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1. Introduction

In Economics and Finance, many time series are not directly observable without errors.

However, they are observed with errors. In some cases, many proxy observations can

be obtained for the value of the series at one particular point in time. For example, an

equilibrium wage rate for an industry may not be observable directly. However, we can

obtian many different wage rates earned by workers in that industry. We can consider

these wage rates as measurements of the unobservable equilibrium wage and incorporate

the fact that these measurements contain some errors. In Finance, the stock price is an

important variable. However, there are different measures of stock prices, e.g. open price

and closing price. Such time series can be modelled as follows

zt,j = yt + et,j, j = 1, 2, · · · , kt, and t = 1, 2, · · · , T (1)

where yt is the value of the fundamental time series at time t. For each yt, we have kt

observations zt,j that are associated with kt error components et,j. The error components

are assumed to be independent white noise processes that are independent of the funda-

mental proces y(t). To make the model general and interesting, it is assumed that the

fundamental process {yt} is a stationary autoregressive moving average (ARMA) process.
Such models are called repeated time series (RTS) models.

For non-repeated time series measurements, Kendall (1944) and Quenouille (1947)

study the case of AR(2) with error while Walker (1960) extends the case to autoregressive

processes with error. For these measurements, it is well-known that the maximum like-

lihood estimates of the parameters in the ARMA with error process cannot be obtained

without imposing many restrictions on the parameters.
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However, The theory of RTS is not well developed in time series analysis. Anderson

(1978) and Azzalini (1981) study the theory of repeated time series measurement. They

introduce a method to obtain the maximum likelihood estimates of the parameters for

stationary low order autoregressive process. Wong and Miller (1990) analysed the model

represented by equation (1) where the variance of the error components and the number

of repititions were assumed to be the same for all time t.

This paper extends the previous works by allowing the variance of the error components

to change over time. Furthermore, the number of the repetitions is also allowed to change

over time. The maximum likelihood estimation technique is derived using the Kalman

filtering. It is shown that all the parameters of the model is identified and the system

dynamics used is stable.

2. Assumptions and Properties

Suppose the number of repetitions, kt, at time t is greater than zero and suppose the

observation {zt,j}, j = 1, . . . , kt, are taken randomly for each time t, t = 1, . . . , T . The error
component, et,j, is independently distributed as N(0, σ

2
et), while the signal component, yt,

follows an ARMA(p, q) model such that

Φ(B)yt = Θ(B)εt (2)

where Φ(B) = 1−φ1B− · · ·−φpB
p, Θ(B) = 1− θ1B− · · ·− θqB

q, {εt} is N(0, σ2ε) and B
is the backward shift operator such that Bixt = xt−i. It is assumed that Φ(B) and Θ(B)

have no common zeros, zeros of Φ(B) and Θ(B) are outside the unit circle.

Let 1t be a kt × 1 vector in which all elements are 1, It be the kt × kt identity matrix
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and Rt = k−1t 1t10t. We define the following variables

wt = k−1t 1
0
tzt , at = k−1t 1

0
tet , (3)

and

(It −Rt)zt = zt − wt1t t = 1, . . . , T ,

where zt = (zt,1, · · · , zt,j, · · · , zt,kt)0 and et = (et,1, · · · , et,j, · · · , et,kt)0, It is easy to show that
wt = yt + at where {at} is N(0, σ2at) with σ2at = σ2et/kt. In this model, {yt} is stationary.
However, {wt} and {zt,j} may not be stationary because σ2at and σ2et may vary over time.

Under the normality and independence assumptions on {et,j} and {yt}, {wt} and {(It−
Rt)zt} are independent. Therefore, the likelihood function

L{Φ,Θ, σ2ε , σ2at | zt, t = 1, . . . , T} (4)

can be written as

L1{Φ,Θ, σ2ε , σ2at |w}L2{σ2at | (It −Rt)zt t = 1, . . . , T} .

Before finding estimates of Φ, Θ, σ2ε , σ
2
at to maximize L, we first find {σ̂2at} which maximizes

L2. We define the index set Λ = {1, 2, · · · , T} which can be partitioned into Λi such that

σ2et is constant for each t in Λi and is different from those in other Λj. Then the maximum

likelihood estimates of σ2et and σ2at are respectively

σ̂2et =

P
t∈Λi

Pkt
j=1(zt,j − wt)

2P
t∈Λi kt

for each t ∈ Λi (5)

and

σ̂2at =
σ̂2et
kt

,

provided that
P

t∈Λi(kt − 1) is greater than zero. In this paper we assume this condition
holds and so σ2et, and consequently σ2at, can be estimated for any t. We note that in this

3



paper, we only consider the situation in which σ2et follows a step function. One may extend

the theory by releasing this condition to include a more complicated situation. However,

in practice, for example in our illustration, step function should be a good approximation.

Similarly, one may release the ARIMA assumption on yt and assume yt follows a more

complicated model like GARCH model.

The next step is to find the estimates which maximize L1. Since σ̂
2
at can be obtained

in (5), we treat it as a constant in L1. That is, we find estimates of Φ, Θ and σ2ε which

maximize

L3{Φ,Θ, σ2ε |w, σ2at t = 1, . . . , T} (6)

where w = (w1, w2, · · · , wT )
0.

In the next two sections, we will discuss the approach of applying the Kalman filter

technique to find estimates which maximize L2 and L3 iteratively and finally maximize L.

3. Recursive Estimation Procedure

In this section, we investigate the application of the Kalman filter to compute the value of

the likelihood function, the variance of the noise, and the conditional linear least-square

estimates of both {wt} and {yt}. Then we discuss the maximum likelihood estimation of

the unknown parameters.

The Kalman filter is frequently used in the estimation of the time series models. Mehra

(1974) and Caines and Rissanen (1974) use Kalman recursive estimation to compute the

exact likelihood of an ARIMA process. Akaike (1973, 1974, 1975) introduce Markovian

representation which provides a minimal state space representation for recursive calculation

of the likelihood function for a Gaussian ARMA process. Harvey and Phillips (1979) and
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Jones (1980) extend the application of the Kalman filter to compute the likelihood of a

stationary ARMA process with an error component. Kalman (1960, 1963) shows that the

difference between the next available observation and the prediction from the best estimate

of the current state is orthogonal to earlier observations.

Different state space forms can be used to model the same ARMA with error process. In

this paper we choose the Markovian representation used by Jones (1980). The observation

wt in (3) is expressed in the following data generation equation:

wt = HZt + at (7)

where H = (1, 0, · · · , 0), Zt is the m× 1 state vector with its jth element

Zj,t = E[yt+j−1|ys, s ≤ t ] for j = 1, . . . ,m

in which m = max(p, q + 1), and yt is defined in (2).

The first element of Zt is Z1,t satisfying

Z1,t = yt .

The state vector Zt can be expressed by the state transition equation

Zt = FZt−1 +Gεt (8)

where

F =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...
. . .

...
0 0 0 · · · 1
φm φm−1 · · · · φ1


and

G = (1, g1, · · · , gm−1)0
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in which g0 = 1 and

gj =
jX

k=1

φkgj−k − θj for j = 1, . . . ,m− 1 . (9)

In (9), φj = 0 for j > p and θj = 0 for j > q.

The state space dynamical system represented by equations (7) and (8) has some im-

portant properties. These properties will be discussed next.

Property 1: The state space dynamical system is stable. This means that all the eigen

values (i.e., characteristic roots) of F is inside the unit circle. This can be shown with the

observation that the characteristic polynomial of F is given by

λm − φ1λ
m−1 − φ2λ

m−2 − · · ·− φm−1λ− φm

Thus, the characteristic roots of F is given by the reciprocal of the zeros of Φ(B). Since

we have assumed that the zeros of Φ(B) lie outside the unit circle, all the eigen values of

F lie within the unit circle.

Beside being a stable dynamical system, it has the following properties (see appendix

for the proof):

Property 2 The state space dynamical system is identified in the sense that all its

parameters are identified.

In this recursive procedure, we first calculate a one-step prediction from Equation (8)

such that

Zt+1|t = FZt|t

where

Zt+j|t = E[Zj+t|ws , s ≤ t ]
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is the projection of Zj+t on {ws , s ≤ t}. From (8), the covariance matrix of this prediction
is

St+1|t = FSt|tF 0 + σ2εGG
0 . (10)

The predicted value of the next observation is

wt+1|t = HZt+1|t = yt+1|t

where wt+j|t = E[wj+t|ws , s ≤ t ] and yt+j|t = E[yj+t|ws , s ≤ t ] are the conditional linear

least-square estimates of wt+j and yt+j respectively given ws for s ≤ t.

Using the next observation, the state vector estimate and its covariance matrix are

updated by

Zt+1|t+1 = Zt+1|t +∆t+1[wt+1 − wt+1|t ] (11)

and

St+1|t+1 = St+1|t −∆t+1HSt+1|t (12)

respectively, where

∆t = St|t−1H 0{HSt|t−1H 0 + σ2at}−1 .

One may refer to Meinhold and Singpurwalla (1983) for the proof of Equations (11) and

(12). They use a Bayesian approach to explain these equations. In this Kalman filtering

process, the quantity ξt|t−1 is defined as

ξt|t−1 = wt − wt|t−1

with variance νt|t−1. Since

E(ξt|t−1) = 0 ,

we have

νt|t−1 = E(ξt|t−1
2) . (13)
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Kailath (1968) shows that ξt|t−1 satisfies

E(ξt|t−1ξs|s−1) = [HSt|t−1H 0 + σ2at]δt,s (14)

where δt,t = 1 and δt,s = 0 for t 6= s. This result enables us to transform the log-likelihood

function of y1, · · · , yT into

l =
1

2

TX
t=i

"
− log 2π − log νt|t−1 − ξt|t−1

2

νt|t−1

#
. (15)

Maximizing (15) is equivalent to maximizing L3 in (6). There are various ways of finding

the initial values of Z0|0 and S0|0. A good discussion of the methods is found in Harvey

(1989).

Denote by η = (Φ,Θ, σ2ε)
0 the set of unknown parameters. One may apply the Newton-

Raphson method or the method of scoring to obtain the maximum likelihood estimate. If

η̃ is the value of the parameter vector η at the previous iteration, the Newton-Raphson

method gets the new estimate η̂ such that

η̂ = η̃ − l̈(η̃)−1l̇(η̃) , (16)

and the method of scoring gets

η̂ = η̃ −E[l̈(η̃)−1]l̇(η̃) , (17)

where l is the likelihood function defined in (15) with its scoring function l̇ and its Hessian

matrix l̈. In this paper we use the notation ẋ and ẍ to represent respectively the first

and the second derivatives of x with respect to η for any x. Applying Equation (16) or

Equation (17) iteratively, one will obtain the maximum likelihood estimate η∗ of η.
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For the asymptotic distribution of the estimate η∗, Dunsmuir (1983) has shown that

under some regularity conditions

√
T (η∗ − η)

D−→ N
³
0, I(η)−1

´
,

and L̈(η∗)/2 converges in mean square to the information matrix, I(η). He also shows that

L̈(η̂)/2 can be replaced by the estimate of

1

2T

TX
t=i

 ν̇t|t−1ν̇ 0t|t−1
νt|t−12

+
2ξ̇t|t−1ξ̇0t|t−1

νt|t−1

 . (18)

One can check that under the assumptions of this model setting, the regularity conditions

are satisfied and hence Equation (18) can be used to estimate the asymptotic variance

of η∗. For computing this variance, one has to find νt|t−1, ν̇t|t−1 and ξ̇t|t−1. The variance

νt|t−1 can be obtained by (13). This leaves ξ̇t|t−1 and ν̇t|t−1 to be estimated. For computing

the maximum likelihood estimate η∗ by applying Equation (16) or (17), first one has to

estimate the scoring function l̇ and the Hessian matrix l̈. It is easy to show that the scoring

function is in terms of ξt|t−1, νt|t−1, and their first derivatives. From Equation (18), the

elements in the Hessian matrix are also in terms of these variables. Hence, we have to

estimate ξ̇t|t−1 and ν̇t|t−1 to obtain the maximum likelihood estimates of η. We will discuss

how to estimate the derivatives ξ̇t|t−1 and ν̇t|t−1 in the next section.

4. Estimating the Derivatives and Maximum Likelihood Estimation

In this section we will discuss the recursive estimation procedure for the derivatives ξ̇t+1|t

and ν̇t+1|t. Then, we will discuss the maximum likelihood estimates for the unknown

parameters and their asymptotic covariance matrix.

The derivatives ξ̇t+1|t and ν̇t+1|t can be expressed as

ξ̇t+1|t = −ẇt+1|t = −ẏt+1|t = −HŻt+1|t
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and

ν̇t+1|t = HṠt+1|tH 0

where Żt+1|t and Ṡt+1|t can be expressed as

Żt+1|t = FŻt|t + ḞZt|t

and

Ṡt+1|t = FṠt|tF 0 + 2Ḟ Ṡt|tF 0 + 2σ2εĠG
0 . (19)

Using the next observation, the estimates can be updated by

Żt+1|t+1 = Żt+1|t + ∆̇t+1ξt+1|t +∆t+1ξ̇t+1|t

and

Ṡt+1|t+1 = Ṡt+1|t − ∆̇t+1HṠt+1|t −∆t+1HṠt+1|t

respectively, where

∆̇t+1 = −St+1|tH 0{HSt+1|tH 0 + σ2at}−2(HṠt+1|tH 0)

+Ṡt+1|tH 0{HSt+1|tH 0 + σ2at}−1 .

Applying the same principles in the estimation of Z0|0 and S0|0, we can find the initial

estimates of Ż0|0 and Ṡ0|0. Then, one can apply the Kalman filter recursive estimation

precedure to find the estimate of η. The estimate of wt|t which is equal to HZt|t can also

be found in the process. Replacing wt by wt|t in Equation (5), one can get a new estimate

of σ2et and consequently get a new estimate of σ
2
at. Substituting the new estimate of σ

2
at into

equations for the recursive estimation procedure, one can obtain the new estimate of η.

This iterative procedure is to find the estimates which maximize L2 and L3 iteratively and
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finally the estimates will converge to the maximum likelihood estimates which maximize

as L defined in (4).

5. Example

We illustrate the applicatin of the innovation transformation to maximum likelihood es-

tiamtion with the modeling of “George” robot data, {zij}, obtained from Bill Fulkerson,

Deere and Company. Wong and Miller (1990) use the same dataset and we will compare

the result using the approach in this paper with the result in Wong and Miller (1990).

John Deere markets a repeatability test unit designed to mearsure the ability of a robot

arm to return to a designed point. For each time t, five equally spaced measurements are

recorded in a very short time such that the five measurements seem to be simultaneous.

The data are measured in inches.

The data, {ztj} for j = 1, · · · , 5, are repeated time series measurements of the “George”
Robot arm’s positions which are assumed to satisfy

zt,j = yt + et,j, j = 1, 2, · · · , 5, and t = 1, 2, · · · , 206

where {yt} is defined in Session 2 and et,j is independently distributed as N(0, σ2et) in which
σ2et is allowed to vary over time. Define wt =

P5
j=1 zt,j/5 and at =

P5
j=1 at,j/5. Then {yt}

satisfies

wt = yt + at

where {at} independently distributed as N(0, σ2at) with σ2at = σ2et/5 for each t. We first

study the variances of the error components. Define the estimated error component êtj =

zt,j − wt for each t.
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We choose i = 1 and use F = σ̂2ei/σ̂
2
ej to test the hypothesis H0 : σ

2
ei = σ2ej for j > i.

For all the j such that H0 is not rejected, we further test the hypothesis H
0
0 : equality of

the variances, see p377 in Lehman (1991) for the test statistic. For all the j such that H 0
0

is not rejected, we form Λ1. We then choose the smallest i and repeat the process to form

Λ2 and so on. Following this procedure, we find that the standard deviation of the error

components etj are estimated to be is 0.0001446 for all the periods except for the periods

in the following table:

S.D. (×103) of the Error Component and the Corresponding Time Periods (t)
t σ̂ej t σ̂ej t σ̂ej t σ̂ej t σ̂ej t σ̂ej
13 .0000 27 .3050 33 .2510 40 .3701 53 .0447 59 .0447
60 .2510 64 .3701 72 .5727 74 .2828 82 .0447 90 .0447
105 .2490 145 .0447 174 .0447 176 .0447 189 .3507 198 .0447

The index set Λ = {1, 2, · · · , T} is supposed to be partitioned into {Λi} such that σ2et
is constant for each t over Λi and is different from those in other Λj. The standard error

of the error components etj is 0.0001446 for all the periods except for a few data.

Wong and Miler (1990) find that both the series {yt} follows an ARIMA(0,1,1) model.
We use their finding as initial estimate. Based on the technique discussed in this paper,

we find that

(1−B)yt = (1− θB)εt

where εt is N(0, σ
2
εt) with σ̂εt = 0.0001936 and θ̂ = −0.3825 with standard error 0.07879.

The ACF and PACF of the innovations are:

ACF and PACF of the Innovations
Lag 1 2 3 4 5 6 7 8
ACF 0.017 .030 .003 .031 .017 -.006 -.067 -.037
PACF 0.017 .030 .002 .030 .016 -.009 -.068 -.036
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The standard error of θ̂ in our approach is 0.07879 which is much smaller than the

standard error, 0.1282, obtained by the “hybrid” estimation technique in Wong and Miller

(1990). The disadvantage of using our approach is to require the normality assumption

while the approach in Wong and Miller (1990) does not. However, we do not reject that

both the error component estimates and the innovations are normally distributeed. Hence,

the model in this paper is preferred in this example.

6. Summary

In this paper we have analysed the repeated time series model where the fundamental

components of the series follows a stationary ARMA process. The model allows the error

component variances to change over time. Furthermore, the number of repitition is also

allowed to change over time. The Kalman filter technique is used to obtain the maximum

likelihood estimates of the parameters of the model. It is shown that the model is identified.

It is easy to extend the results to include the missing observation case. One can also extend

this to the case in which the signal component is non-stationary and non-linear.

The disadvantage of using our approach is to require the normality assumption. How-

ever, one may easily incorporate the Bayesian technique, see Matsumura, et al (1990) and

Wong and Bian (2000), or the modified maximum likelihood estimation approach, see Tiku

and Wong (1998) and Tiku et al (1999a,b,2000), to our approach to release the normality

assumption. Further Extension includes application of the model to investment decisions,

see Thompson and Wong (1991, 1996), Wong and Li (1999), Manzur, et al (1999) Wong

et al (2001).

13



References

Akaike, H., 1973. Maxium likelihood identification of Gaussian autoregressive

moving average models. Biometrika 60, 255-265.

Akaike, H., 1974. Markovian representation of stochastic processes and its ap-

plication to the analysis of autoregressive moving average processes. Annals

of the Institute of Statistical Mathematics 26, 363-387.

Akaike, H., 1975. Markovian representation of stochastic processes by canonical

variables. SIAM J. Control 13, 162-173.

Akaike, H., 1978. Covariance matrix computation of the state variable of a

stationary gaussian process. Research Memorandum No. 139, The Institute

of Statistical Mathematics, Togyo.

Anderson, T.W., 1978. Repeated measurement on autoregressive processes.

Journal of the American Statistical Association 73, 371-378.

Azzalini, A., 1981. Replicated observations of low order autoregressive time

series. Journal of Time Series Analysis 2, 63-70.

Caines, P.E., Rissanen, J., 1974. Maximum likelihood estimation of parame-

ters in multivariate gaussian stochastic processes. IEEE Transactions on

information theory. IT-20, 102-104.

Dunsmuir, W., 1983. Large sample properties of estimation in time series

observed at unequally spaced times. Brillinger, D., Fienberg, J., Gani, J.,

Hartigan, J., Krickeberg, K., Time Series Analysis of Irregularly Observed

Data. New York: Springer, 58-77.

Harvey, A.C., 1989. Forecasting, Structural Time Series Models and the Kalman

Filter. Cambridge University Press.

Harvey, A.C., Phillips, G.D., 1979. Maximum likelihood estimation of regres-

sion models with autoregressive-moving average disturbances. Biometrika

66, 49-58.

14



Jones, R.H., 1980. Maximum likelihood fitting of ARMA models to time series

with miss observations. Technimetrics 22, 389-395.

Kailath, T., 1968. An innovations approach to least-squares estimation part

I: linera filtering in additive white noise. IEEE Transactions on Automatic

Control. AC-13, 6, 646-660.

Kalman, R.E., 1960. A new approach to linear filtering and prediction prob-

lems. Trans ASME, J. Basic Engineering. 82, 34-35.

Kalman, R.E., 1963. New methods in Wiener filtering theory. Bogdanoff,

J.L. and Kozin, F. Procceding of first symposium on engineering application

of random function theory and probability. New York: Wiley.

Kendall, M.G., 1944. On autoregressive time series. Biometrika. 33, 105-122.

Lehmann, E.L., 1991. Testing statistical hypotheses. Wadsworth & Brooks.

Manzur, M., Wong, W.K., and Chau, I.C., 1999. Measuring international

competitiveness : experience from East Asia. Applied Economics 31, 1383-

1391.

Matsumura, E.M., Tsui, K.W., andWong, W.K., 1990. An Extended Multinomial-

Dirichlet Model for Error Bounds for Dollar-Unit Sampling. Contemporary

Accounting Research 6, No 2-I, p485-500.

Mehra, R.K., 1974. Identification in control econometrics; similarities and dif-

ferences. Annals of Economics and Social Measurement 3, 21-47.

Meinhold, R.J., Singpurwalla, N.D., 1983. Understanding the Kalman filter.

The American Statistician 37, 2, 123-7.

Quenouille, M.H., 1947. A large-sample test for the goodness of fit of autore-

gressive schemes. Journal of Royal Statistical Society A 110, 123-129.

Thompson H.E., Wong, W.K., 1991. On the unavoidability of ‘scientific’ judge-

ment in estimating the cost of capital. Managerial and Decision Economics

12, 27-42.

15



Thompson H.E., Wong, W.K., 1996. Revisiting ‘Dividend Yield Plus Growth’

and Its Applicability. Engineering Economist 41, No. 2, 123-147.

Tiku, M.L., Wong, W.K., 1998. Testing for unit root in AR(1) model us-

ing three and four moment approximations. Communications in Statistics:

Simulation and Computation 27 (1), 185-198.

Tiku, M.L., Wong, W.K., Bian, G., 1999a. Estimating Parameters in Autore-

gressive Models in Non-normal Situations: symmetric Innovations. Com-

munications in Statistics: Theory and Methods 28(2), 315-341.

Tiku, M.L., Wong, W.K., Bian, G., 1999b. Time series models with asymmetric

innovations, Communications in Statistics: Theory and Methods 28, no. 6,

1331—1360.

Tiku, M.L., Wong, W.K., Vaughan, D.C., Bian, G., 2000. Time series models

with nonnormal innovations: symmetric location—scale distributions. Jour-

nal of Time Series Analysis 21, No. 5, 571-596.

Walker, A.M., 1960. Some consequences of superimposed error in time series

analysis. Biometrika 47, 33-43.

Wong W.K., Bian, G., 2000. Robust Bayesian Inference in Asset Pricing Esti-

mation. Journal of Applied Mathematics & Decision Sciences 4(1), 65-82.

Wong W.K., Chew, B.K., Sikorski, D., 2001, Can P/E ratio and bond yield be

used to beat stock markets? Multinational Finance Journal 5, 59-86.

Wong, W.K., Li, C.K., 1999. A note on convex stochastic dominance theory.

Economics Letters 62, 293-300.

Wong, W.K., Miller, R.B., 1990. Repeated Time Series Analysis of ARIMA-

NOISE Models. Journal of Business and Economic Statistics 8, 243-250.

16



APPENDIX

Proof of property 2:

From the dynamical system represented by equations (7) and (8) we can find observation-

ally equivalent dynamical system using the transformation Ze
t = T−1Zt. The equivalent

system is given by

wt = HeZe
t + at

Ze
t = F eZe

t−1 +Geηt

where F e = T−1FT , Ge = T−1G and He = HT . Thus, for the model to be identified, there

must be enough a priori restrictions on H, F and G so that the only allowed transformation

matrix T is an identity matrix. Let T r
i and T c

j denote the ith row and the jth column of

the matrix T respectively. Similarly, let Iri and Icj denote the ith row and the jth column

of an m×m identity matrix. It is clear from the model that the matrices H and He are

both restricted to be equal to Ir1 . Thus we have

Ir1 = He = HT = Ir1T = T r
1

Therefore, the first row of the transformation matrix T is equal to the first row of an

identity matrix. According to the model both the matrices F and F e must be such that

their first upper off diagonal elements must be equal to unity. Furthermore, all other

elements except the lasr row must be zero. The relationship between these two matrices

are given by

FT = TF e .
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TF e is equal to

Φe
mT1m T11 + Φe

m−1T1m T12 + Φe
m−2T1m · · · T1,m−1 + Φe

1T1m
Φe
mT2m T21 + Φe

m−1T2m T22 + Φe
m−2T2m · · · T2,m−1 + Φe

1T2m
Φe
mT3m T31 + Φe

m−1T3m T32 + Φe
m−2T3m · · · T3,m−1 + Φe

1T3m
...

...
... . . .

...
Φe
mTm−1,m Tm−1,1 + Φe

m−1Tm−1,m Tm−1,2 + Φe
m−2Tm−1,m · · · Tm−1,m−1 + Φe

1Tm−1,m
Φe
mTmm Tm1 + Φe

m−1Tmm Tm2 + Φe
m−2Tmm · · · Tm,m−1 + Φe

1Tmm


and

FT =



T21 T22 T23 . . . T2m
T31 T32 T33 . . . T3m
T41 T42 T43 . . . T4m
...

...
... . . .

...
Tm1 Tm2 Tm3 . . . Tmm

Φ̂0T c
1 Φ̂0T c

2 Φ̂0T c
3 . . . Φ̂0T c

m


where

Φ̂ =
³
Φm Φm−1 Φm−2 . . . Φ2 Φ1

´0
Since T r

1 = Ir1 , the first row of TF
e must be equal to Ir2 . This implies that the first

row of FT , which is the second row of matrix T , is equal to Ir2 . Similarly, it is clear

that the second row of TF e is equal to Ir3 which implies that the third row of matrix T

is equal to Ir3 . Following the similar argument, is can be shown that the ith row of T is

equal to the ith row of an m×m identity matrix for i = 1, 2, ...,m. This proves that the

equivalent transformation is identity. Note that from the elements of the matrices F and G

the parameters of the original model are exactly identified. Thus, the model is identified.
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