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1. Introduction  

 

The estimation of coefficients in a simple linear model is one of the oldest and most important 

problems and has received tremendous attention in the literature in Statistics and Econometrics. 

Most of the work reported is, however, based on the assumption of normality (Lawrence and 

Arthur 1990). In recent years, however, it has been recognized that the underlying distribution 

is, in most situations, basically not normal, especially in Economics and Finance (Huber 1981; 

Tiku et al. 1986). The solution, therefore, is to develop efficient estimators of coefficients in 

multiple regressive model when the underlying distribution is non-normal. Naturally, one would 

prefer closed form estimators which are fully efficient (or nearly so). Preferably, these 

estimators should also be robust to plausible deviations from an assumed model. That is exactly 

what has been achieved in the series of our papers including the present one. The underlying 

distribution is assumed to be symmetric and to be Student's t family for illustration. The method 

of modified maximum likelihood (MML) estimation (Tiku 1968; Tiku et al. 1999, 2000, 2001) 

is invoked.  

 

This paper first extends the results given in Bian and Tiku (1997), Tiku et al. (1999, 

2000, 2001) and Wong and Bian (2005). Tiku et al. (1999) develop the MML estimators for 

simple linear regression with symmetric innovation; Tiku et al. (2000) come up with the MML 

estimators for the first order autoregressive model with symmetric Innovation; Tiku et al. (2001) 

refine the MML estimator for the simple linear regression model with innovation from 

Student’s t family while Bian and Tiku (1997) adopt the Bayesian approach to study a standard 

multiple regression model with identical and independent distributed (iid) error term. This 

paper extends their work to derive the MML estimators for the multiple regression model with 

the underlying distribution assumed to be symmetric, one of Student's t family. The likelihood 

equations have no explicit solutions and have to be solved by iterative method which is a 

formidable task. Thus, the maximum likelihood (ML) estimators are not readily available. 

Following Tiku et al. (1999, 2000, 2001), we derive the MML estimators. These estimators are 

explicit functions of sample observations and hence easy to compute. Moreover, they are 

essentially as efficient as the ML estimators (see for example, Tiku et al.,1999, 2000, 2001; and 

Wong and Bian 2005). We further derive the asymptotic properties for the MML estimators. 
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We note that the MML estimators have been extensively demonstrated by simulation 

study to be robust and remarkably efficient and clearly superior to the traditional 

normal-theory estimators in all the models being studied, including the autoregressive model 

(Tiku et al. 2000), simple linear regression model (Tiku et al. 2001) and simple linear regressive 

model with autoregressive innovation (Tiku et al. 1999; Wong and Bian 2005). As the multiple 

linear regression model is a simple extension of the above models, the properties of the 

robustness and efficiency for its estimators will be similar to that of the simple linear regression. 

As such,  the resulting estimators in this paper are explicit functions of sample observations and 

are asymptotically fully efficient. Since they are almost fully efficient for small sample sizes 

and are remarkably robust, we skip reporting the simulation results in this paper.  

 

We then study the applicability of the MML estimators to finance and economics by 

demonstrating that the MML estimators are more appropriate to estimate the parameters in the 

Capital Asset Pricing Model (CAPM), one of the most prominent models in Finance, by 

comparing its performance with that of least squares estimators (LSE) on the monthly returns 

of US portfolios. The distributions of stock market returns have been widely concerned by both 

financial economists and econometricians. Fama (1963; 1965a, b) and many others analyze the 

empirical data. They conclude that the normality assumption in the distribution of a security or 

portfolio return is violated such that the distribution is ‘flat-tailed’ and suggest the family of 

stable Paretian distributions between normal and Cauchy distributions for the stock returns. On 

the other hand, Blattberg and Gonedes (1974) examine the return to security and suggested 

student-t as an alternative ‘flat-tail’ distribution for the return. Clark (1973), Kon (1984) and 

Tse (1991) suggest a mixture of normal distributions for the stock return. However, Fielitz and 

Rozelle (1983) suggest that a mixture of non-normal stable distributions would be a better 

representation of the distribution of the return. 

 

Harvey and Zhou (1993) show that the distributional structure of the return may carry 

over into the structure of the disturbance in the Capital Asset Pricing Model (CAPM). In this 

situation, the mixture of normal distributions or mixture of normal and Cauchy distributions or 

t-distributions may give a better description of the distribution of the disturbance in the CAPM. 

As the MML estimators for the simple linear regression with t-distributed innovation has been 

demonstrated to be robust and based on the ‘flat-tail’ characteristic on the distributions of the 
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security or portfolio returns and their corresponding disturbances in the CAPM, we 

recommend academic or practitioners to apply the MML estimators developed in our paper for 

the estimation of the parameters of the CAPM for the stock returns and we hypothesize that the 

MML estimators developed in our paper is more appropriate in the estimation of the CAPM in 

the sense that it is more efficient than the LSE. 

 

To illustrate the superiority of the proposed MML estimators and to test the above 

hypothesis, we apply the one-step ahead forecasting technique to compare the MML 

estimators with the traditional least squares estimators, LSE, in the estimation of the 

parameters in the CAPM for the US monthly stock returns. The one-step ahead forecasting 

technique is commonly used to compare the performance of different models (Clements and 

Hendry 1997). Our empirical study reveals that the MML estimators are more efficient than the 

LSE in terms of the relative efficiency of one-step-ahead forecast mean square error for small 

samples. Hence, we recommend the MML estimators for the estimation of the CAPM. 

 

This paper is organized as follows. We first derive the MML estimators in the next 

section and reveal the asymptotic properties of the MML estimators in Section 3. Section 4 

reviews the theory of the standard CAPM and the ‘flat-tail’ distribution of the security return 

and demonstrates the superiority of the MML estimators in CAPM. Section 5 is the conclusion.  

  

2. Modified Maximum Likelihood Estimators  

 

Consider the multiple regression model 

  y = Xβ + e         (1)  

where y is an nx1 vector of the observations of the endogenous variable regressed on the 

exogenous variables, X, an nxq (n>q) matrix of rank q, β=(β1, ..., βq)' is a qx1 vector of 

regression coefficients, and e is a nx1 vector of random errors ( ie  , ie  , …, ie )’. 

 

It is assumed that the innovations ie  are iid errors. The linear model (1) has many 

applications, for example, in the estimation of the CAPM as illustrated in this paper and in the 

prediction of the future stock prices. Numerous other applications of the above model, besides 
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business and economics, are in agricultural, biological and biomedical problems, see for 

example, Lawrence and Arthur (1990). 

 

Assume that the common distribution of ie   is symmetric and is, for illustration, given 

by 
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we obtain the likelihood equations 0/),(ln =∂∂ jL βσβ  and 0/),(ln =∂∂ σσβL which are in 

terms of the function g(zi) and hence intractable. Solving them by iterative methods is a 

formidable task and can be very problematic especially for small values of p in which one may 

encounter multiple roots, slow convergence, or convergence to wrong values or even 

                                                 
(1) g(z) is the nonlinear part of the derivative of  lnf(z), where f(z) is the standard distribution of the error term 

with f(z) = c(1+z2/k)-p. 
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divergence (Barnett 1966a; Lee et al. 1980; Tiku and Suresh 1992). See also Pearson and 

Hartley (1972, p89) who give examples where the iterations involved in determining ML 

estimates do not converge rapidly enough. In addition, the solutions provided by different 

iterative methods are not necessarily identical (Barnett 1966a). 

 

In order to obtain efficient closed-formed estimators, we invoke Tiku’s modified 

likelihood estimation approach which is by now well established (Smith et al. 1973; Lee et al. 

1980; Tan 1985; Tiku, et al. 1986, 1999, 2000, 2001; Schneider 1986; Vaughan 1992; Wong 

and Bian 2005). Let )()2()1( nzzz ≤⋅⋅⋅≤≤  (arranged in ascending order) be the order statistics 

of )1( nizi ≤≤  and denote [i] as the concomitant index of the ith observation corresponding to 

the order statistic z([I]). Clearly, 

  [i] = j    if   zi = z(j) .       (5) 

To linearize the intractable term g(z(i)), we use the first two terms of a Taylor series expansion 

such that: 
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Since g(z) is almost linear in any small interval (Tiku 1968; Tiku and Suresh 1992), under some 

very general regularity conditions, z(i)  converges to t(i)  as sample size becomes large. If p>3, 

then bi >0 for i = 1, 2, ..., n. On the other hand, if ∞=p  (normal distribution), then ai =0 and 

bi =1. The expected values, variances and covariances of standardized order statistics are 

available (Barnett 1966b; Vaughan 1992, 1994; Tiku et al. 1999, 2000, 2001; Wong and Bian 
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2 z(i) and t(i)  are the percentiles of the empirical distribution Fn(x) and theoretical distribution F(x). 
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Solving the estimating equations (7), we obtain the MML estimators:  
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It is clear that all the above MML estimators have closed-formed algebraic expressions 

and are, therefore, easy to compute. From (8), the MML estimator β is found to consist of two 

components with the main component wβ
^

being a weighted least squares estimator of β and 

unbiased for β. We remark that for ∞=p  (normally distributed errors), ai = 0, bi = 1 and 2p/k 

=1. Consequently, in this situation the MML estimators (8) are reduced to the usual LS (least 

squares) estimators. For computations, we first calculate the usual LS estimates of β and σ 

which are used as initial estimates to compute zi , we then order )1( nizi ≤≤  and compute the 

MML estimates of β and σ from (8). Replacing the LS estimates by these MML estimates, we 

repeat the computation for a few more iterations till the estimates stabilize. In all our 

computations, some of which are presented in this paper, no more than three iterations were 

needed for the estimates to stabilize. Any further iteration hardly changes the values of the 

estimates and are, therefore, not necessary. This is shown in our extensive computations in the 

present paper and in the computations of our past papers.  
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3. Asymptotic Properties of MML Estimators  

 

The asymptotic properties of MML estimators can be summarized in the following two lemmas: 

Lemma 1. The MML estimators
^
β and

^
σ are asymptotically unbiased for β and σ 

respectively. 

 

Lemma 2.   The asymptotic variances and the covariance for β and σ are given by 
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The proofs are in the Appendix. 
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where G(y) is an analytical function free of β and σ; and 

h = p/(p-3/2)E(b[1]) →  p(p-1/2)/[(p+1)(p-3/2)].                (11) 

Since the likelihood function-like L*  in (10) is asymptotically equivalent to the corresponding 

likelihood function L in (3) (Tan 1985), the asymptotic properties of 
^
β and

^
σ  follow 

immediately as shown below: 

Lemma 3. 

    (i) The vector 
^
β  has a q-variate normal distribution with mean vector β and 

variance-covariance matrix given in Lemma 2; 

    (ii) the statistic 2
2^
/)( σσqn −  is distributed as  chi-square with n-q degrees of freedom; 

and 
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    (iii) the estimators 
^
β and

^
σ are independent. 

 

In addition, following the argument of Vaughan (1992), a close approximation of the 

joint distribution of 
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see Bian and Tiku (1997) for more detail. We note that for large n, h1 = h. 

 

 

4. An Application in Finance   

 

In this section, we examine the superiority of applying the MML estimators in Finance with the 

illustration of the Capital Asset Pricing Model (CAPM) on the monthly returns of US portfolios. 

We hypothesize that the MML estimators are more appropriate estimators for the parameters 

in the CAPM, a parsimonious general equilibrium model (Sharpe 1963; Lintner 1965) whose 

excess return R on a security from the risk-free rate Rf  is formulated by: 

Ri  = ai + bi Rm + ei ,                 (14) 

where Ri (Rm) is the excess return of portfolio i (market portfolio) from the risk-free rate Rf  , 

ai measures the abnormal performance of portfolio i, bi measures the portfolio’s level of 

systematic risk in relations to the market portfolio, and ei  is the random error term with an 

expected value of zero. 

 

We choose CAPM for the illustration of our MMLE approach as CAPM is one of the 

simplest models in Finance, yet complicated enough that the usual LSE cannot handle well. If 

MMLE outperforms LSE in this simple model, MMLE is expected to outperform all other more 

complicated models in Finance and Economics like Arbitrary Pricing Theory. Though the 

CAPM looks simple as shown in (14), it is complicated as the measure of beta is empirically 
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nonstationary over time (Leavy 1971; Blume 1975). Besides, the distributions of both the 

security or portfolio return and the disturbance are ‘flat-tail’ and hence violate the normality 

assumption (Fama 1963, 1965a,b; Pettit and Westerfield 1974). 

 

To handle the non-stationarity of beta, one may estimate the model from a reasonably 

short period in order to capture the stationary Beta parameter (Wong and Bian 2000). To 

handle the ‘flat-tail’ distribution for both the return and the disturbance, Fama (1963; 1965a,b) 

suggest the family of stable Paretian distributions between normal and Cauchy distributions for 

the stock returns while Blattberg and Gonedes (1974) examine the security returns and suggest 

student-t as an alternative ‘flat-tail’ distribution. Clark (1973), Kon (1984), and Tse (1991) 

recommend a mixture of normal distributions for the stock return while Fielitz and Rozelle 

(1983) believe that a mixture of non-normal stable distributions would be a better 

representation of the distribution of security or portfolio return. In this paper, we will 

demonstrate that the MMLE with t-distributed innovations will be a good approach in handling 

the non-normality situation since MMLE has been extensively studied (see for example Tiku et 

al.1999, 2000, 2001)  to be robust enough to represent many different distributions including a 

family of t-distributions, a mixture of normal distributions and a mixture of non-normal stable 

distributions.  

 

For easy comparison, we use the same dataset as in Harvey and Zhou (1993) and Wong 

and Bian (2000) in which twelve industrial portfolios of US monthly data are employed in the 

study. The industry classifications conform to Sharpe (1982), Breeden et al. (1989) and 

Gibbons et al. (1989). The portfolios are value-weighted and the market return is the weighted 

NYSE return and the monthly returns from the period 1926-1987 are in excess of 30-day 

Treasury-bill rate. The portfolios returns are available from the Center for Research in Security 

Prices (CRSP) at the University of Chicago while the 30-day Treasury-bill rate is available 

from Ibbotson Associates.  

 

In this paper, we hypothesize that the MML estimators are more appropriate in the 

estimation of the parameters of the CAPM because it is more efficient than the LSE. To 

illustrate, we use the MMLE model with Student’s t distribution, plus 7 degrees of freedom to 

treat the CAPM for the US monthly stock returns as the MMLE estimators are one of the most 
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robust estimators (Tiku et al. 1999, 2000, 2001; Wong and Bian 2005). Twelve industrial 

portfolios of US data are employed in the study. We adopt the one-step-ahead forecast bias and 

MSE as the basis to evaluate the performance of LSE and MMLE over the CAPM. In the 

computation, we choose a small sample size n of 12 (i.e., a year period) in order to capture a 

stationary b parameter. 

 

We first compute the skewness and kurtosis coefficients and Jarque-Bera statistic for 

the returns and the corresponding residuals in the CAPM to test the normality hypothesis for 

both excess returns R  and their corresponding disturbances e in (14). The results are shown in 

Table 1. Several other statistics can be used to test normality, like the modified Shapiro-Wilk 

statistic, Anderson-Darling test and Kolmogorov-Smirnov test. However, as Jarque-Bera 

statistic is one of the best test statistics for normality and the results for other normality 

statistics are similar, we only report the results of Jarque-Bera statistic and its corresponding 

skewness and kurtosis coefficients in this paper. The 0.01 level of significance shown in the 

table lead us to reject the null hypothesis of normality for the monthly excess returns R as well 

as their corresponding disturbances. These findings support the hypothesis that the 

non-normality in the returns will carry over into the non-normality of the disturbances in the 

CAPM (Harvey and Zhou 1993). We note that the return departs from normal, which may be 

attributed to the ARCH or GARCH effects. However, temporal aggregation will reduce this 

ARCH or GARCH effects, for examples, see Drost and Nijman (1995).  

 

[PLACE TABLE 1 ABOUT HERE] 

Table 1. Tests for departure from normality for monthly excess portfolio returns and the 

corresponding residuals in CAPM by industrial classifications. 

 

We adopt the one-step-ahead forecast MSE (see Clements and Hendry (1997) and 

Wong and Bian (2000) for more detail), as a basis for comparison between LSE and MMLE for 

the US monthly data. For the given sample size n=12, the estimates of both LSE and MMLE 

are first computed for each of the 12 industrial portfolios for t = n, ... , T-1. We then compute 

their one-step-ahead forecasts by applying both LSE and MMLE to each portfolio for t = 

n+1 , ... , T. After that, the one-step-ahead forecast bias and MSE for each portfolio are 

calculated. Their relative efficiency (REF), the ratio of the average one-step-ahead of forecast 
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MSE for both LSE and MMLE, is then computed and displaced in Table 2. We note that the 

values of the bias and MSE in the table are 1000 times the original values.  

 

[PLACE TABLE 2 ABOUT HERE] 

Table 2. The one-step ahead forecast bias and MSE of MML and LS approaches for US 

stock monthly returns (n=12) 

 

From Table 2, we find from the tabulated values that MMLE has both smaller 

one-step-ahead forecast bias and smaller MSE and is more efficient than LSE in all industries 

except the Finance and Real Estate and Transportation. The average values depicted in the 

table also show that MMLE attains a smaller average one-step-ahead forecast bias (-0.0007175) 

and smaller one-step-ahead forecast MSE (0.00070874) than those of LSE (-0.0009641 and 

0.0007140 respectively) with average relative efficiency to be 1.0082. This implies that the 

MML estimators are remarkably more efficient and robust than the LSE. Hence, MMLE is 

clearly superior to the traditional normal-theory estimators. 

 

 

 

5. Concluding Remarks   

 

It is generally recognized that nonnormal samples occur very frequently in practice. In this 

paper, we extend the results of Bian and Tiku (1997), Tiku et al. (1999, 2000, 2001) and Wong 

and Bian (2005) to the linear model by assuming the innovation to be asymmetric and from a 

Student-t family. The likelihood equations are intractable. Solving them by the iterative 

methods is tedious and time consuming and the results obtained might even be unreliable. We, 

therefore, use the methodology of modified likelihood estimation. In the context of iid random 

sampling and survey sampling, this method is known to yield asymptotically fully efficient 

estimators (Tiku 1970; Bhattacharyya 1985) and almost as efficient as the maximum likelihood 

estimators for small n (Smith et al. 1973; Tan 1985; Schneider 1986; Tiku and Suresh 1992; 

Vaughan 1992). An attractive feature of the method is that it yields MML estimators which can 

be expressed explicitly as functions of sample observations and are, therefore, easy to compute 

and can be studied analytically. We have derived the MML estimators here in the context of 
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linear models. These estimators are as attractive as in the classical framework of iid random 

observations. We have demonstrated their very high efficiencies not shared by the Gaussian 

estimators. In fact, we do not recommend the use of the Gaussian estimators for nonnormal 

innovations.  

 

For further study, one may consider incorporating the Bayesian approach (see 

Matsumura et al. 1990; Bian and Tiku 1997) into the MMLE estimation. We note that the 

distribution of the stock returns in our illustration is not only heavy-tailed but also strongly 

skewed (refer to Table 1). Hence, it is possible to improve the forecasting by using skewed 

error distributions. The MMLE model with asymmetric innovations will be an interesting issue 

for the extension in this situation. Further extension includes studying the applicability of the 

MMLE linear model to other prominent Economics or Finance models in, for example, Wong 

and Chan (2004) and Fong et al. (2005). Another possible area for further research is to 

compare the beta in this study with the equity cost of capital for each portfolio (Thompson and 

Wong 1991, 1996). 

 

 
 There are many other approaches in the study of linear models, for example, no 

distributional assumptions on the measurement errors (Wong and Miller 1990; Li 2002; Li and 

Hsiao 2004), the nonlinear regression models (Amemiya, 1985; Hsiao, 1989; Hausman et al., 

1998, Honore and Hu, 2004), multinomial models (Hsiao and Sun 1999), and count models (Li 

et al. 2003). Nevertheless, it is well-known that if the distribution of the disturbances is known 

to be from Student’s t family, parametric approaches like ours will yield estimators which 

outperform the estimators without distributional assumptions (Li and Hsiao 2004). As such, our 

approach performs better when the distribution is known.  In additional, our approach could be 

incorporated to improve the estimation in other models, like the nonlinear regression models, 

multinomial models and count models. 
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Table 1. Tests for departure from normality for monthly excess portfolio returns  

and the corresponding residuals in CAPM by industrial classifications. 

 Returns Residuals 

Portfolio 
Skewnes

s kurtosis 
Jarque-Bera 

statistic Skewness kurtosis 
Jarque-Bera 

statistic 
NYSE 
value-weighted 0.3059** 10.6030** 1803.58** --- --- 

 

Petroleum 0.3103** 7.4277** 619.68** 0.2477** 4.1315** 47.30** 
Finance & Real 
Estate 0.2257** 10.6255** 1808.91** 0.006 4.7600** 96.03** 
Consumer 
Durables 1.0134** 15.3646** 4866.73** 0.6193** 10.7926** 1930.02** 
BasicIndustries 0.8691** 13.6209** 3590.57** 0.6333** 9.6177** 1407.35** 
Food 
&Tobacco 0.0178 10.1611** 1589.76** -0.1866* 4.9496** 122.15** 
Construction 0.8995** 11.5376** 2359.94** 0.5306** 6.6211** 441.39** 
Capital Goods 0.2375** 9.0959** 1158.95** 0.1785* 4.7571** 99.66** 
Transportation 1.1614** 15.2275** 4802.12** 1.1199** 8.7320** 1174.05** 
Utilities 0.1446 10.7665** 1872.47** -0.0405 5.0824** 134.63** 
Textile & Trade 0.1218 8.6145** 979.04** -0.094 4.8637** 108.77** 
Services 0.0349 7.0560** 510.14** 0.3336** 11.8533** 2443.61** 

* p < 5%, ** p < 1% 
 



 
 14 

Table 2.  The one-step ahead forecast bias and MSE of MML and LS approaches 
for US stock monthly returns 

 
 
    LS Method 

 
    MML method 

 
 
 Portfolio  

 Bias 
 
  MSE 

 
  Bias 

 
  MSE 

 
 
 REF 

 
Petroleum 
Finance & Real Estate 
Consumer Durables 
Basic Industries 
Food & Tobacco 
Construction 
Capital Goods 
Transportation 
Utilities 
Textile & Trade 
Services 
Recreation 

 
-1.614 
-0.296 
-0.980 
-0.827 
-0.313 
-1.139 
-0.463 
-0.709 
-0.667 
-1.365 
-1.774 
-1.423 

 
1.1228 
0.3525 
0.4021 
0.2482 
0.5971 
0.6678 
0.3329 
0.8608 
0.8865 
0.7954 
1.5085 
0.7940 

 
-1.588 
-0.275 
-0.611 
-0.644 
-0.121 
-1.034 
-0.376 
-0.853 
-0.380 
-0.570 
-1.604 
-0.554 

 
1.1173 
0.3555 
0.3939 
0.2476 
0.5917 
0.6542 
0.3318 
0.8511 
0.8858 
0.7767 
1.5187 
0.7806 

 
1.005 
0.992 
1.021 
1.002 
1.009 
1.021 
1.003 
1.011 
1.001 
1.024 
0.993 
1.017 

  Average -0.9641 0.7140 -0.7175 0.70874 1.0082 
Note: the values of the bias and MSE in the table are 1000 times the original values.  
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Appendix    

 

Proof of Lemma 1. 

 

The result follows immediately from the first two terms of the Taylor series expansions of 

jL β∂∂ /ln *  (j=1, 2, ..., q) and σ∂∂ /ln *L  and the fact that 

|/ln/ln|/1 *
jj LLn ββ ∂∂−∂∂ and  |/ln/ln|/1 * σσ ∂∂−∂∂ LLn  tend to zero as n tends to 

infinity (Kendall and Stuart 1979, Chapter 18). 

 

 

Proof of Lemma 2. 

 

From the symmetry of Student’s t distribution, it immediately follows that  

E(ai ∗ b[1],  b[2], ..., b[n]) = 0, for all I = 1, 2, ..., n 

and    E(e ∗ b[1],  b[2], ..., b[n]) = 0,  (15) 

where e = Y - Xβ. Thus, 
[ ] βββ =⋅⋅⋅′′+= − ),,,|()()ˆ( ][]2[]1[

1
nw bbbeWEXWXXEE  

and   
[ ] β=⋅⋅⋅′′=′′ −− ),,,|()())( ][]2[]1[

11
nbbbaEXWXXEaXWXXE  . 

Therefore, the MML estimator β̂  is unbiased for β as σ is known. 
    The asymptotic variance-covariance matrix of the MML estimators is given by the inverse 
of  

   
⎥
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⎥
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⎢
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∑
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i
iliji
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pL
1

][2

*2 2),(
σββ

σβ  , 

we have 
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⎞
⎜⎜
⎝

⎛
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]1[22
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σβ  

where 
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1
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1
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= p
pb

n
bE

n

i
i    as ∞→n  . 

Similarly, 

⎟
⎠

⎞
⎜
⎝

⎛
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∂ ∑ ∑

= =

n

i

n

i
iiijiji
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2

*2

=′+′=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂
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k
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σσβ

σβ  . 

This follows immediately from (15) and the fact that E(a[i]) = (1/n) 3ai = 0. Also 

∑
=

+−=
∂

∂ n

i
iiii zbz

k
pnL

1

2
][][222

*2

)32(2),( α
σσσ

σβ  

which gives (see, for example, Bian and Tiku 1997) 
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