A graph G = (V;E) and integers k and s. A node i 2 V ,node sets K;K 0 � V as above, and some node j 2 K.Question: Is �j (de�ned as above) greater or equal than k?Theorem 6.18 Clique-Interval inequality lifting is NP-hard.Proof. Consider the feasibility problem for 
hromati
 s
heduling polytopes:118



Figure 6.12: Constru
tion of H from G.Chromati
 s
heduling feasibilityInstan
e: A weighted graph (G; d) and an integer s0.Question: Is P (G; d; s0; 0) nonempty?Re
all that Corollary 1.2 implies that Chromati
 s
heduling feasibility isNP-
omplete.We shall 
onstru
t a redu
tion of this problem to Clique-Interval inequality lifting.Given (G; d) and s0, 
onstru
t a new graph H = (VH ; EH) with VH = V [ fi; jg and EH =E [ fjk : k 2 V g [ fijg (see Figure 6.12). De�ne K = fjg and K 0 = ;, and take s = s0 + djand k = dj . We 
laim that P (G; d; s0; 0) 6= ; if and only if �j � k.If. Suppose that �j � k. If we de�ne Pj = fy 2 P (G; d; s; 0) : yxij = 1g, the maximumlifting 
oeÆ
ient �j for xij is:�j = maxy2Pj h Xt2K(yrt � ylt) + Xt2K0 dtyxti � ylii = maxy2Pj [yrj � ylj � yli ℄:Suppose that y� realizes this maximum, and that y�rj � y�lj � y�li � k = dj . This solution musthave y�li = 0, otherwise we 
ould shift I(i) to the left, obtaining a better value for �j (notethat this shifting is feasible sin
e the only neighbor of the node i is j, and I(j) is lo
ated tothe right of I(i)). Sin
e y�rj � y�lj � dj and jk 2 EH for all k 2 V , we 
an 
onstru
t a feasiblesolution y0 of P (G; d; s0; 0) in the following way (see Figure 6.13):y0lk = � y�lk if y�xjk = 0y�lk � (y�rj � y�lj ) otherwisey0rk = � y�rk if y�xjk = 0y�rk � (y�rj � y�lj ) otherwisey0xkl = y�xklThis 
onstru
tion shifts the intervals lo
ated to the right of I(j) at least dj units to the left.Now maxk2V (y�rk) � s implies maxk2V (y0rk) � s � dj = s0, hen
e y0 2 P (G; d; s0; 0) and soP (G; d; s0; 0) is nonempty.Only if. If P (G; d; s0; 0) is nonempty, then we 
an transform any feasible solution into apoint y 2 Pj by adding the interval I(i) with li = 0 and ri = di, and interval j with lj = s0and rj = s. This new solution y0 has y0rj � y0lj � y0li = s� s0 = dj = k, showing that �j � k.Therefore, Clique-Interval inequality lifting is NP-
omplete. 2119



Figure 6.13: Constru
tion of y0 (�g. (b)) from y� (�g. (a)).6.5.3 Upper bounds for the lifting 
oeÆ
ientsSin
e the lifting 
oeÆ
ients �j introdu
ed above are diÆ
ult to 
al
ulate, we 
an 
onsider torepla
e ea
h 
oeÆ
ient by an upper bound, thus maintaining validity (although not ne
es-sarily fa
etness). This se
tion shows a simple pro
edure for 
al
ulating su
h upper bounds.Note that this is a priori a nontrivial issue, sin
e the generation of upper bounds for these
oeÆ
ients is in a sense the dual of the lifting maximization problem. This se
tion devel-ops, by 
ombinatorial arguments, a dual for this problem whose feasible solutions are easyto 
al
ulate, so they 
an be used for heuristi
ally generating upper bounds for the lifting
oeÆ
ients.Lemma 6.19 �j � 0 for every j 2 K.Proof. Suppose that the variables xil for l 2 L have already been lifted, and de�ne PL = fy 2P (G; d; s; 0) : yxil = 0 for l 2 KnLg. Then, �j = maxy2PL[fjg g(y), withg(y) = Xk2K(yrk � ylk) + Xk2K0 dkyxik � yli �Xk2L�kyxik :We now 
onstru
t a point �y with g(�y) � 0, thus proving �j � 0. The point �y has all intervals
orresponding to K 0 [Knfjg lo
ated to the left of I(i), ea
h with length equal to its demand(i.e., �yrk � �ylk = dk). Furthermore, we leave no empty spa
e between them, and no emptyspa
e between the last interval and I(i) (see Figure 6.14), so thatXk2Knfjg(�yrk � �ylk) + Xk2K0 dk�yxij � �yli :
Figure 6.14: Constru
tion of �y.120



Moreover, we have �yxit = 0 for every t 2 L, and so Pt2L �t�yxit = 0. Thus,g(�y) = Xk2K(�yrk � �ylk) + Xk2K0 dk�yxik � �yli �Xt2L�t�yxit= (�yrj � �ylj ) + Xk2Knfjg(�yrk � �ylk) + Xk2K0 dk�yxik � �yli= �yrj � �ylj � 0Therefore g(�y) � 0, implying �j � 0. 2Using Lemma 6.19 we 
an now obtain a lower bound for ea
h �j. As in the previousproof, assume that the variables xil for l 2 L have been lifted and let y 2 PL[fjg \ Z2n+mbe a point with yxij = 1. Partition K = Ay [ By su
h that Ay = ft 2 K : yxti = 1g andBy = ft 2 K : yxti = 0g (note that j 2 By). Then,Xt2K(yrt � ylt) + Xt2K0 dtyxti � yli �Xt2L�txit (6.22)� Xt2K(yrt � ylt) + Xt2K0 dtyxti � yli= h Xt2Ay(yrt � ylt) + Xt2K0 dtyxti � ylii+ Xt2By(yrt � ylt)� Xt2By(yrt � ylt)The �rst inequality holds be
ause �j � 0 (by Lemma 6.19), and the last inequality holdssin
e Ay [K 0 is a 
lique and all its 
orresponding intervals are allo
ated to the left of I(i),hen
e Xt2Ay(yrt � ylt) + Xt2K0 dtyxti � yli :Let C(y) = fT � V : By � T and T is a 
liqueg and 
onsider any T 2 C(y). We obtainXt2By(yrt � ylt) � s� Xt2V nBy(yrt � ylt)� s� Xt2TnBy(yrt � ylt) (6.23)� s� Xt2TnBy dtThis last inequality is valid for any T 2 By, sog(y) � miny2PL[fjg �s� d(TnBy)�De�ne S = fT � V : T is a 
lique and T \K 6= ;g. For every T 2 S, we have that T 2 C(z)for some point z su
h that zxit = 1 for t 2 T \K. Moreover, s � d(TnBy) � s � d(TnK),sin
e By � K. Then, miny2PL[fjg �s� d(TnBy)� � minT2S �s� d(TnK)�: (6.24)121



Thus, by 
ombining (6.22), (6.23) and (6.24), we get:�j � minT2S h s� d(TnK) i: (6.25)We 
an 
ompute an upper bound on �j by heuristi
ally generating 
liques in S and takingthe minimum of s� d(TnK) over all the generated 
liques.6.5.4 Complexity of the separation problemTo 
on
lude our analysis of the 
lique-interval inequalities, we state in this se
tion a negativeresult 
on
erning the 
omplexity of the asso
iated separation problem. Sin
e the proof of thisfa
t is similar to the 
omplexity analyses presented previously for other families of inequalities,we only give the redu
tion that establishes this result.Clique-Interval inequalities separationInstan
e: A point z 2 PLP (G; d; s; g).Question: Does z violate a 
lique-interval inequality?Theorem 6.20 Clique-Interval inequalities separation is NP-
omplete.Sket
h of proof. Let (H; k) be an instan
e of Max-Clique (that 
onsists in de
iding whether!(H) � k or not). Constru
t a graph G = (V;E) from H = (VH ; EH) by the addition of auniversal node i, i.e., V = VH [fig and E = EH [fij : j 2 VHg. Furthermore, set s = 2n+1and de�ne the point z 2 PLP (G;1; s; g) by zlj = n for j 2 VH and zli = k=2. Moreover, setzrj = zlj + 1 for every j 2 V and zxjk = 1=2 for every jk 2 E. The point z violates some
lique-interval inequality if and only if !(H) � k. 2
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Chapter 7
Con
luding remarksand open problems

Very re
ent mathemati
al work on the traveling salesmanproblem (...) indi
ates that the problem is fundamentally
omplex. It seems very likely that quite a di�erent ap-proa
h from any yet used may be required for su

essfultreatment of the problem. In fa
t, there may well be nogeneral method for treating the problem and impossibil-ity results would also be valuable.{ M. Flood (1956)This thesis 
ontributes an initial study of 
hromati
 s
heduling polytopes by partiallyun
overing their 
ombinatorial stru
ture, presenting �rst 
lasses of valid and fa
et-de�ninginequalities, and addressing the asso
iated separation problems. We brie
y review now theresults presented in the pre
eding 
hapters and point out some important open problems inthis topi
.Emptyness/nonemptynessSolving the bandwidth allo
ation problem in PMP-Systems amounts to determining whetherthe polytopes are empty or not, hen
e emptyness/nonemptyness is a 
ru
ial issue with strongpra
ti
al impli
ations. The 
lique bound resp. 
hromati
 bound gives a 
erti�
ate of emp-tyness resp. nonemptyness, but it would be interesting to strengthen or re�ne these boundsin order to have more pre
ise 
onditions ensuring feasibility/infeasibility of the asso
iatedbandwidth allo
ation problem.DimensionA 
entral issue in polyhedral 
ombinatori
s is to 
al
ulate the dimension of the polytopesin question. As we have seen, obtaining the dimension of 
hromati
 s
heduling polytopes123



is a diÆ
ult task, both 
omputationally and theoreti
ally. We know that the dimension isa nonde
reasing fun
tion of the frequen
y span and that P (G; d; s; g) and R(G; d; s; g) arefull-dimensional if s � 
(G; d; g), but there are many open questions 
on
erning the 
ases < 
(G; d; g). Se
tion 3.2 provides partial results for the uniform 
ase and for parti
ular
lasses of interferen
e graphs. One important 
ase is given by the instan
es with uniformdemand d = 1, but even in this setting we do not have a 
omplete 
hara
terization of thedimension yet (note that this 
ase 
orresponds to the usual graph 
oloring problem, whi
h isalready a hard problem). Re
all that 
(G;1; 0) = �(G) + 2 holds in this setting.Problem 1 Can we 
hara
terize the dimension of the polytopes R(G;1; s; 0) and P (G;1; s; 0)for s = �(G) and s = �(G) + 1?We know that both polytopes have full dimension if s � �(G)+2 and, furthermore, Se
tion3.2 provides a partial 
hara
terization of the dimension of R(G;1; s; 0) when s = �(G) + 1.However, a 
omplete 
hara
terization of the dimension in the uniform 
ase is still not known.A more modest problem is to provide 
onditions ensuring full-dimensionality in the uniform
ase. Here, the following question remains unanswered.Problem 2 For whi
h interferen
e graph G are R(G;1; �(G); 0) and P (G;1; �(G); 0) full-dimensional?These open questions are parti
ular 
ases of a more general unsolved problem 
on
erning
hromati
 s
heduling polytopes, namely the existen
e of a formula for the dimension of thepolytopes for arbitrary interferen
e graphs and general node weights. The most generalquestion is the following.Problem 3 Do there exist formulas for the dimension of P (G; d; s; g) and R(G; d; s; g) interms of standard graph parameters? How does the node weighting a�e
t su
h a formula?It is not 
lear whether this question 
an be answered aÆrmatively, sin
e 
al
ulating thedimension proves to be a diÆ
ult issue even for uniform instan
es. Having a 
omplete 
har-a
terization of the dimension would help to establish fa
etness properties of valid inequalitiesfor these polytopes. Based on the bounds given in Se
tion 3.2, we have been able to providefa
etness results for a number of valid inequalities in the 
ase s � smin(G; d; g) + O(1)dmax.However, full knowledge of the dimension would help to give 
omplete 
hara
terizations ofthe fa
et-de�ning 
ases of ea
h valid inequality.Combinatorial stabilitySe
tion 3.3 shows that the polytopes R(G; d; s; g) and R(G; d; s+ 1; g) resp. P (G; d; s; g) andP (G; d; s + 1; g) are aÆnely isomorphi
 if s > 2�(G; d; g), but empiri
al eviden
e suggeststhat only s > �(G; d; g) is needed to establish this isomorphism. As shown in that se
tion, if124



every 
onne
ted 
omponent of G is a 
lique, then R(G; d; s; g) �= R(G; d; s+ 1; g) if and onlyif s > �(G; d; g). Therefore, it is natural to ask whether this is the 
ase for arbitrary graphs.Problem 4 Is R(G; d; s; g) �= R(G; d; s+ 1; g) for s > �(G; d; g)?.The proof te
hnique presented in Se
tion 3.3 
onstrains the 
ondition to be s > 2�(G; d; g),so a di�erent idea should be employed to prove this more general assertion.SymmetryThe symmetry of 
hromati
 s
heduling polytopes is a very parti
ular theoreti
al property.The most remarkable aspe
t of this property is that it provides results for proving fa
etnessindependently of the dimension of the asso
iated polytopes. This turns out to be a valuabletool for identifying fa
et-indu
ing inequalities in a 
ontext where the dimension of the poly-topes is still unknown. It would be interesting to develop further impli
ations of symmetryrelated to the sear
h for fa
ets.Problem 5 Can we further exploit the spe
ial symmetry of P (G; d; s; g) and R(G; d; s; g) toprovide theoreti
al tools for identifying fa
et-de�ning inequalities?Valid inequalities and fa
etsSin
e the bandwidth allo
ation problem in PMP-Systems is NP-
omplete, we 
annot ex-pe
t a 
omplete 
hara
terization of 
hromati
 s
heduling polytopes unless NP = 
o-NP[42℄.However, many families of fa
et-indu
ing inequalties are obtained here, whi
h en
ouragesthe use of 
utting plate methods for solving this problem. Covering 
liques prove to be auseful 
onstru
tion for the development of fa
ets, and Chapter 5 introdu
es several 
lassesof fa
et-indu
ing inequalities arising from su
h stru
tures in the interferen
e graph. Hen
e,developing these ideas further seems to be a promising line for future studies of 
hromati
s
heduling polytopes.Problem 6 Can we devise further generalizations (as in Se
tion 5.3) of 
overing-
lique in-equalities?Problem 7 Can we devise further extensions (as in Se
tion 5.3.3) of the standard double
overing-
lique inequalities?On the other hand, Chapter 6 presents a number of 
lasses of fa
et-indu
ing inequalitiesbased on di�erent stru
tures of the interferen
e graph. Some families arise as variationsof inequalities from the linear ordering polytope, whereas the remaining ones seem to be125



parti
ular to 
hromati
 s
heduling polytopes. The families presented in Se
tion 4.3, whi
honly are valid for small frequen
y spe
trums, are of pra
ti
al importan
e as they 
ould serveas 
utting planes for the hardest instan
es in pra
ti
e.Problem 8 Find new 
lasses of fa
et-indu
ing inequalities, either arising as variations ofknown fa
ets for related polyhedra or being parti
ular to 
hromati
 s
heduling polytopes.Problem 9 Find 
lasses of valid inequalities for small frequen
y spe
trums, and 
hara
terizethe 
ases where these inequalities indu
e fa
ets.The last issue seems to be a diÆ
ult one, sin
e fa
etness is hard to analyze when thefrequen
y spe
trum is small. When [0; s℄ is large, we 
an easily 
onstru
t feasible solutionsand prove fa
etness this way. However, when s = !(G; d) +O(1), the 
onstru
tion of feasiblesolutions be
omes more involved and, therefore, it is more diÆ
ult to prove fa
etness in this
ase. The only known way to a

omplish this task relies on symmetry arguments. This showshow important the spe
ial symmetry of 
hromati
 s
heduling polytopes is for our purposes.Separation problemsThe pra
ti
al implementation of a 
utting plane approa
h involves routines for eÆ
ientlyidentifying violated valid inequalities. Therefore, the separation problem for the known 
lassesof inequalities is not only of theoreti
al interest but also of pra
ti
al importan
e in a 
uttingplane environment. Throughout this work we proved that many of the nontrivial families ofvalid inequalities have NP-
omplete separation problems. This implies that a more detailedstudy must be 
arried out 
on
erning these separation problems.Problem 10 For ea
h 
lass of valid inequalities, identify parti
ular 
ases where the separa-tion problem is polynomially solvable.Problem 11 For ea
h 
lass of valid inequalities with NP-
omplete separation problems, de-velop e�e
tive and fast heuristi
s for the 
orresponding separation problem.Problem 12 Find polynomially separable super
lasses of valid inequalities with NP-
ompleteseparation problems. * * *The re
ent progress at exa
tly solving 
ombinatorial optimization problems by integerprogramming te
hniques and the 
onsequent interest that these a
tivities have generated area motivation to multiply the e�orts within this �eld. This work 
onstitutes a 
ontribution inthis dire
tion, by 
ontinuing the polyhedral study of a problem with important appli
ations,126



namely the bandwidth allo
ation problem in PMP-Systems. Su
h polyhedral investigationsare the �rst steps for the su

essful implementation of 
utting plane approa
hes, and we hopethat this work may 
ontribute to the pra
ti
al solution to optimality of real-world instan
esof this problem in a near future.
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Appendix A
Summary of valid inequalities

This problem is of 
ourse a linear programming problem,and hen
e may be solved by Dantzig's simplex algorithm.However, for the 
ow problem, we shall des
ribe whatappears to be a 
onsiderably more eÆ
ient algorithm; itis, moreover, readily learned by a person with no spe
ialtraining, and may easily be me
hanized for handling largenetworks.{ L. Ford and D. Fulkerson (1955)This appendix summarizes the fa
et-indu
ing inequalities presented in Chapter 4, Chapter5, and Chapter 6. We also provide a short 
omment on fa
etness results and the 
omplexityof the asso
iated separation problems, for the families where this information is known.Triangle inequalities. Let T = fi; j; kg be a triangle of G. The following are the triangleinequality asso
iated with T and its symmetri
 inequality, respe
tively.xij + xjk + xki � 2xij + xjk + xki � 1If P (G; d; s; g) 6= ;, then both inequalities de�ne fa
ets of R(G; d; s; g) and P (G; d; s; g),independently of the dimension of the polytopes (see Se
tion 4.2). The separation problemfor triangle inequalities by 
omplete enumeration is 
learly polynomial.4-path inequalities. Let i; j; k; l 2 V be four nodes of G su
h that ij, jk, kl 2 E and nofeasible solution of P (G; d; s; g) has the ordering i! j ! k ! l. The inequalityxij + xjk + xkl � 2is the 4-path inequality asso
iated with the path fi; j; k; lg, and is valid and fa
et-indu
ing forR(G; d; s; g) and P (G; d; s; g) (see Se
tion 4.3). The separation problem for 4-path inequalities
an be solved in polynomial time by 
omplete enumeration.Paw inequalities. Let i; j; k; l 2 V be four distin
t nodes of G su
h that fi; j; kg indu
es atriangle and jl 2 E. Furthermore, suppose that no feasible solution of P (G; d; s; g) has the129



ordering i! j ! k and j ! l. The inequalityxjk + xjl � 1 + xjiis the paw inequality asso
iated with the nodes fi; j; k; lg, and is valid and fa
et-indu
ingfor R(G; d; s; g) and P (G; d; s; g) (see Se
tion 4.3). Again, the separation problem for pawinequalities is polynomially solvable by 
omplete enumeration.Extended paw inequalities. Let 1; : : : ; 5 2 V be �ve distin
t nodes su
h that 12; 23 2 Eand f3; 4; 5g form a triangle inG. Moreover, assume that no feasible solution has the orderings1! 2! 3! 4, 1! 2! 3! 5 and 2! 3! 4! 5. The inequalityx34 + x35 � x21 � 2x32 (A.1)is the extended paw inequality asso
iated with the nodes f1; : : : ; 5g. The extended paw in-equalities are valid and fa
et-indu
ing for R(G; d; s; g) and P (G; d; s; g), and the 
orrespondingseparation problem 
an be solved in polynomial time by 
omplete enumeration (see Se
tion4.3).Covering-
lique inequalities. Let i 2 V be a node of G, and let K be 
lique 
overingN(i). The 
overing-
lique inequality asso
iated with i and K, and its symmetri
al inequalityare Xk2K dk xki � lis�Xk2K dk xik � riIf s � smin(G; d; 0) + 3dmax, the 
overing-
lique inequalities de�ne fa
ets of P (G; d; s; 0)(see Se
tion 5.1). The same result holds for R(G; d; s; 0) if we repla
e ri by li + di in thesymmetri
 inequality. The separation problem for 
overing-
lique inequalities isNP-
omplete(see Se
tion 5.1.1). These inequalities are also valid if g > 0 but may not de�ne fa
ets in this
ase. A generalization of 
overing-
lique inequalities for the 
ase g > 0 su
h that the resultinginequalities are fa
et-indu
ing is presented in Se
tion 5.1.2.Double 
overing-
lique inequalities. Let ij 2 E be an edge of G, and let K be a 
lique
overing N(i) \N(j). The double 
overing-
lique inequality asso
iated with ij and K isri +Xk2K dk(xik � xjk) � lj + (s� d(K))xji:If s � smin(G; d; 0)+4dmax, the double 
overing-
lique inequalities de�ne fa
ets of P (G; d; s; 0),and the same holds for R(G; d; s; 0) if we repla
e ri by li+di (see Se
tion 5.2). The symmetri
inequality of a double 
overing-
lique inequality is again a double 
overing-
lique inequality.Again, this 
onstru
tion 
an be generalized for the 
ase g > 0, and the resulting fa
et-indu
inginequalities are presented in Se
tion 5.2.3. The separation problem for double 
overing-
liqueinequalities is NP-
omplete (see Se
tion 5.2.2).Reinfor
ed 
overing-
lique inequalities. Let i 2 V be a node of G and �x a 
liqueK � N(i). Furthermore, let K 0 be a 
lique 
overing N(i)nK. The inequalityXk2K dkxki + Xk2K0 
K(k)xki � li130



is the reinfor
ed 
overing-
lique inequality asso
iated with K and K 0. These inequalitiesindu
e fa
ets of P (G; d; s; 0) and R(G; d; s; 0) if s � smin(G; d; 0) + 3dmax (see Se
tion 5.3.1).The reinfor
ed double 
overing-
lique inequalities are de�ned similarly.Repli
ated 
overing-
lique inequalities. Fix a node i 2 V and let K be a 
lique 
overingN(i). Consider a 
lique Q 2 V nN(i) and a subset K 0 � K with jK 0j = jQj su
h that everynode k 2 K 0 is adja
ent to some node pk 2 Q, and su
h that these adja
en
ies form a bije
tionbetween K 0 and Q. The inequalityXk2K dkxki + Xk2K0 
K(pk)(xpkk � xik) � liis the repli
ated 
overing-
lique inequality asso
iated with the 
liques K and Q. If s �smin(G; d; 0) + 3dmax, the repli
ated 
overing-
lique inequalities de�ne fa
ets of P (G; d; s; 0)and R(G; d; s; 0) (see Se
tion 5.3.2).Extended double 
overing-
lique inequalities. Let i; j 2 V be two adja
ent nodes, andlet K be a 
lique 
overing N(i) \ N(j). Furthermore, �x some node t 2 N(j)nN(i). Theinequality ri +Xk2K dk(xik � xjk) � lj + 'xji + 'txjtis the extended double 
overing-
lique inequality asso
iated with K and t where ' = s �d(KnA(K; t)) and 't = dt � d(A(K; t)). If s � smin(G; d; 0) + 4dmax, then this inequalityindu
es a fa
et of P (G; d; s; 0), and the same holds for R(G; d; s; 0) if we repla
e ri by li + di(see Se
tion 5.3.3). The symmetri
 family is a new family of fa
ets.2-extended double 
overing-
lique inequalities. Let i; j 2 V be two adja
ent nodes ofG, and let K be a 
lique 
overing N(i)\N(j). Moreover, let p 2 N(i)nN(j) and t 2 N(j)nK.The following is the 2-extended double 
overing-
lique inequality asso
iated with K and nodest and p ri +Xk2K dk(xik � xjk) � lj + '0xji + 'pxpi + 'txjt;where the 
oeÆ
ients '0, 't and 'p are de�ned in Se
tion 5.3.3. If s � smin(G; d; 0) + 4dmax,then the 2-extended double 
overing-
lique inequalities are fa
et-indu
ing for P (G; d; s; 0),and the same holds for R(G; d; s; 0) if we repla
e ri by li + di.Closed double 
overing-
lique inequalities. Let i; j 2 V be two adja
ent nodes of G, andlet K be a 
lique 
overing N(i) \ N(j). Moreover, let p 2 N(i)nN(i) and t 2 N(j)nK su
hthat pt 2 E and pk; tk 2 E for all k 2 K. The following is the 
losed double 
overing-
liqueinequality asso
iated with K and the nodes t and pri +Xk2K dk(xik � xjk) � lj + '00xji + 'pxpi + 'txjt � 'ptxpt;where the 
oeÆ
ients for the ordering variables in the RHS are de�ned in Se
tion 5.3.3. Ifs � smin(G; d; 0)+4dmax, then these inequalities (5.24) indu
e fa
ets of P (G; d; s; 0), and thesame is true for R(G; d; s; 0) if we repla
e ri by li + di.131



4-
y
le inequalities. Let 1; 2; 3 2 V be three nodes su
h that 12; 23 2 E, and let K be a
lique 
overing N(1) \N(3). Assume w.l.o.g. that K = f4; : : : ; tg. The inequalityl1 + l2 � Xk2K �k(x3k � x1k) + �is the 4-
y
le inequality asso
iated with these nodes, where �k = dk+d3 if k = 4 and �k = dkotherwise, and � = minfd1; d2; d3g. If N(1) \ N(2) \ N(3) = ; and s � smin(G; d; 0) +O(1)dmax, then these inequalities de�ne fa
ets of P (G;1; s; 0) and R(G;1; s; 0) (see Se
tion6.1).Cy
le-order inequalities. Let C = f1; : : : ; kg be a k-
y
le in G. The following inequalitiesare the 
y
le-order inequality asso
iated with C and its symmetri
al inequality, respe
tively.x12 + x23 + : : :+ xk�1;k + xk1 � k � 1x12 + x23 + : : :+ xk�1;k + xk1 � 1These inequalities are fa
et-de�ning for s > smin(G; d; g) + O(1)dmax if and only if C is a
hordless 
y
le (see Se
tion 6.2). The separation problem for 
y
le-order inequalities 
an besolved in O(m2n) time.Odd hole inequalities. Let C = f1; : : : ; ng be an odd hole of the interferen
e graph.The following inequalities are the odd hole inequality asso
iated with C and its symmetri
alinequality, respe
tively. nXi=1 li � n+ 32nXi=1 ri � s� n+ 32Both inequalities indu
e fa
ets of P (G;1; s; 0) for s � smin(G; d; 0) + 3. In the parti
ular
ase G = Cn (with n � 5 an odd integer), the odd hole asso
iated with Cn indu
es fa
ets ofP (Cn;1; s; 0) for s � 3 (see Se
tion 6.3). The same results apply to the �xed-length polytopeR(G;1; s; 0) if we repla
e ri by li + di in the se
ond inequality. A super
lass of the odd holeinequalities 
an be separated in polynomial time.Interval-sum inequalities. If K � V is a not ne
essarily maximal 
lique, then the inequal-ity Xk2K rk � lk � sis the interval-sum inequality asso
iated with K. If the interferen
e graph is 
omplete and wetake K = V , then this inequality indu
es a fa
et of P (Kn; d; s; 0) if and only if s > Pni=1 di.For arbitrary interferen
e graphs and s� !(G; d), the interval-sum inequality de�nes a fa
etof P (G; d; s; 0) if and only if K is a maximal 
lique and jKnN(i)j � 2 for every i 62 K (seeSe
tion 6.4). The separation problem for the interval-sum inequalities is NP-
omplete.Clique-interval inequalities. Assume that G is a 
omplete graph. Fix any node i 2 V andpartition V = K [K 0 [ fig, where K or K 0 may be empty. The inequalityXj2K(rj � lj) + Xj2K0 djxji � li +Xj2K �djxij132



is the 
lique-interval inequality asso
iated with K and K 0. This inequality is valid forP (G; d; s; 0) and it is fa
et-indu
ing if and only if s >Pni=1 di. If G is an arbitrary graph we
an generalize this inequality, but this 
onstru
tion involves 
oeÆ
ients whose 
al
ulation isNP-hard (see Se
tion 6.5).
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Appendix B
Basi
s The largest example tried was a 20�20 optimal assign-ment problem. For this example, the simplex methodrequired well over an hour, the present method aboutthirty minutes of hand 
omputation.{ L. Ford and D. Fulkerson (1956)B.1 Graph theoryA graph G = (V;E) 
onsists of a �nite nonempty set V of nodes and a �nite set E of unorderedpairs of distin
t points of V , 
alled edges. If e = fi; jg 2 E is an edge, we say that e joins thenodes i and j, and we brie
y write e = ij. Two nodes that are joined by an edge are 
alledadja
ent or neighbors. The neighborhood of a node i 2 V is NG(i) = fj 2 V : ij 2 Eg. Ifthere is no danger of 
onfusion, we just denote this neighborhood by N(i). A node i 2 V isuniversal if N(i) = V nfig, i.e., if it is adja
ent to all the remaining nodes.If A � V , we de�ne the neighborhood of A as N(A) = fj 2 V : ij 2 E for some i 2 Ag.We also de�ne the edge sets E(A) = fij 2 E : i 2 A and j 2 Ag and Æ(A) = fij 2 E : i 2 Aand j 62 Ag. We also use the notation Æ(i) = Æ(fig). If A;B � V are disjoint node sets,we de�ne E(A;B) = fij 2 E : i 2 A and j 2 Bg. A graph G0 = (V 0; E0) is a subgraph ofG = (V;E) if V 0 � V and E0 � E. The subgraph of G indu
ed by a node set A � V isGA = (A;E0), with E0 = E(A). Su
h a graph is 
alled an indu
ed subgraph of G.A sequen
e of distin
t nodes v1; : : : ; vk is a path in G if vivi+1 2 E for i = 1; : : : ; k � 1.The number k is the length of this path. For n � 1, we denote by Pn = (V;E) the graph onn nodes su
h that V = f1; : : : ; ng and E = fi; i+1 : i = 1; : : : ; n� 1g. A sequen
e of distin
tnodes v1; : : : ; vk is a 
y
le in G if vivi+1 2 E for i = 1; : : : ; k� 1 and v1vk 2 E. The number kis the length of this 
y
le. A 
y
le with length 3 is 
alled a triangle. A 
y
le is odd resp. evenif its length is odd resp. even. Every edge vivj in the subgraph of G indu
ed by the nodesv1; : : : ; vk with j 6= i+ 1 is a 
hord of the 
y
le. A 
y
le with no 
hords is 
alled a 
hordlessor indu
ed 
y
le or a hole, if it has length at least 4. An odd 
hordless 
y
le is 
alled an oddhole. For n � 1, we denote by Cn = (V;E) the graph on n nodes su
h that V = f1; : : : ; ng135



and E = fi; i + 1 : i = 1; : : : ; n� 1g [ f1ng. A graph is 
alled a wheel if it is 
omposed by a
y
le with the addition of a universal node. We denote by Wn the wheel on n nodes.A graph is 
alled 
omplete if every two nodes are joined by an edge. A 
lique in a graph Gis a set of nodes indu
ing a 
omplete subgraph of G (note that we do not require this set to bemaximal). We denote by !(G) the size of a largest 
lique of G, also 
alled the 
lique numberof G. We denote by Kn the 
omplete graph on n nodes. A stable set is a set of nodes any twoof whi
h are nonadja
ent. A 
oloring of G is a partition of V into disjoint stable sets. We
all a 
oloring using k stable sets a k-
oloring, and denote by �(G) the minimum number ofstable sets needed for su
h a partition of V . This number is also 
alled the 
hromati
 numberof G.A weighted graph is a pair (G; d) su
h that G = (V;E) is a graph and d 2 RjV j is a nodeweighting, asso
iating a number di to every node i 2 V . This number is 
alled the weightof the node i. The weight of a node subset A � V is d(A) = Pi2A di. The weighted 
liquenumber !(G; d) is the largest weight of a 
lique in G.A dire
ted graph or digraph D = (V;A) 
onsists of a �nite nonempty set V of nodes anda �nite set A of ordered pairs of distin
t points of V , 
alled ar
s. If e = (i; j) 2 A is an ar
of D, we simply write e = ij, and we refer to node i resp. j as the tail resp. head of the ar
.The ar
 ij is an outgoing ar
 of node i and an in
oming ar
 of node j.A dire
ted 
y
le is a sequen
e of nodes v1; : : : ; vk su
h that vivi+1 2 A for i = 1; : : : ; k� 1and vkv1 2 A. A digraph whi
h admits no 
y
les is 
alled a
y
li
. A tournament is a 
ompletedigraph, i.e., a digraph su
h that all of its nodes are pairwise adja
ent. A tournament withno 
y
les is 
alled an a
y
li
 tournament. A topologi
al ordering of a digraph D = (V;A)is an ordering v1; : : : ; vn of D su
h that i < j whenever vivj 2 A. Su
h an ordering 
an befound in linear time [3℄.A node-weighted digraph is a pair (D;w) su
h that D = (V;A) is a digraph and w 2 RjV jis a node weighting, asso
iating a number wi to every node i 2 V . An ar
-weighted digraph isa pair (D;u) su
h that D = (V;A) is a digraph and u 2 RjAj is an ar
 weighting, asso
iatinga number uij to every ar
 ij 2 A. For further de�nitions and results on graph theory, werefer to [28℄.B.2 Polyhedral theoryA ve
tor set K is 
onvex if for any two points x; y 2 K it also 
ontains the straight linesegment [x; y℄ = f�x+(1��)y : 0 � � � 1g between them. For any ve
tor set K, the 
onvexhull of K, denoted by 
onv(K), is the smallest (w.r.t. set in
lusion) 
onvex set 
ontaining K,i.e., 
onv(K) = \fK 0 � Rn : K � K 0 and K 0 is 
onvexg. If K = fx1; : : : ; xkg is �nite, we
an equivalently write 
onv(K) as the 
onvex 
ombinations of its ve
tors:
onv(K) = n kXi=1 �ixi : � � 0 and kXi=1 �i = 1 o:136



A 
one C � Rn is a nonempty set of ve
tors su
h that for any �nite set of ve
tors of Cit also 
ontains all their linear 
ombinations with nonnegative 
oeÆ
ients. For an arbitrarysubset K � Rn, we de�ne its 
oni
al hull 
one(K) to be the interse
tion of all 
ones in Rn
ontaining K. If K = fx1; : : : ; xkg is �nite, we 
an write:
one(K) = n kXi=1 �ixi : � � 0 o:The Minkowsi sum or ve
tor sum of two sets P;Q � Rn is de�ned to be P + Q = fx + y :x 2 P; y 2 Qg.A polyhedron P � Rn is the interse
tion of a �nite number of 
losed halfspa
es, i.e.,P = fx 2 Rn : Ax � bg for a matrix A 2 Rm�n and a ve
tor b 2 Rm. Equivalently,polyhedra 
an be des
ribed by the Minkowski sum of a �nitely generated 
onvex hull and a�nitely generated 
oni
al hull, i.e., P = 
onv(K)+
one(W ) for �nite ve
tor sets K;W � Rn.A polytope is a bounded polyhedron. A polytope P 
an just be des
ribed by the 
onvex hullof a �nite set of ve
tors, i.e., P = 
onv(K) for a �nite set K 2 Rn.The ve
tors x1; : : : ; xk 2 Rn are aÆnely independent if Pki=1 �ixi = 0 and Pki=1 �i = 0implies �i = 0 for i = 1; : : : ; k. If P � Rn is a polyhedron and fx0; : : : ; xkg � P is a maximalsubset of aÆnely independent ve
tors of P , then we denote by dim(P ) = k the dimension ofP . If dim(P ) = n, we say that P has full dimension or that P is a full-dimensional polytope.The polytope P has dimension k if and only if a maximal system of linear equations for Phas exa
tly n� k linearly independent equations.A linear inequality 
x � 
0 is valid for a polyhedron P if it is satis�ed by all ve
tors x 2 P .A fa
e of P is any set of the form F = P \ fx 2 Rn : 
x = 
0g, where 
x � 
0 is a validinequality for P . A fa
e F is 
alled proper if F 6= ; and F 6= P . The fa
es of dimensions 0, 1,dim(P ) � 2 and dim(P ) � 1 are 
alled extreme points, edges, ridges and fa
ets, respe
tively.In parti
ular, the verti
es are the minimal nonempty fa
es and the fa
ets are the maximalproper fa
es. The set of all extreme points of P is denoted by vert(P ). Every polytope is the
onvex hull of its verti
es, and if P = 
onv(K) then vert(P ) � K.Two polytopes P � Rn and Q � Rm are aÆnely isomorphi
, denoted by P �= Q, if thereexists an aÆne map f : Rn ! Rm that is a bije
tion between the points of the two polytopes.The polytopes P and Q are 
ombinatorially equivalent if there is a bije
tion between theirfa
es that preserves the in
lusion relation. This is equivalent to a bije
tion between vert(P )and vert(Q) su
h that the extreme points of fa
es of P 
orrespond (under this bije
tion)to the extreme points of fa
es of Q. If two polytopes are aÆnely isomorphi
 then they are
ombinatorially equivalent. For a more thorough treatment of this topi
 we refer to [46℄.B.3 Computational 
omplexityA de
ision problem � 
onsists of a set D� of instan
es and a subset Y� � D� of aÆrmativeinstan
es. The set of instan
es is usually des
ribed by a general de�nition of all its parameters,and the aÆrmative instan
es are de�ned by a yes-no question asked in terms of the problem137



parameters. In this setting, an instan
e of the problem is obtained by spe
ifying parti
ularvalues for all the problem parameters. We assume that ea
h problem has an asso
iateden
oding s
heme, whi
h maps problem instan
es into �nite strings from a given alphabet.The input length of an instan
e I 2 D� is de�ned to be the number of symbols in thedes
ription obtained from the en
oding s
heme for the problem, and is denoted by Length(I).The length fun
tion Length : D� ! Z+ is used as the formal measure of the instan
e size.The time 
omplexity fun
tion TA : Z+ ! Z+ of an algorithm A expresses its time re-quirements by giving, for ea
h possible input length, the largest amount of time needed bythe algorithm to solve a problem of that size. An algorithm A is 
alled a polynomial-timealgorithm if there exists a polynomial p : R! R su
h that TA(n) � p(n) for all n 2 Z+. The
lass P is 
omposed by the problems solvable by a polynomial-time algorithm.A nondeterministi
 algorithm is an algorithm 
omposed of a guessing stage and a 
he
kingstage. Given an instan
e of the problem, the guessing stage nondeterministi
ally generatessome stru
ture. We then provide this stru
ture to the 
he
king stage, whi
h 
omputes ina normal deterministi
 manner and halts either with the answer \yes" or with the answer\no". A nondeterministi
 algorithm solves a de
ision problem if there exists some guessedstru
ture su
h that the 
he
king stage answers \yes" if and only if the instan
e is aÆrmative.A nondeterministi
 algorithm is said to operate in polynomial time if for every aÆrmativeinstan
e there is some guessed stru
ture that leads the 
he
king stage to an aÆrmative answerwithin time bounded by a polynomial in the input size. The 
lass NP is de�ned to be the
lass of all de
ision problems solvable by nondeterministi
 algorithms operating in polynomialtime. Clearly P�NP, but it is not known whether this in
lusion is stri
t or not.A polynomial transformation from a de
ision problem � to a de
ision problem �0 is afun
tion f : D� ! D�0 su
h that f is 
omputable by a polynomial time deterministi
algorithm and, for every I 2 D�, I 2 Y� if and only if f(I) 2 Y�0 . If there is a polynomialtransformation from � to �0, we write � / �0. It is not diÆ
ult to verify that the relationindu
ed by / is transitive and re
exive. A de
ision problem � is de�ned to be NP-
ompleteif � 2NP and �0 / � for all �0 2NP. To prove that a 
ertain de
ision problem � is NP-
omplete, it suÆ
es to show that � 2NP and that �0 / � for some NP-
omplete problem�0. If � is NP-
omplete, then there exists a polynomial-time algorithm solving � if and onlyif P=NP.If � is a de
ision problem, we de�ne the fun
tion Max : D� ! Z+ su
h that Max(I)denotes the magnitude of the largest number in I. An algorithm that solves a problem is
alled a pseudo-polynomial time algorithm if its time 
omplexity is bounded by a polynomialon Length(I) and Max(I). A problem � is a number problem if there exists no polynomialp : R ! R su
h that Max(I) � p(Length(I)) for all I 2 D�. For any de
ision problem �and any polynomial p : Z ! Z, let �p denote the subproblem of � obtained by restri
ting� to only those instan
es I satisfying Max(I) � p(Length(I)). The de
ision problem � isNP-
omplete in the strong sense if � belongs to NP and there exists a polynomial p : Z! Zsu
h that �p is NP-
omplete. If � is NP-
omplete in the strong sense, then there does notexist any pseudo-polynomial time algorithm solving � unless P=NP.
138



Let � and �0 denote arbitrary de
ision problems, with instan
e fun
tions Length andMax, resp. Length0 and Max0, A pseudo-polynomial transformation from � to �0 is a fun
tionf : D� ! D�0 su
h that(a) for all I 2 D�, I 2 Y� if and only if f(I) 2 Y�0 ,(b) f 
an be 
omputed in time polynomial in the two variables Max(I) and Length(I),(
) there exists a polynomial q1 su
h that q1(Length0(f(I)) � Length(I) for all I 2 D�,and(d) there exists a two-variable polynomial q2 su
h that Max0(f(I)) � q2(Max(I);Length(I))for all I 2 D�.Every polynomial transformation is a pseudo-polynomial transformation. If � isNP-
ompletein the strong sense, �0 2NP, and there exists a pseudo-polynomial transformation from � to�0, then �0 is NP-
omplete in the strong sense.A sear
h problem � 
onsists of a set D� of instan
es and, for ea
h instan
e I 2 D�, a setS�(I) of solutions. An algorithm is said to solve a sear
h problem � if, given as input anyinstan
e I 2 D�, it returns some solution belonging to S�(I) whenever this set is nonempty.A polynomial-time redu
tion from a sear
h problem � to a sear
h problem �0 is an algorithmA that solves � by using a hypotheti
al subroutine S for solving �0 su
h that, if S is apolynomial-time algorithm for �0 then A is a polynomial-time algorithm for �. If there existsa polynomial-time redu
tion from � to �0, we write � /R �0. A sear
h problem � is NP-hard if there exists some NP-
omplete problem �0 su
h that �0 /R �. An NP-hard sear
hproblem 
annot be solved in polynomial time unless P=NP.
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Notation index
R the set of real numbersZ the set of integer numbersZ+ the set of non-negative integer numbers2F power set of F1 ve
tor (1; : : : ; 1)T set of 
ustomersS partition of T into se
torsEX interfering pairs of 
ustomers in di�erent se
torsG = (V;E) interferen
e graphEI set of pairs of nodes in the same se
torEX interfering pairs of nodes in di�erent se
torsn number of nodes of Gm number of edges of Gd demand ve
torg guard distan
es length of the frequen
y spe
truma(i) se
tor node i belongs toN(i) neighbor set of node iN(A) neighbor set of the node set Ali; ri interval bound variablesxij ordering variablesI(i) = [li; ri℄ interval assigned to 
ustomer i�S in
iden
e ve
tor of a s
hedule SP (G; d; s; g) 
hromati
 s
heduling polytopeR(G; d; s; g) �xed-length 
hromati
 s
heduling polytopePLP (G; d; s; g) linear relaxation of P (G; d; s; g)RLP (G; d; s; g) linear relaxation of R(G; d; s; g)zli variable li from the in
iden
e ve
tor zzri variable ri from the in
iden
e ve
tor zzxij variable xij from the in
iden
e ve
tor zzl ve
tor (zl1 ; : : : ; zln)zr ve
tor (zr1 ; : : : ; zrn)zx ve
tor (zx1i ; : : : ; zxjn) 141



ext(y) extension of a solution y 2 R(G; d; s; g)red(z) redu
tion of a solution z 2 P (G; d; s; g)sym(z) symmetri
 solutionsmin(G; d; g) minimum frequen
y span su
h that P (G; d; s; g) 6= ;sfull(G; d; g) lower bound ensuring full-dimensionalitysmax(G; d; g) lower bound ensuring 
ombinatorial stabilitydmax maximum demand maxi2V didmin(C) minimum demand maxi2C did(K) summation Pi2K dipK number of se
tors with nonempty interse
tion with K�(C) number of se
tor 
hanges in the 
y
le CÆij minimum distan
e between I(i) and I(j)�(G) 
hromati
 number of G!(G) 
lique number of G!(G; d) weighted 
lique number of (G; d)�(G; d; g) minimum span generating a solution for ea
h orderingCn 
y
le on n nodesPn path on n nodesKn 
omplete graph on n nodesKn;m 
omplete (n;m)-bipartite graphGA subgraph indu
ed by the node subset AE(A) set of edges with both endpoints in AE(A;B) set of edges with endpoints in A and B respe
tivelyFs(G; d) set of nodes i with intervals greater than didim(P ) dimension of the polyhedron PLi(x; s) lower bound for li in [0; s℄ under the ordering xUi(x; s) upper bound for li in [0; s℄ under the ordering xG(y) �xed-length adja
en
y graphH(z) general adja
en
y graph�= aÆne isomorphismvert(P ) extreme points of PP nLO linear ordering polytope on n nodesS� support of the inequality �x � �0
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