Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales

Biblioteca Digital FCEN-UBA

Reacciones nucleares de transferencia inducidas por lones Pesados Tomasi, Dardo Gustavo 1996

Tesis Doctoral

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

www.digital.bl.fcen.uba.ar

Contacto: digital@bl.fcen.uba.ar

Este documento forma parte de la colección de tesis doctorales de la Biblioteca Central Dr. Luis Federico Leloir. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente.

This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir. It should be used accompanied by the corresponding citation acknowledging the source.

Fuente / source: Biblioteca Digital de la Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES

Tema de Tesis

Reacciones Nucleares de Transferencia Inducidas por Iones Pesados

Autor Dardo Gustavo Tomasi

Director de Tesis Jorge O. Fernández Niello

Lugar de Trabajo Departamento de Física Comisión Nacional de Energía Atómica

Tesis presentada para optar al título de Doctor en Ciencias Físicas Agosto 1996 \swarrow 2 8 4 7

Resumen

Esta tesis presenta un estudio de reacciones de transferencia de nucleones entre iones pesados a energías subcoulombianas. Con este propósito se midieron distribuciones angulares de las reacciones de stripping de una y dos cargas en los sistemas ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au. Además se obtuvo información complementaria de la transferencia de nucleones mediante mediciones de coincidencia gama partícula y de rayos gama retardados emitidos durante el decaimiento de los isótopos poblados en dichas reacciones.

A partir de las secciones eficaces diferenciales y las distancias de interacción, suponiendo que los núcleos se mueven sobre trayectorias de Rutherford, se obtuvieron probabilidades de transferencia.

El amplio rango de energías de proyectil, permitió analizar la dependencia de la pendiente de la probabilidad de transferencia como función de la energía incidente. Esta pendiente presentó un comportamiento anómalo que pudo ser comprendido considerando la influencia del potencial nuclear sobre las trayectorias semiclásicas. Ello fue analizado mediante un modelo semiclásico en donde la probabilidad de transferencia está regida por procesos de penetración de barrera y de absorción.

Agradecimientos

Quiero agradecer especialmente a Daniel Abriola, Oscar Capurro, Daniel DiGregorio, Mariana di Tada, Raul Donangelo, Osvaldo Macchiavelli, Daniel Marta, Guillermo Martí, Jorge Fernández Niello, Alberto Pacheco, Jorge Testoni e Ignacio Urteaga quienes aportaron ideas, noches de trabajo, humor y facturas para que esta tesis fuera posible

A mi hija Florencia...

Contenidos

1 Introducción

2	Rea	cciones	de Transferencia de Carga	4
	2.1	Introdu	cción	1
	2.2	La técn	ica de coincidencias partícula gama	(
		2.2.1	El arreglo experimental en la cámara de reacciones	(
	2	2.2.2	El procesamiento electrónico de las señales	1.
		2.2.3	El análisis de los datos	!
	2.3	Medicić	on de las distribuciones angulares	16
		2.3.1	El arreglo experimental en la cámara de reacciones	1(
		2.3.2	El procesamiento electrónico de las señales	18
		2.3.3	El análisis de los datos	19
	2.4	Resulta	dos	20
		2.1.1	Selectividad cinemática	2(
		2.1.2	Secciones elicaces de dispersión	2(
		2.1.3	Funciones de excitación	:3(
3	Otr	os Mod	os de Reacción	34
	3.1	Distrib	aciones angulares	3
		3.1.1	Dispersión elástica	3
		3.1.2	Fusión fisión	37
	3.2	Activid	ad de los productos de reacción	41
		3.2.1	El método experimental	.[]
		3.2.2	Reacciones de fusión evaporación	52
	1	3.2.3	Reacciones de stripping de carga	57
	1	3.2.1	Reacciones de transferencia de neutrones	5!

4	Teo	ría Semiclásica de los Procesos de Transferencia	61
	1.1	La aproximación de Born	61
	4.2^{-1}	Aproximación semiclásica	63
	4.3	Distancia de interacción	61
	4.4	Pendientes anómalas	65
	1.5	Trayectorias clásicas	69
	1.6	Amplitudes de penetración y absorción	73
	1.7	Probabilidad de transferencia	78
5	Con	iclusiones	83
6	Apé	éndice	86
	6.1	Cinemática de dos cuerpos	86
	6.2	Dispersión de Rutherford	88
		6.2.1 Barrera Coulombiana y colisiones rasantes	90
	6.3	El formalismo cuántico	91
		6.3.1 Teoría de la dispersión de las partículas	91
		6.3.2 El modelo óptico	93
		6.3.3 Descripción semiclásica de las probabilidades de transferencia	91

.....

•

.

ŧ,

Tabla 6.1: Listado de Figuras

0

0

•

Nº		pag.
2.1	Coincidencia gama partícula Arreglo experimental	7
2.2	Coincidencia gama partícula – Esquema de la electrónica	8
2.3	Espectros de Energía de partícula	10
2.4	Espectros bidimensionales $\Delta E^{-}E^{-}$	11
2.5	Espectros temporales (TAC)	1:3
2.6	Espectro gama de la excitación Coulombiana	1-1
2.7	Esquema de niveles simplificado de los núcleos ¹⁹⁸ Hg y ¹⁹⁹ Tl	1-1
2.8	Espectro gama de las reacciones de stripping de carga	15
2.9	Distribuciones angulares – Arreglo experimental	17
2.10	Distribuciones angulares — Esquema de la electrónica	18
2.11	Espectros de posición y de distribución de carga	20
2.12	Espectros de las distribuciones del valor Q de reacción	23
2.13	Espectro de valor Q — Transferencia a estados individuales	24
2.11	Corrimiento cinemático de la ventana en el valor Q	25
2.15	Secciones eficaces diferenciales y ángulo de rozamiento	26
2.16	Sección eficaz total de stripping de una y dos cargas	33
3.1	Secciones eficaces diferenciales cuasi elásticas	36
3.2	Relación de dispersión	37
3.3	Energía de los fragmentos de lisión	39
3.4	Secciones elicaces diferencial, y total de lisión	-10
3.5	Actividad de los productos de reacción - Arreglo experimental	12
3.6	Cadenas de los canales de fusión evaporación $3n$ y $4n$ del núcleo 209 At	4-1
3.7	Cadenas de los canales de fusión evaporación $5n$ y $6n$ del núcleo ²⁰⁹ At	45
3.8	Espectros gama de los nucleidos de vida media corta	46
3.9	Cadenas de los canales de fusión evaporación $3n$ y $4n$ del núcleo ²¹³ Fr	-17
3.10	Cadenas de los canales de fusión evaporación 5n y 6n del núcleo ²¹³ Fr	48
3.11	Espectros gama de los nucleidos de vida media larga	51
3.12	Funciones de excitación Canales de evaporación y transferencia	56
3.13	Funciones de excitación – Transferencia de protones y neutrones	60
1.1	Cálculos de DWBA – Comparación con datos experimentales	62
1.2	Sección eficaz cuasielástica y distancia de interacción	65
1.3	Probabilidades de transferencia	67
4.4	Dependencia con la energia de las pendientes	68
4.5	Potenciales de interacción núcleo núcleo	70
1.6	Funciones de deflexión	71
1.7	Trayectorias clásicas y distancia de mayor aproximación	72
1.8	Potencial de interacción nucleón núcleos	7.1
4.9	Amplitudes de absorción, penetración y transferencia	75
1.10	Amplitudes relativas para $E >> V_C$	77.
1.11	Amplitudes relativas para $E \sim V_C$	78
4.12	Interferencia de las trayectorias nuclear y Coulombiana	80
1.13	Probabilidad de transferencia – Cálculos semiclásicos	81

Tabla 6.2: Listado de Tablas

0

. • . • . • • • • • • • • • ٠ ۲ •

.........

•

Nº.		pag.
2.1	Valores de Q_{gg} y de Q_{opt}	22
2.2	Secciones eficaces diferenciales de stripping de carga en el sistema	
	$^{16}\text{O} + ^{197}\text{Au}$ para $E = 110, 90, 85 \text{ y} 80 \text{ MeV}$	27
2.3	Secciones eficaces diferenciales de stripping de carga en el sistema	
	$^{16}\text{O} + ^{197}\text{Au}$ para $E = 77, 76, 75 \text{ y} 71 \text{ MeV}$	28
2.4	Secciones eficaces diferenciales de stripping de carga en el sistema	1
	$^{12}C + ^{197}Au$	29
2.5	Secciones eficaces totales de stripping de carga	31
3.1	Parámetros del modelo óptico	35
3.2	Transiciones electromagnéticas observadas durante el decaimiento de los	r.
	productos de reacción	50
3.3	Secciones eficaces totales de los canales de fusión evaporación xn	57
3.4	Secciones eficaces totales de los canales de transferencia	60

Capítulo 1 Introducción

Las reacciones nucleares entre iones pesados a energías de bombardeo menores que 10 MeV por nucleón dan lugar a una variedad de modos de reacción, desde procesos simples como la dispersión elástica, hasta procesos complicados de transferencia secuencial y fisión.

Las reacciones directas (reacciones elásticas, cuasi-elásticas y reacciones de transferencia) son los modos de reacción que dominan la sección eficaz de reacción para energías de bombardeo menores que la energía de la barrera Coulombiana⁴, donde las fuerzas nucleares de corto alcance entre los núcleos pueden ser consideradas como una perturbación. Este tipo de reacciones ocurre en un tiempo del orden del tiempo de tránsito del proyectil por las cercanias del núcleo blanco ($\approx 10^{-22}$ s) e involucran pocos grados de libertad de los núcleos interactuantes.

Existen otros procesos, como la fusión completa, en los que al interactuar el proyectil y el blanco se forma un estado intermedio (núcleo compuesto), cuya vida media ($\approx 10^{-16}$ s) es mucho mayor que el mencionado tiempo de tránsito. En estas reacciones una gran cantidad de energía y de momento angular del movimiento relativo se reparte entre los nucleones.

Durante los últimos años se ha determinado que estos diferentes tipos de reacciones no son procesos desvinculados entre si, sino que están fuertemente relacionados [1]. Uno de los casos más conocidos de interacción entre diferentes modos de reacción es la influencia de las excitaciones inelásticas sobre las reacciones de fusión y sobre las reacciones de dispersión elástica, a energías de bombardeo menores que la barrera Coulombiana. Además, varios trabajos experimentales han mostrado que las reacciones de transferencia pueden afectar a otros modos de reacción como la dispersión elástica [2, 3] o las reacciones de fusión [1, 4].

⁴En el tratamiento de reacciones nucleares entre iones pesados es costumbre tomar como referencia la energía a la cual el potencial de interacción entre los centros de masas de los dos núcleos interactuantes, suma de una repulsión Coulombiana y de una atracción núclear de corto alcance, tiene un máximo denominado comunmente "barrera Coulombiana" V.-

Las reacciones transferencia de unos pocos nucleones entre dos núcleos que interactuan entre sí tienen un rol importante en la comprensión de la estructura de capas en núcleos esféricos, y por este motivo las reacciones de transferencia con iones livianos han sido estudiadas durante las últimas cuatro décadas. Estas investigaciones han revelado una gran cantidad de aspectos interesantes acerca de la estructura de partícula independiente y de las correlaciones nucleón-nucleón en los núcleos [5]. Por otro lado estas reacciones de transferencia han permitido producir núcleos inaccesibles por otros métodos [6].

Las reacciones de transferencia inducidas por haces de iones pesados pueden ser descritas por modelos semiclásicos que consideran a los núcleos moviéndose sobre trayectorias clásicas. Estos modelos semiclásicos predicen que a energías de bombardeo menores a la barrera Coulombiana, el mecanismo que domina las reacciones de transferencia se basa en que un fragmento nuclear, inicialmente ligado a uno de los carozos nucleares, penetra la barrera de potencial producida por la interacción de los carozos nucleares con el fragmento para ligarse al otro carozo. Por este motivo la sección eficaz total de transferencia tiene un comportamiento exponencial como función de la energía de bombardeo [5]. A energías mayores que la de la barrera Coulombiana los núcleos entran en contacto más profundo y las reacciones de transferencia se producen más fácilmente.

Al igual que las reacciones de fusión subcoulombiana pero en menor medida que estas, las reacciones de transferencia han mostrado una fuerte dependencia debido a la deformación nuclear de los núcleos que participan de la reacción, que se manifiesta como un aumento de la sección eficaz de transferencia de neutrones, debido al efecto geométrico de la deformación nuclear [7]-[9]

•

Una manera usual de presentar las secciones eficaces medidas es a través de la probabilidad de transferencia que se obtiene haciendo el cociente entre la sección eficaz absoluta y la sección eficaz elástica. De esta forma es posible comparar la probabilidad de transferencia experimental con las expectativas teóricas derivadas de modelos semiclásicos [5]. Si bien en muchos sistemas las probabilidades de transferencia de un neutrón observadas son bien reproducidas por los modelos teóricos [8] [13], estos en general fallan en el caso de las reacciones de transferencia de dos neutrones en sistemas deformados.

Las teorías semiclásicas predicen, tanto para procesos de transferencia secuencial como para procesos de transferencia de nucleones apareados, que la pendiente de la probabilidad de transferencia de dos neutrones como función de la distancia entre los carozos nucleares sea aproximadamente el doble de la de un neutrón. Sin embargo, la evidencia experimental muestra que en sistemas deformados ambas pendientes son comparables. A este fenómeno se lo conoce como la anomalía de la pendiente. [14, 15], [17]-[21].

Las reacciones de transferencia de protones han sido menos estudiadas que las de neutrones y la comparación entre diferentes sistemas es más complicada debido a que la interacción Coulombiana repulsiva hace necesaria una mayor superposición de los núcleos. Por este motivo las secciones eficaces de las reacciones de transferencia de protones dependen más fuertemente de la energía que las secciones eficaces de neutrones [18].

Un carácter distintivo de estas reacciones es que se favorece la transferencia de protones del proyectil al blanco (stripping). Las reacciones de transferencia de protones del blanco al proyectil (pickup) tienen lugar en sistemas en los que el proyectil es rico en neutrones, pero de todos modos las secciones elicaces son menores que en el caso de las reacciones de stripping de protones [18].

0

00000000

.

Además de la anomalía mencionada, se ha observado un comportamiento singular de la pendiente de la probabilidad de transferencia como función de la energía de bombardeo. Este comportamiento anómalo no ha podido ser explicado por medio de las teorías semiclásicas comúnmente aceptadas. El objetivo fundamental de esta tesis es investigar en que medida se encuentran presentes en las reacciones de transferencia de protones, las anomalías encontradas en las reacciones de transferencia de neutrones. Para ello se estudiaron los sistemas ${}^{12}C_{+}$ + ${}^{197}Au$ y ${}^{16}O_{-}$ + ${}^{197}Au$ en un amplio rango de energías de bombardeo, cencanas a la energía de la barrera Coulombiana.

La tesis fue organizada del siguiente modo: En el capítulo 2 se detallan los arreglos experimentales utilizados para el estudio de las reacciones de transferencia de carga. Además, en este Capítulo se comparan los datos experimentales obtenidos con los modelos teóricos vigentes. En el capítulo 3 se describen otros modos de reacción observados en estos sistemas, como ser reacciones cuasi-clásticas, reacciones de fusión-evaporación y fusión-fisión, reacciones de transferencia de carga seguidas de evaporación y reacciones de transferencia de neutrones. Un nuevo modelo semiclásico (desarrollado en esta tesis) que explica exitosamente las anomalías encontradas se describe en el capítulo 4. Las conclusiones de la tesis se presentan en el Capítulo 5. En el Capítulo 6 se encuentra un apéndice que incluye los aspectos básicos de la cinemática de las reacciones binarias, de la dispersión de Rutherford y de la teoría cuántica de dispersión por un potencial central, a los que haremos referencia en la tesis.

Capítulo 2

Reacciones de Transferencia de Carga

Este capítulo está dedicado al estudio experimental de las reacciones de transferencia de carga en los sistemas ${}^{12}\text{C} + {}^{197}\text{Au} \times {}^{16}\text{O} + {}^{197}\text{Au}$.

2.1 Introducción

Para estudiar los mecanismos que gobiernan a las reacciones de trasferencia es necesario medir con suficiente precisión la sección eficaz de dispersión como función de los observables más importantes de la dinámica de la reacción. Por este motivo el estudio experimental de las reacciones de trasferencia requiere sistemas de detección de alta resolución en energía, carga y masa. Varias técnicas experimentales fueron desarrolladas a tal efecto y cada una de ellas presenta ventajas en ciertas áreas y desventajas en otras.

Los sistemas de detección basados en detectores de barrera de superficie de silicio permitieron obtener una muy buena resolución en energía [22]. Sin embargo estos detectores no resultan apropiados para hacer mediciones temporales de alta precisión, información que permitiría determinar la masa de los fragmentos transferidos [23].

Las técnicas de coincidencia cinemática han sido utilizadas con éxito en experimentos en los cuales las masas del proyectil y del blanco son aproximadamente iguales [24]. Una desventaja de este método es que una buena resolución en carga y masa sólo puede obtenerse para sistemas livianos.

En la actualidad la mayoría de los sistemas de detección utilizan alguna de las siguientes técnicas:

- Identificación de partículas mediante espectrómetros magnéticos o separadores de masas: Los espectrómetros magnéticos son sistemas con excelente resolución en masa, carga y energía de las partículas [25] [29] y dependiendo del diseño óptico del mismo suelen presentar ángulos sólidos importantes. Una característica de estos detectores es la gran separación espacial entre diferentes estados de carga en el plano focal por lo que se requieren grandes detectores para poder medir las distribuciones de estados de carga completas. Los separadores de masas son utilizados para estudiar reacciones cuasielásticas, y con ellos se miden las partículas emergentes de la reacción a ángulos traseros [30] [32]. Estas reacciones presentan la dificultad de tener secciones elicaces relativamente pequeñas. Además debido a la pérdida de energía de las partículas emergentes, no siempre es posible obtener buena resolución de masa y carga, aunque muchas veces utilizando una reacción cinemática inversa es posible solucionar este último problema (ver [33]).
- Detección de rayos gama característicos: La detección de los rayos gama característicos ha sido utilizada a partir de la aparición de sistemas de alta resolución y alta eliciencia como el " Spin Spectrometer" (ORNL) [34] o "The Crystal Ball" (Darmstardt-Heidelberg). Recientemente se han desarrollado sistemas de muy alta eliciencia, como "Gammasphere" (LBL) [35, 36] y "GASP" (LNL) [37]. La principal ventaja de esta técnica es que permite aprovechar la excelente resolución de los detectores de germanio. En estos casos se utilizan técnicas de coincidencia entre las transiciones gama y los fragmentos livianos emergentes de la reacción [14, 15].
- Medición de la actividad residual: En esta técnica los núcleos emergentes de la reacción son detenidos en folias a las que luego se les mide la actividad α y gama, que proviene de la desexcitación nuclear de los fragmentos inestables producidos en la reacción. En la mayoría de los casos, antes de la medición propiamente dicha se efectúan procesos de separación química [11, 38, 39] para obtener espectros gama más limpios. La principal desventaja de este método es la imposibilidad de medir todos los canales de transferencia abiertos en la reacción, debido a que esta técnica requiere nucleidos con cierto rango de vidas medias (desde minutos hasta meses en el mejor de los casos).
- Telescopios gaseosos con tiempo de vuelo: Estos dispositivos permiten obtener una muy buena resolución en carga, masa y energía [10, 40], están compuestos por una cámara de ionización a la que se le antecede un sistema de detección de alta

resolución. Este sistema, denominado "tiempo de vuelo", esta construido en base a dos multiplicadores de electrones colocados a cierta distancia entre si, que producen una señal muy rápida cuando una partícula los atravieza. Los mismos requieren muy buen vacío y presentan la desventaja de que buenas resoluciones en masa se obtienen a costa de una pérdida de ángulo sólido.

2.2 La técnica de coincidencias partícula-gama

En esta sección se describe la técnica empleada para determinar la carga y la masa de las partículas transferidas y se discuten los resultados obtenidos con ella.

2.2.1 El arreglo experimental en la cámara de reacciones

En este experimento se utilizaron proyectiles de ¹²C y ¹⁶O, con diferentes energías de bombardeo (55–70 MeV y 75–90 MeV, respectivamente) obtenidos en el acelerador TANDAR y un blanco de ¹⁹⁷Au, autoportante, de un espesor de 1 mg/cm² producido por evaporación. Las energías de bombardeo elegidas son cercanas a la energía de la barrera Coulombiana, V_c de los sistemas bajo estudio ($V_c = 57, 78$ MeV para los sistemas ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au, respectivamente). Se escogió un blanco grueso para obtener un número razonable de eventos en coincidencia. Las corrientes típicas utilizadas fueron 10-20 nA de partículas.

Los fragmentos livianos emergentes de la reacción fueron analizados utilizando dos sistemas de telescopios. Estos telescopios estan consituidos por dos detectores de silicio de barrera de superficie, separados por una distancia de 10 cm (el más cercano al blanco es un detector de transmisión de 30 μ m de espesor).

Según la teoría del poder frenador debida a 11. Bethe ¹ al atravezar el primer detector la partícula pierde una porción de la energía [42] que depende de su número atómico Z.

$$-\frac{dE}{dx} = \frac{4\pi Z_1^2 e^4}{m_e v^2} n Z_2 \ln\left(\frac{2m_e v^2}{l}\right)$$
(2.1)

¹Cuando los exectiles se nueven dentro de un material, las colisiones con los electrones del medio producen una pérdida de energía que puede ser calculada utilizando la teoría cuántica del poder frenador del medio, debida a II. Bethe [41]. En el caso en que los exectiles sean iones pesados no relativistas el poder frenador del medio, $-\frac{dE}{dr}$, puede aproximarse por:

donde r y Z_1 son la velocidad y el número atómico del proyectil, respectivamente, Z_2 es es el número atómico del blanco, c y m. son la carga y la masa del electrón, respectivamente, n la densidad atómica en átomos por cm³ e I el potencial de ionización de los electrones, mientras que $-\frac{dE}{dx}$ es la pérdida de energía por unidad de camino recorrido por la partícula dentro del medio, a ta que se denomina poder frenador. Así para partículas no relativistas el poder frenador es inversamente proporcional a la energía de las partículas ionizantes y depende fuertemente de sus cargas eléctricas.

Figura 2.1: Esquema del arreglo experimental en la cámara de reacciones. Los cuadrados llenos se utilizan para simbolizar a los detectores de barrera de superficie gruesos y los vacíos simbolizan a los detectores de transmisión.

La cámara de reacciones, en la que los telescopios fueron montados (con 30° de separación entre si), tiene un diámetro interno de 75 cm, posee dos platos móviles (en todo el rango angular) que permiten montar detectores de variada geometría. Además, es posible ajustar externamente la posición del blanco. El rango angular en el que los telescopios pudieron ser desplazados sin interfir con el haz de proyectiles fue de $\theta = 20^{\circ}$ a $\theta = 170^{\circ}$, respecto de la dirección de incidencia del haz.

Para la detección de la radiación electromagnética producida en la reacción, se utilizó un detector de germanio hiperpuro (GEM40) que fue posicionado a un 90°, respecto de la dirección de incidencia del haz, y a una distancia de 15 cm del blanco. La eficiencia para la detección de la radiación electromagnética proveniente de la reacción resultó cercana al 0.5% y la resolución en energía fue de 2.3 keV (FWHM) para la transición de 1332.5 keV del ⁶⁰Co.

La corriente del haz de partículas (¹²C y ¹⁶O) fue monitoreada con una copa de Faraday y dos detectores de barrera de superficie gruesos (1000 μ m) ubicados a 30° y -30° respecto de la dirección del haz, respectivamente. En la Figura -2.1 se puede ver un esquema del arreglo experimental en la cámara de reacciones. 0000

ĩ

Figura 2.2: Esquema del circuito electrónico utilizado. Los módulos NIM empleados fueron: amplificadores lentos (AMP), amplificadores rápidos (FFA) Compuertas lineales ajustables (LGS), discriminadores a fracción constante (CFD), inversores (INV), convertidor de tiempo en amplitud (TAC), generadores de compuertas y retardos (GDG), compuertas lógicas (OR) y preamplificadores (triangulos)

2.2.2 El procesamiento electrónico de las señales

•

•

Las señales fueron procesadas electrónicamente con líneas lentas (para las señales proporcionales de energía) y rápidas (para las señales temporales) de modo de tener pulsos analógicos bien conformados (señales cuadradas de 5 μ s y de -2 volts de amplitud máxima) a la entrada de los convertidores de señales analógicas en señales digitales (ADCs ORTEC 2259 de 11 bits de resolución, para señales de partículas y ORTEC 3511 de 12 bits de resolución, para la señal proveniente del detector de germanio) conectados a través de la interfase CAMAC a una computadora μ VAX.

La información multiparamétrica adquirida consistió en:

- ΔE_1 : Pérdida de energía en el detector de transmisión del telescopio 1.
- Em: Energía residual en el telescopio 1.
- ΔE_2 : Pérdida de energía en el detector de transmisión del telescopio 2. .
- E_{R2}: Energía residual en el telescopio 2.
- GE: Energía gama.
- TAC: Diferencia temporal entre las señales rápidas provenientes de los detectores de transmisión y el de germanio.

2.2. Las señales de disparo (gate) de los convertidores analógico-digitales (ADCs 2259 y 3511), inician el proceso de conversión de los ADCs. Debido a que el tiempo de Un esquema de la electrónica utilizada para procesar estas señales puede apreciarse en la conversión de estos ADCs es de 120 μ s, estas señales (cuadradas de -1 volt de amplitud y 0.5*µ*s de ancho) deben anteceder en este tiempo, a la señal que habilita al sistema de adquisición de datos (Master Gate) para la lectura de la información multiparamétrica. Esta señal debe ser una señal cuadrada positiva de 2 volt y 5 μ s de ancho. Figura

El convertidor de tiempo en amplitud utiliza una señal que inicia la conversión (start) y otra que la detiene (stop). Como resultado de la conversión este modulo genera una señal analógica (de ancho y retardo temporal ajustables) proporcional al tiempo que separa a las semhales de start y stop.

El sistema de adquisición fue preparado para trabajar en modo "coincidencias" y en modo "singles", con dos propósitos: a) hacer una identificación en carga y masa de los productos de las reacciones de transferencia y b) tener información para construir distribuciones angulares T y la señal gama GE y en el modo "singles" los habilitadores del sistema de adquisición fueron las señales ΔE_i . Estas señales fueron registradas en archivos evento por evento utilizando el habilitador del sistema de adquisición fue una señal de TAC entre la señales de partículas ΔE_i independientes de la eficiencia del GEM10. Por este motivo, en el modo "coincidencias" programa de adquisición XSYS.

2.2.3 El análisis de los datos

Con cada uno de los parámetros se produjeron espectros unidimensionales. En el caso de las señales de partículas y TAC los espectros fueron de 2018 canales mientras que para la señal GE no se pudo aprovechar la alta resolución del ADC 3511 por problemas electrónicos,

Figura 2.3: Espectro de ΔE_V [Equierda], y de E_{R1} [Derecha] para el sistema ${}^{12}C \neq {}^{197}Au$ para $E_{lab} = 64 MeV$, $\theta_{lab} = 168^{\circ}$

.....

debiendose generar espectros de 1021 canales. En el caso de los telescopios con las señales ΔE_i y E_{Ri} se produjeron espectros bidimensionales a partir de los cuales fue posible hacer una buena determinación en carga de los eyectiles.

La Figura 2.3 muestra los espectros de ΔE_1 y E_{R1} , para la reacción ¹²C + ¹⁹⁷Au. En el espectro ΔE_1 se pueden apreciar eventos de diferente Z aunque los picos no están bien separados. Estos problemas de resolución son debidos al espesor del blanco en el cual las pérdidas de energía pueden llegar a los 3 MeV (para proyectiles de ¹²C a $E_{lab} = 56$ MeV) dependiendo del lugar donde se produzca la colisión nuclear dentro de la folia de ¹⁹⁷Au y por este motivo los exectiles no tienen una energía bien definida. Además existe otro factor de importancia en la pérdida de energía cinética: una fracción de los eventos agrupados en el pico más importante (ver Figuras 2.3 [Izquierda] y [Derecha]) corresponde a reacciones de excitación Coulombiana, en las que se excitan grados de libertad internos de los núcleos a expensas de la energía cinética del movimiento relativo de los mismos. Estas pérdidas de energía cinética pueden ser aun más importantes que las pérdidas debidas a la ionización del medio. Por estos motivos no es posible hacer una buena separación en Z utilizando cada uno de los espectros individualmente.

Figura 2.4: Espectros bi-dimensionales ΔE_1 - E_{R1} para los sistemas $^{12}C + ^{197}Au$ ($E_{lab} = 64$ MeV y $\theta_{lab} = 168^{\circ}$) [Izquierda] y $^{16}O + ^{197}Au$ ($E_{lab} = 90$ MeV y $\theta_{lab} = 168^{\circ}$) [Derecha], respectivamente. Las zonas más oscuras de los espectros (comprimidos a 128 por 128 canales) son las regiones de mayor densidad de eventos. Los números indican el número atómico Z asociado a cada grupo de partículas

Como muestra la Figura 2.4, es posible independizarse de la pérdida de resolución ocasionada por la degradación de la energía en el blanco y por la transferencia de la energía cinética del movimiento relativo a grados de libertad internos del sistema (excitación Coulombiana), presentando la información en forma de histogramas bidimensionales E_R - ΔE . En esta figura, cada uno de los grupos tiene un Z bien definido. En estos espectros se observa una gran cantidad de eventos con energía residual $E_R = 0$.

Esto se debe a que los detectores de transmisión (ΔE) empleados tienen una superficie activa de tamaño mayor que los detectores de barrera de superficie utilizados para obtener la señal de E_R . Además, dada la geometría del arreglo experimental, los detectores ΔE cubrían un ángulo sólido mayor, debido a la mayor proximidad al centro de la cámara de reacciones de estos. De este modo existían muchos eyectiles que pasaban por los detectores de transmisión pero que no llegaban a impactar en los detectores E_R , y por ser los detectores ΔE los habilitadores del sistema de adquisición, estos eventos tienen $E_R = 0$. En la Figura 2.4 [Izquierda] pueden distinguirse los elementos **Be** y **B** (Z = 4 y 5 respectivamente) producidos

П

por reacciones de stripping de partículas cargadas mientras que en la Figura 2.4 [Derecha] se distinguen los elementos Be, B, C y N (Z = 4, 5, 6 y 7 respectivamente) que también están asociados a reacciones de stripping de carga, pero no se observan eventos con carga mayor a la del proyectil. Los eventos con Z = 2 (He) son partículas evaporadas que provienen de reacciones de fusión evaporación. En el caso de la reacción ¹²C + ¹⁹⁷Au, no es posible que existan eventos de Z = 4, provenientes del canal de reacciones de transferencia α , debido a que el núcleo ⁸Be (el fragmento liviano emergente de la reacción) es altamente inestable y decae en dos partículas α .

Los espectros temporales (TAC) que se aprecian en la Figura 2.5, muestran un fondo de coincidencias casuales debidas a la alta tasa de contaje gama (~ 10 khz) y un pico prominente (FWHM ~ 50 ns) asociado a scúales gama en coincidencia real con señales de partículas. El ancho de los picos está relacionado con el tamaño del detector de germanio utilizado, debido a que el tiempo de colección de cargas en un detector de germanio depende de la posición en la que se produce la interacción de la radiación gama con el cristal del detector. La radiación gama de baja energía sólo puede interactuar en la región periférica del detector mientras que la de mayor energía puede hacerlo en cualquier punto del cristal. De este modo la radiación de baja energía tiene un tiempo de colección de cargas mayor.

La Figura 2.6 muestra los espectros gama para ambos sistemas, donde pueden apreciarse claramente las transiciones $5/2^+ \rightarrow 3/2^+$ (M1+11%E2) y $7/2^+ \rightarrow 3/2^+$ del núcleo ¹⁹⁷Au con energías $E_{\gamma} = 279.0$ y 517.5 keV, respectivamente y la transición E2 $2^+ \rightarrow 0^+$ en el núcleo ¹⁹⁸Hg de energía $E_{\gamma} = 111.8$ keV [6], asociada a reacciones de transferencia de un protón. Estas transiciones, junto al pico característico de aniquilación electrón positrón de energía $E_{\gamma} = 511$ keV, dominan el espectro gama de la reacción. La Figura 2.6a muestra un corte en bajas energías que la Figura 2.6b no muestra y es debido a un corrimiento de un umbral electrónico. Dado que las energías de las transiciones de interés son mayores que dicho umbral, el corrimiento del mismo no ocacionó pérdida alguna de información. La Figura 2.7 muestra los esquemas de niveles simplificados de los núcleos ¹⁹⁸Hg y ¹⁹⁹Tl, en los que se detallan las transiciones observadas.

Con el objeto de estudiar las reacciones de stripping de una y dos cargas, se construyerou espectros gama en coincidencia con los eyectiles de B (N) por un lado y Be (C) por otro, para el sistema ${}^{12}\text{C} + {}^{197}\text{Au}$ (${}^{16}\text{O} + {}^{197}\text{Au}$). De este modo fue posible c'iminar todo el fondo debido a la excitación Coulombiana del blanco y también de los otros productos de la reacción

La Figura 2.8a (Arriba) muestra el espectro gama en coincidencia con eyectiles de B.

Figura 2.5: Espectros de TAC para la reacción ${}^{12}C + {}^{197}Au$, $E_{lab} = 64$ MeV y $\theta_{lab} = 168^{\circ}$ [Izquierda] y para la reacción ${}^{16}O + {}^{197}Au$, $E_{lab} = 85$ MeV y $\theta_{lab} = 168^{\circ}$ [Derecha].

Pueden observarse en este espectro tres picos en $E_{\gamma} = 411.8$, 587.2, y 636.7 keV y no se observan trazas de la excitación Coulombiana del blanco. Estos rayos gama corresponden a las transiciones $2^+ \rightarrow 0^+$, $5^- \rightarrow 1^+$, y $4^+ \rightarrow 2^+$, respectivamente en el núcleo ¹⁹⁸Hg (ver Figura 2.7 y Ref. [6]), es decir, estan originadas en reacciones de stripping de un protón. Dado que no se observan picos relacionados con reacciones de stripping de deuterones (por ejemplo a la energía $E_{\gamma} = 158.4$ keV correspondiente a la transición E2 del primer estado excitado al fundamental en el núcleo ¹⁹⁹Hg) podemos decir que la transferencia de un protón es el canal dominante en las reacciones de stripping de una carga en el sistema ¹²C + ¹⁹⁷Au.

Debido a que las reacciones de transferencias al estado fundamental no son seguidas de ningún decaimiento gama, no podemos asegurar que toda la sección eficaz de transferencia de una carga corresponda a reacciones de transferencia de un protón.

En la Figura 2.8b (arriba) se observa el espectro gama en coincidencia con los eyectiles de **Be**. Aquí es posible distinguir únicamente un pico de relativa intensidad de 366.7 keV correspondiente a la transición $3/2^+ \rightarrow 1/2^+$ que es la línea mas intensa del decaimiento electromagnético del ¹⁹⁹T1 [6]. Debido a que el ⁸Be es inestable y a que los estados excitados del ⁹Be también fisionan podemos estar seguros de que los eventos detectados con Z = 4

.

.

•

•

⁴ Figura 2.6: Espectros gama en coincidencia con exectiles detectados en el telescopio E_R - ΔE para las reacciones ¹²C + ¹⁹⁷Au ($E_{lab} = 64$ MeV y $\theta_{lab} = 168^{\circ}$) [a] y ¹⁶O + ¹⁹⁷Au ($E_{lab} = 90$ MeV y $\theta_{lab} = 168^{\circ}$) [b]

Figura 2.8: La figura [a-arriba] ([a-abajo]) muestra el espectro gama en coincidencia con eyectiles de **B**₍(**N**) para la reacción ¹²C + ¹⁹⁷Au. $E_{lab} = 64$ MeV y $\theta_{lab} = 168^{\circ}$ ($^{16}O + ^{197}Au$, $E_{lab} = 90$ MeV y $\theta_{lab} = 168^{\circ}$). Pueden observarse las transiciones $2^{+} \rightarrow 0^{+}$, $5^{-} \rightarrow 4^{+}$, $y 4^{+} \rightarrow 2^{+}$, pertenecientes al núcleo ¹⁹⁸ Hg con energías $E_{\gamma} = 411.8$, 587.2, y 636.7 keV. La Figura [b-arriba] ([b-abajo]) muestra el espectro gama en coincidencia con eyectiles de Be (C), para el mismo sistema, energía y ángulo. Puede observarse la transición $3/2^{+} - 1/2^{+}$ de energía $E_{\gamma} = 366.7$ keV del núcleo de ¹⁹⁹ Tl

0

son producidos en reacciones de stripping de 2 protones, y la evidencia gama confirma esta hipótesis.

La Figura 2.8 (abajo) muestra los espectros gama en coincidencia con eyectiles de N y de C, para la reacción ¹⁶O + ¹⁹⁷Au. Los espectros son muy similares a los obtenidos con proyectiles de ¹²C. En el primer caso también se observan las transiciones electromagnéticas de energías $E_{\gamma} = 411.8$, 587.2, y 636.7 keV que al igual que en el caso de proyectiles de ¹²C, evidencia que el stripping de un protón es el canal dominante. En el segundo la transición a $E_{\gamma} = 366.7$ keV, da cuenta de la presencia del stripping de dos protones. En este último caso no podemos afirmar que todos los eventos de Z = 6 sean producidos por transferencias de dos protones. Esto se debe a que no podemos excluir a las reacciones de transferencia α , que dejen a los núcleos en sus estados fundamentales, ya que con proyectiles de ¹⁶O las reacciones de stripping de partículas α producen eyectiles de ¹²C que son estables, y de este modo pueden ser detectados como tales por el telescepio. De todos modos, debemos resaltar que no se observó la transición E2 $3/2^+ \rightarrow 1/2^+$ de energía $E_{\gamma} = 331.1$ keV del núcleo de ²⁰¹Tl que evidenciaría a las reacciones de stripping de partículas α

2.3 Medición de las distribuciones angulares

El propósito de medir la distribución angular de los fragmentos livianos emergentes de la reacción, es que a través del conocimiento del flujo de partículas saliente de la reacción Φ y del flujo de proyectiles entrante Φ_0 (además del ángulo sólido subtendido por el detector, $\Delta\Omega$) es posible conocer la sección eficaz diferencial $\frac{d\sigma}{d\Omega}$ de los canales de reacción de interés

$$\frac{d\sigma}{d\Omega} = \frac{\Phi A}{\Phi_0 \delta N_A \Delta \Omega},\tag{2.2}$$

donde A es el número másico del núcleo blanco (expresado en unidades de masa atómica), N_A es el número de Avogadro y δ es el grosor del blanco (expresado en gr/cm²).

2.3.1 El arreglo experimental en la cámara de reacciones

En este experimento se utilizaron proyectiles de ¹²C y ¹⁶O, con diferentes energías de bombardeo (56–82 MeV y 74–110 MeV, respectivamente) obtenidos en el acelerador TANDAR y un blanco de ¹⁹⁷Au, autoportante, de un espesor de 200 μ g/cm² producido por evaporación. Las corrientes típicas utilizadas fueron 10–20 nA de partículas.

Figura 2.9: Esquema del arreglo experimental en la cámara de reacciones.

El detector

Los fragmentos livianos emergentes de la reacción fueron analizados utilizando un telescopio constituido por una cámara de ionización de geometría plana con grilla de Frisch [42] y ventana de entrada de mylar, como detector ΔE , y un detector sensible a la posición (PSD) ubicado dentro de la cámara de ionización a 10 cm de la ventana de entrada, para determinar la energía residual E_R y la posición de los eyectiles. La cámara de ionización fue operada con una presión constante de 50 torr de P10 (90% de argón + 10% de metano), renovando el gas con un flujo continuo para evitar la degradación del gas. El detector PSD (producido por implantación de iones de Boro sobre un monocristal de Silicio tipo n), tiene la propiedad de presentar una resistencia altamente uniforme, característica que en estos detectores es utilizada para generar una información precisa de la posición de la partícula ionizante. El detector fue montado dentro de la cámara de reacciones sobre un plato movil, de modo que el ángulo $\Delta \theta$ subtendido por la superficie activa del PSD fue de 15^e. El colimador del sistema fue la ventana de entrada. Con el objeto de realizar una calibración en la posición, se antepuso al detector PSD una máscara con 3 alambres de cobre. El rango angular en el que se pudo mover al detector sin interferir con el haz fue de 10° a 170°. La corriente del haz de partículas (¹²C y ¹⁶O) fue monitoreada con una copa de Faraday y dos detectores de barrera de superficie gruesos (1000 μ m), ubicados a 30° y -30° respecto de la dirección del haz respectivamente como muestra la Figura 2.9.

Figura 2.10: Esquema del circuito electrónico utilizado.

2.3.2 El procesamiento electrónico de las señales

Las señales fueron procesadas electrónicamente con líneas lentas de modo de tener púlsos analógicos bien conformados a la entrada de los ADCs ORTEC 2259 conectados a través de la interfase CAMAC a una computadora μ VAX.

La información multiparamétrica consistió en:

- ΔE : Pérdida de energía en la cámara de ionización.
- E_R : Energía residual en el PSD.
- XE: señal proporcional al producto de energía residual y la posición del eyectil en el PSD.

En este caso el habilitador del sistema de adquisición fue la señal E_R y la información fue registrada en archivos evento por evento utilizando el programa de adquisición XSYS. Un esquema de la electrónica utilizada para procesar estas señales pueden apreciarse en la Figura 2.10.

Calibraciones del telescopio Angulo Sólido

El ángulo sólido subtendido por cada porción del PSD se obtuvo midiendo la reacción de dispersión elástica en el sistema ¹⁶O +¹⁹⁷Au a $E_{lab} = 70$ MeV y $\theta = 30^{\circ}$. Posteriormente se normalizó la tasa de contaje observada respecto de la esperada para la dispersión de Rutherford (ver Apéndice 6.2).

Energía

Para realizar la calibración en energía del detector PSD y de la cámara de ionización se hicieron mediciones de la dispersión elástica a diferentes energías y diferentes posiciones angulares. En todos los casos se tomaron espectros de energía total en el PSD, retirando el gas de la cámara de ionización. Esto posibilitó la obtención de una calibración precisa en energía del PSD que luego fue utilizada para calibrar el espectro de pérdida de energía en la cámara de ionización.

2.3.3 El análisis de los datos

La información obtenida fue analizada del siguiente modo:

- Se hizo el cociente XE / E_R evento por evento y se acumularon espectros de posición del tipo mostrado en la Figura 2.11a. Las marcadas depresiones que se observan en el mismo son debidas a la máscara utilizada para realizar la calibración angular. El aumento en la tasa de contaje a ángulos delanteros observado en esta figura, es debido a dos componentes: la dependencia angular de la sección eficaz de Rutherford y la absorción nuclear debida a las reacciones de fusión.
- Con la ayuda de la información de posición, se construyeron tres espectros bidimensionales ΔE E_R, agrupando eventos dentro de intervalos angulares ΔΘ = 4° (en el sistema centro de masas), similares a la Figura 2.4 con los que fue posible hacer una buena identificación en carga de los productos livianos de reacción.
- Se obtuvieron espectros de número atómico Z de los eyectiles, proyectando los espectros bidimensionales ΔE-E_R de modo de agrupar a los eventos con igual número atómico, y a partir de estos se obtuvieron las secciones eficaces diferenciales. La Figura 2.11b muestra la buena resolución en Z donde se aprecian eventos de O, N, C, B y He (Z=8, 7, 6, 5 y 2, respectivamente).

Figura 2.11: Espectros de posición angular [Izquierda] y de distribución de carga [Derecha] de los productos livianos de la reacción ${}^{16}O + {}^{197}Au$ a $E_{lab} = 85 MeV$. Los números en esta figura indican los números atómicos de los exectiles de O, N, C, B, y He detectados.

Para cada Z, se obtuvo la energía total E₃ = E_R + ΔE y se produjeron espectros de valor Q de reacción evento por evento, utilizando las relaciones características de la cinemática de dos cuerpos (ver Apéndice 6.1), suponiendo transferencia de ninguna, una y dos unidades de masa atómica para los eventos con ΔZ = 0, 1 y 2 respectivamente. Los espectros del valor Q de reacción aportaron una información complementaria a la obtenida a partir de los espectros de radiación gama en cuanto a la identificación en masa de los eyectiles.

2.4 Resultados

2.4.1 Selectividad cinemática

Las reacciones de transferencia pueden ser interpretadas semiclásicamente considerando que los núcleos se mueven sobre trayectorias clásicas continuas. La continuidad de las trayectorias exige que para las reacciones de transferencia, la variación de las variables dinámicas del sistema (como la distribución de las cargas eléctricas nucleares, momento angular) esté acompañada por una variación en la energía mecánica del mismo. La energía liberada en la reacción, comumente citada como "el valor Q" de la reacción, puede ser calculada a partir de las masas de los núcleos en el canal de entrada $(M_1 | y | M_2)$ y en el de salida $(M_3 | y | M_4)$

$$Q = c^{2}[M_{3} + M_{1} - (M_{1} + M_{2})]$$
(2.3)

donde c es la velocidad de la luz. A la energía que debe liberar la reacción para garantizar la continuidad de las trayectorias de los carozos nucleares intervinientes en la reacción se la denomina "valor Q óptimo", y se la simboliza con Q_{out} .

Existen varios modelos para la determinación del Q_{opt} [5], [43]-[45], que pueden ser aproximados por:

$$Q_{opt} = \left(\frac{Z_3 Z_4}{Z_1 Z_2} - 1\right) E \tag{2.4}$$

۲

۲

٠

0

۲

0

۲

۲

۲

0

0

.

.

0

0

donde Z_1 y Z_2 (Z_3 y Z_4) son los números atómicos del fragmento liviano y del pesado, respectivamente, en el canal de entrada (salida), y E es la energía de la reacción, en el sistema centro de masas.

Las reacciones de transferencia en la que los núcleos emergen en sus nuevos estados fundamentales presentan el máximo Q posible (que puede ser calculado conociendo el exceso de masa de los núcleos [6] y que notaremos Q_{gg}), ya que para núcleos que emergen en estados excitados parte de la energía del movimiento relativo se emplea en excitar grados de libertad internos. La sección eficaz total es la integral sobre todos los estados excitados posibles de los núcleos emergentes de la reacción.

$$\sigma(Q_{yy}) = \int_{-\infty}^{Q_{yy}} \sigma(Q) dQ \tag{2.5}$$

doude $\sigma(Q)$ es la distribución de Q, [16]. Se ha observado experimentalmente [5], que las reacciones de transferencia presentan distribuciones de Q centradas en el valor óptimo Q_{opt} , por lo que es común definir una distribución normal de Q, $\sigma(Q)$ (llamada "ventana de Q") de forma Gaussiana para integrar (2.5)

$$\sigma(Q_{gg}) \sim \left[1 + erf\left[\frac{(Q_{gg} - Q_{opt})}{W}\right]\right],\tag{2.6}$$

donde W es el ancho de la "ventana de Q" (estimada en 5.9 MeV [47]) y erf la función error.

Aunque esta ventana en Q ha sido explicada semiclásicamente para las reacciones de transferencia cuasielásticas (donde se excitau sólo unos pocos grados de libertad internos de los núcleos), es observada también en reacciones de trasferencia profundamente inclásticas [5]. Además, para un dado canal de entrada, la ventana en Q impone restricciones sobre el canal de salida.

		A REAL PROPERTY AND A REAL	1	1
Sistema		Canal de reacción	Q_{gg} [MeV]	Q_{opt}^{Vc} [MeV]
$^{12}(1 + 197)$ Au	stripping	In	-13.021	0.000
		lp	- 8.854	-8.388
		Id	-13.645	
		1p + 2n	-14.052	
		lp - In	-13.784	
		lp - 2n	-15.866	
		2p	-15.678	-17.002
		2p + 1n	-15.438	
		2p - 1n	-23.826	
		2p - 2n	-27.850	
		n	- 8.907	
	pickup	ln	- 3.113	0.000
		2n	- 1.598	
		lp	- 3.844	8.161
		ld	-13.645	
		2p	-15.678	16.090
		n	- 8.907	
$^{16}O + {}^{197}Au$	stripping	In	- 9.963	0.000
		lp	- 5.025	-8.113
		ld	- 9.193	
а.		1p + 2n	-11.719	
		lp - In	-10.834	
		1p - 2n	-11.911	
		2p	-10.827	-16.452
		2p + 1n	-11.952	
		2p - 1n	-18.260	
		2p - 2n	-21.250	
		n	- 8.702	
	pickup	In	- 3.915	0.000
		2n	- 2.532	
		- Ip	- 5.187	7.888
		1 d	- 3.958	
		2p	- 9.636	15.550
		n	- 5.595	

Tabla 2.1: Valores de Q y Q_{opt} , para algunos canales de reacciones de transferencia en los sistemas ${}^{12}C + {}^{197}Au$ y ${}^{16}O + {}^{197}Au$. Los valores óptimos Q_{opt} han sido calculados para $E = V_c$ ($E_{lab} = 57$ y 77 MeV, respectivamente).

(

(

•

•

•

Figura 2.12: Espectros de Q para los sistemas ¹²C + ¹⁹⁷Au [Izquierda] y ¹⁶O + ¹⁹⁷Au [Derecha] para diferentes energías de bombardeo. Con la menor intensidad de trazo se observan las distribuciones de Q de los eventos con $\Delta Z=0$, con intensidad intermedia las de $\Delta Z=1$ y con máxima intensidad las de $\Delta Z=2$. Los valores de Q_{gg} , suponiendo reacciones de stripping de uno y dos protones, están marcados por líneas de punto-raya y puntos, respectivamente.

La selectividad cinématica es un elemento importante para predecir la ocurrencia (o no) de una dada reacción, ya que las reacciones con $|Q_{yy} - Q_{opt}| \ll W$ están prohibidas. Otra consecuencia de la ventana en Q es que los estados excitados de los núcleos, son poblados selectivamente en las proximidades de $Q - Q_{opt}$. De este modo, no siempre es posible poblar estados con alta energía de excitación.

En la Tabla 2.1 se presentan los valores de Q y de Q_{opt} para varios canales de reacciones de transferencia posibles en los sistemas ${}^{12}C + {}^{197}Au$ y ${}^{16}O + {}^{197}Au$. En ella se observa que las reacciones de pickup de carga están prohibidas debido a la selectividad cinemática, mientras que las reacciones de stripping de carga, por presentar un $Q_{gg} \sim Q_{opt}$, deben ser

Figura 2.13: Espectro de Q para el sistema ${}^{12}C + {}^{197}Au$ a $E_{lab} = 60$ MeV. Las flechas en Q = -8.85. -11.0 y -13.3 MeV. indican el estado fundamental y los dos primeros estados excitados (3/2⁻, 1/2⁻, y 5/2⁻ respectivamente) correspondientes al núcleo ${}^{11}B$.

consideradas como permitidas, del mismo modo que las reacciones de pickup de uno y dos neutrones.

La Figura 2.12 muestra los espectros del valor Q de reacción para los eventos con $\Delta Z = 0$, 1 y 2 para ambos sistemas a diferentes energías de bombardeo y ángulos de observación. En ella se verifica que los eventos relacionados con reacciones elásticas tienen un Q = 0 y que las reacciones de transferencia de carga cumplen con $Q \leq Q_{gg}$. Esta figura muestra que las distribuciones de Q presentan una forma de campana asimétrica cuyos máximos y anchos, dependen de la energía de bombardeo. La falta de resolución es debida a la alta densidad de estados de baja energía en los núcleos próximos al ¹⁹⁷Au, que son poblados por las reacciones de transferencia con una probabilidad dada por la "ventana de Q".

Un caso particular se presenta para las reacciones de stripping de una carga en el sistema $^{12}C + ^{197}Au$ a energías de bombardeo menores a 60 MeV, donde es posible resolver tres picos en el espectro de Q como se aprecia en la Figura 2.13. Estos picos en Q = -8.8, -11.0, y -13.3 MeV corresponden al estado fundamental y los dos primeros estados excitados del múcleo ¹¹B, respectivamente $(3/2^{-}, 1/2^{-}, y 5/2^{-})$ [6] y pone en evidencia la presencia del stripping de protón en energías muy próximas a la barrera Coulombiana.

Figura 2.14: [Izquir rda] Corrintiento cinemático de la "ventana de Q" como función de la energía de bombardeo normalizada a la barrera Coulombiana para las reacciones de stripping de una y dos Dependencia de la energía de excitación media < $E_{\alpha x}$ > como función de la energía de bombardeo normalizada a la barrera Coulombiana para los mismos sistemas. Con cárculos y cuadrados vacíos se simbolizan las n'acciones de stripping de una y dos cargas, respectivamente, en el sistema 12C [Derecha] + ¹⁹⁷Au, micultas que para el sistema ¹⁶0 + ¹⁹⁷Au se utilizan triángulos vacíos y circulos llenos. cargas en los sistemas ¹²C + ¹⁹⁷Au [cuadrados vacíos] y ¹⁶O + ¹⁹⁷Au [círculos llenos].

Sin embargo debido a que la resolución en Q fue de 0.4 MeV, no podemos excluir de estos -13.-165eventos a las reacciones de stripping de deuterón ya que para estas reacciones Q_{gg} MeV

La dependencia del máximo de la distribución de Q, que notaremos Q_n , con la energía de bombardeo se observa en la Figura $\ 2.14$ [Izquierda]. Esta figura muestra el cocient
e Q_o/Q_{opt} como función de la energía de bombardeo, relativa a la barrera Coulombian
a $V_{\rm c},$ y en ella se observa claramente el efecto cinemático sobre la distribución de Q. La Figura $\,$ 2.14 [Derecha] muestra la dependencia de la energía de excitación media

$$\langle E_{i,x} \rangle = \frac{\int_{-\infty}^{Q_{yy}} \sigma(Q)(Q_{yy} - Q)dQ}{\int_{-\infty}^{Q_{yy}} \sigma(Q)dQ}$$
(2.7)

como función de la energía de bombardeo relativa a la barrera Coulombiana. En ella se aprecia que las reacciones de transferencia pueden producir excitaciones nucleares de gran intensidad que presentan una dependencia aproximadamente lineal con la energía de bombardeo.

Figura 2.15: [Izquierda] Sección eficaz diferencial para ambos sistemas. Con círculos llenos y vacíos se simbolizan las reacciones de stripping de una y dos cargas, respectivamente. [Derecha] Cociente entre el ángulo correspondiente al valor máximo de la sección eficaz diferencial Θ_o y el ángulo de rozamiento Θ_{gr} , como función de la energía de bombardeo relativa a la barrera Coulombiana V_e para las reacciones de stripping de una y dos cargas en los sistemas ¹²C + ¹⁹⁷Au [cuadrados vacíos] y ¹⁶O + ¹⁹⁷Au [círculos llenos].

Esta dependencia con la energía está directamente relacionada con la dependencia de la energía del Q_{opt} [Ec. (2.4)].

2.4.2 Secciones eficaces de dispersión

Las secciones eficaces diferenciales, de las reacciones de stripping de carga que se observan en las Tablas 2.2–2.4, y en la Figura –2.15 se obtuvieron integrando los eventos dentro de intervalos angulares $\Delta \Theta = 4^{\circ}$ para obtener una estadística adecuada,

$$\left(\frac{d\sigma}{d\Omega}(\Theta)\right)_{exp} = \frac{1}{\Delta\Theta} \int_{\Theta - \Delta\Theta/2}^{\Theta + \Delta\Theta/2} \frac{d\sigma}{d\Omega}(x) \, dx.$$
(2.8)

donde Θ es el ángulo de dispersión en el sistema centro de masas. La Figura 2.15 muestra una distribución angular típica [Izquierda]. Las barras de error incluyen errores de normalización, basados en la dispersión de Rutherford (< 2%), y errores estadísticos en la determinación de áreas de picos (< 3%). La incertereza en la determinación de la energía de bombardeo

6	D
0	
	1
0	
	-
	-
0)
0	
0	
-	
	1
0	
•	
	D
1	D
	D
	D
0	
C	
0	

Θ	$d\sigma/d\Omega^{\Delta Z=1}$	$d\sigma/d\Omega^{\Delta Z=2}$	Θ	$d\sigma/d\Omega^{\Delta Z=1}$	$d\sigma/d\Omega^{\Delta Z=2}$
[grados]	[mb/sr]	[mb/sr]	[grados]	[mb/sr]	[mb/sr]
$E_{lab} = 110 \text{ MeV}$			$E_{lab} = 85 \text{ MeV}$		
39.3	$.6.3 \pm 0.3$	20 ± 1	81.1	0.65 ± 0.03	3.1 ± 0.1
43.5	7.5 ± 0.1	27 ± 1	85.2	1.22 ± 0.06	4.2 ± 0.2
-17.8	11.3 ± 0.5	31 ± 2	89.2	2.1 ± 0.1	5.0 ± 0.2
-19.8	23 ± 1	33 ± 2	97.1	7.1 ± 0.4	6.6 ± 0.3
51.0	25 ± 1	36 ± 2	101.1	7.7 ± 0.4	7.4 ± 0.4
55.0	29 ± 2	29 ± 1	105.3	7.9 ± 0.4	7.7 ± 0.4
58.2	28 ± 2	29 ± 1	109.1	7.6 ± 0.4	7.2 ± 0.4
59.2	26 ± 1	26 ± 1	112.9	6.8 ± 0.3	6.3 ± 0.3
63.4	21 ± 1	19 ± 1	117.0	5.8 ± 0.3	6.2 ± 0.3
70.7	9.8 ± 0.5	10.1 ± 0.5	120.7	5.3 ± 0.3	5.6 ± 0.3
74.8	5.2 ± 0.3	7.1 ± 0.1	124.9	4.4 ± 0.2	5.2 ± 0.3
78.9	3.0 ± 0.2	-1.1 ± 0.2	128.7	3.4 ± 0.2	4.1 ± 0.2
81.0	2.3 ± 0.1	3.2 ± 0.2	132.4	2.9 ± 0.2	3.6 ± 0.2
85.1	1.58 ± 0.08	2.3 ± 0.1	136.1	2.9 ± 0.2	3.8 ± 0.2
89.1	0.73 ± 0.04	1.18 ± 0.07	139.5	2.6 ± 0.1	3.7 ± 0.2
$E_{lab} = 90 \text{ MeV}$			141.1	2.0 ± 0.1	2.8 ± 0.1
65.6	1.21 ± 0.06	5.0 ± 0.2	143.1	2.1 ± 0.1	3.2 ± 0.2
69.8	1.81 ± 0.09	7.0 ± 0.3	146.3	1.71 ± 0.09	2.5 ± 0.1
73.9	3.2 ± 0.2	9.8 ± 0.5	$E_{lab} = 80 \text{ MeV}$		
81.1	8.2 ± 0.4	12.0 ± 0.6	110.1	3.1 ± 0.1	2.9 ± 0.2
85.2	9.6 ± 0.5	12.8 ± 0.6	113.8	3.5 ± 0.2	3.2 ± 0.2
89.2	9.6 ± 0.5	10.8 ± 0.5	117.9	4.7 ± 0.2	3.8 ± 0.2
91.8	13.5 ± 0.7	12.7 ± 0.6	121.6	4.9 ± 0.2	4.1 ± 0.2
95.5	11.7 ± 0.6	10.7 ± 0.5	125.4	5.0 ± 0.2	4.1 ± 0.2
99.8	9.6 ± 0.5	10.3 ± 0.5	129.1	5.4 ± 0.3	4.8 ± 0.2
103.7	7.9 ± 0.1	8.1 ± 0.1	133.0	5.2 ± 0.3	4.3 ± 0.2
107.5	5.9 ± 0.3	6.5 ± 0.3	137.0	5.4 ± 0.3	4.9 ± 0.2
. 111.3	3.1 ± 0.2	1.1 ± 0.2	140.6	4.9 ± 0.2	4.4 ± 0.2
111.9	2.6 ± 0.1	3.2 ± 0.2	144.3	4.6 ± 0.2	4.2 ± 0.2
117.9	2.2 ± 0.1	2.8 ± 0.1	148.3	4.9 ± 0.2	4.5 ± 0.2
			151.8	4.1 ± 0.2	3.8 ± 0.2
			151.6	4.1 ± 0.2	4.1 ± 0.2

Tabla 2.2: Secciones eficaces diferenciales para las reacciones de stripping de una y dos cargas en el sistema ${}^{16}O + {}^{197}Au$ a $E_{lab} = 110, 90, 85$ y 80 MeV

Θ	$d\sigma/d\Omega^{\Delta Z=1}$	$d\sigma/d\Omega^{\Delta Z=2}$	θ	$d\sigma/d\Omega^{\Delta Z=1}$	$d\sigma/d\Omega^{\Delta Z=2}$
[grados]	[mb/sr]	[mb/sr]	[grados]	[mb/sr]	[mb/sr]
$E_{lab} = 77 \text{ MeV}$			$E_{lab} = 75 \text{ MeV}$		
105.9	1.39 ± 0.07		120.8	0.09 ± 0.01	
109.8	1.56 ± 0.08	0.10 ± 0.01	121.6	0.19 ± 0.01	
113.7	1.86 ± 0.09	0.37 ± 0.02	128.4	0.22 ± 0.01	
120.2	2.9 ± 0.1	0.89 ± 0.01	135.1	0.30 ± 0.02	0.24 ± 0.01
121.0	3.1 ± 0.2	1.37 ± 0.07	138.9	0.53 ± 0.03	0.36 ± 0.02
127.9	3.3 ± 0.2	1.53 ± 0.08	112.6	0.62 ± 0.03	0.48 ± 0.02
134.8	3.9 ± 0.2	2.3 ± 0.1	145.8	1.02 ± 0.05	0.48 ± 0.02
138.6	4.7 ± 0.2	2.9 ± 0.1	149.5	1.27 ± 0.06	0.72 ± 0.04
142.3	4.7 ± 0.2	3.1 ± 0.2	153.3	1.27 ± 0.06	0.90 ± 0.04
146.2	3.8 ± 0.2	3.2 ± 0.2	$E_{lab} = 74 \text{ MeV}$		
-149.9	4.6 ± 0.2	3.1 ± 0.2	134.8	0.18 ± 0.01	0.04 ± 0.01
153.6	4.5 ± 0.2	3.1 ± 0.2	138.6	0.24 ± 0.01	0.09 ± 0.01
$E_{lab} = 76 \text{ MeV}$			112.3	0.31 ± 0.02	0.14 ± 0.01
122.7	0.96 ± 0.05	0.25 ± 0.01	146.3	0.49 ± 0.02	0.21 ± 0.01
126.3	1.03 ± 0.05	0.32 ± 0.02	150.1	0.71 ± 0.04	0.31 ± 0.02
130.1	1.39 ± 0.07	0.59 ± 0.03	153.8	0.93 ± 0.05	0.39 ± 0.02
131.0	1.62 ± 0.08	0.79 ± 0.01			
137.7	1.78 ± 0.09	0.89 ± 0.01			4
141.7	2.3 ± 0.1	1.27 ± 0.06			
145.2	2.1 ± 0.1	1.22 ± 0.06			÷
149.2	2.9 ± 0.2	1.77 ± 0.09			
152.8	3.1 ± 0.2	1.87 ± 0.09			
156.1	2.9 ± 0.1	1.85 ± 0.09			

Tabla 2.3: Secciones eficaces diferenciales para las reacciones de stripping de una y dos cargas en el sistema ¹⁶O + ¹⁹⁷Au a $E_{lab} = 77, 76, 75, 74$ MeV

es cercana al 0.5%. En esta figura se presentan sólo los valores para $E > V_c$ debido a que por las condiciones en las que fue realizado el experimento no fue posible acceder a ángulos mayores a 170°. De este modo para $E \le V_c$ no fue posible observar un máximo en la sección eficaz diferencial, sino un crecimiento monótono hacia ángulos traseros. Sin embargo, cabe esperar para $E < V_c$ que el máximo valor de la sección eficaz diferencial se encuentre a $\Theta = 180^\circ$ por ser éste el ángulo de rozamiento a tales energías (ver Apéndice 6.2). Las distribuciones angulares de las reacciones de stripping de carga son bien conformadas y presentan un máximo en un ángulo de dispersión levemente menor (de 4 a 7 grados) al "ángulo de grazing", Θ_{gr} , que es el ángulo de dispersión con el que emergen los eyectiles que sufren reacciones de dispersión elástica, en las que la distancia de mayor aproximación
dos caroas on	In case and man
2	•
600	
de	
de strinnine	0
reacciones	56 MeV
se	-
ara l	30.57
liferenciales 1	=82, 70, 65 0
elicaces	Au a Elab
Secciones	12(1 + 197)
	131
thla 2.	sisten
1	E

>	$d\sigma/dM^{2\omega-1}$	$d\sigma/d\Omega^{\Delta Z=2}$	(-)	$d\sigma/d\Omega\Delta Z=1$	$d\sigma / d() \Delta Z = 2$
[grados]	[mb/sr]	[mb/sr]	[grados]	[mb/sr]	[mb/sr]
$\Sigma_{lab} = 82 \text{ MeV}$			$E_{lab} = 65 \text{ MeV}$		1
19.0	9.3 ± 0.5	8.1 ± 0.1	92.3	2.6 ± 0.1	1.19 ± 0.06
53.1	12.3 ± 0.6	7.9 ± 0.1	96.1	3.1 ± 0.2	1.35 ± 0.07
57.3	$1.1.1 \pm 0.7$	7.5 ± 0.1	100.3	3.7 ± 0.2	1.49 ± 0.07
69.8	7.4 ± 0.4	3.5 ± 0.2	101.1	3.7 ± 0.2	1.43 ± 0.07
73.9	4.2 ± 0.2	2.0 ± 0.1	108.0	3.8 ± 0.2	1.67 ± 0.08
78.0	3.1 ± 0.1	1.18 ± 0.07	112.1	3.8 ± 0.2	1.60 ± 0.08
85.0	1.6 ± 0.1	0.81 ± 0.01	115.8	3.3 ± 0.2	1.41 ± 0.07
89.1	0.89 ± 0.01	0.11 ± 0.02	119.9	3.0 ± 0.2	1.41 ± 0.07
93.1	0.61 ± 0.03	0.36 ± 0.02	1:23.7	2.4 ± 0.1	1.03 ± 0.05
6.66	0.31 ± 0.02	0.15 ± 0.01	127.1	2.3 ± 0.1	0.97 ± 0.05
103.9	0.19 ± 0.01	0.09 ± 0.01	131.5	1.87 ± 0.09	0.91 ± 0.05
8.701	$0.1.1 \pm 0.01$	0.07 ± 0.01	1:35.1	1.73 ± 0.09	0.82 ± 0.04
$d_{ab} = 70 \text{ MeV}$			1:38.1	1.55 ± 0.08	0.82 ± 0.01
6.17	3.1 ± 0.2	2.5 ± 0.1	$E_{lub} = 60 \text{ MeV}$		
75.7	4.6 ± 0.2	2.5 ± 0.1	112.2	0.69 ± 0.03	0.18 ± 0.01
80.1	6.1 ± 0.3	3.3 ± 0.2	115.8	0.86 ± 0.04	0.21 ± 0.01
8.1.9	7.0 ± 0.3	2.7 ± 0.1	120.0	1.16 ± 0.06	0.31 ± 0.02
87.9	6.5 ± 0.3	2.5 ± 0.1	123.7	1.31 ± 0.07	0.31 ± 0.02
92.1	6.5 ± 0.3	2.8 ± 0.1	127.5	1.47 ± 0.07	0.38 ± 0.02
95.9	5.2 ± 0.3	2.0 ± 0.1	131.5	1.71 ± 0.09	0.48 ± 0.02
100.1	-1.0 ± 0.2	1.9 ± 0.1	1:35.1	1.76 ± 0.09	0.51 ± 0.03
103.9	3.1 ± 0.2	1.33 ± 0.07	1:39.2	1.85 ± 0.09	0.59 ± 0.03
107.8	2.5 ± 0.1	1.07 ± 0.05	1-12.9	1.74 ± 0.09	0.54 ± 0.03
112.0	1.80 ± 0.09	0.91 ± 0.05	1.46.5	1.83 ± 0.09	0.60 ± 0.03
115.6	1.58 ± 0.08	0.75 ± 0.01	150.6	1.73 ± 0.09	0.62 ± 0.03
118.7	1.11 ± 0.06	0.60 ± 0.03	1.5-1.1	1.63 ± 0.08	0.55 ± 0.03
			157.0	1.61 ± 0.08	0.55 ± 0.03
hab = 57 MeV			$E_{lab} = 56 \text{ MeV}$		
131.4	0.22 ± 0.01	0.01 ± 0.01	131.3	0.09 ± 0.01	
135.0	0.25 ± 0.01	0.01 ± 0.01	1:38.1	0.10 ± 0.01	đ
139.1	0.30 ± 0.01	0.03 ± 0.01	6.11.1	0.16 ± 0.01	
1.12.7	0.31 ± 0.02	0.01 ± 0.01	115.5	0.14 ± 0.01	
1.16.1	0.39 ± 0.02	0.01 ± 0.01	1-19.3	0.23 ± 0.01	
150.5	0.44 ± 0.02	0.05 ± 0.01	153.0	0.18 ± 0.01	
151.0	0.45 ± 0.02	0.06 ± 0.01			
156.9	0.10 ± 0.00	0.05 ± 0.01			

..........

67

............

coincide con la suma de los radios nucleares del proyectil y del blanco (ver Apéndice 6.2)

$$\Theta_{gr} = 2\sin^{-1}\left(\frac{V_c}{2E - V_c}\right) \tag{2.9}$$

(0) en el que la sección clicaz diferencial presenta el máximo valor. Esta figura permite ver que se encuentran muy próximas. para $E > V_c$, en general el máximo de la distribución angular antecede a Θ_{gr} algunos grados. responsable por la disminución de la sección eficaz diferencial. Por último observemos que de los núcleos comienza a ser importante ($\Theta \geq \Theta_{gr}$) la apertura del canal de fusión es las reacciones de transferencia son procesos que ocurren cuando las superficies nucleares La Figura 2.15 [Derecha] muestra el cociente Θ_o/Θ_{gr} [Derecha], donde Θ_o es el ángulo $\leq \Theta_{gr}$) estos procesos se vuelven cada vez menos probables. Cuando la superposición A medida que la distancia entre las superficies aumenta

2.4.3 Funciones de excitación

eficaz total de transferencia $\sigma_{le}(E)$, integrando la distribución angular A partir de las secciones eficaces diferenciales de transferencia fue posible obtener la sección

$$\sigma_{tr} = \int_{\Omega} \left(\frac{d\sigma}{d\Omega} \right)_{tr} d\Omega \tag{2.10}$$

para $E_{lab} >> V_c$ la sección eficaz tiende a un valor constante. de las reacciones de stripping de carga crecen muy rápidamente a energías próximas a V_e y Las funciones de excitación (ver Figura 2.16 y Tabla 2.5) muestran que las secciones eficaces renciales por una curva suave (un polinomio de grado 5) y luego se realizó la integral (2.10). ('on este propósito, se ajustaron los datos experimentales de las secciones eficaces dife-

por esta interacción produce una barrera adicional que anula a las funciones de onda de las que además sienten la interacción electromagnética con ellos. carga, se requiere una mínima superposición de los dos núcleos interactuantes. partículas a largas distancias. Por este motivo para producir reacciones de transferencia de Las partículas cargadas no sólo sufren la interacción nuclear fuerte con los carozos sino El potencial total generado

aproximación para colisiones frontales de Rutherford $(D(\pi) = e^2 Z_1 Z_2 / E)$ (ver Apéndice 6.2) la sección clicaz total de transferencia, σ_{tr} , puede ser deducida de la distancia de mayor Para energías de bombardeo menores que la energía de la barrera Coulombiana del sistema

$$\sigma_{he} \sim \exp\left[-2\kappa D(\pi)\right]$$

(2.11)

Sistema	$E_{bab}[{ m MeV}]$	$\sigma_{tr}^{\Delta Z=1}$ [mb]	$\sigma_{tr}^{\Delta Z=2}$ [mb]
$^{12}C + ^{197}\Lambda u$	_		
	82	31 ± 2	24 ± 1
	70	21 ± 1	11.6 ± 0.6
	65	16.0 ± 0.8	6.8 ± 0.4
	60	6.0 ± 0.4	1.7 ± 0.2
	57	1.2 ± 0.1	0.09 ± 0.02
	56	0.1 ± 0.1	0.01 ± 0.01
$^{16}O + ^{197}Au$			
	110	61 ± 4	82 ± 3
	90	36 ± 2	51 ± 1
	85	27 ± 1	35 ± 1
	80	18 ± 1	19.0 ± 0.7
	77	15.0 ± 0.7	8.6 ± 0.5
	76	7.0 ± 0.7	3.6 ± 0.3
	75	2.6 ± 0.3	1.6 ± 0.2
	71	1.7 ± 0.1	0.6 ± 0.2

Tabla 2.5: Total Sección eficaz total de stripping de una y dos cargas en los sistemas $^{12}\rm C$ + $^{197}\rm Au$ y $^{16}\rm O$ + $^{197}\rm Au$

La constante de decaimiento κ de la función de onda del estado ligado puede ser obtenida a través de la aproximación WKB [48, 49]

$$\kappa = \frac{1}{h(x_1 - x_2)} \int_{x_1}^{x_2} \sqrt{2\mu[\mathcal{B} + U(r)]} dr$$
 (2.12)

donde \mathcal{B} es la energía de ligadura de la partícula transferida, μ su masa reducida y los límites de integración, x_i , corresponden a $\mathcal{B} + U(x_i) = 0$. El potencial de interacción nucleón-núcleo U(r) se define como [50]

$$U(r) = U_d(r) + U_a(D - r),$$
(2.13)

$$U_i(r) = U_{C_i}(r) + U_{N_i}(r).$$
(2.14)

Aqui los subíndices d|y|a| se refieren a los carozos donor y aceptor, respectivamente, D es la distancia de mayor aproximacion entre ellos y r es la coordenada espacial del nucleón transferido con respecto al carozo donor. $U_{C_i} |y| U_{N_i}$ son el potencial Coulombiano (debido a una esfera cargada uniformemente de radio $R_c = 1.25(A_i - 1)^{1/3}$ fm) y el potencial nuclear, generados por el carozo i sobre la partícula. Nosotros hemos considerado para el potencial nuclear una forma de tipo Woods Saxon con un radio reducido $r_0 = 1.2$ fm, difusividad $a_n = 0.63$ fm y profundidad

$$U_{0_i} = \left[51 + 33 \, \frac{N_i - Z_i + 1}{A_i - 1}\right] \,\,\mathrm{MeV} \,\,. \tag{2.15}$$

Donde N_i y Z_i son los números de neutrones y protones, respectivamente, y A_i es el número másico de cada carozo.

Esta expectativa teórica reproduce razonablemente bien los datos experimentales obtenidos en este trabajo, como puede observarse en la Fig. 2.16, donde los cáculos corresponden a reacciones de stripping de uno y dos protones.

La Figura 2.16 también muestra los datos obtenidos por Eyal [51] y por Yokoyama [52], que fueron tomados a energías de bombardeo muy superiores a V_c . Mientras los datos obtenidos por Eyal son consistentes con las funciones de excitación medidas en este trabajo, uno de los resultados obtenidos por Yokoyama (en el sistema ¹⁶O + ¹⁹⁷Au a $E/V_c = 1.83$), no sigue la sistemática. El alto valor de la sección eficaz de transferencia obtenido por Yokoyama ($\sigma_{tr} = 800$ mb) es comparable a las estimaciones de la sección eficaz total de fusión para energías mayores a la barrera Coulombiana del sistema [1]

$$\sigma_{fus} \approx \pi R_B^2 \left(1 - \frac{V_c}{E} \right) \tag{2.16}$$

Figura 2.16: Sección eficaz total para reacciones de stripping de una y dos cargas. Los círculos llenos y vacíos corresponden al stripping de una y dos cargas, respectivamente, medidos en este trabajo, los cuadrados y triángulos corresponden a los mismos canales de transferencia observados por Eyal [54] en los mismos sistemas, mientras que las cruces y estrellas corresponden a las mediciones realizadas por Yokoyama [55]. Las lineas llenas y discontinuas corresponden a los cálculos detallados en el texto y que suponen reacciones de transferencia de uno y dos protones, respectivamente.

donde R_B es el radio de la barrera de fusión ($\sigma_{fus} \approx 1300 \text{ mb}$), lo que abre ciertas dudas sobre la confiabilidad de esta medición.

Capítulo 3

Otros Modos de Reacción

3.1 Distribuciones angulares

En ésta sección se analizan los datos experimentales obtenidos de las reacciones de dispersión elástica y de fusión fisión en los sistemas ${}^{12}C + {}^{197}Au y {}^{16}O + {}^{197}Au que se obtuvieron utilizando los arreglos experimentales descritos en el Capítulo precedente.$

3.1.1 Dispersión elástica

El amplio rango de energías de bombardeo cubierto en este trabajo nos permitió investigar la dependencia con la energía de bombardeo de los potenciales que surgen del modelo óptico, cuyas partes real e imaginaria se encuentran conectadas a través de las relaciones de dispersión. La figura 3.1 muestra las secciones eficaces diferenciales cuasi-elásticas para los sistemas ${}^{12}C + {}^{197}Au$ y ${}^{16}O + {}^{197}Au$ normalizadas a la sección eficaz de Rutherford (ver Apéndice 6.2). Debido a la resolución en energía del telescopio (~ 400 keV en los espectros de Q), esas secciones eficaces incluyen procesos elásticos, y también procesos inelásticos tales como la excitación Coulombiana y las reacciones de transferencia de neutrones.

A partir de las secciones eficaces diferenciales se obtuvieron los parámetros del modelo óptico de esos sistemas, haciendo cálculos basados en el modelo óptico. Estos cálculos fueron realizados utilizando el código de computación PTOLEMY [53]. La Tabla 3.1 muestra los potenciales ópticos obtenidos y las secciones eficaces diferenciales calculadas a partir de estos, se muestran en la Figura 3.1.

Debido a la ambigüedad de Igo [54], los parámetros del potencial óptico no están determinados univocamente, ya que existen familias de potenciales ópticos que reproducen los datos experimentales de la dispersión elástica, conectados por la relación

$$V\exp\left(R/a\right) = ctc \tag{3.1}$$

	Elab	V	r_R	a_R	11.	r_{I}	<i>a</i> 1	Rsv	Rsw	Vs	Ws
	[MeV]	[MeV]	[fm]	[fm]	[MeV]	[fm]	[fm]	[fm]	[fm]	[MeV]	[MeV]
2()											
	56	21.6	1.36	0.57	0.57	1.10	0.60	11.3	11.5	4.43	0.20
	57	26.8	1.33	0.11	0.98	1.40	0.58	11.9	11.3	2.57	0.55
	60	23.1	1.33	0.12	2.05	1.10	0.13	11.9	11.5	2.18	1.54
	65	21.8	1.33	0.11	3.45	1.10	0.22	11.4	11.1	1.85	2.28
	70	17.1	1.33	0.15	3.73	1.10	0.13	12.1	11.4	1.83	2.59
	82	18.3	1.36	0.32	1.11	1.10	0.33	11.6	11.4	1.64	2.71
60											
	7.1	30.3	1.16	0.20	1.06	1.55	0.15	12.4	13.3	11.4	0.43
	75	31.9	1.15	0.11	0.97	1.55	0.33	12.8	13.6	8.3	0.43
	77	30.9	1.42	0.23	2.13	1.51	0.1.1	12.6	12.4	3.8	0.18
	80	34.0	1.43	0.21	2.96	1.50	0.14	12.8	12.9	1.2	0.21
	85	39.3	1.37	0.23	2.20	1.51	0.35	11.7	13.4	1.0	0.68
	90	32.6	1.31	0.29	1.91	1.52	0.20	12.6	12.8	0.9	0.40
	110	2.1.8	1 .5.5	0 .5.5	271	1 15	0.30	19.0	19.6	1.0	0.10

Tabla 3.1: Parámetros de los potenciales del modelo óptico obtenidos mediante el código computacio y I

El origen de esta ambigüedad es que la fuerte absorción para $r \leq R$, hace que unicamente la cola del potencial nuclear a largas distancias pueda afectar a la dispersión elástica [55]. Este comportamiento ambiguo es presentado también por la parte imaginaria del potencial óptico [55], Los potenciales de distintas familias son similares en magnitud en las vecindades de una distancia de interacción efectiva (radio de sensibilidad) y muy diferentes tanto a distancias mayores como a distancias menores.

Los radios de sensibilidad real e imaginario encontrados son $R_{Sv} = 11.7$ fm, $R_{Sw} =$ 11.4 fm y $R_{Sv} = 12.3$ fm, $R_{Sw} = 13.0$ fm para los sistemas ${}^{12}C + {}^{197}Au$ y ${}^{16}O + {}^{197}Au$, respectivamente.

Mediciones en varios sistemas [56] [58] muestran que los potenciales ópticos evaluados en los radios de sensibilidad presentan un comportamiento dependiente de la energía de bombardeo. Esta dependencia es interpretada a través de la relación de dispersión, que relaciona a las partes real e imaginaria del potencial óptico:

Figura 3.1: Sección eficaz diferencial cuasi elástica normalizada a la sección eficaz de Rutherford en los sistemas $^{12}C + ^{197}Au$ (panel superior) y $^{16}O + ^{197}Au$ (panel inferior). Las líneas son los resultados de los cálculos del modelo óptico descrito en el texto.

Figura 3.2: Variación con la energía de bombardeo, de las partes real [Arriba] e imaginaria [Abajo] del potencial óptico U para los sistemas $^{12}C + ^{197}Au$ [Izquierda] y $^{16}O + ^{197}Au$ [Derecha]. Los radios de sensibilidad R_{Sv} y R_{Sw} , en los que son evaluados los potenciales están indicados en la figura.

$$V(E) = V_{\nu} + \lim_{R \to \infty} \frac{1}{\pi} \int_{-R}^{R} \frac{W(E')}{E' - E} dE', \qquad (3.2)$$

.

.

donde V_o es el potencial real independiente de la energía. El fuerte aumento de la sección eficaz de los canales de reacción inclásticos con la energía de bombardeo (para energías próximas a la energía de la barrera Coulombiana), produce un aumento de W. La ec. (3.2) predice que las variaciones en la parte imaginaria del potencial óptico deben ir acompañadas por variaciones de la parte real del mismo [59].

La Figura 3.2 muestra que los potenciales ópticos de los sistemas $^{12}C + ^{197}Au y ^{16}O + ^{197}Au$, evaluados en los radios de sensibilidad presentan un comportamiento dependiente de la energía de bombardeo que es consistente con la relación de dispersión, ya que se observa el aumento en el potencial real V y el correspondiente decrecimiento del potencial imaginario W, cuando la energía de bombardeo disminuye, aproximandose a V_c .

3.1.2 Fusión-fisión

Para energías de bombardeo mayores que la barrera Coulombiana el canal de reacción dominante es la fusión. El núcleo compuesto formado en tales reacciones queda en un estado

mación de equilibrio). A medida que se consideran núcleos más pesados, la estabilidad frente de la deformación nuclear para el cual la energía potencial posea un mínimo local (defortotal, superficial, electrostática y rotacional, respectivamente, y que debe existir algún valor mente se ha empleado el modelo rotacional de la gota líquida incompresible y eléctricamente 5 rotacional de la gota líquida permite predecir el momento angular crítico l_{crit} para el cual la que disminuye la barrera de fisión y vuelve al mícleo compuesto más inestable. El modelo del momento angular al núcleo compuesto produce un incremento de la energía rotacional uye a medida que aumenta el momento angular L, del núcleo compuesto. La transferencia inestable y decae por fisión espontanea, mientras que para x < 1 la barrera de fisión disminla probabilidad de fisión del núcleo compuesto. Para x = 1 e y = 0 el sistema se vuelve siendo $x = E_C/2E_S \sim Z^2/50A$ c $y = E_R/E_S \sim 2L^2/A^{7/3}$ los parámetros que determinan por un lado, del régimen dinnelear correspondiente a los dos fragmentos de fisión por el otro, la disminución de la barrera de potencial que separa a la configuración de núcleo compuesto respecto de la fuerza cohesiva provista por la tensión superficial. La fisión del núcleo refleja al decaimiento por fisión disminuye debido al aumento de la energía repulsiva electrostática. cargada. Este modelo considera que $E = E_S + E_C + E_R$, siendo E, E_S , E_C y E_R , las energías de alta excitación. Para comprender los mecanismos de desexcitación del mismo, frecuente-El momento augular transferido al núcleo compuesto puede ser calculado clásicamente como barrera de fisión desaparece, y en el caso de los núcleos β estables con $A \sim 200$, $l_{crit} \sim 80h$.

$$L_{fu}^{2} = \frac{2\mu}{\hbar^{2}} r_{fu}^{2} [E - V_{c}]$$
(3.3)

núcleo ²¹³Fr (producido por la reacción ${}^{16}O + {}^{197}Au$), que también es inestable, decae por por captura electrónica (95.9%) y por emisión de partículas α (4.1%) [6] mientras que el núcleo compuesto ²⁰⁹At, producido por la reacción ¹²C + ¹⁹⁷Au, no es estable, sino que decae donde r_{fu} es el radio de la barrera de fusión y μ la masa reducida del canal de entrada. El estados excitados pueden decaer por mecanismos de fisión aunque $L_{fu} < l_{crit}$. son 0.69 y 0.71, respectivamente. Debido a que estos núcleos son altamente inestables, sus EC (0.55%) y por α (99.15%) [6], mientras que sus parámetros de fisibilidad x (a y = 0)

Según esta sistemática, la energía cinética media de los fragmentos de fisión $\langle E_k \rangle$ verifica dispersión elástica, agrupados en un pico angosto (E = 98 MeV), y una importante cantidad MeV) muy ancho (FWHM = 30 MeV), que concuerda con la sistemática de V.E. Viola [60]. de eventos asociados a reacciones de fusión fisión, agrupados en un pico (< E_{fis} >= 57 ¹⁶O + ¹⁹⁷Au, $E_{hub} = 110$ MeV ($L_{fu} = 60h$), doude se aprecian eventos relacionados con la La Figura 3.3 [Izquierda] muestra un espectro de energía total obtenido para la reacción

Figura 3.3: [Izquierda] Espectro de energia total de los fragmentos de fisión del ²¹³Fr producidos por la reacción ¹⁶O + ¹⁹⁷Au a E_{lab} = 110 MeV. [Derecha] Cálculos de la energía depositada en el detector como función de la masa del fragmento detectado.

que:

$$\langle E_k \rangle = 0.1189 \frac{Z^2}{A^{1/3}} + 7.3 \pm 1.5 \ MeV$$
 (3.4)

donde Z y A se refieren al núcleo compuesto y E_k es suma de las energías de cada uno de los fragmentos de fisión. En el caso del ²¹³Fr estos cálculos muestran que $\langle E_k \rangle = 150$ MeV, por lo que cada fragmento debe llevar, en valor medio, 75 MeV de energía cinética. La diferencia entre la energía media observada (57 MeV), y la esperada a partir de la ec. (3.4) (75 MeV), se debe a pérdidas de energía en el blanco (~ 5 MeV), en la ventana de entrada del detector de barrera de superficie (~ 1.5 MeV) y a las debidas al efecto del plasma producido por la radiación ionizante en el detector (~ 10 MeV).

La Figura 3.3 [Derecha] muestra un cálculo de la energía depositada en el detector, basado en consideraciones cinemáticas en las que la energía cinética en el canal de salida E_k , coincide con la energía potencial Coulombiana de tal partición. Estos cálculos incluyen las correcciones debidas a las pérdidas de energía anteriormente mencionadas. El ancho pico de fisión observado en la Figura 3.3 [Izquierda], sugiere que el ²¹³Fr fisiona dando lugar a una gran variedad de particiones diferentes.

Sobre la base de la teoría estadística, la distribución angular de los fragmentos de fisión viene dada por [61]

$$W(\Theta) = \frac{1 + \alpha \cos^2 \Theta}{1 + \frac{1}{3}\alpha}$$
(3.5)

Figura 3.4: [Izquierda] Sección eficaz diferencial de fisión del núcleo compuesto ²¹³Fr producido por la reacción ¹⁶O + ¹⁹⁷Au, como función de $\cos^2\Theta$. La línea sólida es una regresión líneal de los datos. [Derecha] Sección eficaz total de fisión del núcleo compuesto producido por la misma reacción como función de la energía cinética del canal de entrada.

donde α es el coeficiente de anisotropía, y está estrechamente vinculado al momento angular crítico l_{crit} , al momento de inercia efectivo I y a la temperatura T del núcleo compuesto.

De este modo la distribución angular puede ser representada como [62]

$$\frac{W(\Theta)}{W(90^{\circ})} = 1 + C\cos^2\Theta$$
(3.6)

como muestra la Figura 3.4 [Izquierda]. Esta expresión que puede ser integrada para obtener la sección eficaz de fisión

$$\sigma_{fis} = 4\pi W(90^{\circ})(1 + C/3) \tag{3.7}$$

Ajustando la ec. (3.6) a los datos experimentales de la sección eficaz diferencial de fusiónfisión se obtuvo la constante C, que fue utilizada para evaluar la sección eficaz total a partir de la ec. (3.7). Para el sistema ¹²C + ¹⁹⁷Au a $E_{lab} = 82$ MeV se obtuvo $\sigma_{fis} = 1.3 \pm 0.2$ barn, mientras que para el sistema ¹⁶O + ¹⁹⁷Au a $E_{lab} = 110$ MeV se obtuvo $\sigma_{fis} = 1.2 \pm 0.2$ barn.

La Figura 3.4 [Derecha] compara los resultados obtenidos para el sistema ${}^{16}\text{O} + {}^{197}\text{Au}$ a $E_{tab} = 110$ MeV en este trabajo, con los obtenidos por otros investigadores [63]-[65].

Para las energías de bombardeo menores a 82 MeV (110 MeV) no se estudiaron las reacciones de fusión fisión el sistema ${}^{12}C + {}^{197}Au$ (${}^{16}O + {}^{197}Au$).

0 • ٩ 0 0 0 . • . 0 0 . • • . 0 Ō

3.2 Actividad de los productos de reacción

En ésta sección se describe el método empleado para la determinación de la sección eficaz total de las reacciones de transferencia a través de la medición de la actividad de los productos de reacción inestables, y se discuten los resultados obtenidos.

3.2.1 El método experimental

Las mediciones se realizaron en el Laboratorio TANDAR, donde un blanco de ¹⁹⁷Au (espesor ~ 200μ g/cm²) fue irradiado con proyectiles de ¹²C y ¹⁶O con energías comprendidas en el rango de 55 a 82 MeV y de 80 a 110 MeV, respectivamente. Los productos pesados de la reacción fueron recolectados con folias de aluminio de 2.1 mg/cm² de espesor posicionadas inmediatamente detrás del blanco. Posteriormente a la irradiación se analizó la actividad de las folias utilizando un detector de germanio hiperpuro GEM30. Las folias fueron ubicadas a una distancia de 2 cm del detector (cristal), y de este modo fue posible estudiar los productos de la reacción a través de la medición de la radiación electromagnética emergente de los mismos.

Cálculos basados en el poder frenador del aluminio nos permiten garantizar que los fragmentos pesados ($A \sim 200$) sou detenidos por la folia de aluminio cualquiera sea la posible dirección de emergencia de los mismos, mientras que los eyectiles, por tener un número atómico mucho menor pueden escapar a la folia. El detector fue rodeado con un blindaje de 10 cm de Pb a fin de reducir, en todo lo posible, el fondo radiactivo natural. Un esquema del montaje experimental se muestra en la Figura 3.5. Para el monitoreo de la corriente iónica se utilizaron dos detectores de barrera de superfície de 700 μ m de espesor (emplazados a $\theta \pm 30^{\circ}$, respecto de la dirección del haz) y una copa de Faraday.

Para el procesamiento de las señales se utilizó electrónica convencional y para la adquisición de datos (tanto de monitoreo de la corriente del haz, como de radiación gamma) se utilizaron multicanales conectados a PCs.

Los espectros de energía gama (1096 canales) fueron acumulados y guardados automáticamente, con varios intervalos de tiempo, durante varias horas. La resolución en energía del detector de germanio fue de 2.0 keV (FWHM) para la transición de 1332.5 keV del ⁶⁰Co.

En algunos casos (para energías de bombardeo 20% superiores a la barrera Coulombiana del sistema), se observo una alta tasa de radiación en el detector (se observaron tiempos "muertos" del multicanal de entre el 5% y el 50%), sin embargo, no se observaron efectos de apilamiento.

Figura 3.5: [A]: Esquema simple del arreglo experimental en la cámara de reacciones. [B]: Esquema del dispositivo de medición de la actividad de las folias. [C]: Esquema del blindaje de plomo, contra la actividad natural.

Para la identificación de los picos del fondo natural y los debidos a las reacciones producidas en la folia (esencialmente reacciones de fusión en los sistemas ¹²C, ¹⁶O + ^{nat}Al) se tomaron espectros del fondo natural (con el blindaje de plomo y sin él) y de una folia irradiada sin anteponerle el blanco de ¹⁹⁷Au.

Para la calibración en eficiencia y energía del multicanal utilizado para la medición de la radiación electromagnética se utilizaron fuentes de actividad conocida de ²²Na, ⁵¹Mn, ^{57,60}Co, ¹³³Ba, ¹³⁷Cs, ¹⁵²Eu y ²⁴¹Am. La calibración en energía mostró una excelente línealidad del multicanal. La eficiencia total, *E_T* (intrínseca y geométrica), pudo ser ajustada por:

$$E_T = \frac{3.2567}{E_{\gamma}^{0.8424} [keV]} \%$$
(3.8)

para energías de fotopico mayores a 150 keV, mientras que para energías menores a 130 keV se observa una caída rápida de la misma debido a las pérdidas en la ventana de entrada del detector.

Los diferentes modos de reacción (reacciones de transferencia, fusión-evaporación y fusiónfisión) producen nucleídos inestables que decaen, a través de una cadena de decaimientos (EC, β^+ , α) a nucleídos estables y en estos procesos se encuentran involucradas diferentes vidas medias. Las reacciones de fusión en el sistema ¹²C + ¹⁹⁷Au (¹⁶O + ¹⁹⁷Au) producen el núcleo compuesto ²⁰⁹At (²¹³Fr). Inmediatamente después de su formación, el núcleo compuesto se desexcita emitiendo partículas livianas, tales como neutrones, protones y partículas α , y posteriormente el núcleo residual puede aún tener decaimientos α , β , y/ α decaimientos por captura electrónica, hasta alcanzar un estado estable.

En adelante llamaremos "canales de evaporación xn", a las reacciones de fusión, en las el núcleo compuesto decae evaporando x neutrones. Ademas llamaremos "canal de evaporación pxn (αxn)" a las reacciones de fusión en las que el núcleo comuesto decae emitiendo un protón (una partícula α) y x neutrones.

La producción relativa de cada canal de evaporación xn, pxn y αxn depende de la energía de excitación E_{ex} y del momento angular total I, con el que el núcleo compuesto es formado. En el momento de la formación del núcleo compuesto, la energía del movimiento relativo de los núcleos en el canal de entrada (E), es transferida a los grados de libertad internos del núcleo compuesto, por lo que su energía de excitación viene dada por

$$E_{cr} = E + Q_{fu} = E + c^2 (M_1 + M_2 - M_{1+2})$$
(3.9)

donde el valor Q_{fu} de fusión, representa el aumento en la energía de ligadura asociada con la formación del núcleo compuesto en su estado fundamental. Las masas M_1 , M_2 y M_{1+2} corresponden al proyectil, al blanco y al núcleo compuesto, respectivamente.

El número (y tipo) de partículas evaporadas por el núcleo compuesto ha sido explicado utilizando el modelo estadístico. Cálculos basados en este modelo (que fueron realizados utilizando el código de computación PACE [66]), muestran que el núcleo compuesto ²⁰⁹At (formado en la reacción ¹²C + ¹⁹⁷Au), se desexcita favoreciendo los canales de fusión-evaporación xn (3n, 4n, 5n y 6n), respecto de los pxn y xo (por ejemplo, cálculos para el sistema ¹⁶O + ¹⁹⁷Au predicen que de la sección eficaz total de fusión-evaporación para $E_{lab} = 80$ MeV el 89% corresponde a los canales de evaporación xn, el 7% a los canales pxn y el 4% a los αxn).

En las Figuras 3.6 y 3.7 se observan las cadenas de decaimientos de los residuos de evaporación de 3, 4, 5 y 6 neutrones del nucleo compuesto 209 At,

Debido a que las vidas medias de muchos nucleídos que forman las cadenas de decaimiento previamente citadas están comprendidas entre los minutos y los días, fue posible observar una gran cantidad de transiciones electromágneticas, mediente el método experimental descrito en 3.3.1.

Figura 3.6: Cadenas de decaimientos de los canales de fusión-evaporación 3n y 4n, posteriores a la formación del núcleo compuesto ²⁰⁹ AL. La intensidad relativa de los decaimientos por captura electrónica (EC), β^+ , y α , al igual que las vidas medias y los momentos angulares de los estados detallados, están indicados en la figura.

La Figura 3.8 [Arriba] muestra el espectro gama correspondiente a transiciones observadas de los residuos de evaporación producidos en la reaccion ${}^{12}\text{C} + {}^{197}\text{Au}$ a $E_{lab} = 82$ MeV. Este espectro fue acumulado en los primeros 60 minutos posteriores a la irradiación. En esta figura se observan 2 transiciones electromagnéticas que corresponden al decaimiento del núcleo ${}^{205}\text{At}$ ($E_{\gamma} = 669.4$ y 719.3 keV). 1 correspondientes al decaimiento del núcleo ${}^{205}\text{Po}$ ($E_{\gamma} = 836.8, 819.8, 872.4$ y 1001.2 keV), y 5 correspondientes al decaimiento del núcleo ${}^{201}\text{Bi}$ ($E_{\gamma} = 629.1, 786.4, 818.9, y 936.2$ keV), relacionadas con el canal de evaporación 4n.

Figura 3.7: Cadenas de decaimientos de los canales de fusión evaporación 5n y 6n, posteriores a la formación del núcleo compuesto ²⁰⁹ At. La intensidad relativa de los decaimientos por captura electrónica (EC), β^+ , y α , al igual que las vidas medias y los momentos angulares de los estados detallados, están indicados en la figura.

Las transiciones de energías $E_{\gamma} = 125.0$, 588.1, 608.0, y 683.3 keV, que corresponden al decaimiento del ²⁰⁴At y se observan en la Figura - 3.8 [Arriba], corresponden al canal de evaporación 5*n*. Otros nucleídos correspondientes a la cadena de decaimientos del canal de evaporación 5*n* se aprecian claramente en la misma figura (²⁰⁴Po y ²⁰⁰Bi).

La baja sección elicaz del canal de evaporación 6n (para la reacción ${}^{12}\text{C} + {}^{197}\text{Au}$ a $E_{lab} = 82 \text{ MeV}$) queda en evidencia ya que una única transición electromagnética correspondiente al canal 6n se observa en la Figura 3.8 [Arriba] y corresponde al decaimiento del núcleo ${}^{203}\text{Po}$.

•

Figura 3.8: Espectros gama de la actividad de los productos de las reacciones ${}^{12}C + {}^{197}Au$ ($E_{lab} = 82 \text{ MeV}$)[Arriba]. ${}^{16}O + {}^{197}Au$ ($E_{lab} = 110 \text{ MeV}$) [Abajo]. El cuadro superior (inferior) muestra las transiciones electromagnéticas detectadas en los primeros 60 (40) minutos de adquisición de datos, inmediatamente posteriores a la irradiación. Las principales transiciones electromagnéticas, están denotadas mediante los símbolos que se detallan en el recuadro que se encuentra a la derecha de los espectros.

Figura 3.9: Cadenas de decaimientos de los canales de fusión evaporación 3n y 4n, posteriores a la formación del núcleo compuesto ²¹³Fr. La intensidad relativa de los decaimientos por captúra electrónica (EC), β^+ , y α , al igual que las vidas medias y los momentos angulares de cada nucleido están indicados en la figura.

En esta figura se observan transiciones electromagnéticas correspondientes a los canales de evaporación de 4,5 y 6 neutrones para el núcleo compuesto ²⁰⁹At, formado en la reacción ¹²C + ¹⁹⁷Au en el rango de energías estudiado ($E_{lab} = 55$ a 82 MeV). A energías de bombardeo menores existe una clara evidencia del canal 3n, ya que se observó la transición electromagnética de energía $E_{\gamma} = 700.6$ keV, correspondiente al decaimiento del núcleo ²⁰⁶At, en los espectros correspondientes a $E_{lab} = 55$, 60, 65 y 70 MeV.

En la misma figura se observan 3 transiciones electromagnéticas correspondientes al decaimiento del núcleo ²⁰²Bi ($E_{\gamma} = 422.1, 657.5, y 960.6 \text{ keV}$), y debido a que a esta energía de bombardeo no se observan transiciones electromagnéticas correspondientes al decaimiento del ²⁰⁶At, tales transiciones revelan la apertura del canal $\alpha 3n$. Las Figuras 3.9 y 3.10 muestran las cadenas de decaimientos de los canales de fusiónevaporación xn para el núcleo compuesto ²¹³Fr formado en la reacción ¹⁶O + ¹⁹⁷Au.

Figura 3.10: Cadenas de decaimientos de los canales de fusión-evaporación 5n y 6n, posteriores a la formación del núcleo compuesto ²¹³Fr. La intensidad relativa de los decaimientos por captura electrónica (EC), β^+ , y α , al igual que las vidas medias y los momentos angulares de los estados de cada nucleído, están indicados en la figura.

Es conveniente observar que debido a las importantes intensidades relativas para el decaimiento α que presentan los núcleos ^{210,209,208,207}Fr, ^{210,209,208,207}Rn, ^{209,207}At, y ^{210,209,208,207}Po, las cadenas de decaimiento de los canales de evaporación *xn* del nucleo compuesto ²⁰⁹At, están incluídas en las del nucleo compuesto ²¹³Fr. Por este motivo el espectro gama del decaimiento del núcleo compuesto ²¹³Fr presenta similitudes con el que se obtuvo para el decaimiento del núcleo compuesto ²⁰⁹At, como muestra la Figura 3.8, donde se observan las transiciones electromagnéticas características de los núcleos ^{205,204}At, ^{205,204}At, ^{205,204,203}Po, ^{202,201}Bi en el decaimiento de ambos núcleos compuestos. La presencia de estas transiciones evidencia que los canales de fusión evaporación 1*n*, 5*n*, 6*n* también están abiertos en la reacción ¹⁶O + ¹⁹⁷Au.

Además, en algunos espectros se observaron las transiciones características del decai-

miento del mícleo ²¹⁰At, que muestra la apertura del canal 3n a energías de bombardeo cercanas a la barrera Coulombiana. La producción del núcleo ²⁰⁹At observada en algunos espectros, puede deberse tanto al canal 1n como a reacciones de evaporación de una partícula

Al igual que en el caso del núcleo compuesto ²⁶⁹At, no se observaron transiciones electromagnéticas que rellejen la apertura de canales de evaporación prn.

Los dos espectros de la Figura 3.8 muestran las transiciones características del decaimiento del ¹⁹⁸⁷[] ($E_{\gamma} = 411.8$ y 636.7 keV), producido por reacciones de transferencia de dos cargas que discutiremos más adelante.

En la Tabla 3.2 se encuentran las transiciones electromagnéticas más importantes relacionadas con canales de fusión evaporación xn y o.xn y con reacciones de transferencia, que fucron observadas en los sistemas ¹²C + ¹⁹⁷Au ($E_{hab} = 55$ a 82 MeV) y ¹⁶O + ¹⁹⁷Au ($E_{hab} =$ 80 à 110 MeV). La Figura 3.11 muestra los espectros de la actividad de los productos de las reacciones ¹⁹⁷Au [Abajo] ($E_{lab} = 82$ y 90 MeV, respectivamente), colectados en las folias de aluminio. Estos espectros fueron adquiridos durante un intervalo temporal de 12 horas. El intervalo de tiempo que medió entre la finalización de la irradiación y el comienzo de la adquisición de fusión-evaporación y de transferencia, en los sistemas $^{12}\mathrm{C}$ + $^{197}\mathrm{Au}$ [Arriba] y $^{16}\mathrm{O}$ de los espectros de "vida media larga", varió entre las 45 horas y los 7 días.

Los núcleos ²⁰⁶Po, ^{206,204}Bi, y ^{203,201,200}Pb provienen de las cadenas de decaimientos correspondientes a los distintos canales de fusión evaporación xn. Los mícleos ^{199,197} $\lg y$ ^{198,196}Au son producidos en reacciones de transferencia, mientras que los núcleos ^{201,200}TJ pueden ser producidos, tanto por reacciones de fusión-evaporación xn como por reacciones de transferencia En la Figura 3.11 se observan 4 transiciones electromagnéticas que no pudieron ser identificadas. Haciendo un análisis de los espectros de folias de aluminio irradiadas (sin anteponer tiles con la folia de aluminio. Estas transiciones no se encuentran presentes a energías de el blanco de 197 Au) y del fondo natural del blindaje de plomo, pudimos comprobar que estas transiciones no se relacionan con el fondo natural ni con posibles reacciones de los proyecbombardeo menores (o muy próximas) a la barrera Coulombiana (de los sistemas estudiados), pero a medida que aumenta la energía de bombardeo se vuelven más importantes. Es dos utilizando el codigo computacional PACE) predicen que en el rango de energías bajo estudio, el canal preferencial para el decaimiento de los núcleos compuestos formados en las conveniente recordar en este punto, que cálculos basados en el modelo estadístico (realiza-

Tabla 3.2: Propiedades de las transiciones electromagnéticas de los nucleídos pertenecientes a las
cadenas de decaimiento de los canales de fusión evaporación xn y oxn, formados en las reacciones
¹² C + ¹⁹⁷ Au y ¹⁶ O + ¹⁹⁷ Au. Además se detallan las transiciones electromagnéticas de las reacciones
de transferencia observadas, en ambos sistemas.

Nucleido	Vida media	$E_{\gamma}(\mathbf{l}_{\gamma})$	$E_{\gamma}(\mathbf{I}_{\gamma})$	$E_{\gamma}(\mathbf{I}_{\gamma})$	$E_{\gamma}(1_{\gamma})$
	(Decaimiento)	[MeV](%)	[MeV](%)	[MeV](%)	[MeV](%)
210At	1.63 h (EC)	245.3(79)			
²⁰⁹ At	1.63 h (EC)	515.0(91)	781.9 (83)	790.2 (83)	
208 At	1.63 h (EC)	177.6 (18)	686.5(97)		
207 At	1.80 h (EC)	588.3(19)	811.1 (45)		
206At	30.0 m (EC)	395.5 (18)	477.1 (86)	700.6 (97)	
205 At	26.2 m (EC)	669.1(8)	719.3 (31)		
201At	9.1 m (EC+ β^+)	125.0 (66)	588.4 (8)	608.0 (20)	683.3 (94)
207 Po	5.83 h (EC)	105.8 (10)	742.7 (30)	911.8 (18)	992.4 (63)
206 Po	8.8 d (EC)	286.1 (24)	338.1 (19)	522.5 (16)	1032.3 (33)
205 Po	1.80 h (EC)	836.8 (19)	819.8 (25)	872.4 (37)	1001.2 (29)
201Po	3.53 h (EC)	270.1 (28)	531.9 (13)	762.5 (11)	883.9 (30)
203Po	33 m (EC)	211.8 (11)	893.5 (19)	908.6 (55)	1090.9 (19)
206 Bi	6.21 d (EC)	313.5 (23)	537.1 (30)	803.1 (99)	881.0 (66)
²⁰⁵ Bi	15.3 d (EC)	703.1 (31)	987.6 (16)	1013.7 (8)	
20.1Bi	11.2 h (EC)	371.6 (82)	670.7 (11)	899.1 (98)	983.9 (59)
²⁰³ Bi	11.7 h (EC)	820.2 (30)	817.2 (14)	896.9 (13)	
²⁰² Bi	1.72 h (EC)	122.1 (81)	657.5 (60)	960.6 (99)	
201 Bi	1.80 h (EC)	629.1 (21)	786.4 (9)	818.9 (7)	936.2 (11)
201 Pb	9.33 h (EC)	331.1 (79)			
200 [2])	21.5 h (EC)	235.6(4)	257.1 (4)	268.4 (4)	
199Pb	1.50 h (EC)	366.9 (46)			
201 TI	72.9 h (EC)	167.1 (10)			
200/[1]	26.1 h (EC)	367.9 (87)	579.3 (14)	828.3 (11)	1205.7 (30)
199711	7.42 h (EC)	208.2 (12)	217.2 (9)	455.4 (12)	
198/11	1.87 h (EC)	283.8 (28)			
	5.30 h (EC)	111.8 (82)	675.8 (11)		
19771	2.84 h (EC)	425.8 (13)			
19911g	42.6 m (IT)	158.1 (52)			
19711g	23.8 h (EC)	131.0 (31)			
196Au	6.18 d (EC)	333.0 (23)	355.7 (87)	426.1 (7)	

0.0

Figura 3.11: Espectros gama de las transiciones correspondientes a los productos de las reacciones ${}^{12}C + {}^{197}Au (E_{lab} = 82 MeV)[Arriba], {}^{16}O + {}^{197}Au (E_{lab} = 110 MeV) [Abajo] de vida media larga.$ El cuadro superior (inferior) muestra las transiciones electromagnéticas detectadas en un períodode 12 horas de adquisición, efectuada luego de 123 (45) horas de finalizada la irradiación. Lasprincipales transiciones electromagnéticas, están denotadas mediante los símbolos que se detallanen el recuadro que se encuentra a la derecha de los espectros. "N.I." simboliza a los picos no identificados. "Fondo" simboliza a las transiciones electromagnéticas asociadas a reacciones producidasentre los proyectiles y la folia de aluminio natural.

reacciones ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au (²⁰⁹At y ²¹³Fr, respectivamente) es la fisión (60-80%). Además nosotros hemos verificado experimentalmente que ambos sistemas presentan una sección eficaz de fisión muy importante (1.3 barn para el sistema ¹²C + ¹⁹⁷Au a $E_{lab} = 82$ MeV y 1.2 barn para el sistema ¹⁶O + ¹⁹⁷Au a $E_{lab} = 110$ MeV [ver sección 3.1.2]. Por estos motivos pensamos que esas transiciones podrían deberse a reacciones de fusión-fisión.

3.2.2 Reacciones de fusión-evaporación

Para la determinación de las secciones eficaces absolutas de los canales de evaporación se procedió del siguiente modo:

- 1 Se midieron las energías de fotopico (y sus vidas medias) para cada transición electromagnética, y se asoció (en los casos en que fue posible) a cada una de ellas con el decaimiento de algún nucleído, a través del conocimiento de las transiciones características de cada decaimiento [67].
- 2 Utilizando el conocimiento de la intensidad relativa, la vida media y el número de cuentas de cada transición electromagnética fue posible obtener las secciones eficaces de cada canal de evaporación.

El método empleado para la determinación de las secciones eficaces absolutas [68] ya ha sido empleado para determinar las secciones eficaces de reacciones de fusión-evaporación[69] La actividad del n-ésimo miembro activo de cada cadena de decaimiento puede ser evaluada a partir de [68, 70]

$$A_{n}(t) = \sum_{k=1}^{n} N \sigma_{k} \phi F_{k} \left(p_{l,l+1}, \lambda_{l}, T, t \right)$$
(3.10)

donde

$$F_k(p_{l,l+1},\lambda_l,T,t) = \left(\prod_{l\geq k}^{n-1} p_{l,l+1}\right) \sum_{j\geq k}^n \left[\left(\prod_{i\geq k}^n \frac{\lambda_i}{\lambda_i - \lambda_j}\right) \left(1 - e^{-\lambda_j T}\right) e^{-\lambda_j t} \right]$$
(3.11)

donde $p_{l,l+1}$ es la intensidad relativa para el decaimiento del elemento l al elemento l + 1, λ_i is la costante de decaimiento del elemento i, T es el tiempo de irradiacion, N el número de átomos del blanco, ϕ es el flujo del haz de partículas incidentes y σ_k es la sección eficaz absoluta para la formación del elemento k. De este modo la actividad del n-ésimo miembro de la cadena está relacionada con su sección eficaz de formación absoluta σ_n y con las de todos los elementos que lo preceden en la cadena σ_k con k = 1, ..., n - 1. De este modo para obtener la actividad correspondiente a la formación del n-ésimo miembro de la cadena, se debió descontar a la actividad total $(A_n(t))$ la actividad proveniente del decaimiento de los miembros que lo preceden en la cadena, y que finalmente conducen al n-ésimo miembro:

$$DA_{n}(t) = N\phi \sum_{k=1}^{n-1} \sigma_{k} F_{k}(p_{l,l+1}, \lambda_{l}, T, t)$$
(3.12)

Debido a que un dado nucleído puede pertenecer a varias cadenas de decaimiento diferentes en general se debieron descontar las actividades de todos los miembros que preceden al nucleído en cuestión en todas las cadenas de las que forma parte

$$DA_{n}(t) = \eta \sum_{k=1}^{n-1} \sigma_{k} \left[\sum_{j=1}^{s} F_{jk} \left(p_{l,l+1}, \lambda_{l}, T, t \right) \right]$$
(3.13)

donde la función $F_{jk}(p_{l,l+1}, \lambda_l, T, t)$ corresponde a la cadena j esima.

Finalmente, las secciones eficaces absolutas σ_n fueron evaluadas como

$$\sigma_n = \frac{(A_n^{exp}(t) - DA_n(t))e^{\lambda_n T}}{N\left(1 - e^{-\lambda_n T}\right)\sum_{i=1}^m \phi_i e^{i\lambda_n T/m}}$$
(3.14)

Donde el período de irradiación T fue dividido en m intervalos iguales de tiempo, ϕ_i es el flujo promedio en cada intervalo de tiempo i, y $A_n^{exp}(t)$ es la actividad del n ésimo elemento de la cadena, determinada experimentalmente.

Canales de evaporación *xn*

Para la reacción ${}^{12}C + {}^{197}Au$ se observaron transiciones electromagnéticas relacionadas al decaimiento de los múcleos pertenecientes a las cadenas 3n, 4n, 5n y 6n.

Para las energías de bombardeo más próximas a la barrera Conlombiana (57 MeV)se observaron las transiciones características del decaimiento de los núcleos ²⁰⁶At, ²⁰⁶Po, ²⁰⁶Bi y ²⁰²Bi, pertenecientes a la cadena 3n, y los núcleos ²⁰⁵At, ²⁰⁵Po, ²⁰⁵Bi, ²⁰¹Bi, ²⁰¹Pb y ²⁰¹Tl, pertenecientes a la cadena 4n. Para $E_{lab} > 65$ MeV, se observaron además las transiciones características del decaimiento de los núcleos ²⁰⁴At, ²⁰⁴Po, ²⁰⁴Bi, ²⁰⁰Bi, ²⁰⁰Pb y ²⁰⁰Tl, pertenecientes a la cadena 5n. Para la mayor energía de bombardeo (82 MeV) se observaron las transiciones típicas del decaimiento de los núcleos ²⁰³Po, ²⁰³Bi, ¹⁹⁹Bi ¹⁹⁹Pb y ¹⁹⁹Tl, pertenecientes a la cadena 6n. No se observaron las transiciones características del decaimiento del ²⁰³At y esto puede deberse en parte a que el tiempo que medió entre el fin de la irradiación y el comienzo de la medición fue de 10 minutos (la vida media de este nucleído es 7,3 m). Para determinar la sección eficaz de los canales de evaporación xn se utilizaron las transiciones de $E_{\gamma} = 700.6$, 719.3, 125.2 y 908.6 keV, pertenecientes a los decaimientos de los núcleos ²⁰⁶At, ²⁰⁵At, ²⁰⁴At y ²⁰³Po, respectivamente. Los núcleos ^{202,201,200,199}Hg, ^{205,203}Tl, y ^{206,204}Pb, pertenecientes a las cadenas 3-6n no se observaron debido a que son núcleos estables. Los núcleos ^{202,205}Pb, ²⁰²Tl no pudieron ser observados debido a sus largas vidas medias, que no permiten la detección a través de la técnica experimental utilizada.

La Figura 3.12 [Izquierda-Arriba] muestra las funciones de excitación de los canales de evaporación xn observados. Esta figura muestra que para las energías de bombardeo menores que la barrera Coulombiana ($E_{lab} = 55$ MeV) únicamente el canal 3n esta abierto. Para $E_{lab} = 60$ MeV se abre el canal 4n y que para energías mayores se abren los canales de fusiónevaporación 5n y 6n ($E_{lab} = 65$ y 82 MeV). Esta figura también muestra que la sección eficaz total de evaporación de neutrones aumenta rápidamente a medida que aumenta la energía de bombardeo hasta alcanzar un máximo ($E/V_c \approx 1.2$) y presenta una disminución lenta al aumentar la energía por arriba de este valor. Los valores de las secciones eficaces de los canales de fusión evaporación xn se detallan en la Tabla 3.3 y coinciden con mediciones previas [71]

Cálculos basados en el modelo estadístico para el decaimiento del núcleo compuesto ²⁰⁹At, realizados utilizando el código computacional PACE, reproducen cualitativamente estos resultados experimentales.

Para la reacción ¹⁶O + ¹⁹⁷Au se observaron los mismos canales de evaporación xn a través de las mismas transiciones electromagnéticas y se determinaron las secciones eficaces absolutas de cada canal. Ello se debió a que las transiciones características de los decaimientos de los núcleos con Z = 87 y 86 (Fr y Rn, respectivamente) no estan presentes, puesto que sus vidas medias son mucho menores que el tiempo que medió entre el fin de la irradiación y el comienzo de la medición. Además se observaron las transiciones características del decaimiento de los núcleos ^{207,208,209,210}At y ²⁰⁷Po.

Para determinar la sección eficaz de los canales de fusión evaporación xn se supuso que toda la actividad relacionada con el decaimiento de los núcleos ^{203,201,205,205}At proviene del decaimiento (α) de los núcleos ^{207,208,209,210}Fr. O sea, se ha considerado que los canales de fusión evaporación pxn al igual que los αxn son débilmente poblados. Esta suposición (que puede dejar de ser válida para $E_{lab} = 110$ MeV, debido a que en este caso la energía de excitación del núcleo compuesto puede ser suficientemente grande como para favorecer la desexcitación por evaporación de partículas cargadas), permitió calcular la sección eficaz σ_{xn} a partir del seguimiento de la actividad de algún miembro posterior de la cadena radioactiva [ver ecs. (3.10) y (3.11)]. Al igual que en el sistema 12 C + 197 Au, las secciones eficaces de las reacciones de fusión evaporación xn en el sistema ¹⁶O + ¹⁹⁷Au coinciden con mediciones previas [71]

energías más próximas a la energía de la barrera Coulombiana son el 3n y el 4n. Para energías La Figura 3.12 [Izquierda Abajo] muestra la dependencia con la energía de bombardeo de las secciones elicaces de los canales de fusión evaporación xn observados. Al igual que en el sistema ¹²C + 197 Au, los canales de evaporación de abiertos para el sistema 16 O + 197 Au, a las de bombardeo superiores en un 10% a la energía de la barrera Coulombiana se observa la apertura del canal 5n y a partir de $E_{lab} = 100$ MeV el ²¹³ Fr comienza a descreitarse a través de la evaporación de 6 neutrones.

Al igual que para el sistema ${}^{12}C + {}^{197}Au$, la sección eficaz total de evaporación de neutrones para el sistema 16 O + 197 Au presenta un máximo para energías de bombardeo 20% superiores a la barrera Coulombiana del sistema.

Canales de evaporación pru

canales de fusión evaporación pru son practicamente despreciables, puesto que se comprobó En el sistema 12 C + 197 Au, se observó que a energías de bombardeo menores a 82 MeV los que toda la actividad medida de los isótopos del átomo Po, provenía del decaimiento de los isótopos del átomo At.

keV, respectivamente, correspondientes al decimiento de los mícleos ^{205,204}Po. Debido a que de las transiciones anteriormente mencionadas, la actividad correspondiente a las cadenas Para $E_{lab} = 82$ MeV se observó la apertura de los canales de evaporación de protones y neutrones p3n y p1n a través de las transiciones electromagnéticas de $E_{\gamma}=1001.2$ y 884.0 estos núcleos pueden ser poblados también por los canales de evaporación 4n y 5n, para obtener las secciones eficaces de los canales p3n y p1n se descontó a la actividad observada de fusión evaporación 3n y 4n, utilizando el metodo descrito previamente. Las secciones eficaces medidas para estas reacciones fuerou: $\sigma_{p3n} = 16 \pm 2 \text{ mb } y \sigma_{p4n} = 13 \pm 2 \text{ mb. En el}$ sistema ^{16}O + ^{197}Au , no se observó la apertura de los canales de fusión evaporación pxn.

Canales de evaporación arn

Al igual que los canales de evaporación prn, los canales de evaporación αrn ($\alpha 3n$ y $\alpha 4n$) sólo están abiertos en el sistema ¹²C + ¹⁹⁷Au a E_{lab} = 82 MeV y no son apreciables en

••••

Figura 3.12: [Izquierda] Funciones de excitación de los canales de evaporación 3n, 4n, 5n y 6n para las reacciones ${}^{12}C+{}^{197}Au$ (arriba) y ${}^{16}O + {}^{197}Au$ (abajo). Los círculos llenos simbolizan a la sección eficaz total de evaporación de neutrones $\sigma_{Tot} = \sigma_{3n} + \sigma_{4n} + \sigma_{5n} + \sigma_{6n}$. Las líneas de puntos que unen a los cuadrados llenos y a los triángulos, cuadrados y círculos vacios, al igual que la línea llena que une a los círculos llenos son guias para el ojo. [Derecha] Funciones de excitacion de los canales de stripping de carga (α , 2p1n y 2p) y de pickup de neutrones, para los mismos sistemas. Las líneas sirven de guias para el ojo.

Sistema	E_{lab} [MeV]	σ_{3n} [mb]	σ_{4n} [mb]	σ_{5u} [mb]	σ_{6n} [mb]
$^{12}C + ^{197}Au$					12
	55	0.1 ± 0.1			
	60	73 ± 1	52 ± 6		° 2
	65	88 ± 5	350 ± 30	17 ± 2	
	70	11±1	110 ± 10	29 ± 3	
	82		72 ± 5	200 ± 15	24 ± 3
$^{16}O + {}^{197}Au$					
	80	12 ± 2	10 ± 4		
	85	12 ± 2	1.10 ± 10	-1 ± 1	
	90	15 ± 2	130 ± 10	-10 ± 10	
	100	11±1	35 ± 3	90 ± 20	12 ± 5
	110	6.3 ± 0.6	16 ± 4	62 ± 6	55 ± 8

Tabla 3.3: Sectiones eficaces totales de los canales de fusión evaporación xn de los sistemas ${}^{12}C + {}^{197}Au y {}^{16}O + {}^{197}Au$.

el sistema ¹⁶O \pm ¹⁹⁷Au en el rango de energías bajo estudio en este trabajo. Las secciones eficaces de estas reacciones fueron determinadas utilizando las transiciones electromagnéticas de $E_{\gamma} = 960.6$ y 629.1 keV correspondientes al decaimiento de los núcleos ^{202,201}Bi. Annque estos nucleidos pueden ser poblados por las cadenas de fusión evaporación 3n y 4n además de las p3n y p1n, debido a que para la reacción ¹²C \pm ¹⁹⁷Au a $E_{lab} = 82$ MeV no se observaron las transiciones de $E_{\gamma} = 700.6$ y 719.3 keV (correspondientes al decaimiento de los núcleos ^{206,205}At) se concluye que la contribución debida a estas cadenas es despreciable, por lo que la actividad observada corresponde a las canales de fusión aveporación $\alpha 3n$ y $\alpha 4n$. Las secciones eficaces medidas de estos canales fueron $\sigma_{\alpha 3n} = 19 \pm 2$ mb y $\sigma_{\alpha 4n} = 9 \pm 1$ mb, respectivamente.

3.2.3 Reacciones de stripping de carga

Reacciones de stripping de dos cargas

En los sistemas ${}^{12}C + {}^{197}Au y {}^{16}O + {}^{197}Au$, las reacciones de stripping de dos cargas producen isótopos del átomo Tl. Como algunos de estos isótopos forman parte de las ca-

denas xn, pxn y o.xn, parte de la actividad registrada debido al decaimiento de los núcleos 201,200,199 [7] se debe a los canales de fusión evaporación.

vieron a partir de la observación de la actividad de los fragmentos pesados de la reacción. mencionadas cadenas. debió descontar a la actividad observada, la actividad proveniente del decaimiento de las dos cargas, como por las cadenas de decaimiento de los canales de fusión-evaporación, se Debido a que estos nucleídos pueden ser poblados, tanto por reacciones de transferencia de Las secciones eficaces absolutas de los canales de transferencia de dos cargas, se obtu-

keV (pertenecientes al decaimiento de los núcleos ^{201,200,199,198,197}Tl, respectivamente) fueron 2p-1n, y 2p-2n, respectivamente estudiadas para obtener las secciones eficaces de los canales de transferencia α , 2p1n, 2p, Las transiciones electromagnéticas de energías $E_{\gamma} = 167.4, 367.9, 455.4, 411.8, y 425.8$

eficaces no se muestran en la Figura 3.12 [Derecha Arriba]. mb] y para $E_{hab} = 82$ MeV el $2p \cdot 2n \left[\sigma_{2p-2n} (E_{hab} = 82 \text{MeV}) \right] = 6 \pm 1$ mb]. Estas secciones abre el canal $2p \ln [\sigma_{2p-1n}(E_{lab} = 70 \text{MeV}) = 2.2 \pm 0.3 \text{ mb y } \sigma_{2p-1n}(E_{lab} = 82 \text{MeV}) = 9.1 \pm 0.5$ transferencia o. $2p \ln x$, y 2p observados en el sistema $^{12}C + {}^{197}Au$. Para $E_{hab} = 70$ MeV se La Figura 3.12 [Derecha Arriba] muestra las funciones de excitacion de los canales de

de transferencia de partículas o seguidas de evaporación de neutrones [51]. muestra la Tabla 2.5. Esta diferencia tal vez pueda ser explicada por medio de reacciones + ¹⁹⁷Au, obtenidas por este método son aproximadamente un 100% mayores a las que Las secciones eficaces para las reacciones de stripping de 2 protones en el sistema ¹²C

stripping de dos cargas pueden presentar contribuciones de varios canales tados en la tabla 2.5. Esto muestra que en el caso del sistema ¹⁶O + ¹⁹⁷Au las reacciones de eficaces de estos canales coincide, dentro de los errores experimentales, con los datos presentransferencia o, $2p \ln$, y 2p observados en el sistema ¹⁶O + ¹⁹⁷Au. La suma de las secciones La Figura 3.12 [Derecha Abajo] muestra las funciones de excitacion de los canales de

Reacciones de stripping de una carga

transferencia d y d p = 1n son muy pequeñas o nulas. los núcleos ^{197,199} Ilg (E_{γ} = 131.0, y 158.1 keV, respectivamente) para E_{hab} = 82 MeV, se isotopos. 197,1994[1] (reacciones de stripping de dos cargas), cuyas desintegraciones alimentan los citados comprobó que la actividad de esas transiciones correspondía a la producción de los núcleos Si bien se midieron transiciones electromagnéticas correspondientes al decaimiento de Por este motivo podemos concluir que las secciones eficaces de los canales de

3.2.4 Reacciones de transferencia de neutrones

de la sección clicaz de las reacciones de pickup de neutrones con la energía de bombardeo, A través de la transición $E_n = 355.7$ keV, perteneciente al decaimiento del núcleo ¹⁹⁶Au, se investigaron las reacciones de pickup de un neutrón en ambos sistemas. La dependencia puede observarse en la Figura 3.12 [Derecha].

energías las secciones eficaces de los canales de stripping de carga se vuelven comparables. Se observa en esta figura (Arriba) que para el sistema ^{12}C + $^{197}\mathrm{Au},$ las mayores sec-Coulombiana, corresponden a las reacciones de pickup de un neutrón, mientras que a mayores ciones elicaces de transferencia, a energías de bombardeo próximas a la energía de la barrera con las secciones elicaces de pickup de un neutrón. Como muestra la Figura 3.12 [Derecha Abajo], en el sistema ¹⁶O + ¹⁹⁷Au las reacciones de pickup de neutrón son las reacciones de transferencia dominantes en el rango de energías estudiado. Como se aprecia en la Tabla 3.4 y en la Figura 3.12, las secciones eficaces de transferencia de neutrones son muy similares en ambos sistemas, mientras que las secciones eficaces de stripping de dos cargas son menores en el sistema ^{16}O + ^{197}Au . La Figura 3.13 compara las secciones eficaces de transferencia de un neutrón (obtenidas por este método experimental), con las secciones elicaces para las reacciones de transferencia de l protón, que se obtuvieron a partir de las secciones eficaces diferenciales (ver Capítulo 1. En esta figura se aprecia que las secciones elicaces de las reacciones de transferencia de neutrones son más importantes que las de protones, y que la diferencia entre ambas es más importante a energías próximas a la energía de la barrera Coulombiana, donde la sección eficaz para las reacciones de transferencia de partículas cargadas cae rápidamente con la energía de bombardeo. Este fenómeno se debe a que la barrera de potencial que debe atravesar un protón es mayor que la que debe atravesar un neutrón, ya que el protón interactúa con los núcleos a través de la fuerza Coulombiana y el neutrón no.

de bombardeo mayores que la barrera Coulombiana del sistema la sección eficaz total de Recordemos que para las reacciones de transferencia de neutrones y protones, a energías transferencia σ_{tr} , puede ser deducida de la distancia de mayor aproximación para colisiones frontales, $D(\pi)$, [5].

$$\sigma_{l_{\ell}} \sim \exp\left[-2\kappa D(\pi)\right] \tag{3.15}$$

69

•••

•

Figura 3.13: Comparación entre las secciones eficaces de las reacciones de stripping de protón y de pickup de neutrón para el sistema ${}^{12}C + {}^{197}Au$, como función de la energía de bombardeo normalizada a la barrera Coulombiana del sistema. La línea llena (punteada) corresponde a los cálculos basados en la ce. (3.15) para la transferencia de un neutrón (protón).

Tabla 3.4:	Secciones eficaces	totales de los	canales de	reacciones de	e pickup	de un	neutrón	y de
stripping de	e dos cargas en los	sistemas ¹² ('	+ ¹⁹⁷ Au y ¹	${}^{6}O + {}^{197}Au.$				

Sistema	E_{lab} [MeV]	$\frac{\sigma_{1n}}{[mb]}$	σ_{2p} [mb]	$\frac{\sigma_{2p+1n}}{[\mathrm{mb}]}$	σ_{lpha} [mb]
$^{12}C + ^{197}Au$				1	
	55	6 ± 1			
	60	13 ± 2		10 ± 3	
	65	30 ± 3	17 ± 7	28 ± 4	
	70	10 ± 3	25 ± 5	32 ± 4	37 ± 5
	82	51 ± 5	43 ± 5	58 ± 10	47 ± 5
$^{16}O + {}^{197}Au$					
	80	11.3 ± 0.5		8.0 ± 0.5	
	85	29 ± 1	13 ± 2	17±1	5
	90	61 ± 2	31 ± 3	28 ± 2	4 ± 1
	100	61 ± 2	36 ± 3	17 ± 2	5 ± 1
	110	68 ± 8	38 ± 4		

Capítulo 4

Teoría Semiclásica de los Procesos de Transferencia

4.1 La aproximación de Born

Las reacciones de transferencia pueden ser interpretadas a través de la aproximación de Born con ondas distorsionadas (DWBA). Este modelo, que se basa en la teoría cuántica de la dispersión de las partículas, permite calcular la sección eficaz diferencial de transferencia [5]:

$$\frac{d\sigma}{d\Omega} = C \sum_{m_i, m_f} \left| \int \chi_f^{(-)*}(\mathbf{k}_f, \mathbf{r}_f) F(\mathbf{r}_{12}) \chi_f^{(+)}(\mathbf{k}_i, \mathbf{r}_i) \, d\mathbf{r}_{12} \right|^2 \tag{4.1}$$

0

donde los subíndices 1 y 2 se refieren a los carozos donor y aceptor reapectivamente, m_i y m_f son las proyecciones del momento angular de los fragmentos inicial y final ($m_i = m_A, m_{C_2}; m_f = m_B, m_{C_1}$). Las funciones de onda distorsionadas entrante $\chi^{(+)}$, y saliente $\chi^{(-)}$, describen la dispersión elástica y son producidas por el potencial del modelo óptico (ver Apéndice 6.3.2). La constante de proporcionalidad C depende de la energía cinética y de las masas reducidas en los canales de entrada y salida, y también de los momentos angulares de los carozos donor y aceptor (ver Apéndice 6.3.3). El factor de forma de transferencia $F(\mathbf{r}_{12})$, tiene en cuenta las interacciones del fragmento transferido con los carozos.

Figura 4.1: [Arriba] Distribución angular experimental de las reacciones de stripping de una carga comparada con cálculos de DWBA para reacciones de stripping de un protón. La línea llena se obtuvo utilizando el potencial óptico que ajusta los datos experimentales de las reacciones elásticas (ver Tabla 3.1). La línea punteada es la que se obtiene a partir del potencial óptico utilizado en el modelo semiclásico. [Abajo] Distribución angular experimental de las reacciones elásticas, comparada con la que se obtiene de la aproximación DWBA utilizando los potenciales citados.

La Figura 4.1. muestra las distribuciones angulares experimentales de las reacciones de dispersión elástica y de stripping de una carga en el sistema ¹⁶O + ¹⁹⁷Au ($E_{lab} = 110$ MeV) y las compara con los cálculos de la aproximación DWBA que resultan de utilizar el código PTOLEMY [53]. La línea llena (Figura 4.1 [Arriba]) es el resultado del cálculo de la sección eficaz diferencial de las reacciones de stripping de 1 protón, utilizando el potencial óptico (ver Tabla 3.1) que ajusta los datos experimentales de la dispersión elástica para este sistema. Este ajuste se observa en la Figura 4.1 [Abajo]. Las líneas punteadas corresponden a cálculos similares, utilizando el potencial óptico empírico de Christensen y Winther [50] (que detallaremos en la siguiente sección). Si bien este potencial no reproduce los datos de la dispersión elástica, el resultado obtenido para las reacciones de stripping de una carga a partir de este potencial, es comparable al que se obtiene con el potencial óptico que reproduce los datos experimentales de la dispersión elástica datos de la dispersión elástica, el resultado obtenido para las reacciones de stripping de una carga a partir de este potencial, es comparable al que se obtiene con el potencial óptico que reproduce los datos experimentales de la dispersión elástica.

Sin embargo, debemos recordar que, en los datos de la dispersión cástica existen contribuciones importantes de reacciones de excitación Coulombiana y de transferencia de neutrones (ver sección 3.2.1), que el método experimental utilizado para la medición de las distribuciones angulares (ver sección 2.2.1) no pudo discriminar. Estas contribuciones deben ser especialmente importantes en ángulos traseros (debido a que para los eyectiles dispersados a estos ángulos la superposición nuclear es más grande), donde se observan las mayores diferencias entre los cálculos.

La Figura 4.1 muestra que las reacciones de transferencia son el resultado de procesos que tienen lugar cuando los núcleos entran en contacto superficial, ya que la sección eficaz diferencial de transferencia presenta un máximo para la mismo ángulo en el que la sección eficaz de la dispersión elástica (normalizada a la de Rutherford) comienza a sentir la presencia del potencial nuclear.

4.2 Aproximación semiclásica

La mayoría de los datos experimentales de reacciones de transferencia inducidas por iones pesados poseen importantes incertezas, ya que generalmente los datos incluyen procesos de transferencia que involucran a muchos estados diferentes en los canales de entrada y salida. De este modo, no siempre es posible reproducir las secciones eficaces diferenciales a partir de la ec. (4.1).

Por este motivo, es común utilizar aproximaciones semiclásicas (ver Apéndice 6.3.3) para el análisis de estas reacciones. La aproximación semiclásica más utilizada es la que considera a las trayectorias en los canales de entrada y salida como trayectorias clásicas de Rutherford completamente empalmadas ($Q = Q_{opt}$). En esta aproximación la sección eficaz diferencial de las reacciones de transferencia a energías menores que la barrera Coulombiana puede expresarse como [5]:

$$\left(\frac{d\sigma}{d\Omega}\right)_{tr} = P_{tr}(\Theta) \left(\frac{d\sigma}{d\Omega}\right)_{R}$$
(4.2)

donde $(d\sigma/d\Omega)_R$ es la sección eficaz diferencial de reacción. La probabilidad de transferencia $P_{tr}(\Theta)$ da la probabilidad de que una pertícula penetre la barrera de potencial producida por la interacción con los carozos donor y aceptor, y puede ser expresada como [5] (ver Apéndice 6.3.3)

$$P_{tr}(\Theta) = C \sin\left(\frac{\Theta}{2}\right) \exp\left\{-2\kappa D(\Theta)\right\}$$
(4.3)

donde la amplitud C' depende esencialmente de los estados iniciales y finales de las partículas

63

transferidas, y de la cinemática de la reacción. La distancia de mayor aproximación entre los carozos, D, es calculada suponiendo que coincide con la distancia de mayor aproximación para las trayectorias de Rutherford [ec. (4.4)]. La constante κ depende de la energía de ligadura y de la masa de las partículas transferidas, y del potencial de interacción producido por la interacción con los carozos [ec. (2.12)]

De este modo, este modelo predice que la probabilidad de transferencia, que puede ser obtenida haciendo el cociente de los datos experimentales de las secciones eficaces diferenciales de transferencia y de reacción (4.2), debe depender únicamente de la distancia entre los carozos nucleares. La única dependencia con la energía que este modelo predice para la probabilidad de transferencia es la que tiene a través de D.

4.3 Distancia de interacción

Las reacciones de transferencia a grandes distancias son frecuentemente estudiadas suponiendo que a esas distancias la influencia del potencial nuclear es pequeña. Por este motivo se supone que una buena estimación para la distancia de mayor aproximación entre los núcleos viene dada por la fórmula de Rutherford (ver Apéndice 6.2):

$$D = \frac{\epsilon^2 Z_1 Z_2}{2E} \left\{ 1 + \csc\left(\frac{\Theta}{2}\right) \right\}$$
(4.4)

De este modo la distancia de mayor aproximación puede ser variada produciendo variaciones en la energía incidente, y dejando el detector en un ángulo fijo (función de excitación) o dejando fija la energía de bombardeo y variando la posición angular del detector (distribuciones angulares).

Para determinar la distancia internuclear en la que dejan de ser validos los razonamientos que se basan en trayectorias de Rutherford [Ec. (4.4)] la Figura 4.2 muestra la sección eficaz diferencial elástica (normalizada a la sección eficaz de Rutherford) como función de un parámetro llamado distancia reducida $d_o = D/(\Lambda_1^{1/3} + \Lambda_2^{1/3})$. Estas secciones eficaces contienen, además, excitaciones Coulombianas y reacciones de transferencia de neutrones, debido a que no fue posible obtener datos de la dispersión puramente elástica. Esta figura muestra que la influencia del potencial nuclear comienza a ser importante para distancias próximas a $d_o = 1.62$ que se corresponde con D = 13.1 y 13.5 fm para los sistemas ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au, respectivamente [48].

Figura 4.2: Sección eficaz diferencial cuasi-elástica normalizada a la sección eficaz de Rutherford, como función de la distancia reducida d_{α} .

4.4 Pendientes anómalas

En la Figura 4.3 se observa la probabilidad de transferencia como función de la distancia de mayor aproximación, calculada a partir de la expresión para la distancia de mayor aproximación de Rutherford (4.4), para los sistemas ¹²C +¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au (todas las energías de bombardeo están representadas en dicha figura). Esta figura muestra que la probabilidad de transferencia no depende únicamente de la distancia de mayor aproximación, como cabría esperar de un proceso de penetración de una barrera de potencial. En ella se observa que las reacciones de stripping de una, y dos cargas en ambos sistemas presentan una clara dependencia con la energía de bombardeo. Este tipo de fenómeno anómalo ha sido observado en reacciones de transferencia de dos neutrones en el sistema ²⁸Si + ²⁰⁸Pb [16].

.

•

0

Para comparar los datos experimetales con el modelo semiclásico [ec. (4.3)] se define como "pendiente de la probabilidad de transferencia" α a la constante del decaimiento exponencial con la distancia, que ajusta a los datos experimentales. La pendiente teórica de la probabilidad de transferencia se define como $\alpha_{th} = 2\kappa$.

función de la distancia tenga esencialmente el comportamiento: Para las reacciones de transferencia de dos partículas se espera que la probabilidad como

$$P_{tr}^{(2)} \approx (P_{tr}^{(1)})^2, \to \alpha_{(2)} \approx 2\alpha_{(1)}$$
 (4.5)

tanto para transferencia secuencial de nucleones, como para transferencia de nucleones subíndices 1 y 2 indican la cantidad de partículas transferidas. En sistemas que no presenaparcados (debido a que la masa transferida es el doble, y la energía de ligadura de dos partículas, al igual que la barrera de potencial son aproximadamente el doble). Aquí los 161.162.163.164Dy [19]-[21], ¹⁵⁴Sin, ^{171,176}Yb, [17], ²³²Th [72], se observa que $\alpha_{1n} \approx \alpha_{2n}$. cumple pero en sistemas que involucran a núcleos rotacionales, tales como el ⁹²Mo [73, 74], tan deformación cuadrupolar permanente, como ⁵⁸Ni + ²⁰⁸Pb [10, 72], esta expectativa se

transfieren apareados desde estados de alta excitación [17]. Por otra parte se especula que siendo tema de debate en la actualidad. Una posible interpretación es que los neutrones se para diferentes orientaciones del núcleo deformado [75, 76] o a una superposición entre las en estos sistemas la anomalía se deba a la interferencia entre las amplitudes de transferencia estados excitados de otras bandas [21]. probabilidades de transferencia a estados excitados de la banda del estado fundamental y Existen varias hipótesis tendientes a aclarar el origen de esta anomalía , el cual continua 2

energía de bombardeo, la pendiente α_{2n} disminuye con ella a medida que aumenta la energía en reacciones de transferencia de dos protones en los sistemas ${}^{32}S + {}^{92.98,100}Mo$ y ${}^{32}S + {}^{93}Nb$ de la probabilidad de transferencia con la energía de bombardeo, fue observada recientemente de bombardeo, al igual que en los datos aquí presentados. Esta dependencia de la pendiente en el sistema ²⁸Si + ²⁰⁸Pb [16]. En este sistema, mientras la pendiente α_{1n} no depende de la de la probabilidad de transferencia de neutrones como función de la energía de bombardeo dos protones [78] en el sistema 28 Si + 68 Zn. [77], y recientemente S. Saha observó esta anomalía en reacciones de transferencia de uno y Además de la presencia de esta anomalía, se ha observado un comportamiento singular

es un aspecto que no ha sido investigado hasta el momento. mente, la dependencia de las probabilidades de transferencia con la energía de bombardeo. Si bien la anomalía de las pendientes de uno y dos nucleones ha sido estudiada intensa-

en el caso de las reacciones estudiadas en el presente trabajo se muestra en la Figura [Arriba]. Alli puede observarse un rápido incremento de las pendientes cuando la energía de bombardeo se aproxima a la barrera Coulombiana. Además la Figura 4.4[Abajo] muestra que La dependencia con la energía de las pendientes de las probabilidades de transferencia 4.4

Figura 4.3: Cociente $P_{tr}/\sin(\Theta/2)$ como función de D para las reacciones de transferencia de una y dos cargas en los sistemas ${}^{12}C + {}^{197}Au$ [panel superior] y ${}^{16}O + {}^{197}Au$ [panel inferior]. Los diferentes símbolos denotan a las diferentes energías de bombardeo.

Figura 4.4: [Arriba] Constantes de decaimiento α normalizadas a los valores teóricos $\alpha_{th} = 2\kappa$ de una y dos cargas, como función de la energía de bombardeo normalizada a la energía de la barrera Coulombiana para los sistemas ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au. [Abajo] Cociente de las pendientes de transferencia de dos y una cargas como función de la energía de bombardeo para los mismos sistemas. Las líneas de puntos representan las espectativas teóricas en ambos casos.

•

el cociente $\alpha_{\Delta Z=2}/\alpha_{\Delta Z=1}$ decrece uniformemente con el aumento de la energía de bombardeo para ambos sistemas. Para energías de bombardeo próximas a la energía de la barrera Coulombiana este cociente se aproxima a dos, que es el valor esperado según la ec. (4.5).

4.5 Trayectorias clásicas

En las secciones que siguen daremos una interpretación semiclásica para la anomalía de la pendiente, que se basa en considerar los efectos del potencial óptico sobre las trayectorias de los núcleos.

Al interpretar los datos experimentales de las reacciones de transferencia inducidas por iones pesados es frecuente suponer que las trayectorias clásicas de los núcleos pueden ser aproximadas por las trayectorias de Rutherford, que consideran a la interacción entre los núcleos como puramente Coulombiana. De este modo el potencial considerado es:

$$V_{Rath}(r) = \frac{\epsilon^2 Z_1 Z_2}{r}.$$
 (4.6)

Debido al caracter central de esta interacción el movimiento está contenido en un plano y es posible resolver la ecuación del movimiento en el sistema centro de masas. De este modo es posible obtener la función de dellexión para este problema, que muestra (ver Apéndice 6.2) que para cada ángulo de dispersión Θ , existe un único parámetro de impacto b, y una única distancia de mayor aproximación D_{Rath} , dado que para cada ángulo Θ existe una única trayectoria.

Debido a la interacción nuclear, debemos considerar posibles apartamientos en las trayectorias clásicas respecto de las de Rutherford. Para la parte real del potencial nuclear consideraremos un pozo de tipo Woods-Saxon:

$$V_{auc}(r) = \frac{-V_0}{1 + \exp\left[(r - R)/a\right]}$$
(4.7)

donde el radio R y la profundidad V_0 pueden ser calculados a partir de [50] :

$$R = R_1 + R_2 + 0.29 \text{ fm} \tag{4.8}$$

con

$$R_i = (1.233A_i^{1/3} - 0.98A_i^{-1/3})$$
 fm (4.9)

У

$$V_0 = 16\pi\gamma \overline{R} \ a \quad \text{MeV} \tag{4.10}$$

Figura 4.5: Potenciales de interacción núcleo-núcleo $(L/\hbar = 10)$.

con

y

$$\gamma = 0.95 \left[1 - 1.8 \left(\frac{N_1 - Z_1}{A_1} \right) \left(\frac{N_2 - Z_2}{A_2} \right) \right] \text{ MeV fm}^{-2} , \qquad (4.11)$$

$$\overline{R} = \frac{R_1 R_2}{R_1 + R_2} \quad , \tag{4.12}$$

La difusividad que resulta de ajustar los cálculos a los datos experimentales para las reacciones de stripping de una carga es a = 0.7 fm. En estas ecuaciones A_1 , Z_1 y N_1 son los números de masa, carga y de neutrones del proyectil, mientras que A_2 , Z_2 y N_2 corresponden al blanco.

Utilizando coordenadas polares podemos escribir la Lagrangiana del sistema como

$$\mathcal{L} = \frac{\mu}{2} (\dot{r}^2 + r^2 \dot{\phi}^2) - V_{Ruth}(r) - V_{nuc}(r)$$
(4.13)

donde μ es la masa reducida del sistema, r la distancia entre los núcleos, y de ella derivan las ecuaciones diferenciales del movimiento

$$\mu \ddot{r} = -\frac{d}{dr} V_{iff}(r), \qquad (4.14)$$

$$\dot{\phi} = \frac{L}{\mu r^2},\tag{4.15}$$

Figura 4.6: Funciones de deflexión. Las líneas de puntos indican los ángulos de dispersión positivos y negativos $\Theta = 55^{\circ}$. Con círculos llenos se notan los diferentes parámetros de impacto que contribuyen al mismo ángulo de dispersión y con un rombo se marca el Rainbow.

donde el potencial eficaz V_{eff} incluye al potencial centrífugo relacionado con el momento angular L, y viene dado por

$$V_{eff}(r) = \frac{L}{2\mu r^2} + V_{Ruth}(r) + V_{nuc}(r)$$
(4.16)

La Figura 4.5 compara el potencial efectivo propuesto con el potencial efectivo de Rutherford ($V_{eff} - V_{nuc}$), que no incluye la interacción nuclear entre los núcleos. Para resolver numéricamente las ecuaciones diferenciales (4.11), (4.15), nosotros utilizamos el método de Runge-Kutta.

La Figura 4.6 muestra las funciones de deflexión producidas por ambos potenciales para una energía de bombardeo superior a la barrera Coulombiana del sistema, y en ella se observa que la interacción nuclear produce un fuerte apartamiento de la función de deflexión, respecto de la producida en la dispersión de Rutherford. Como se observa en dicha figura, al considerar la influencia de la parte real del potencial óptico (caso V_{eff}), varias trayectorias con diferentes parámetros de impacto contribuyen al mismo ángulo de dispersión [79].

Figura 4.7: [Izquierda] Trayectorias clásicas producidas por $V_{eff}(r)$ que contribuyen al mismo ángulo de dispersión. [Derecha] Distancia de mayor aproximación para trayectorias de Rutherford "puras" D_{Ruth} , como función de la distancia de mayor aproximación "real", D_{ac} para dos energías de bombardeo diferentes.

Dependiendo de la energía de bombardeo es posible tener hasta un máximo de cinco trayectorias diferentes que contribuyen al mismo ángulo de dispersión (en el último caso se presentan tres trayectorias con $\Theta > 0$ y dos con $\Theta < 0$ que son indistinguibles experimentalmente). De todas ellas, las únicas que contribuyen realmente, en cuanto a reacciones de transferencia, son las dos de mayor parámetro de impacto (los más próximos al punto conocido como "Rainbow", en el que la función de deflexión presenta derivada nula), ya que las otras por ser muy internas, son trayectorias completamente absorbidas por la parte imaginaria del potencial óptico.

La Figura 4.7 [Izquierda] muestra las dos trayectorias relevantes para $\Theta = 55^{\circ}$, a las que llamaremos "Coulombiana" y "nuclear". En ella se aprecia que aunque ambas trayectorias tienen diferentes distancias de mayor aproximación (D_{ca}^{nuc} y D_{ca}^{coul}), son dispersadas de similar modo. La Figura 4.7 [Derecha] muestra que en general, la distancia de mayor aproximación calculada suponiendo trayectorias puramente Coulombianas, coincide con la distancia de mayor aproximación "real" para distancias grandes ($D_{ca} > 17$ fm) [que corresponden a parámetros de impacto también grandes (b > 10 fm)]. Sin embargo, para distancias cercanas al Rainbow existe una pronunciada diferencia entre ambas distancias, por lo que en esta zona no es conveniente atribuir a D_{Ruth} otro significado que el de un parámetro que mide el ángulo de dispersión Θ .

En realidad, como muestra la misma figura, tenemos dos distancias de mayor aproximación (cuyas trayectorias no son absorbidas completamente), compatibles con cada D_{Ruth} , y por lo tanto, no es posible medir la distancia de mayor aproximación únicamente como función de la energía y del ángulo Θ , para energías de bombardeo, mayores que la barrera Coulombiana del sistema. La Figura 4.7 [Derecha] también muestra que la relación entre D_{cu} y D_{Ruth} no depende fuertemente de la energía de bombardeo [80].

4.6 Amplitudes de penetración y absorción

La teoría de perturbaciones a primer orden permite expresar a las secciones eficaces diferenciales de las reacciones de transferencia como:

$$\left(\frac{d\sigma}{d\Omega}\right)_{tc} = |a_{tun}(\Theta)a_{ubs}(\Theta)|^2 \left(\frac{d\sigma}{d\Omega}\right)_R$$
(4.17)

•

0

٠

.

donde a_{abs} es la amplitud de probabilidad de que no se produzca la absorción del canal de entrada. La amplitud de probabilidad de penetración de la barrera de potencial producida por los carozos donor y aceptor sobre el fragmento transferido, a_{tun} , (ver Figura 4.8) [ecuaciones (2.13) - (2.15)] fue determinada de un modo similar al usado en la Ref. [81]. Aquí denotaremos por U(r) al potencial que actua sobre las partículas transferidas, con R_B nos referiremos a la posición donde la barrera de potencial alcanza su máximo y con \mathcal{B} a la energía de ligadura de las partículas al carozo donor. En la zona $U(r) + \mathcal{B} > 0$ nosotros utilizamos la aproximación WKB para evaluar dicha amplitud:

$$a_{tun}(D_{cu}) = \{1 + \exp\{S\}\}^{-1/2}$$
(4.18)

en la cual

$$S = 2 \int_{R_1}^{R_2} \left[\frac{2\mu}{\hbar} (U(r) + \mathcal{B}) \right]^{1/2} dr .$$
 (4.19)

mientras que en la región U(r) + B < 0 la barrera de potencial puede ser aproximada por una parábola invertida, y podemos utilizar la expresión analítica de Hill-Wheeler [82] para S

$$S = \frac{2\pi}{\hbar\omega} (U_B + \mathcal{B}) \tag{4.20}$$

COII

punteada [Izquienda] es el ajuste de la barrera de potencial mediante una parábola. al carozo donor. La energía de ligadura B de un protón en el carozo ¹¹B, es -15.957 MeV. La línea Figura 4.8: Potencial de interacción que sufre un protón en presencia de los carozos donor y aceptor, para dos distancias de mayor aproximación diferentes. como función de la distancia vadial medida desde el centro de masas del carozo donor (línea llena), El círculo lleno simboliza al protón ligado

$$h\omega = \left(-\frac{h^2}{\mu} \frac{d^2 U(R_{\rm B})}{dr^2}\right)^{1/2}.$$
 (4.21)

de la barrera no dependen de la distancia entre los carozos, para reacciones de transferencia, donor, y en ella se observa el ajuste de la barrera de potencial por una parábola invertida. y aceptor como función de la posición radial medida desde el centro de masas del carozo el radio de la barrera, su altura, y su curvatura dependen de la separación entre los carozos Aquí debemos destacar que, a diferencia de las reacciones de fusión, donde los parámetros (debido a que se trata de un potencial de tres cuerpos). La Figura 4.8 muestra el potencial de interacción entre un protón y los carozos donor

de potencial no puede ser aproximada por una parábola. En el sistema ¹²C + ¹⁹⁷Au, para distancias de aproximación mayores a 14 fm la barrera

 a_{abs} , puede ser evaluada como la integral sobre la trayectoria de las partículas [83] La amplitud de probabilidad de que no se produzea la absorción del canal de entrada,

$$a_{abs} = \exp\left(\frac{-1}{\hbar}\int_{-\infty}^{+\infty}W(t)dt\right)$$

(4.22)

Figura 4.9: [Izquierda] Amplitudes de absorción a_{abs}, de penetración a_{tun}, y de transferencia a_{tr}, como función de la distancia de interación entre los carozos para la reacción ¹⁹⁷Au(¹⁶O,¹⁵N)¹⁹⁸Hg. [Derecha] Dependencia de a_{abs} con la energía de bombardeo, para la misma reacción.

donde W(t) es la parte imaginaria del potencial óptico, que para grandes distancias puede aproximarse por

$$W(t) = W(r(t)) = W_0 \exp\left[(R - r(t))/a\right].$$
(4.23)

siendo W_0 la profundidad del pozo imaginario. Suponiendo que la absorción se produce en las cercanías de la distancia de mayor aproximación, D_{eu} , podemos hacer la aproximación :

$$r(t) = D_{ea} + \frac{1}{2}\ddot{r}t^2$$
(4.24)

•

donde \ddot{r} es la aceleración en el punto de máxima aproximación.

De este modo es posible obtener a partir de (4.22) una expresión para a_{abs} [84],

$$a_{abs}(D_{ca}) = \exp\left(\frac{-W_0}{\hbar}\sqrt{\frac{2\pi a}{\ddot{r}_o}}\exp\left(\frac{(R-D_{ca})}{a}\right)\right), \qquad (4.25)$$

En la Figura 4.9 [Derecha] se observa la dependencia de a_{abs} respecto de D_{ca} para distintas energías de bombardeo. La dependencia con la energía se debe a que para diferentes valores de E, las aceleraciones radiales en el punto de mayor aproximación $\ddot{r_o}$, son diferentes [80].

La Figura 4.9 [Izquierda] muestra las amplitudes de probabilidad de penetración, a_{tun} y de sobrevivencia a la absorción, a_{abs} .

La amplitud de transferecia

$$a_{tr}(D_{ca}) = a_{tun}(D_{ca}) a_{abs}(D_{ca})$$
(4.26)

presenta un valor máximo que depende, tanto en intensidad como en posición, de la energía de bombardeo, debido a la dependencia de a_{nbs} con la misma (Fig. 4.9 [Derecha]). Esta distribución juega un rol muy importante en las reacciones de transferencia. Como hemos visto para $E > V_i$ existen dos trayectorias que contribuyen en el rango angular comprendido entre 0° y $\Theta_{Rainbow}$ (el ángulo de dispersión para las trayectorias cuyos parámetros de impacto corresponden al punto de Rainbow en la función de deflexión). De este modo atr cumple la función de favorecer a una respecto de la otra[85]. Observando esta distribución se puede concluir que no ocurren procesos de transferencia para $D_{ca} < 11.3$ fm debido al aumento rápido de la absorción (de tipo exponencial) y que para $D_{ca} > 13.5$ fm a_{tr} es igual a a_{tun} (que tiene también, un comportamiento de tipo exponencial, aunque de menor constante de decaimiento). Al aumentar la energía de bombardeo, el límite inferior de la amplitud de transferencia se corre hacia posiciones más internas pero el límite superior permanece invariante (ver Figura 4.9 [Derecha]). La Figura 4.10 [Izquierda] muestra la dependencia de las amplitudes de transferencia a_{tr} como función de D_{ca} . Puede verse en esta figura que para cada ángulo de dispersión existen dos distancias de mayor aproximación, y cada una de ellas tiene asociada una amplitud de transferencia diferente. El comportamiento asimétrico de $a_{tr}(D_{ca})$ se debe a diferencias entre los procesos de penetración de barrera y de absorción. En esta figura se aprecia también que la amplitud de transferencia de un protón $a_{tr}^{1p}(D_{ca})$ es mayor que la de dos protones $a_{tr}^{2p}(D_{ca})$ para todo D_{ca} .

Para analizar la importancia relativa de cada trayectoria como función del ángulo de dispersión y de la energía de bombardeo, es conveniente definir las amplitudes de transferencia relativas para las trayectorias nuclear (n) y Coulombiana (c), como

$$\dot{a}_{tr}^{(n,c)}(\Theta) = \frac{a_{tr}^{(n,c)}(\Theta)}{a_{tr}^{(n)}(\Theta) + a_{tr}^{(c)}(\Theta)}$$
(4.27)

La Figura 4.10[Derecha] muestra el peso relativo de cada trayectoria como función del ángulo de dispersión. Para energías de bombardeo superiores a la barrera Coulombiana la trayectoria nuclear domina la sección eficaz a ángulos delanteros, tanto para la transferencia de un protón como para la de dos protones. Es de resaltar aquí que (como se observa en la Figura 4.7) la distancia D_{Ruth} , utilizada con mucha frecuencia para analizar datos experimentales bajo expectativas semiclásicas, no es un parámetro que mida adecuadamente

.

Figura 4.10: [Izquierda] Angulos de dispersión como función de la distancia de mayor aproximación. a_{tr}^{1p} y a_{tr}^{2p} son las amplitudes de transferencia de uno y dos protones. La línea de puntos marca la posición angular $\Theta = 50^{\circ}$. [Derecha] Amplitudes de transferencia relativas \tilde{a}_{tr} como función del ángulo de dispersión Θ , para las trayectorias nuclear (línea llena) y Coulombiana (línea punteada). La línea de puntos marca al ángulo $\Theta = 50^{\circ}$.

a la distancia de mayor aproximación para las trayectorias nucleares (aunque si lo es para las trayectorias Coulombianas) [48, 79, 80, 85].

Para energías superiores a la de la barrera Coulombiana no es correcto analizar las pendientes de las probabilidades de transferencia bajo teorías semiclásicas que suponen procesos de penetración de una barrera de potencial. A estas energías la sección eficaz diferencial a ángulos delanteros se compone, con trayectorias Coulombianas, y fundamentalmente con trayectorias nucleares, y de este modo los procesos de absorción prevalecen sobre los de penetración. Para energías de bombardeo superiores en un 10% a la energía de la barrera Coulombiana, las partículas dispersadas a ángulos delanteros (provenientes de reacciones de transferencia), están relacionadas con distancias de mayor aproximación menores, contrariamente a lo esperado a partir de la dispersión de Rutherford (4.4).

Para energías de bombardeo próximas a la barrera Coulombiana, la interferencia de las dos trayectorias es muy importante (ver Figura 4.11) y, como se observa en la Figura 4.11 [Derecha], la trayectoria que comienza a dominar es la Coulombiana. En este rango de energías no existe un proceso (absorción o penetración) que domine. Para energías menores a la barrera existe una única trayectoria (la Coulombiana) por lo que la expresión $D_{ca} \approx D_{Ruth}$

Figura 4.11: [Izquierda] Angulos de dispersión como función de la distancia de mayor aproximación. $a_{tr}^{1p} y a_{tr}^{2p}$ son las amplitudes de transferencia de uno y dos protones. La línea de puntos marca la posición angular $\Theta = 95^{\circ}$. [Derecha] Amplitudes de transferencia relativas \tilde{a}_{tr} como función del ángulo de dispersión Θ , para las trayectorias nuclear (línea llena) y Coulombiana (línea punteada). La línea de puntos marca al ángulo $\Theta = 95^{\circ}$.

cs válida.

4.7 Probabilidad de transferencia

La probabilidad de transferencia, $P_{tr}(\Theta)$, se obtiene a partir de la contribución de las trayectorias nuclear y Coulombiana y para calcularla es conveniente definir las amplitudes complejas

$$\hat{a}_{tr}^{(n,c)}(\Theta) = a_{tr}^{(n,c)}(\Theta) \exp\{i \ \phi^{(n,c)}(\Theta)\}.$$
(4.28)

De este modo la probabilidad se obtiene a partir de

$$P_{tr}(\Theta) = |\hat{a}_{tr}^{(n)}(\Theta) + \hat{a}_{tr}^{(c)}(\Theta)|^2$$
(4.29)

donde las fases de las trayectorias nuclear y Coulombiana, $\phi^{(n,c)}(\Theta)$ se obtienen de la aproximación WKB [86]

$$\phi^{(n,c)}(\Theta) = 2 \int_{D_{c_n}^{(n,c)}(\Theta)}^{\infty} \sqrt{\frac{2\,\mu}{\hbar^2}} [E - V_{eff}(r)] \, dr + C. \tag{4.30}$$

Dado que la fase está definida a menos de una constante C, la cantidad de interés es la diferencia de fases entre ambas contribuciones $\Delta \phi(\Theta) = \phi^{(a)}(\Theta) - \phi^{(c)}(\Theta)$. Debido al corto alcance del potencial nuclear, su contribución a la fase puede ser ignorada para grandes distancias R, y de este modo la fuerza Coulombiana (de largo alcance), contribuye a la fase como

$$\phi_C(\Theta) = 2 \int_R^\infty \sqrt{\frac{2\mu}{\hbar^2} \left[E - \frac{e^2 Z_p Z_t}{r} - \frac{L^2}{2\mu r^2}\right]} \, dr + C \tag{4.31}$$

donde L es el momento angular del sistema. Cada trayectoria se caracteriza por tener un momento angular diferente. Si bien la integral analítica (4.31) diverge en el límite $r \to \infty$, la diferencia $\Delta \phi_C$ no diverge:

$$\Delta\phi_{C} = k \left\{ \Delta\zeta_{1} + \Delta\zeta_{2} + \Delta\zeta_{3} + \Delta\zeta_{4} \right\}, \tag{4.32}$$

COII

$$\zeta_1(b) = -\sqrt{R^2 - 2aR - b^2},\tag{4.33}$$

$$\zeta_2(b) = b \sin^{-1} \left(\frac{a}{\sqrt{b^2 + a^2}} \right), \tag{4.34}$$

$$\zeta_3(b) = -b \sin^{-1} \left(\frac{a + b^2/R}{\sqrt{b^2 + a^2}} \right), \tag{4.35}$$

$$\zeta_4(b) = a \ln \{1 + \zeta_1(b)/R - a/R\}$$
(4.36)

siendo k el número de onda asintótico del movimiento relativo, a la mitad de la distancia de mayor aproximación en una colisión frontal puramente Coulombiana, y b el parámetro de impacto.

Debido a que la fase de cada trayectoria puede ser diferente, y además, dependiente del ángulo de dispersión, la interferencia de las trayectorias puede dar lugar a oscilaciones en la sección eficaz diferencial de las reacciones de transferencia. De este modo podemos escribir:

$$P_{tr}(\Theta) = P_{tr}^{(n)}(\Theta) + P_{tr}^{(c)}(\Theta) + 2a_{tr}^{(n)}(\Theta) a_{tr}^{(c)}(\Theta) \cos(\Delta\phi)$$
(4.37)

La Figura 4.12 [Izquierda] muestra la diferencia de fases $\Delta\phi(\Theta)$ y el factor $\cos(\Delta\phi)$ que domina las oscilaciones de la sección eficaz diferencial (teórica) presentada en la Figura 4.12 [Derecha]. En esta figura además se observan datos experimentales que no muestran tales oscilaciones. La ausencia de tales oscilaciones puede deberse a que estos datos fueron obtenidos segmentando al detector en porciones $\Delta\Theta = 4^{\circ}$, y de este modo la sección eficaz diferencial experimental es un promedio en aproximadamente un rango angular de un periodo que podría cancelar al término oscilatorio en la ec. (4.37), resultando que [80]

Figura 4.12: [Izquierda] Diferencia de fases $\Delta \phi$ como función del ángulo de dispersión (línea punteada) y la dependencia de $\cos(\Delta \phi)$ con Θ (línea llena). [Derecha] Sección eficaz diferencial (parcial)de la reacción ¹⁹⁷Au(¹⁶O,¹⁵N)¹⁹⁸IIg comparada con cálculos que consideran la interferencia entre las trayectorias Coulombiana y nuclear (línea llena) y que promedian en un período estos efectos (línea punteada)

$$P_{tr}(\Theta) \approx P_{tr}^{(n)}(\Theta) + P_{tr}^{(c)}(\Theta)$$
(4.38)

Los cálculos para esta situación se muestran en línea punteada, en la Figura 4.12 [Derecha].

La Figura 4.13, compara los datos experimentales con los cálculos teóricos semiclásicos detallados en el texto, para ambos sistemas. En estos cálculos se consideraron reacciones de transferencia de 1 y 2 protones, para los eventos de $\Delta Z = 1$ y 2, los valores del potencial imaginario W_0 y de la difusividad *a* fueron 34 MeV y 0.70 fm, respectivamente. El único parámetro de ajuste fue la constante de normalización que depende (como ya hemos mencionado) de los grados de libertad internos y de la selectividad cinemática. En los casos de $\Delta Z = 2$, sin bien se supusieron reacciones de transferencia de diprotones, los cálculos no se modifican demasiado al considerar la transferencia secuencial de los dos protones. En la Figura 4.13 se observan en líneas punteadas, cálculos que surgen de los modelos semiclásicos comunmente usados, basados en trayectorias que no consideran al potencial nuclear entre

Figura 4.13: Probabilidades de transferencia de una y dos cargas normalizadas a sin $(\Theta/2)$, como función de la distancia de mayor aproximación de Rutherford para los sistemas $^{12}C + ^{197}Au$ [Arriba] y $^{16}O + ^{197}Au$ [Abajo], para diferentes energias de bombardeo. Las líneas llenas muestran los cálculos detallados en el texto, mientras que las líneas punteadas son los cálculos realizados a partir de la ec. (2.13).

los carozos [ec.(1.3)].

Estas figuras podrían explicar el comportamiento "anómalo" de las probabilidades de transferencia como función de D_{Ruth} . Para energías menores a la barrera Coulombiana del sistema, la función de deflexión (Figura 4.6) se aproxima muy bien a la función de deflexión de Rutherford, y por eso interpretar a D_{Ruth} como la distancia de mayor aproximación es correcto. Para energías mayores a la barrera Coulombiana del sistema, la función de deflexión no es bien representada por la de Rutherford. Esto permite que para un mismo ángulo de dispersión existan varias trayectorias (con distintas distancias de mayor aproximación), y por este motivo no es posible interpretar a D_{Ruth} como la distancia a la cual se producen los procesos de transferencia, ya que en verdad existe una "mezcla" de distancias, pesadas con las amplitudes de transferencia $a_{tr}(D_{ca})$ (ver figuras 4.10 y 4.11).

La dependencia de las probabilidades con la energía de bombardeo (para $E/V_c > 1$) se explica a través de la dependencia de $a_{abs}(D_{ca})$ (ver Figura 4.9 [Derecha]). Para $E/V_c >> 1$ la trayectoria dominante es la trayectoria nuclear para la cual $a_{tun} \approx 1$, mientras que las variaciones en la absorción son los procesos que dominan las pendientes en la Figura 4.13. En estos casos, contrastando con los razonamientos basados en trayectorias de Rutherford, a medida que disminuimos Θ disminuimos también la distancia de interacción D_{ca} .

Para $E/V_c < 1$ existe una única trayectoria (la Coulombiana), y los procesos de penetración de barrera caracterizan las pendientes de la Figura 4.13 ya que $a_{abs} \approx 1$ (ver Figuras 4.10 y 4.11). Existe un rango de energías en el cual P_{tr} esta influenciada por a_{tun} y por a_{abs} simultaneamente, donde se produce una transición entre ambos regímenes.

Capítulo 5

•

•

•

.

Conclusiones

Las reacciones de transferencia de neutrones inducidas por iones pesados a energías próximas a la barrera Coulombiana, han sido estudiadas extensamente en los últimos años. Las teorías semiclásicas que han sido más frecuentemente utilizadas para interpretar a estas reacciones consideran procesos de penetración de barreras de potencial y trayectorias de Rutherford. Estas teorias han tenido exito en reproducir a la probabilidad de transferencia de neutrones en sistemas esfericos, pero no en sistemas deformados.

El objetivo principal de esta tesis fue investigar en que medida las anomalías encontradas en las reacciones de transferencia de neutrones, se encuentran presentes también en las reacciones de transferencia de protones. A fin de comparar cuantitativamente los distintos canales de reacción se estudiaron las reacciones de dispersión elástica, de transferencia de un neutrón, de fusión evaporación y de fusión-fisión.

El amplio rango de energías de bombardeo utilizado en esta tesis permitio explorar la dependencia de la probabilidad de transferencia de protones con la energía. Los datos experimentales fueron analizados utilizando un modelo semiclásico desarrollado en esta tesis que considera trayectorias nucleares influenciadas por la parte real del potencial óptico, ademas de procesos de absorción y de penetración de la barrera de potencial, en el punto de mayor aproximación.

Como conclusiones generales podemos decir que:

 Se realizaron mediciones de la radiación electromagnética en coincidencia temporal con las particulas emergentes de las reacciones ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au, a energías de bombardeo próximas a la energía de la barrera Coulombiana, para hacer una identificación en carga y masa de las partículas transferidas. En estas mediciones, únicamente se observaron los canales de stripping de uno y dos protones en ambos sistemas.

- 2. Se midieron las distribuciones angulares de los fragmentos livianos emergentes de las reacciones ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au y las distribuciones del valor Q de reacción, con identificación de la carga de las partículas transferidas en un amplio rango de energías de bombardeo. A partir de las distribuciones angulares se obtuvieron las secciones eficaces diferenciales de las reacciones de stripping de una y dos cargas. El comportamiento de las distribuciones angulares con la energía de bombardeo muestra que las reacciones de transferencia ocurren cuando las superficies de núcleos se rozan.
- 3. Se observaron los efectos de la selectividad cinématica a través de la dependencia de las distribuciones del valor Q de reacción, con respecto a la energía de bombardeo.
- 4. Las funciones de excitación de las reacciones de stripping de carga se obtuvieron a partir de las secciones eficaces diferenciales. Estas funciones de excitación muestran que las secciones eficaces totales de las reacciones de stripping de carga crecen rápidamente al aumentar la energía de bombardeo por arriba de la energía de la barrera Coulombiana. Los valores de las secciones eficaces obtenidos coinciden con mediciones de otros investigadores.

.

- 5. Se obtuvieron los potenciales ópticos de los sistemas bajo estudio a partir de la medición de la sección eficaz diferencial de las reacciones de dispersión elástica. Además, se observó la dependencia característica de las relaciones de dispersión, que vinculan a las partes real e imaginaria del potencial óptico.
 - 6. Se midieron las distribuciones angulares de reacciones de fusión-fisión en los sistemas ¹²C + ¹⁹⁷Au y ¹⁶O + ¹⁹⁷Au para las mayores energías de bombardeo estudiadas. Los valores de las secciones eficaces obtenidos coinciden con mediciones de otros investigadores.
 - 7. Se obtuvieron las secciones eficaces totales de las reacciones de fusión-evaporación y de transferencia, a partir de la medición de la actividad de los productos de reacción.
 - 8. El estudio de las funciones de excitación de las reacciones de pickup de un neutrón y de stripping de un protón mostró que la dependencia de las mismas con la energía de bombardeo es más suave en el primer caso que en el segundo y que, a energías de bombardeo próximas a la energía de la barrera Coulombiana, ambas presentan el comportamiento predicho por las teorías semiclásicas.

- y dos cargas, normalizando las secciones eficaces diferenciales a la sección eficaz de-Se obtuvieron las probabilidades de transferencia de las reacciones de stripping de una pendientes, como función de la energía de bombardeo, que consiste en una disminución siderando trayectorias de Rutherford. Se observó un comportamiento anómalo de las Rutherford. Las pendientes de las probabilidades de transferencia se obtuvieron conde las pendientes al aumentar la energía de bombardeo. 6
- partículas. El estudio de las mismas muestra que a un dado ángulo de dispersión, pueden contribuir dos trayectorias. Debido a que las distancias de mayor aproximación culada considerando a las trayectorias de las partículas como trayectorias de Rutherford Para energías de bombardeo menores a la barrera Coulombiana, la distancia de mayor aproximación coincide con D_{Ruth} debido a que existe una única trayectoria posible (la uye el ángulo de dispersión, contrariamente a lo esperado considerando trayectorias de ferencia, considerando la influencia del potencial nuclear sobre las trayectorias de las no mide la distancia real a la que ocurren los procesos de transferencia. De este modo, D_{Ruth} sólo puede ser considerado como un parâmetro que mide el ángulo de dispersión. Coulombiana). Para energías de bombardeo mayores en un 20% a la de la barrera Coulombiana, la trayectoria dominante es la nuclear, y por este motivo las distancias involucradas en los procesos de transferencia son menores a medida que se dismin-Se explicó el comportamiento anómalo de la pendiente de la probabilidad de transde los núcleos que se mueven sobre estas dos trayectoria son diferentes, la distancia cal-Rutherford. 10.
- potencial óptico y por este motivo su contribución a la sección eficaz está dominada 11. Las dos trayectorias que contribuyen a la sección eficaz diferencial de las reacciones de transferencia tienen caracteristicas diferentes. La trayectoria Coulombiana, al ser la más externa siente menos los efectos de absorción debidos a la parte imaginaria del por mecanismos de penetración de barrera. La trayectoria nuclear, en cambio, al ser la más interna de las dos, esta dominada por los mecanismos de absorción.
- La interferencia de estas trayectorias puede dar lugar a oscilaciones en la sección eficaz estudio de reacciones de transferencia siendo necesario, para comprobar la validez del modelo aquí presentado, la medición de distribuciones angulares con alta resolución diferencial de unos pocos grados. Esta predicción teórica abre un nuevo campo al angular (algunas décimas de grado). 12

85

Capítulo 6

Apéndice

6.1 Cinemática de dos cuerpos

En este sección daremos una breve descripción de los aspectos cinemáticos más importantes en las colisiones de dos iones. Por simplicidad seguiremos la notación usada por Bass [5].

Existen dos sistemas de referencia comúnmente usados, el sistema *laboratorio* y el sistema centro de masas. En el caso de colisiones entre iones pesados a energías próximas a la barrera Coulombiana del sistema, una cantidad muy importante de la energía cinética es utilizada para trasladar al sistema como un todo, y por este motivo la transformación de un sistema a otro tiene importantes consecuencias. Como estamos interesados en la cinemática de dos cuerpos, consideraremos únicamente colisiones elásticas, inelásticas o reacciones simples de transferencia, de las cuales resulten dos fragmentos. En el sistema *laboratorio*, inicialmente el blanco (número másico A_2) se encuentra en reposo, mientras que el proyectil (número másico A_1) se acerca con velocidad inicial v_{∞} . La energía cinética y la cantidad de movimiento para un observador fijo al sistema *laboratorio* están dadas por:

$$E_{Lab} = \frac{m}{2} A_1 v_\infty^2 \tag{6.1}$$

$$P_{Lab} = mA_1 v_{\infty} \tag{6.2}$$

donde m es la masa del nucleón. Además, el centro de masas del sistema se mueve con velocidad

$$v = v_2 = \frac{A_1}{A_1 + A_2} v_{\infty} \tag{6.3}$$

En el sistema centro de masas estas cantidades están dadas por:

$$E = \frac{m}{2} (A_1 v_1^2 + A_2 v_2^2) = \frac{\mu}{2} v_{\infty}^2$$
(6.4)

$$P = m(A_1v_1 + A_2v_2) = \mu v_\infty$$
(6.5)

donde μ representa la masa reducida del sistema. De este modo, existe una relación simple entre las cantidades citadas en ambos sistemas:

$$E = \frac{A_2}{A_1 + A_2} E_{Lab}$$
(6.6)

$$P_{1} = \frac{A_{2}}{A_{1} + A_{2}} P_{Lab}$$
 (6.7)

Uno de los productos de la reacción emerge con velocidad v_{Lab} o v_3 según sea visto desde en el sistema contro de masas v3 y la velocidad de traslación del sistema v. El ángulo de emisión del fragmento 3 respecto de la dirección de incidencia del proyectil será referenciado como 03 o O según estemos considerando el sistema laboratorio o el sistema centro de masas, los sistemas laboratorio o centro de masas. v_{Lab} es la suma vectorial de la velocidad final respectivamente.

Definiendo

$$\gamma_3 = + \left(\frac{A_1 A_3}{A_2 A_4} \frac{E}{E + Q}\right)^{1/2} \tag{6.8}$$

donde el valor Q de reacción puede ser avaluado a partir de la diferencia entre las masas de los canales de salida y entrada

$$Q = c^2 [M_3 + M_1 - (M_1 + M_2)]$$
(6.9)

es posible obtener θ_3 a partir de Θ utilizando

$$an \theta_3 = \frac{\sin \Theta}{\cos \Theta + \gamma_3}
 \tag{6.10}$$

mientras que la energía con la que emerge el fragmento 3 es

$$E_3 = \frac{A_1 A_3 E}{A_2 (A_1 + A_2)} \left(\frac{1 + \gamma_3^2 + 2\gamma_3 \cos \Theta}{\gamma_3^2} \right)$$
(6.11)

También las secciones eficaces diferenciales en el sistema *laboratorio* y en el sistema *centro* dc masas, $\frac{d\sigma}{d\omega_3}$ y $\frac{d\sigma}{d\Omega}$, respectivamente, están relacionadas por:

$$\frac{d\sigma}{d\omega_3} = \frac{d\sigma}{d\Omega} \frac{(1+\gamma_3^2+2\gamma_3\cos\Theta)^{3/2}}{|1+\gamma_3\cos\Theta|}$$
(6.12)

La transformación inversa provee las cantidades en el sistema centro de masas teniendo la información en el sistema laboratorio.

$$\sin \Theta = \frac{\sin \theta_3 [\delta_3 \cos \theta_3 \pm (1 - \delta_3 \cos \theta_3)]}{(1 + \delta_3^2 - 2\delta_3 \cos \theta_3)^{1/2}}$$
(6.13)

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\omega_3} |1 - \delta_3 \cos \theta_3| (1 + \delta_3^2 - 2\delta_3 \cos \theta_3)^{1/2}$$
(6.14)

donde

0

0

.

•

.

$$\delta_3 = \left(\frac{A_1 A_3}{(A_1 + A_2)^2} \frac{E_1}{E_3}\right)^{1/2} \tag{6.15}$$

$$\lambda_{3} = \frac{\delta_{3}}{(1 + \delta_{3}^{2} - 2\delta_{3}\cos\theta_{3})^{1/2}}$$
 (6.16)

$$Q = \frac{A_1 A_3 E_1}{(A_1 + A_2) A_1} \left(\frac{(1 + \delta_3^2 - 2\delta_3 \cos \theta_3)}{\delta_3^2} - \frac{A_2 A_4}{A_1 A_3} \right)$$
(6.17)

6.2 Dispersión de Rutherford

En esta sección daremos una breve descripción de las características mas importantes de la dispersión de partículas cargadas por un potencial Coulombiano puro.

Si consideramos el caso de la dispersión de partículas por un potencial central conservativo desde un punto de vista clásico, encontraremos dos constantes de movimiento: la energía Edel movimiento relativo y el momento angular total L del sistema. En el sistema centro de masas estas cantidades pueden ser escritas como:

$$E = \frac{1}{2}\mu\dot{r}^2 + \frac{L^2}{2\mu r^2} + U(r)$$
(6.18)

$$\dot{\phi} = \frac{L}{\mu r^2} \tag{6.19}$$

Aquí μ es la masa reducida del sistema, y ϕ es el ángulo azimutal del movimiento relativo. Integrando la ec. (6.18) podemos obtener el una relación entre el tiempo t y la distancia al centro de masas r

$$t = \pm \sqrt{\frac{\mu}{2}} \int_{D}^{r} \frac{dr'}{\sqrt{E - U_{eff}(r')}}$$
(6.20)

donde

$$U_{eff}(r) = \frac{L^2}{2\mu r^2} + U(r)$$
(6.21)

El punto de retorno D en el movimiento radial se obtiene de

$$E - U_{eff}(D) = 0$$
 (6.22)

de este modo hemos definido que l = 0 cuando las partículas se encuentran a la distancia de mayor aproximación. Integrando la ec.(6.19) resulta:

$$\phi = \pm \frac{L}{\sqrt{2\mu}} \int_D^r \frac{dr'}{r'^2 \sqrt{E - U_{eff}(r')}}$$
(6.23)

En el caso de una dispersión Coulombiana pura las integrales en (6.20) y (6.23) pueden ser evaluadas en forma analítica, y la trayectoria de de la partícula dispersada es una hipérbola

$$r = \frac{a(\epsilon^2 - 1)}{\epsilon \cos \phi - 1} \tag{6.24}$$

de excentricidad a

$$\epsilon = \sqrt{1 + \left(\frac{b}{a}\right)^2} = \csc\left(\frac{\Theta}{2}\right) \tag{6.25}$$

donde el parámetro $2a = e^2 Z_1 Z_2 / E$ es la distancia de máxima aproximación en una colisión frontal y b es el parámetro de impacto. Utilizando estos conceptos, la distancia de máxima aproximación, D, es función de la energía en el centro de masas E y del ángulo de dispersión Θ

$$D(\Theta, E) = a \left[1 + \csc\left(\frac{\Theta}{2}\right) \right]$$
(6.26)

Del mismo modo, el parámetro de impacto está relacionado con la energía y el ángulo de dispersión a través de la función de deflexión

$$\Theta = 2 \tan^{-1} \left(\frac{a}{b} \right) \tag{6.27}$$

Para determinar la sección eficaz diferencial de la dispersión Coulombiana se puede considerar que todas las partículas que atraviesan el anillo limitado por los parámetros de impacto b y b + db son dispersadas dentro de un ángulo sólido $d\Omega = 2\pi \sin \Theta d\Theta$. Por lo tanto, para un dado flujo incidente de partículas Φ debe cumplirse que $2\pi \Phi b db = 2\pi \Phi \sin \Theta d\Theta \frac{d\sigma}{d\Omega}$, y de este modo podemos obtener:

$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin\Theta} \left| \frac{db}{d\Theta} \right|$$
(6.28)

Utilizando las ec.(6.27) y (6.28) se deduce la fórmula de Rutherford:

$$\frac{d\sigma}{d\Omega} = \frac{a^2}{4} \sin^{-4} \left(\frac{\Theta}{2}\right) \tag{6.29}$$

6.2.1 Barrera Coulombiana y colisiones rasantes

o mayor a Vc que puede ser calculada a partir de: iones es necesario que la energía cinética del movimiento relativo del sistema E sea cercana sistema" V_C , a una distancia R_C . Para estudiar los efectos nucleares en las colisiones entre largo alcance. Este presenta un valor máximo, que llamaremos "barrera Coulombiana del del potencial nuclear atractivo de corto alcance, con el potencial Coulombiano repulsivo de El potencial de interacción real que sienten los iones durante la colisión es la superposición

$$\dot{c} = \frac{c^2 Z_1 Z_2}{R_C} \tag{6.30}$$

experimentales de fusión [87] es: En el el caso de iones pesados, una estimación para R_C establecida en base a datos

$$R_{\ell'} = 1.54(A_1^{1/3} + A_2^{1/3})[fm]$$
(6.31)

si $D < R_C$ la colisión estará dominada por la interacción nuclear induciendo procesos situación al ángulo de defexión se lo denomina ángulo de grazing Θ_{gr} y puede ser calculado inclásticos. De este modo, el caso finite $D = R_C$ presenta un interés particular. En esta situaciones diferentes. Si $D > R_C$ las trayectorias de los iones serán las trayectorias de Coulomb y el mecanismo de reacción dominante será la dispersión elástica, mientras que a partir de la cc. (6.26) A energías de bombardeo mayores que la barrera Coulombiana es posible distinguir dos

$$\Theta_{gr} = 2\sin^{-1} \left[\frac{a}{R_C - a} \right] \tag{6.32}$$

sección eficaz diferencial elástica y la de Rutherford $d\sigma/d\sigma_C$ es una función escalón Así en una primera aproximación y desde un punto de vista clásico, el cociente entre la

$$d\sigma/d\sigma_{C} = \begin{cases} 1 & \text{si } \Theta \leq \Theta_{g} \\ 0 & \text{si } \Theta > \Theta_{g} \end{cases}$$

mientras que en la misma aproximación la sección eficaz total de reacción σ_R puede ser expresada como

$$\tau_R = \pi R_{gr}^2 \left(1 - V_C / E \right) \tag{6.33}$$

donde R_{gr} es el radio de interacción rasante. Datos experimentales de fusión indican que R_{gr} puede ser estimado a través de

$$A_{\mu\nu} = 1.32(A_1^{1/3} + A_2^{1/3})[fm]$$

(6.34)

6.3 El formalismo cuántico

El objeto de esta sección es introducir la teoría cuántica de dispersión y la notación que utilizaremos en la tesis. Para mayor detalle ver [88, 49]).

Durante toda la descripción que sigue, nosotros sólo consideraremos reacciones binarias, o sea reacciones en las que únicamente hay dos partículas involucradas. Llamaremos canal a la partición del sistema de las dos partículas $a \neq A$ y lo denotaremos con α . Notemos que a y A pueden representar mícleos en estados excitados o en el fundamental.

6.3.1 Teoría de la dispersión de las partículas

La función de onda total del sistema, Ψ , viene dada por la solución de la ecuación de Schrödinger:

$$(E - II)\Psi = 0 (6.35)$$

Donde E es la energía del sistema y H el Hamiltoniano del mismo. La función de onda Ψ puede ser desarrollada en términos de un conjunto completo de autofunciones internas ψ_{α}

$$\Psi = \sum_{\alpha} \xi_{\alpha}(\mathbf{r}_{\alpha}) \psi_{\alpha}(x_{\alpha})$$
(6.36)

donde las funciones $\xi_{\alpha}(\mathbf{r}_{\alpha})$ describen el movimiento relativo de los núcleos en el canal α , y son las proyecciones de la función de onda total del sistema sobre los elementos de la base completa $\psi_{\alpha}(x_{\alpha})$

Nosotros estamos interesados en considerar la situación física en la cual en el canal de entrada de la reacción α , los núcleos a y A se encuentran en su estado fundamental y se mueven con un movimiento relativo asintótico representado por una onda plana con número de onda \mathbf{k}_{α} . El canal de salida β (b + B) contendrá sólo ondas esféricas salientes. Denotaremos con $\Psi_{\alpha}^{(+)}$ la función de onda total de este sistema, que podemos desarrollar en términos de funciones de onda internas y relativas al canal β

$$\Psi_{\alpha}^{(+)} = \sum_{\beta} \xi_{\beta}(\mathbf{r}_{\beta}) \psi_{\beta}(x_{\beta}).$$
(6.37)

El comportamiento asintótico de los coeficientes $\xi_{\beta}(\mathbf{r}_{\beta})$ viene dado por

$$f_{\beta}(\mathbf{r}_{\beta}) \sim \exp\left(i\mathbf{k}_{\alpha}\cdot\mathbf{r}_{\alpha}\right)\delta_{\beta\alpha} + f_{\beta\alpha}(\mathbf{r}_{\beta},\mathbf{k}_{\alpha})\frac{1}{\mathbf{r}_{\beta}}\exp\left(i\mathbf{k}_{\beta}\mathbf{r}_{\beta}\right)$$
 (6.38)

Donde $f_{\beta\alpha}$ es la amplitud de dispersión. En esta descripción la sección eficaz diferencial viene dada por

$$\frac{l\sigma_{\beta\alpha}}{d\Omega} = \left(\frac{v_{\beta}}{v_{\alpha}}\right) |f_{\beta\alpha}(\mathbf{k}_{\beta}, \mathbf{k}_{\alpha})|^{2}$$
(6.39)

que suele ser expresada en términos de la amplitud de transición $T_{\beta\alpha}$.

$$T_{\beta\alpha} = -\frac{2\pi\hbar^2}{\mu_\beta} f_{\beta\alpha} \tag{6.40}$$

donde μ_{β} es la masa reducida del canal de salida.

Dado que el Hamiltoniano II del canal de salida es la suma de los Hamiltonianos internos H_{β} de la energía cinética K_{β} y la interacción entre las partículas V_{β} , a partir de la ecuación (6.35) y utilizando el formalismo de las funciones de Green [89] la amplitud de transición puede ser escrita formalmente como:

$$T_{\beta\alpha}(\mathbf{k}_{\beta}, \mathbf{k}_{\alpha}) = <\exp\left(i\mathbf{k}_{\beta}, \mathbf{r}_{\beta}\right)\psi_{\beta}|V_{\beta}|\Psi_{\alpha}^{(+)}(\mathbf{k}_{\alpha})>$$
(6.41)

La Aproximación de Born con ondas distorsionadas - DWBA

Si nosotros consideramos que el potencial de interacción entre las partículas puede ser escrito como suma de un potencial dominante U_{β} y una interacción perturbativa W_{β} , la amplitud de transición puede ser a su vez escrita como

$$T_{\beta\alpha}(\mathbf{k}_{\beta},\mathbf{k}_{\alpha}) = T_{\beta}^{(0)}(\mathbf{k}_{\beta},\mathbf{k}_{\alpha})\delta_{\beta\alpha} + \int d^{3}\mathbf{r}\,\chi_{\beta}^{(-)*}(\mathbf{k}_{\beta},\mathbf{r}) < \psi_{\beta}^{*}|W_{\beta}(\mathbf{r})|\psi_{\alpha} > \chi_{\alpha}^{(+)}(\mathbf{k}_{\alpha},\mathbf{r})$$
(6.42)

donde $T_{\beta}^{(0)}$ es la amplitud de transición elástica debida únicamente a el potencial dominante U_{β} , que básicamente es un potencial óptico. El segundo término de (-6.42) representa a la amplitud de transición "no-elástica". Aquí $\chi_{\beta}^{(-)*}$ y $\chi_{\alpha}^{(+)}$ son las ondas distorsionadas que describen el movimiento relativo de los fragmentos en los canales de salida y de entrada, respectivamente, bajo la influencia del potencial de interacción de dos cuerpos $U_{\beta}(\mathbf{r})$, y por lo tanto son la solución de la ecuación de Schrödinger,

$$(\nabla^2 + k_{\alpha}^2 - U_{\alpha}(\mathbf{r}))\chi_{\alpha}^{(+)}(\mathbf{k}_{\alpha}, \mathbf{r}) = 0$$
(6.43)

$$(\nabla^2 + k_{\beta}^2 - U_{\beta}(r))\chi_{\beta}^{(-)}(\mathbf{k}_{\beta}, \mathbf{r}) = 0.$$
(6.44)

El signo positivo (negativo) se refiere a que las ondas esféricas que intervienen son salientes (entrantes). La matriz

$$F(\mathbf{r}) = \langle \psi_{\beta}^{*} | W_{\beta}(\mathbf{r}) | \psi_{\alpha} \rangle$$
(6.45)

0

.

.

٠

es conocida como factor de forma y contiene integrales sobre los grados de libertad internos de los núcleos que están vinculadas a la probabilidad de que el potencial residual $W(\mathbf{r})$, al actuar sobre Ψ_{α} alimente el canal de salida β .

Estos resultados, que implican aproximar la función de onda saliente $\Psi_{\alpha}^{(+)}$ por la del canal de entrada incluyendo la distorsión ejercida por el potencial óptico, constituyen lo que conoce como aproximación de Born con ondas distorsionadas (DWBA). Debido a que este es un tratamiento perturbativo, la aproximación DWBA sólo puede aplicarse cuando el efecto dominante es la dispersión elástica y los otros efectos puedan ser considerados como perturbaciones.

La sección eficaz diferencial puede ser expresada en términos de la amplitud de transición

$$\frac{d\sigma}{d\Omega} = \left(\frac{\mu}{2\pi\hbar^2}\right)^2 \left(\frac{k_\beta}{k_\alpha}\right) \sum |T_{\beta\alpha}|^2 \tag{6.46}$$

6.3.2 El modelo óptico

Aunque fue originalmente concebido para ser usado en reacciones "nucleón-núcleo", los modelos ópticos han sido muy usados para el estudio de las dispersiones elásticas de iones pesados. Estos modelos suponen para el potencial nuclear de interacción entre los núcleos una dependencia radial de tipo Woods-Saxon tanto para la parte real (que da cuenta de la dispersión elástica) como para la parte imaginaria (que tiene en cuenta la absorción de volumen).

$$U(r) = V_{C}(r) - V_{0} \left(1 + exp(\frac{r-R}{a}) \right)^{-1} - iW_{0} \left(1 + exp(\frac{r-R_{I}}{a_{I}}) \right)^{-1}$$
(6.47)

donde V_0 y W_0 son las profundidades de los pozos real e imaginario, R, R_I sus radios y a, a_I las difusividades de los potenciales, mientras que el potencial de Coulomb, $V_C(r)$, es usualmente aproximado por el potencial producido por una esfera cargada uniformemente hasta un radio R_C , de modo que:

$$V_C(r) = \begin{cases} \frac{e^2 Z_1 Z_2}{r} & \text{si } r \ge R_C \\ \frac{e^2 Z_1 Z_2}{R_C} \left(\frac{3}{2} - \frac{1}{2} \frac{r^2}{R_C^2}\right) & \text{si } r \le R_C \end{cases}$$

De este modo, además del radio R_C existen seis parámetros ajustables en este potencial: V, R, a, W, R_I , a_I

Versiones más complejas del modelo incluyen términos adicionales para considerar los efectos superficiales de absorción y los de spin-órbita, de modo que en general un potencial óptico se basa en cinco términos:

$$U(r) = V_C(r) - V_0 f(r) + V_{LS} \vec{L} \cdot \vec{S} h(r) - iW_0 f(r) + iW_S g(r)$$
(6.48)

donde V_{LS} y W_S son las profundidades de los pozos de spin-órbita y de superficie. La forma de Woods-Saxon $f(r) = f(r, R, a) = [1 + \exp{\{(r - R)/a\}}]^{-1}$ es utilizada para los términos volumétricos del potencial. Para el término de spin-órbita se asume una forma de Thomas

$$h(r) = \left(\frac{\hbar}{m_{\pi}c}\right)^2 r^{-1} \frac{df}{dr}(r)$$
(6.49)

y para el de superficie la derivada de la de Woods-Saxon

$$g(r) = 4a\frac{df}{dr}(r) \tag{6.50}$$

que presenta un valor máximo sobre la superficie del potencial y cuyo ancho está relacionado con la difusividad.

Otros términos adicionales, (por ejemplo, términos de spin-órbita imaginarios, tensoriales y dependientes del espín isotópico) son utilizados en la literatura.

6.3.3 Descripción semiclásica de las probabilidades de transferencia

Lo que sigue es una introducción detallada a la teoría semiclásica que se empleará para analizar los datos de las reacciones de transferencia, en el Caítulo 4. Esta teoría utiliza conceptos tales como "probabilidad de transferencia" y "procesos de penetración de barrera", y la descripción aquí dada sigue esencialmente sigue los lineamientos expuestos en [5].

El análisis cuantitativo de las reacciones de transferencia cuasi-elásticas es uno de los tópicos más interesantes en la teoría de reacciones nucleares porque es un problema de tres cuerpos que es extremamente complicado de resolver exactamente debido al conocimiento incompleto de las interacciones involucradas. De este modo, en la actualidad se trabaja con modelos cuya precisión y límites de aplicabilidad no pueden ser derivados de primeros principios, pero han sido inferidos indirectamente por comparación sistemática con datos

experimentales. Uno de los modelos más exitosos es DWBA que permite escribir la sección eficaz diferencial de transferencia como [5]:

$$\frac{d\sigma}{d\Omega} = \frac{\mu_i \mu_f}{(2\pi\hbar^2)^2} \frac{k_f}{k_i} \frac{1}{(2I_A + 1)(2I_{C_2} + 1)} \sum_{m_i, m_f} |T_{m_i m_f}|^2$$
(6.51)

donde μ_i y μ_f son las masas reducidas en los canales de entrada y salida, respectivamente, k_i y k_f los números de onda asintóticos del movimiento relativo, I_A e I_{C_2} los momentos angulares de los carozos aceptor y donor, respectivamente, y $T_{m_im_f}$ las amplitudes de transferencia que vienen dadas por

$$T_{m_i m_f} = \int \chi_f^{(-)*}(\mathbf{k}_f, \mathbf{r}_f) F(\mathbf{r}_{12}) \chi_f^{(+)}(\mathbf{k}_i, \mathbf{r}_i) d\mathbf{r}_{12}$$
(6.52)

donde m_i y m_f son las proyecciones del spin de los fragmentos inicial y final ($m_i = m_A, m_{C_2}$; $m_f = m_B, m_{C_1}$). Aquí $\chi^{(+)}, \chi^{(-)}$ son las funciones de onda distorsionadas entrante y saliente, respectivamente, que describen la dispersión elástica y son generadas por apropiados potenciales del modelo óptico, mientras que $l'(\mathbf{r}_{12})$ es el factor de forma de transferencia. Para el cálculo del factor de forma es común utilizar las representaciones "post" y "prior":

$$F^{(po)}(\mathbf{r}_{12}) = \int \psi_B^*(\mathbf{r}_{12} + \mathbf{r}_{1x}) V_{C_1x}(\mathbf{r}_{1x}) \psi_A(\mathbf{r}_{1x}) d(\mathbf{r}_{1x}), \qquad (6.53)$$

$$F^{(pr)}(\mathbf{r}_{12}) = \int \psi_B^*(\mathbf{r}_{2x}) V_{C_{2x}}(\mathbf{r}_{2x}) \psi_A(\mathbf{r}_{2x} - \mathbf{r}_{12}) d(\mathbf{r}_{2x})$$
(6.54)

donde ψ_A y ψ_B son las funciones de onda de los estados ligados de la partícula x a los carozos C_1 y C_2 , respectivamente, V_{C_ix} es el potencial nuclear creado por el carozo *i* sobre la partícula transferida x, mientras que \mathbf{r}_{ix} es la posición de la partícula transferida, respecto del carozo *i*, por último, \mathbf{r}_{12} es el vector posición del carozo C_1 respecto de C_2 . El siguiente esquema facilita la comprensión de estos aspectos geométricos.

95

las reacciones de transferencia, se las aproxima por las funciones esféricas de Hankel, que describen correctamente el comportamiento asintótico de la partícula x en general muy complicada, y dado que sólo la cola de las mismas es importante para Debido a que la obtención de las funciones de onda de los estados ligados ψ_A , ψ_B es 100

$$\psi_A(\mathbf{r}_{1x}) \approx S_A^{1/2}(l_1, j_1) N_A h_{l_1}^{(1)}(i\kappa_1, r_{1x}) Y_{l_1m_1}(\hat{r}_{1x}), \qquad (6.55)$$

$$Y_{H}(\mathbf{r}_{2x}) \approx S_{H}^{1/2}(l_{2}, j_{2}) N_{H} h_{l_{2}}^{(1)}(i\kappa_{2}, r_{2x}) Y_{l_{2}m_{2}}(\hat{\mathbf{r}}_{2x})$$
 (6.56)

donde $S_{A,B}(l_{1,2}, j_{1,2})$ son los factores espectroscópicos, que se definen como superposición de los estados ψ_A y ψ_B con los estados de partícula independiente $\{C_1 + x\}_{l_1 j_1}$ y $\{C_2 + x\}_{l_2 j_2}$ $h_{1,2}^{(1)}$, son las funciones de Hankel, $Y_{h,2m_{1,2}}$ los armónicos esféricos y N_{A,B} son las constantes de normalización de las funciones de onda de los estados ligados,

$$\kappa_{1,2} = \left(\frac{2\mu_{A,B}E_{A,B}}{\hbar^2}\right)^{1/2} \tag{6.57}$$

donde $E_{A,B}$ son las energías de ligadura de los estados ligados A y B. De este modo y de transferencia de un nucleón toma la forma: utilizando el teorema de suma para las funciones esféricas de Hankel, las integrales (6.53) y (6.54) pueden ser reducidas considerablemente. La sección eficaz diferencial para reacciones

$$\frac{d\sigma}{d\Omega} = \frac{\mu_i \mu_J}{(2\pi\hbar^2)^2} \frac{k_J}{k_i} \frac{2I_B + 1}{2I_A + 1} \sum_{j_1, j_2 l} N_A^2 S_A(l_1, j_1) N_B^2 S_B(l_2, j_2) C(j_1, j_2, l) |\mathbf{I}|^2 \sum_{\mathbf{m}} |T_{l_m}(\Theta)|^2 \quad (6.58)$$

transferida x porta carga eléctrica, sin embargo incluyendo el potencial Coulombiano de protones con el mismo formalismo que para reacciones de transferencia de neutrones. interacción ΔV_c en la integral radial I es posible analizar las reacciones de transferencia de mencionar que las ecuaciones (6.55) (6.57) no son directamente aplicables si la partícula dimensionales que involucran a las funciones de onda distorsionadas inicial y final. Debemos involucra a los estados ligados inicial y final, y las amplitudes $|T_{lm}(\Theta)$ son integrales tri-Aquí $C(j_1, j_2, l)$ es un coeficiente geométrico. I es una integral unidimensional radial que

el caso de transferencia de neutrones resulta $k_i = k_f = k$, $\eta_i = \eta_f = \eta$, $\kappa_1 = \kappa_2 = \kappa$ (Q=0). el cociente $a = \eta/k$ constante, unicamente Considerando por simplicidad l = 0 y $j_1 = j_2 = j$, y haciendo tender $\eta, k \to \infty$ manteniendo final, como trayectorias clásicas de Rutherford completamente empalmadas ($Q = Q_{opt}$). En La aproximación semiclásica "extrema" consiste en considerar a las trayectorias inicial y

$$|T_{00}|^2 = \frac{\pi^2 \eta}{2\kappa^3 k^3 \sin^3\left(\frac{\Theta}{2}\right)} \exp\left[-2\kappa D(\Theta)\right]$$

(6.59)

contribuye a la suma (6.58)

$$\frac{d\sigma}{d\Omega} = \frac{1}{4\pi} C_{AB} \kappa^4 |T_{00}|^2 \tag{6.60}$$

donde C_{AB} es un factor sin dimensiones

$$C_{AB} = \frac{\mu_i \mu_f}{\mu_A \mu_B} \frac{k_f}{k_i} \frac{2I_B + 1}{(2I_2 + 1)(2j + 1)} \frac{N_A^2 S_A(l_1, j_1) N_B^2 S_B(l_2, j_2)}{\kappa_1^3 \kappa_2^3}$$
(6.61)

y de este modo la sección eficaz total de transferencia

$$\sigma_{tr} = 2\pi \int_0^\pi \frac{d\sigma}{d\Omega} \sin\Theta d\Theta \tag{6.62}$$

puede ser evaluada como:

2

$$\sigma_{tr} = \frac{\pi^2}{2k_t^2} C_{AB} \exp\left[-2\kappa D(\pi)\right] \tag{6.63}$$

Como dominada por un factor exponencial que depende de la energía de bombardeo a través de D, que de hecho es la correlación esperada para un nucleón que tunelea una barrera de se observa en (6.63), la dependencia de la sección eficaz semiclásica de transferencia esta donde $D(\pi) = 2a$ es la distancia de mayor aproximación en una colisión frontal. potencial.

Es común interpretar a las reacciones de transferencia a primer orden en teoría de perturbaciones escribiendo:

$$\frac{d\sigma}{d\Omega}(\Theta) = P_{iJ}(\Theta)P_{A}(\Theta) \left(\frac{d\sigma}{d\Omega}(\Theta)\right)_{cl}, \qquad (6.64)$$

potencial Coulombiano y el potencial nuclear. La cantidad $P_{if}(\Theta)$ es la probabilidad de donde $(d\sigma/d\Omega)_{cl}$ es la sección clicaz diferencial para la dispersión clástica producida por cl transferencia que se define a través de la regla de oro de Fermi

$$[P_{if}(\Theta)]^{1/2} = \frac{1}{ih} \int_{-\infty}^{\infty} dt < f[V_{if}]i > \exp\left[\frac{i}{h}(E_f - E_i)t\right], \tag{6.65}$$

donde V_{if} es la interacción responsable de la transferencia, E_i y E_f son las energías en el centro de masas en el canal de entrada y el de salida, respectivamente. Finalmente el factor de atenuación $P_A(\Theta)$ describe la probabilidad de que el sistema no sea absorbido por otros canales inclásticos, y viene representada por

$$\partial_{A}(\Theta) = \exp\left\{-\frac{2}{h}\int_{-\infty}^{\infty} W[r(t)]\,dt\right\}$$
(6.66)

Coulombiana V_c , el factor de atenuación puede ser ignorado ya que la absorción nuclear se donde W es la parte imaginaria del potencial óptico. Para energías menores que la barrera

vuelve despreciable para estas energías. Por este motivo, para describir a las reacciones de transferencia subcoulombiana es común definir a la probabilidad de transferencia como

$$P_{if} = \left(\frac{d\sigma}{d\Omega}\right) \left/ \left(\frac{d\sigma}{d\Omega}\right)_{C} = \frac{\pi\kappa}{2\eta k} C_{AB} \sin\left(\frac{\Theta}{2}\right) \exp\left[-2\kappa D(E,\Theta)\right]$$
(6.67)

De este modo el cociente $P_{if}/\sin(\Theta/2)$ es una función universal de $D(E,\Theta)$, independiente de las combinaciones (E,Θ) , para una transición producida a una distancia D. El comportamiento de la probabilidad de transferencia como función de la distancia de máxima aproximación ha sido verificado para una gran variedad de sistemas aunque los valores observados para las constantes de decaimiento (2κ) no siempre cumplen las expectativas derivadas del modelo aquí descrito.
Bibliografía

N 53 M AN

- [1] M. Beckermann Phys. Lett. C129, 145 (1985).
- [2] S.C. Pieper, M.J. Rhoades-Brown, S. Landowne Phys. Lett B 162, 43 (1985).
- [3] Y. Sugiyama, Y. Tomita, H. Ikezoe, K. Ideno, H. Fujita, T. Sugimitsu, N. Kato, S. Kubono, and S. Landowne Phys. Rev. Lett. 62, 1727 (1989).
- [4] H. Ebensen and H. Landowne Nucl. Phys. A492, 473 (1989).
- [5] R. Bass, Nuclear Reactions with Ileavy Ions (Springer-Verlag, Berlin, 1980).
- [6] M. Lederer and V.S. Shirley, *Table of Isotopes*, 7th ed., (John Wiley & Sons, New York, 1978).
- [7] J.O. Fernández Niello, J.E. Testoni, M. di Tada, A.J. Pacheco, D.R. Napoli, A.M. Stefanini, L. Corradi, B. Million, M. Narayanasamy, P. Spolaore, S. Beghini, G. Montagnoli, F. Scarlassara, G.F. Segato, C. Signorini, and F. Soramel Phys. Rev. C45, 748 (1992).
- [8] D. Tomasi, J.O. Fernández Niello, A.O. Macchiavelli, A.J. Pacheco, J.E. Testoni, D. Abriola, O.A. Capurro, D.E. Di Gregorio, M. di Tada, C.P. Massolo, and F. Penayo Phys. Rev. C48, 2480 (1993).
- [9] S. Landowne and C.H. Dasso Phys. Lett. B202, 31, (1988).
- [10] K. Sapotta, R. Bass, V. Hartmann, H. Noll, R.E. Renfordt and K. Stelzer Phys. Rev. C31, 1297 (1985).
- [11] G.Wirth, W. Brüchle, M. Brügger, Fan Wo. K. Sümmerer, F. Funke, J.V. Kratz, M. Lerch and N. Trautmann Phys. Lett. B177, 282 (1986).
- [12] W. von Oertzen, B. Gebauer, A. Gamp, and H.G. Bohlen Z. Phys. A313,189 (1983).

- [13] W. von Oertzen, H.G. Bohlen, B. Gebauer, R Künkel, F. Pühlhofer and D. Schüll Z. Phys. A326, 463 (1987).
- [14] F.W.N. de Boer, H.J. Wollersheim, H. Emling, E. Grosse, W. Spreng, G. Eckert, Th.W. Elze, K. Stelzer and Ch. Lauterbach Z. Phys. A325, 457 (1986).
- [15] J. Gerl, W. Korten, D. Habs, D. Schwalm and H.J. Wollersheim Z. Phys. A334, 195 (1989).
- [16] K.E. Rehm, in Proceedings of the XII Workshop on Nuclear Physics, Iguazu Falls, Argentina, 1989, edited by M.C. Cambiaggio, A.J. Kreiner, and E. Ventura (World Scientific, Singapore, 1990).
- [17] A.O. Machiavelli, M.A. Deleplanque, R.M. Diamond, F.S. Stephens, E.L. Dines and J.E. Draper. Nucl. Phys. A432, 436 (1985).
- [18] K.E. Rehm Annu. Rev. Nucl. Part. Sci. 41, (29 (1991).

•

- [19] S. Juutinen, X.T. Liu, S. Sorensen, B. Cox, R.W. Kincaid, C.R. Bingham, M.W. Guidry, W.J. Kernan, C.Y. Wu, E. Vogt, T. Czosnyka, D. Cline, M.L. Halbert, I.Y. Lee, and C. Baktash. Phys. Lett. B 192, 307 (1987).
- [20] C.Y. Wu, X.T. Liu, W.J. Kernan, D. Cline, T Czosnyka, M.W. Guidry, A.E. Kavka, R.W. Kincaid, B. Kotlinski, S.P. Sorensen and E. Vogt. *Phys. Rev.* C39, 298 (1989).
- [21] W.J. Kernan, C.Y. Wu, X.T. Lui, H.L. Lan, D. Cline, T. Czosnyka, M.W. Guidry, M.L. Halbert, S. Juutinen, A.E. Kavka, R.W. Kincaid, J.O. Rasmussen, S.P. Sorensen, M.A. Stoyer, and E.G. Vogt. Nucl. Phys. A524, 344 (1991).
- [22] S. Pontoppidan et al. Phys. Rev. C28, 2299 (1983).
- [23] 11. Spieler IEEE Trans. Nucl. Sci. 29, 1142 (1982).
- [24] A.M. Stefanini et al. Phys. Lett. B240, 306 (1190).
- [25] M.V. Hynes et al. Nucl. Instrum. Methods 224, 89 (1984).
- [26] R.A. Cunningham et al. Nucl. Instrum. Methods 234, 67 (1985).
- [27] E. Takekoshi et al. Nucl. Instrum. Methods 237, 512 (1985).
- [28] K.E. Rehm, F.L.H. Wolfs Nucl. Instrum. Methods 273, 262 (1988).

- [29] E. Achterberg, A.J. Pacheco, M. di Tada, J.O. Fernández Niello , R. Liberman, G.V. Martí, M. Ramírez, J.E. Testoni, K. Koide Nucl. Instrum. Methods A361, 222 (1995).
- [30] K.T. Lesko et al. Phys. Rev. Lett. 55, 803 (1986).
- [31] C.N. Pass, P.M. Evans, A.E. Smith, L. Stuttge, R.R. Betts, A.N. James and B.R. Fulton Nucl. Phys. A499,173 (1989).
- [32] R.R. Betts, et al. Phys. Rev. Lett. 59, 978 (1987).
- [33] A.M. van der Berg et al. Phys. Rev. C37, 178 (1988).
- [34] M. Jääskeläinen et al. Nucl. Instrum. Method 204, 385 (1983).
- [35] M.A. Deleplanque and R.M. Diamond " Gammasphere proposal", Lawrence Berkeley Laboratory, (1988).

.

0

- [36] R.M. Diamond and F.S. Stephens. The "High Resolution Ball". Draf of the project (1981).
- [37] GASP-Draft of the project, 1989.
- [38] J.V. Kratz et al. Nucl. Phys. A357, 437 (1981).
- [39] J.V. Kratz et al. Phys. Rev. C13, 2347 (1976).
- [40] L. Corradi, S.J. Skorka, U. Lenz, K.E.G. Löbner, P.R. Pascholati, U. Quade, K. Rudolph, W. Schomburg, M. Steinmayer, H.G. Thies, G. Montagnoli, R.D. Napoli, A.M. Stefanini, A. Tivelli, S. Beghini, F. Scarlassara, C. Signorini and F. Soramel Z. Phys. A334,55 (1990).
- [41] H. Bethe Z. Phys. 76,293 (1938).
- [42] Knoll Radiation Detection and Measurement (John Wiley & Sons, Inc., 1979).
- [43] D.M. Brink Phys. Lett. B40, 37 (1972).
- [44] R.A. Broglia, G. Pollarolo and Winther Nucl. Phys. A361, 307 (1980).
- [45] P.J. Siemens Phys. Lett. B36, 24 (1971).
- [46] K.E. Rehm, C. Beck, A. van der Berg, D.G. Kovar, L.L. Lee, W.C. Ma, F. Videbaek, and T.F. Wang Phys. Rev. C42, 2497 (1990).

- [47] A.M. Van der Verg, K.E. Rehm, D.G. Kovar, W. Kutschera, and G.S.F. Stephans Phys. Lett. B194, 334 (1987).
- [48] D. Tomasi, J.O. Fernández Niello, A. J. Pacheco, D. Abriola, J.E. Testoni, A. O. Macchiavelli, O.A. Capurro, D.E. DiGregorio, M. di Tada, G.V. Martí, I. Urteaga Phys. Rev. en imprenta.
- [49] E. Merzbacher Quantum Mechanics (John Wiley & Sons INC, 1961).
- [50] R.A. Broglia and A. Winther Heavy Ion Reactions (Addison-Wesley, 1991).
- [51] Y. Eyal, K. Beg, D. Logan, J. Miller, and A. Zebelman Phys. Rev C8, 1109, (1973).
- [52] A. Yokoyama, T. Saito, H. Baba, K. Hata, Y. Nagame, S. Ichikawa S. Baba, A. Shinohara, and N. Imanishi. Z. Phys. A 332, 71 (1989).
- [53] M. J. Rhoades-Brown, M. H. MacFarlane, and S. C. Pieper Phys. Rev. C21, 2417 (1980).
- [54] G. Igo Phys. Rev. 115, 1665 (1959).
- [55] F.D. Becchetti et al. Nucl. Phys. A203, 1 (1973).
- [56] M.A. Nagarajan, C.C. Mahaux and G.R. Satchler Phys. Rev. Lett. 54, 1136 (1985).
- [57] M.A. Nagarajan and G.R. Satchler Phys. Lett. B173, 29 (1986).
- [58] D. Abriola, A.A. Sonzogni, M. di Tada, A. Etchegoyen, M.C. Etchegoyen, J.O. Fernández Niello, S. Gil, A.O. Macchiavelli, A.J. Pacheco, R. Piegaia, J.E. Testoni, *Phys. Rev.* C46, 244 (1992).
- [59] C. Mahaux, H. Ngo, G.R. Satchler Nucl. Phys. A449, 354 (1986).
- [60] V.E. Viola, K. Kwiatkowski, and M. Walker. Phys. Rev. C31, 1550 (1985).
- [61] R.K. Choudhury, S.S. Kapoor and Rekha Govil. Nucl. Phys. A329, 224 (1979).

1 13.3

- [62] G.L. Bate, R. Chaudhry and J.R. Huizenga, Phys. Rev. 131, 722 (1963).
- [63] R. Bimbot, M. Lefort and A. Simon, J. de Phys. 29, 563 (1968).
- [64] Y. Le Byec and M. Lefort. Nucl. Phys. A192, 405 (1972).

- [65] T. Sikkeland Phys. Rev. 135, B669 (1964).
- [66] A. Gavron Phys. Rev. C21, 230 (1980).
- [67] U. Reus and W. Westmeier, Atomic Data and Nuclear Data Tables Vol. 29, № 2, Academic Press, New York (1983).
- [68] O.A. Capurro Comp. Phys. Comm. 77,396 (1993).
- [69] O.A. Capurro, D.E. DiGregorio, S. Gil, D. Abriola, M. di Tada, J.O. Fernández Niello, A.O. Macchiavelli, G.V. Martí, A.J. Pacheco, J.E. Testoni, D. Tomasi, and I. Urteaga, *Phys. Rev.* C53, 1031 (1996).
- [70] E. Segre Nuclei and Particles, Second Ed, Benjamin/Cummings, London, (1977).
- [71] S. Baba, K. Hata, S. Ichikawa, T. Sekine, Y. Nagame, A. Yokoyama, M. Shoji, T. Saito, N. Takahashi, H. Baba, and I. Fujiwara Z. Phys. A331, 53 (1988).
- [72] K.E. Rehm, B.G. Glagola, W. Kutschera, F.L.H. Wolfs, and A.H. Wuosmaa. Phys. Rev. C47, 2731 (1993).
- [73] A.H. Wuosmaa, K.E. Rehm, B.G. Glagola, Th. Happ, W. Kutschera and F.L.H. Wolfs. *Phys. Lett.* B 255, 316 (1991).
- [74] D.M. Herrick, F.L.H. Wolfs, D.C. Bryan, C.G. Freeman, K.L. Kurz, D.H. Mathews, P.A.A. Perera, and M.T. Zanni. *Phys. Rev.* C52, 744 (1995).
- [75] S. Landowne, C. Price and II. Esbensen. Nucl. Phys. A484, 98 (1988).
- [76] C. Price, II. Esbensen and S. Landowne. Phys. Lett. B195, 524 (1987).
- [77] J.F. Liang, L.L. Lee, Jr., J.C. Mahon, and R.J. Vojtech. Phys. Rev. C50, 1550 (1994).
- [78] S. Saha, Y.K. Agarwal, and C.V.K. Baba. Phys. Rev C49, 2578 (1994).
- [79] H.J. Kim, J. Gomez del Campo, M.M. Iliudi, D. Shapira and P.H. Stelson, *Phys. Rev.* C38, 2081 (1988).
- [80] H.D. Marta, R. Donangelo, D. Tomasi, J.O. Fernández Niello, A.J. Pacheco Phys. Rev. en imprenta.
- [81] L.C. Vaz and J.M. Alexander, Proceedings of the International Conference Held at the MIT, Cambridge, MA, June 13-15, 1984, S.G. Steadman (ed.), Springer Verlag, p. 288.

- [82] D.L. Hill and J.A. Wheeler, Phys. Rev. 89, 1102 (1953).
- [83] M.W. Guidry, R.W. Kincaid, R. Donangelo Phys. Lett. B 150, 265 (1985).
- [84] L.F. Canto, R. Donangelo, R.S. Nikam, P. Ring, Phys. Lett. B 192, 4 (1987).
- [85] H.D. Marta, R. Donangelo, D. Tomasi, J.O. Fernández Niello, A.J. Pacheco enviado a Phys. Rev.
- [86] E. Vigezzi and A. Winther, Ann. Phys. (N.Y.) 192, 432 (1989).
- [87] D.E. Di Gregorio, J.O. Fernández Niello, A.J. Pacheco, D. Abriola, S. Gil, A.O. Macchiavelli, J. Testoni, P. Pascholati, V.R. Vanin, R. Liguori Neto, N.Carlin Filho, M.M. Coimbra, P.R. Silveira Gomes and R.G. Stokstad, *Phys. Lett. B* 176, 322 (1986).

[88] G.R. Satchler Direct Nuclear Reactions (Oxford Press, 1983).

[89] A. Messiah Mécanique quantique (Ed. Dunod, Paris, 1965).

