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1. Introduction 

 In applied econometric literature, the causal inferences are often made based on 

highly temporally aggregated or systematically sampled data. Marcelinno (1999) analysed 

the effects of temporal aggregation on time series properties such as exogenity, Granger 

causality, structural invariance, integration, cointegration, impulses responses, and 

measures of persistence and found that Granger causality is not invariant upon temporal 

aggregation. Cunningham and Vilasuso (1995), using Monte Carlo experiments, find that 

temporal aggregation is about two to ten times more likely to lead to false causal inference 

compared to systematic sampling. Abeysinghe and Gulasekaran (2000) have further 

confirmed the negative effects of temporal aggregation on causal inference. As opposed to 

temporal aggregation Wei (1982), using Geweke’s linear decomposition, shows that 

systematic sampling preserves the causal direction. This result, however, applies only to 

stationary series. In this note we demonstrate that in the presence of unit roots systematic 

sampling may turn a unidirectional causality to a bi-directional one. We establish these 

results through a cross-covariance analysis and a Monte Carlo study.  

2. Systematic Sampling and Granger Causality 

Let zt (t=1,2,…,n)  be the equally spaced basic series. Systematic sampling 

(hereafter, s.sampling) means the construction of the series ZT=zmT (T=1,2,…,N and 

n=mN) by sampling from zt at every mth interval (m is an integer). Let z1t~I(d1) and z2t 

~I(d2) such that the differenced series t
d
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weakly stationary process with mean zero and variance covariance matrix1 
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where wt=(w1t,w2t)′. Let L′ be the backward shift operator on the s.sampled time unit T 

such that L′Z1 T = Z1 T-1 and L′Z2 T = Z2 T-1. Further let  
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be the differenced series derived from the s.sampled series. 

  The cross covariance between W1 T and W2 T+k  works out to be2 
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Here L operates on the index of γw
ij(k) such that Lγw

ij(k)= γw
ij(k-1).  

The expressions (4) and (5) show that the cross covariance of the s.sampled series 

is the weighted sum of the cross covariances of the basic series. In order to determine the 

consequences of s.sampling on Granger causality, we consider the following cases. 

Case1: z1 and  z2 are uncorrelated with each other 

If the basic series z1 and z2 are uncorrelated with each other then γw
ij(k)=0, for all k 

and i,j=1,2; i≠j. From (4) and (5) we can see that γW
ij(k)=0, for all k and i,j=1,2; i≠j. Thus, 

the s.sampled process Z1 and Z2 also remains uncorrelated. This is true for all sampling 

intervals, m, and the orders of integrations, d1 and d2.  

Case 2: Causality between z1 and z2 is one-sided 
                                                 
1 γw

ii(k) is the autocovariance of the i-th series, wit, at lag k. When k=0, it is simply the variance of the series. 
γw

ij(k) is the cross covariance between i-th and j-th series at lag k 
2 see appendix for the detail derivation 
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 Without loss of generality assume that causality runs from z1 to z2 such that first K 

cross covariances are non-zero, i.e.  
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S.sampling changes one-sided causality from z1 to z2 to two-sided causal relationship if and 

only if γW
21(k)≠0 for some k>0. Since γW

21(k) is the weighted sum of the cross covariances 

of the basic process, γw
21(k), the bi-directional causality occurs iff 

0))1(()...1( 221
12 21 ≠−+++++ +− mdmkLLL wddm γ for some k>0. That is, a feedback 

relationship occurs due to s.sampling iff some of {mk+d2(m-1), mk+d2(m-1)-1,…., mk-

d1(m-1)} be negative for some k>0. This implies that the uni-directional causation 

becomes bi-directional iff at least mk-d1(m-1)≤-1, or 
1

1
1 −

+≥
m

mk
d . In particular, the cross 

covariance from Z2 to Z1 at lag 1 becomes non-zero when 
1

1
1 −

+≥
m

m
d . This implies that, in 

general, feedback (spurious) relationship occurs due to s.sampling iff the order of 

integration of the series z1 is such that, d1≥1. The interesting feature of the above condition 

is that the spurious bi-directionality due to s.sampling is independent of the order of 

integration of the series z2, d2, when the true uni-directional causality runs from z1 to z2. 

Case 3: Stationary Process  

The result for the case when d1=d2=0 is consistent with the findings of Wei (1982) 

and Cunningham and Vilasuso (1995) that s.sampling preserves unidirectional causality.  

3. Some Monte Carlo Results 

 It would be useful to examine how causal inferences are affected by s.sampling of 

non-stationary variables when m changes. We do this through a Monte Carlo study. We 
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conducted an extensive Monte Carlo simulation based on the following process: 
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The contemporaneous correlation between z1 and z2 is set to zero, i.e. σ12=0, in 

order to assess how s.sampling affect contemporaneous correlation. We set ϕ12=0 so that 

the causal relationship is unidirectional from z1 to z2. We set the sample size n=480 to 

represent 40 years of monthly data of z1 and z2. Then systematic samples of size N=160 

(i.e. m=3, quarterly) and N=40 (m=12, annual) series were constructed from the basic 

series z1 and z2. We estimate the model (6), test for the significance of estimated 

parameters and test for the contemporaneous correlation3 between the variables at each 

stage of s.sampling.  

The exercise was replicated 1000 times. Two scenarios, stationary and non-

stationary, were considered. In order to analyze the effect of s.sampling on unidirectional 

causality (z1 to z2) when the series are non-stationary, the following cases are considered: 

(1) d1=1 and d2=0, (2) d1=1 and d2=1 (3) d1=0 and d2=2. Differencing is done on the 

s.sampled series to induce stationarity. Since, our results confirm the finding that the 

s.sampling preserves the direction of causality when d1=d2=0, these results are not 

reported. 

The Monte Carlo results for the non-stationary cases are reported in Table 1 (panel 

1 through 3) for the sampling intervals m=3 and m=12. In all the cases, the parameters take 

                                                 
3 The Lagrange Multiplier test developed by Breusch and Pagan (1980) is used to test the contemporaneous 
correlation between the residuals. 
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the values ϕ11=0.9, ϕ22=0.1, ϕ12=0.0 and ϕ21 varies from 0.1 to 0.9. This allows us to 

examine the effect of s.sampling on causality when the true unidirectional causality 

changes from weaker (ϕ21 =0.1) to stronger (ϕ21 =0.9). The entries in Table 1 show the 

rejection frequencies (%) of the hypothesis that the parameter is zero at the 5% level of 

significance.  

The table shows that When d1=1 (see panels 1 and 2) the one-sided causality 

becomes a feedback system. This confirms our theoretical findings based on cross 

coavariances that when d1≥1 s.sampling introduces a spurious relationship. This effect 

becomes more prominent when both d1 and d2 are positive (integers) or the strength of the 

unidirectional causality from the basic non-stationary series becomes stronger or when 

m=3 or the both. Finally, the results reported in panel 3 for the case d1=0 and d2=2 

corroborate our theoretical finding that spurious causal relationship due to s.sampling is 

independent of d2. Thus if the uni-directional causality runs from a non-stationary series to 

a stationary or non-stationary series, there is a high likelihood of detecting spurious bi-

direcional causality. Furthermore, in all cases s.sampling induces high contemporaneous 

correlation between the variables. 

================ 

Table 1 

================ 

4. Conclusion 

 This paper has documented the existence of Granger causality distortion due to 

s.sampling in the presence of unit roots. This distortion has been found to depend on 

strength of the causality and the sampling intervals. The spurious bi-directionality due to 
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s.sampling is induced by the presence of unit roots in the causal variable rather than the 

effect variable. The cross covariance analysis reveals that the unrelated series remain 

unaltered due to s.sampling even if the series contain unit roots. But the absence of 

Granger causality in s.sampled series does not imply that the series are unrelated in nature. 

Granger causality testing with s.sampled as well as temporally aggregated data is less 

likely to resolve the debates on causal directions. 
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Appendix  

Proof of (4) 

Define the forward shift operator F=L-1 such that Fwt = wt+1 and Fγij(k) = γij(k+1). 

Thus, 
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Hence the result. 
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Table 1: Granger Causality distortion (in %) due to systematic sampling 

Panel 1: d1=1 d2=0,(ϕ11=0.9 ϕ22=0.1, ϕ21=0.1 to 0.9 and ϕϕ12=0.0) 
 ϕ21→ 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
 
m=3 

ϕ12 
ϕ21 

ρ12 

5.5 
90.8 
33.7 

10.2 
100.0 
86.6 

13.5 
100.0 
99.2 

24.4 
100.0 
99.6 

35.8 
100.0 
100.0 

48.3 
100.0 
100.0 

56.6 
100.0 
100.0 

69.7 
100.0 
100.0 

77.6 
100.0 
100.0 

 
m=12 

ϕ12 
ϕ21 

ρ12 

6.6 
9.0 
30.2 

9.4 
15.7 
72.9 

13.5 
22.9 
94.8 

19.6 
21.9 
99.6 

20.9 
21.4 
99.8 

29.5 
15.7 
100.0 

34.9 
14.6 
100.0 

40.2 
13.8 
100.0 

44.4 
9.4 
100.0 

 
Panel 2: d1=d2=1, (ϕ11=0.9 ϕ22=0.1, ϕ21=0.1 to 0.9 and ϕϕ12=0.0) 
 ϕ21→ 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
 
m=3 

ϕ12 
ϕ21 

ρ12 

6.3 
96.2 
49.9 

16.6 
100.0 
95.3 

28.0 
100.0 
100.0 

40.6 
100.0 
100.0 

54.9 
100.0 
100.0 

64.2 
100.0 
100.0 

73.0 
100.0 
100.0 

79.0 
100.0 
100.0 

85.2 
100.0 
100.0 

 
m=12 

ϕ12 
ϕ21 

ρ12 

5.9 
52.5 
78.3 

8.9 
77.6 
99.8 

11.3 
84.9 
100.0 

19.4 
85.9 
100.0 

24.3 
87.5 
100.0 

30.6 
88.7 
100.0 

35.0 
91.8 
100.0 

43.1 
94.1 
100.0 

47.7 
93.6 
100.0 

 
Panel 3: d1=0 d2=2, (ϕ11=0.9 ϕ22=0.1, ϕ21=0.1 to 0.9 and ϕϕ12=0.0) 
 ϕ21→ 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
 
m=3 

ϕ12 
ϕ21 

ρ12 

5.5 
99.2 
11.2 

5.8 
100.0 
21.2 

3.2 
100.0 
39.4 

4.2 
100.0 
58.0 

4.5 
100.0 
77.5 

4.3 
100.0 
88.4 

5.5 
100.0 
93.9 

5.5 
100.0 
97.5 

4.3 
100.0 
98.9 

 
m=12 

ϕ12 
ϕ21 

ρ12 

4.8 
90.1 
12.0 

6.0 
100.0 
26.1 

4.3 
100.0 
49.5 

3.9 
100.0 
69.7 

4.5 
100.0 
70.1 

5.3 
100.0 
79.0 

4.7 
100.0 
81.8 

4.7 
100.0 
85.6 

4.9 
100.0 
87.3 

 
 


