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1 Introduction

Since Nash’s work in the early 1950’s, there have been two different ap-
proaches to analyzing bargaining problems: the strategic approach and the
axiomatic approach. Nash (1953) claimed that these two approaches should
be complementary, and presented a strategic model of bargaining (the per-
turbed Nash demand game) to implement his axiomatic solution (the Nash
(1950) bargaining solution). The idea of relating axiomatic solutions to equi-
libria of strategic models is now known as the “Nash program.” Binmore et
al. (1986) showed that the subgame-perfect equilibrium of the Rubinstein’s
(1982) alternating-offers model approaches the Nash bargaining solution as
the friction becomes smaller. For more results in the Nash program, see
Osborne and Rubinstein (1990) and Serrano (2004). Serrano also explains
how one can view the Nash program in the context of the implementation
theory. We attempt to contribute to the research in the Nash program by
presenting a strategic model based on a fictitious play of the Nash demand
game to implement the Nash bargaining solution.

Our strategic model is partly related with evolutionary models. Sev-
eral authors have studied evolutionary models of the Nash demand game.
Young (1993, 1998) presented a model where bargainers make their demands
by choosing best replies based on an adaptive play process with incomplete
sampling and showed that the stochastically stable divisions converge to the
Nash solution. Santamaria-Garcia (2004) showed similar convergence results
using Kandori et al.’s (1993) matching framework. Binmore et al. (2003)
showed that the Nash solution is the unique stochastically stable equilib-
rium in best-response dynamics. Skyrms (1994) showed that the equal split
has a larger basin of attraction among the evolutionarily stable equilibria.
Ellingsen (1997) investigated the dynamics of the “obstinate” strategy and
the “sophisticated” strategy in the evolutionarily stable equilibria. Oechssler
and Riedel (2001) showed that the equal split is stable with a continuous
strategy space.

Although our model is partly related with evolutionary models, our model
is different from the standard evolutionary models. Our model attempts to
explain what a fixed pair of individual bargainers will act initially if they ex-
pect a long-term relationship with the other bargainer whereas other evolu-
tionary models attempt to explain dynamics of the population(s). The most
important difference is the equilibrium-selection mechanism. In our model
the initial actions are determined endogenously by the bargainer’s deliber-
ate choices whereas in most evolutionary models they are given exogenously.
The role that mutation or random experimentation plays for the equilibrium
selection in other evolutionary models is played by the small error that the
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bargainers can make in their calculation of expected payoffs in our model.
We first show that the fictitious play resolves eventually the inefficiency

due to miscoordination. If players miscoordinate in the initial period by
demanding too little, they get to coordinate eventually in the way that the
player who is less greedy in his initial demand gets a better share. If players
miscoordinate in the initial period by demanding too much, they get to
coordinate eventually in the way that the player who is greedier in his initial
demand gets a worse share.

Our main result is that in the initial-demand game they play, all the
ε-equilibria (à la Radner (1986)) are in a neighborhood of the division corre-
sponding to the Nash bargaining solution if the bargainers are patient (the
time discount is small). Furthermore, as the bargainers make a more ac-
curate comparison of payoffs and become more patient (the time discount
vanishes) accordingly, the set of ε-equilibria shrinks and the only equilibrium
left is the division of the Nash bargaining solution.

2 The strategic model

Two players 1 and 2 are playing the Nash (1953) demand game infinitely
many times, starting at time t = 0. In each period both players simulta-
neously announce their demands x and y respectively, where 0 < x, y ≤ 1.
That is, the size of the pie has been normalized to 1. If x+y ≤ 1, they receive
u(x) and v(y) in that period respectively. Otherwise, they receive u(0) and
v(0) respectively. The utility functions are strictly increasing, concave, and
normalized so that u(0) = v(0) = 0.

There is a discount of payoff by δ between periods, where 0 ≤ δ < 1.
Alternatively, (1 − δ) can be interpreted as a probability of breakdown, as
Binmore, et al. (1986) did. Player 1 receives u(xt)I[xt+yt≤1](xt, yt) in each
period t, and the average payoff of the infinite sequence of payoffs is

ū ≡ (1− δ)
∞∑

t=0

δtu(xt)I[xt+yt≤1](xt, yt),

where I is an indicator function. Similarly, player 2 receives v(yt)I[xt+yt≤1](xt, yt)
in each period t, and the average payoff of the infinite sequence of payoffs is

v̄ ≡ (1− δ)
∞∑

t=0

δtv(yt)I[xt+yt≤1](xt, yt).

From the time t = 1, both players use a simple learning rule and make
a decision according to the fictitious play. For any t ≥ 1, let ft(x) denote
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the relative frequency with which player 1 has chosen x up to time (t − 1).
Similarly, let gt(y) denote the relative frequency with which player 2 has
chosen y up to time (t− 1). According to the fictitious play, players choose
xt and yt for any t ≥ 1 as follows:

xt = arg max
x

∑
y:gt(y)>0

gt(y)u(x)I[x+y≤1](x, y),

yt = arg max
y

∑
x:ft(x)>0

ft(x)v(y)I[x+y≤1](x, y).

That is, in each period each player chooses his best response to the observed
historical frequency of his opponent’s choices. For simplicity, we assume that
ties are broken in favor of a higher demand.

In the initial period t = 0, however, there has been no opponent’s action to
refer to. In this initial period, the players exercise a higher level of rationality
to choose their initial demands because they will determine unambiguously
the subsequent demands by the fictitious play process. This initial-demand
game is virtually a one-shot Nash demand game where the payoffs are the
average payoff of the infinite sequence of payoffs that they expect in the initial
and subsequent periods. We employ Radner’s (1986) ε-equilibrium concept
for this initial-demand game.

definition A strategy profile is an ε-equilibrium if no player has an
alternative strategy that increases his payoff by more than ε.

3 The implementation result

Lemma 1 For any (x0, y0), the following hold:
(1) x1 = 1− y0 and y1 = 1− x0.
(2) For any t ≥ 2, xt must be either x0 or (1− y0), and yt must be either y0

or (1− x0).
(3) For any t ≥ 1, ft(x0) + ft(1− y0) = 1 and gt(y0) + gt(1− x0) = 1.

Proof. (1) Clearly, x1 = arg maxx u(x)I[x≤1−y0](x) = 1 − y0, and y1 =
arg maxy v(y)I[y≤1−x0](y) = 1− x0.
(2) We prove statement (2) by mathematical induction. x2 must be either
x0 or (1 − y0) because x1 = arg maxx[

1
2
u(x)I[x≤x0](x) + 1

2
u(x)I[x≤1−y0](x)].

Similarly, y2 must be either y0 or (1− x0).
Suppose that xt is either x0 or (1 − y0), and yt is either y0 or (1 − x0) for
any t ≥ 2 (induction hypothesis). Then xt+1 must be either x0 or (1 − y0)
because xt+1 = arg maxx[gt+1(1−x0)u(x)I[x≤x0](x)+gt+1(y0)u(x)I[x≤1−y0](x)].
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Similarly, yt+1 must be either y0 or (1− x0).
(3) Statement (3) follows immediately from statements (1) and (2).

Let (xN , yN) be the division of the Nash bargaining solution, given the
utility functions u and v. That is,

(xN , yN) = arg max
(x,1−x)

u(x)v(1− x).

We define a function φ that assigns y = φ(x) in [0, 1] to each number x in
[0, 1] as follows (see Figure 1):

• φ(xN) = yN .

• If x 6= xN , φ(x) is the solution of the following equation which is
different from (1− x):

u(x)v(1− x) = u(1− φ(x))v(φ(x)).

Since u and v are strictly increasing and concave, φ(x) is uniquely deter-
mined for each x ∈ [0, 1]. The function φ(x) is strictly increasing and reflects
the shape of the Pareto frontier of the feasible alternatives. For example, if
u and v are linear then φ(x) = x.

Lemma 2 (1) If x0 + y0 = 1, then ū = u(x0) and v̄ = v(y0).
(2) If x0 + y0 < 1 and y0 = φ(x0), then

(1− δ)u(x0) < ū < (1− δ + δ2)u(x0), lim
δ→1

ū =
u(x0)

2

u(1− y0)
,

(1− δ)v(y0) < v̄ < (1− δ + δ2)v(y0), and lim
δ→1

v̄ =
v(y0)

2

v(1− x0)
.

(3) If x0 + y0 > 1 and y0 = φ(x0), then

(1− δ)δu(1− y0) < ū < δu(1− y0), lim
δ→1

ū =
u(1− y0)

2

u(x0)
,

(1− δ)δv(1− x0) < v̄ < δv(1− x0), and lim
δ→1

v̄ =
v(1− x0)

2

v(y0)
.

(4) If x0 + y0 < 1 and y0 > φ(x0), then

(1− δ)u(x0) + δT u(1− y0) ≤ ū ≤ (1− δT )u(x0) + δT u(1− y0) and
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(1− δ + δT )v(y0) ≤ v̄ ≤ v(y0) for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(1− y0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(y0).

Similarly, if x0 + y0 < 1 and y0 < φ(x0), then

(1− δ + δT )u(x0) ≤ ū ≤ u(x0) and

(1− δ)v(y0) + δT v(1− x0) ≤ v̄ ≤ (1− δT )v(y0) + δT v(1− x0)

for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(x0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(1− x0).

(5) If x0 + y0 > 1 and y0 > φ(x0), then

(1− δ + δT )u(x0) ≤ ū ≤ u(x0) and

(1− δ)v(y0) + δT v(1− x0) ≤ v̄ ≤ (1− δT )v(y0) + δT v(1− x0)

for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(x0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(1− x0).

Similarly, if x0 + y0 > 1 and y0 < φ(x0), then

(1− δ)u(x0) + δT u(1− y0) ≤ ū ≤ (1− δT )u(x0) + δT u(1− y0) and
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(1− δ + δT )v(y0) ≤ v̄ ≤ v(y0) for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(1− y0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(y0).

Proof. (1) Statement (1) follows from Lemma 1 because x0 + y0 = 1.
(2)-(5) We prove only statement (2) (the case of [x0+y0 < 1 and y0 = φ(x0)])
and the first part of statement (4) (the case of [x0 + y0 < 1 and y0 > φ(x0)])
omitting the tedious repetition for the other cases.

We first prove the first part of statement (4). Let f ∗ ≡ u(x0)
u(1−y0)

and

g∗ ≡ v(y0)
v(1−x0)

. For any t ≥ 1,

ft+1(x0) =

{
tft(x0)

t+1
if gt(y0) ≥ f ∗

tft(x0)+1
t+1

if gt(y0) < f ∗,

and

gt+1(y0) =

{
tgt(y0)

t+1
if ft(x0) ≥ g∗

tgt(y0)+1
t+1

if ft(x0) < g∗.

We define the following four states regarding the pair of relative frequencies
(ft(x0), gt(y0)):

• state [>>]: ft(x0) ≥ g∗ and gt(y0) ≥ f ∗,

• state [><]: ft(x0) ≥ g∗ and gt(y0) < f ∗,

• state [<>]: ft(x0) < g∗ and gt(y0) ≥ f ∗,

• state [<<]: ft(x0) ≥ g∗ and gt(y0) ≥ f ∗.

We define state [>>]∗ and [<<]∗ as follows:

• state [>>]∗: ft(x0) ≥ g∗, gt(y0) ≥ f ∗, and ft(x0) = gt(y0),

• state [<<]∗: ft(x0) < g∗, gt(y0) < f ∗, and ft(x0) = gt(y0).
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Note that 0 < f∗ < g∗ < 1 because x0 + y0 < 1 and y0 > φ(x0). At t = 1,
f1(x0) = g1(y0) = 1 and therefore the pair of relative frequencies is in the
state [>>]∗. At t = 2, f2(x0) = g2(y0) = 1

2
and the state can be either

[>>]∗, [<>], or [<<]∗ depending on the values of f ∗ and g∗. However, it
cannot be [><] because f ∗ < g∗. We can establish the following regarding
the transition between states:

• If the current state is [<>], the next state is always [<>] (Borrowing
a term from the Markov chain theory, the state [<>] is an absorbing
state).

• If the current state is [>>]∗, the next state must be either [>>]∗, [<>],
or [<<]∗.

• If the current state is [<<]∗, the next state must be either [>>]∗, [<>],
or [<<]∗.

Therefore, the state must be either [>>]∗, [<>], or [<<]∗ for any t ≥ 2.
Furthermore, the state becomes [<>] eventually because the change in the
relative frequency between two periods becomes smaller than (g∗− f ∗) even-
tually. That is, an oscillation between the states [>>]∗ and [<<]∗ cannot
last for ever.

Let T1 be the number of periods when the state is [>>]∗ before the state
becomes [<>] eventually, and T2 the number of periods when the state is
[<<]∗ before the state becomes [<>] eventually. The numbers T1 and T2 are
nonnegative integers. By taking T ≡ T1 + T2 + 1, we have

(1− δ)u(x0) + δT u(1− y0) ≤ ū ≤ (1− δT )u(x0) + δT u(1− y0) and

(1− δ + δT )v(y0) ≤ v̄ ≤ v(y0) for some positive integer T .

If δ is sufficiently large, as δ → 1, ū monotonically increases towards

lim
δ→1

ū = u(1− y0)

and v̄ monotonically increases towards

lim
δ→1

v̄ = v(y0).

This ends the proof of the first part of statement (4). Now, we prove state-
ment (2).

If x0 + y0 < 1 and y0 = φ(x0), then f ∗ = g∗. Therefore, the state
must be either [>>]∗ or [<<]∗ for any t ≥ 1. The state oscillates between
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the states [>>]∗ and [<<]∗ for ever, and the sequence {ft(x0)} converges to
u(x0)

u(1−y0)
(= v(y0)

v(1−x0)
). Therefore, we obtain

(1− δ)u(x0) < ū < (1− δ + δ2)u(x0), lim
δ→1

ū =
u(x0)

2

u(1− y0)
,

(1− δ)v(y0) < v̄ < (1− δ + δ2)v(y0), and lim
δ→1

v̄ =
v(y0)

2

v(1− x0)
.

This ends the proof of the first part of statement (2).

Therefore, the fictitious play resolves eventually the inefficiency due to
miscoordination. If players miscoordinate in the initial period by demanding
too little, they get to coordinate eventually in the way that the player who
is less greedy in his initial demand gets a better share. If players miscoor-
dinate in the initial period by demanding too much, they get to coordinate
eventually in the way that the player who is greedier in his initial demand
gets a worse share. In this model, the perpetual miscoordination, as in Young
(1993) p. 152, does not happen generically. It only happens when y0 = φ(x0).

The limits for the linear utility case were studied by He (2004). To see
how long it takes for the demands to reach the limit in the linear utility case,
we refer readers to He.

Theorem 1 For any open neighborhood of (xN , yN), there exist ε > 0 and
δ∗(ε) < 1 such that all the ε-equilibria are in the neighborhood for any δ ≥
δ∗(ε). As ε → 0 and δ∗(ε) → 1 accordingly, the set of ε-equilibria shrinks and
the only equilibrium left is (xN , yN).

Proof. Using the limit average payoffs limδ→1 ū and limδ→1 v̄ that we have
obtained in Lemma 2, we can get the best response correspondences for
player 1 (illustrated in Figure 2)

x∗(y) =


[0, φ−1(y)) ∪ [1− y, 1] if y < yN

[0, 1] if y = yN

∅ if y > yN ,

and for player 2

y∗(x) =


[0, φ(x)) ∪ [1− x, 1] if x < xN

[0, 1] if x = xN

∅ if x > xN .

9



-

6

0 1 x

1

y

@
@

@
@

@
@

@
@

@
@

@
@

(shade)
(shade)

q
HHY

Nash division

Figure 2: Limit-Average-Payoff Best Response Correspondence
for Player 1

Note that the average payoff functions are continuous except at the points of
y = φ(x). One can see easily that the only pure-strategy Nash equilibrium
in this case is (xN , yN).

Using the limit average payoffs limδ→1 ū and limδ→1 v̄ that we have ob-
tained in Lemma 2, we can get the ε-best response correspondence for player 1
(illustrated in Figure 3)

x∗ε(y) =



[0, φ−1(y)) ∪ [u−1(u(1− y)− ε), 1] if y < y(1)

[0, φ−1(y)) ∪ (φ−1(y), 1] if y(1) ≤ y < y(2)

[0, 1] if y(2) ≤ y ≤ y(3)

[0, φ−1(y)) ∪ (φ−1(y), 1] if y(3) < y ≤ y(4)

[u−1(u(φ−1(y))− ε), φ−1(y)) if y > y(4),

(1)

where
y(1) is the solution of φ−1(y) = u−1(u(1− y)− ε),

y(2) is the solution of
u(φ−1(y))2

u(1− y)
= u(1− y)− ε,
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Figure 3: Limit-Average-Payoff ε-Best Response Correspondence
for Player 1

y(3) is the solution of
u(1− y)2

u(φ−1(y))
= u(φ−1(y))− ε, and

y(4) is the solution of φ−1(y) = u−1(u(1− y) + ε).

Similarly, the ε-best response correspondence for player 2 is

y∗ε (x) =



[0, φ(x)) ∪ [v−1(v(1− x)− ε), 1] if x < x(1)

[0, φ(x)) ∪ (φ(x), 1] if x(1) ≤ x < x(2)

[0, 1] if x(2) ≤ x ≤ x(3)

[0, φ(x)) ∪ (φ(x), 1] if x(3) < x ≤ x(4)

[v−1(v(φ(x))− ε), φ(x)) if x > x(4),

(2)

where
x(1) is the solution of φ(x) = v−1(v(1− x)− ε),

x(2) is the solution of
u(x)2

u(1− φ(x))
= v(1− x)− ε,

x(3) is the solution of
u(1− φ(x))2

u(x)
= v(φ(x))− ε, and
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x(4) is the solution of φ(x) = v−1(v(1− x) + ε).

The set of ε-equilibria based on the limit average payoffs is illustrated in
Figure 4. This set is a subset of

{x : 1− v−1(v(y(4)) + ε) ≤ x ≤ φ−1(v−1(v(y(4)) + ε))}×

{y : 1− u−1(u(x(4)) + ε) ≤ y ≤ φ(u−1(u(x(4)) + ε))}. (3)

-
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Figure 4: Limit-Average-Payoff ε-Equilibria

If we choose a sufficiently large δ∗(ε) < 1, then the set of ε-equilibria will
be a subset of (3) above for any δ ≥ δ∗(ε). As ε → 0,

1− v−1(v(y(4)) + ε) → xN ,

φ−1(v−1(v(y(4)) + ε)) → xN ,

1− u−1(u(x(4)) + ε) → yN , and

φ(u−1(u(x(4)) + ε)) → yN .

This implies that as ε → 0 and δ∗(ε) → 1 accordingly, only (xN , yN) remains
as the limit of ε-equilibria.
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