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1 Introduction

Assuming constant rate for the future dividends and income, Gordon and Shapiro

(1956) Þrst equated the price of a share with the present value of future dividends and

derived the venerable and durable �dividend yield plus growth� method for estimating

the cost of capital. Since the cost of capital plays a prominent role in setting rates

that customers pay, estimating the �dividend yield plus growth� method is therefore

an important element in rate cases for regulated Þrms.

Miller and Modigliani (1966), Litzenberger and Rao (1971), McDonald (1971),

Higgens (1974) and Thompson (1979) have all used a variant of the �dividend yield

plus growth� method to estimate the cost of equity capital for a cross section of electric

utilities. Makhija and Thompson (1984) have compared the various cross-sectional

models using this method regards to their efficiency as a tool for rate cases. Thompson

(1984) used the same technique along with cross-sectional data to estimate the cost

of capital for individual utilities, but measures of reliability of the estimates were not

obtained. To cope with the �reliability� question, Thompson (1985, 1987) combined

the �dividend yield plus growth� method with Box-Jenkins time series analysis of past

dividend experience to estimate the cost of capital and its �reliability� for individual

Þrms. His approach has the desirable feature of relaxing the constant growth rate

assumption which had served as the basis for all the preceding models.

The credibility of cost of capital estimates from statistical forecasts using time

series methodology have also been examined by Thompson and Wong (1991). Their

analysis raises the question of whether the estimation procedure developed by Thomp-

son (1987) would always produce Þnite estimates of dividends and ultimately the cost

of capital. Moreover there is the question of simpliÞcation of Thompson�s estimation

approach. In his approach, the cost of capital is solved from a non-linear equation

which is in terms of past dividend realizations, the parameters of the Box-Jenkins

model as well as the covariance matrix of the parameters. Thus a change in the Box-

Jenkins model will result in a change of the form of the non-linear equation for solving

the cost of capital estimates. This makes the estimation procedure complicated. In

fact, since the reliability relies on the parameters of the Box-Jenkins model, it makes

the estimation �model-dependent� and the computation difficult.

To resolve this issue, Thompson andWong (1996) proved the existence and unique-

ness of the cost of capital and provided formulae to estimate both the cost of capital
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and its reliability. In their approach, the equation to solve for the cost of capital is

only in terms of forecasted future dividends while the reliability is only in terms of

forecasted future dividends and their covariance matrix. The parameters of the Box-

Jenkins model and the covariance matrix of those parameters are no longer needed

in the development of a measure of �reliability�. Thus their approach to estimating

the cost of capital and its �reliability� is �model free� � The same program can be

used for any Box-Jenkins model or any time series model so long as the covariance

of future dividends forecasts can be estimated. However, their approaches cannot be

used if the �reliability� does not exist or if there are multiple solutions for the �reli-

ability�. This paper extends their theory by proving the existence and uniqueness of

the reliability. This enables their approach to be carried out in practice.

Conceptually the formulae for estimating both the cost of capital and its reliability

are in terms of inÞnite sums and inÞnite-dimensional matrices for the estimate and

its reliability. Computation in this case is impossible. Thompson and Wong (1996)

developed the formula for the estimators in terms of Þnite sums only such that com-

putation can be carried out. However the proposed estimators for the �reliability� did

not provide evidence that the estimators converge to the true parameter. Thus this

paper will propose another set of estimators for the reliability and will also prove that

the estimators converge to the true parameter. The estimation approach is further

simpliÞed, hence rendering computation easier. In addition, the properties of the cost

of capital and its reliability will be analyzed with illustrations of several commonly

used Box-Jenkins models.

The next section will state the theory of the cost of capital and the condition

for the existence and uniqueness of the reliability of the cost of capital. Section 3

investigates the validity of the conditions made in Section 2 by examining three typical

ARIMA models and the situation for general models. Section 4 includes a study on

the estimation procedure of Þnding the cost of equity capital and its reliability. The

paper concludes with a discussion on the applicability of the procedure.
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2 The Theory

Assume that the dividends are issued m times a year and the expected dividend,

discount rate, cost of capital and stock price at time t are denoted by dt, rt, ρt and Pt

respectively. The discount rate, rt, at time t is deÞned such that the price of a share

is equal to the present value of the expected future dividends (Gordon and Shapiro

1956, Thompson 1985, and Thompson and Wong 1991, 1996):

Pt =
∞!
i=1

dt+i
(1 + rt)i

(1)

and the cost of capital, ρt, at time t is deÞned as:

ρt = F (rt) = (1 + rt)
m − 1 . (2)

Let

dt = (dt+1, dt+2, . . . , dt+i, . . .) (3)

and consider the set St of the collection of dt satisfying the following assumptions:

Assumption 1: There exists a positive number K such that
"∞

i=1 dt+i > K.

Assumption 2: There exists a number r > −1 such that
∞!
i=1

dt+i
(1 + r)i

<∞ .

Assumption 3: The series of dividends per share follows a time series model such

that the expected future dividends can be forecasted.

As the dividends are non-negative, Assumptions 1 and 2 together imply that for any

positive value of stock price Pt, there exists a number r0 > −1 such that

Pt <
∞!
i=1

dt+i
(1 + r0)i

<∞. (4)
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Let ft : St × (r0,∞) −→ R be deÞned by

ft(dt, r) =
∞!
i=1

dt+i
(1 + r)i

− Pt (5)

where R is the set of real numbers.

For each non-negative dt and for each n such that
"n

i=1 dt+i is positive, one can

easily show that there exists a unique function gt,n and a variable rt,n such that

ft,n(dt, rt,n) = 0 and rt,n = gt,n(dt) for any dt ∈ St . (6)

and show that there exists a function gt,n which is continuously differentiable with

respect to dt+1, dt+2, · · · , dt+n and its partial derivative of gt,n is

∂gt,n(dt)

∂dt+i
=

#
(1 + gt,n(dt))

i
n!
j=1

jdt+j

(1 + gt,n(dt))
j+1

$−1

for each i ≤ n and the derivative is equal to zero for i > n.

From the theory of equations we know that the number of positive roots of a

polynomial is related to the number of sign changes of its coefficients. One can apply

this idea to determine that if there is only one change in sign you could be assured

of only a single root. This method can also be used to determine the uniqueness of

the solution for ft,n because all dt+i are non-negative.

However, the uniqueness of the solution for ft cannot be proved directly from the

results of the uniqueness of the solution for ft,n because ft is deÞned in an inÞnite-

dimensional space but ft,n is not. It is well-known that a function is continuous or

differentiable in a Þnite-dimensional space may not be continuous or differentiable in

the inÞnite-dimensional space. A function which has solution in any Þnite-dimensional

space may not even obtain a solution in the inÞnite-dimensional space. The estimation

of the cost of capital and its reliability requires the existence and uniqueness of the

solution for ft. It also requires the condition of continuity and differentiablity of ft.

The following lemma shows that there exists a variable rt > r0 such that ft(dt, rt) = 0.
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Lemma 1 For the function ft deÞned in (5), if dt satisÞes Assumptions 1 and 2,

then

1. ft is continuously differentiable,

2. there exists a unique continuously differentiable function gt and a variable rt >

r0 such that

ft(dt, rt) = 0 and rt = gt(dt) (7)

where r0 is deÞned in (4), and

3.
∂gt,n(dt)

∂(dt)
∂dt+i −→ ∂gt(dt)

∂dt+i
as n→∞ (8)

where
∂gt(dt)

∂dt+i
= [(1 + gt(dt))

i
∞!
j=1

jdt+j

(1 + gt(dt))
j+1 ]

−1

.

The proof is in Appendix A1.

The estimation of the cost of capital and its reliability requires the existence and

uniqueness of the solution for ft = 0. It also requires the condition of continuity

and differentibility of ft. Lemma 1 proves that the solution rt exists and is unique.

The conditions of continuity and differentibility of ft were also stipulated. Once the

estimate of rt is obtained, Equation (2) can be applied to obtain the estimate of ρt.

Nevertheless, the estimation cannot be obtained if the reliability does not exist

or if there are multiple solutions for the reliability. This paper seeks to substantiate

the existence and uniqueness of the reliability; which guarantees the estimation is

possible. To do this, the following assumption is introduced:

Assumption 4: The covariance matrix of the forecast errors1

Σt = E[ (�dt − dt)(�dt − dt)
# ] = (σij)

can be estimated and there exist constants M and k such that for all {(i, j)}

|σij| < M ki+j and k < 1 + �rt (9)

1For simplicity, we omit the subscript t in σij .
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except for a Þnite set of {(i, j)} where dt is deÞned in (3), �dt is the estimate of dt

and �rt satisÞes

ft(�dt, �rt) = 0 (10)

with ft deÞned in (5).

We then extend the theory of the cost of capital by proving the existence and unique-

ness of the reliability as stated in the following theorem:

Theorem 1 Suppose that a sequence of dividends {dι} issued m times a year sat-

isfying Assumptions 1 to 4 is observed from ι = 1 to ι = t. The discount rate rt

and the cost of capital ρt are deÞned in Equations (1) and (2) respectively. Let the

function ft be deÞned as in Equation (5). For any dt = (dt+1, dt+2, . . . , dt+i, . . .) and

any positive price Pt, we have

1. for the estimator �rt of rt satisfying (10), there exists a unique solution for its

variance σ2
rt satisfying

σ2
rt =

# ∞!
i=1

i �dt+i

(1 + �rt)
i+1

$−2

�a#tΣt�at, (11)

where �dt = ( �dt+1, �dt+2, · · · , �dt+i, · · ·) lies between dt and �dt, �at = (�at, �a
2
t , · · ·,

�ant , · · ·)# with �at = 1/(1 + �rt), �rt lies between rt and �rt, and

2. for the estimator �ρt of ρt, there exists a unique solution for its variance σ
2
ρt

satisfying

σ2
ρt = m

2(1 + ÿrt)
2m−2σ2

rt, (12)

where ÿrt lies between rt and �rt, and the estimate �ρt is obtained by F (�rt) using

Equation (2).

The proof is in Appendix A2. Next we study the validity of Assumption 4.
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3 Covariance Matrix of the Forecast Errors

Theorem 1 provides all the necessary and sufficient conditions for the estimation for

the reliability of the cost of capital. In spite of the conditions, the theory is still not

considered complete if Assumption 4 does not hold. In this connection, the validity

of Assumption 4 is tested by examining the covariance structure on three ARIMA

models and discussing the situations for the general models. For simplicity, in this

section �at is replaced by a.

Firstly consider the covariance matrix of the forecast errors when the dividends

{dt}Tt=1 follow an ARIMA(0,1,1) model:

Model A: (1−B)dt = δ + (1− θB)εt .

For this model, referring to the proof in Appendix A3, we have

a#Σta =
a2(1− θa)2σ2

(1− a2)(1− a)2 . (13)

For this example, we can set k = 1 + r/2. Then, Assumption 4 holds automatically.

Next will be a study of the covariance matrix of the forecast errors when the

dividends {dt}Tt=1 follow an ARIMA(0, 1, q) model:

Model B: (1−B)dt = δ + (1− θ1B − θ2B
2 − · · ·− θqBq)εt .

For this example, Assumption 4 holds automatically (see Appendix A4).

Finally, the covariance matrix of the forecast errors when the dividends {dt}Tt=1

follows an ARIMA(0,1,1) is analyzed as shown in the model:

Model C: (1− φB)dt = δ + εt .

As proved in Appendix A5, we have

a#Σta =
a2σ2

(1− a2)(1− aφ)2 . (14)

For this example, Assumption 4 holds if |φ/(1 + r)| < 1. As |φ/(1 + r)| < 1 can be
obtained easily by applying Assumption 2, Assumption 4 holds automatically.
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Model C is important in the theory of the estimation of the cost of capital because:

(i) it is common for academics or Þnancial practitioners to use an AR model with

|φ| > 12 to include situations in which the growth rate is considered in the dividends;

(ii) in practice, most of the dividend series will be stationary after differencing once.

In this case, ARIMA(0, 1, q) will be the right model. However, the covariance matrix

of the forecast errors for the ARIMA(0, 1, q) will be dominated by the AR(1) with

|φ| > 1 for large {(i, j)}. Hence, the study of Model C guarantees that Theorem 1

holds for any ARIMA model. Refer to the discussion after (21) in the next section,

we can further drop the requirement of ARIMA model to be any general time series

model used for the forecasting of the dividends series.

4 The Estimation Procedure

This section describes the estimation procedure and explores the properties for the

estimation of the reliability for the cost of capital. Note that the iterative procedure

for estimating the cost of capital itself has been fully explored by Thompson (1985,

1987) and Thompson and Wong (1991, 1996).

Begin with an estimation of a time series model of past dividends. From the

time series model, all parameters can be estimated and future dividends, dt, can be

estimated by �dt using the statistical procedures germane to the time series model.

Thereafter rt can be estimated by �rt which satisÞes (10).

It is difficult to obtain �rt by solving Equation (10) directly in most of the situations

because it involves an inÞnite sum. Summation has been completed by Thompson

(1985) algebraically together with the procedure of applying Newton�s method to

estimate the cost of capital. Thompson and Wong (1996) introduce an alternative

iterative approach to get �rt. The estimate �ρt can then be obtained by F (�rt) using

Equation (2).

2see Thompson (1987).
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After obtaining the estimates �rt and �ρt, the variance σ
2
rt can be estimated by

�σ2
rt =

# ∞!
i=1

i �dt+i

(1 + �rt)
i+1

$−2

�a#t �Σt�at (15)

and the variance σ2
ρt can be estimated by

�σ2
ρt = m

2(1 + �rt)
2m−2�σ2

rt. (16)

The reliabilities of the discount rate rt and of the cost of capital ρt can be measured

by their standard deviations �σrt and �σρt respectively. We note that in Theorem 1,

the estimator for σ2
rt is in term of

�dt+i, �at and �rt while the estimator for σ
2
ρt is in term

of ÿrt. In practice, we use �dt+i to estimate �dt+i, use �at to estimate �at and use �rt to

estimate both �rt and ÿrt.

In order to estimate σ2
rt, two sequences {�σ2

1,t,n} and {�σ2
2,t,n} have been proposed

by Thompson and Wong (1996) such that:

�σ2
1,t,n =

#
2n!
i=1

i �dt+i

(1 + �rt)
i+1

$−2

�a#t,n �Σt,n�at,n (17)

�σ2
2,t,n =

#
n!
i=1

i �dt+i

(1 + �rt)
i+1

$−2

�a#t,n �Σt,n�at,n (18)

where �at,n = (�at, �a
2
t , · · · , �ant )# with �at = 1/(1 + �rt) and Σt,n = E[ (�dt,n − dt,n)(�dt,n −

dt,n)
# ] with dt,n = (dt+1, dt+2, . . . , dt+n) and �dt,n = ( �dt+1, �dt+2, · · · , �dt+n). For the

Wisconsin Power Pte Ltd data, it has been observed that the sequence {�σ2
1,t,n} (and

respectively {�σ2
2,t,n}) is an increasing (respectively decreasing) sequence converging to

�σ2
rt. Thus they can be used in the estimation of σ

2
rt. For a tolerance level α, we can

then Þnd n such that �σ2
1,t,n and �σ

2
2,t,n satisfy

|�σ1,t,n − �σ2,t,n| ≤ α . (19)

In this situation, both �σ2
1,t,n and �σ

2
2,t,n or any of their linear combinations can be used

as an estimate of σ2
rt. Thereafter, σ

2
ρt can be estimated by applying Equation (16).

However, it is well-known that in general {�σ2
1,t,n} and {�σ2

2,t,n} may not necessarily

10



be an increasing function and a decreasing function respectively. If they are not, then

|�σ1,t,n − �σrt| and/or |�σ2,t,n − �σrt| can be greater than α even if (19) holds. In this
situation, neither �σ2

1,t,n nor �σ
2
2,t,n can be used as an estimate for σ

2
rt. To overcome the

difficulty, we deÞne

�σ2
t,m,n = G(t,m, n) =

#
m!
i=1

i �dt+i

(1 + �rt)
i+1

$−2

�a#t,n �Σt,n�at,n (20)

and introduce the following theorem to make the theory of the estimation for the cost

of capital complete:

Theorem 2 There exist subsequences {n1}, {n2}, {n3} and {n4} such that

1. �σ2
t,n1,n2

deÞned in (20) is an increasing series converging to �σ2
rt; and

2. �σ2
t,n3,n4

deÞned in (20) is a decreasing series converging to �σ2
rt.

The proof is shown in Appendix A6.

To estimate σ2
rt, the most difficult way will be computing �a

#
t,n
�Σt,n�at,n, especially

since each entry in the matrix Σt = (σij) depends on the time series model for {dt}.
To make the entries of the matrix Σt independent of the model for the class of ARIMA

models, we assume {dt} follows the model:

Φ(B)(1− B)ddt = Θ(B)εt .

Alternatively the model can easily be re-written as:

dt = Ψ(B)εt =
∞!
i=0

ψiεt−i (21)

with ψ0 = 1.

Actually the assumption that the dividends follow an ARIMA model can be omit-

ted as Equation (21) can be obtained by Wold�s Representation Theorem (see Box

et al 1994) for nearly any time series model. As long as ψi can be estimated for

any i, the estimation of the cost of capital and its reliability in the paper can also

be obtained and hence it becomes �model-free�. Nevertheless, estimating σ2
rt is still
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the most difficult part. To make the computation easier, the following theorem is

introduced:

Theorem 3 The product �a#t,N �Σt,N�at,N deÞned in (20) can be written as

�a#t,N �Σt,N�at,N = σ
2

N!
i=1

ψi−1

N!
j=1

ai−jøj, (22)

where

øj = ψj−1

%
a2j − a2N+2

1− a2

&
.

Thus, the computation of �a#t,N �Σt,N�at,N can be done in O(N logN) operations.

The proof is in Appendix A7.

Here,
"N

j=1 a
i−jøj is the product of a Toeplitz matrix times a vector. This can

be done in O(N logN) operations by embedding the Toeplitz matrix in a circulant

matrix and then using Fast Fourier Transform, see Chan and Ng (1996). Hence

�a#t,N �Σt,N�at,N can be done in O(N logN) operations too, and Equation (22) speeds up
the estimation procedure.

The reliabilities of both the discount rate and the cost of capital ρt can be measured

by Equations (15) and (16) respectively, which unfortunately involve inÞnite sums.

Thompson and Wong (1996) use the estimates in Equations (17) and (18) for the

reliability of the discount rate, and they involve only Þnite sums. This makes the

estimation possible. Application of Equation (22) further reduces the computation

complexity, resulting in higher estimation accuracy.

5 Discussion

In this paper we have been concerned with the applicability of the old, but venerable,

�dividend yield plus growth� model. Our analysis rests squarely on four assumptions
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to guarantee that there will be a solution, in terms of rt to the equation

Pt =
∞!
i=1

dt+i
(1 + rt)i

.

Thompson and Wong (1996) have discussed in detail the validity of Assumptions

1 to 3 in reality. Hence, the only assumption that concerns the application of our

method is the fourth one, that the {(i, j)} entry of the covariance matrix of the
forecast errors is bounded by M ki+j as in Equation (9). As discussed in Section 3,

Assumption 4 is valid as ARIMA(0, 1, q) is a good approximation for most of the

models used for the dividends and the estimate of the forecast errors of nearly all

models should be bounded by the forecast errors of the AR(1) model with |φ| ≥
1. Applying Wold�s representation Theorem, one can conclude that the methods

presented here can be applied to most, if not all, practical situations and can therefore

be used without fear of troubling anomalies.

Above all, the approaches shown in this paper to determine the cost of capital is

adaptable to PCs. It consists of calculating a sequence on cost of capital estimates

which are guaranteed to converge to the cost of capital. The calculation of a sequence

on the reliability of the cost of capital are also certain to converge to the reliability.

The formula of the reliabilities for the discount rate had previously involve inÞni-

tive dimensional vectors and matrices, hence the estimation is not feasible. Thompson

and Wong (1996) have therefore introduced the estimates of the reliability for the dis-

count rate in which all vectors and matrices in the formula are Þnite. This enables

estimation to be carried out. Nevertheless, when the dimension of the vectors and

matrices are large, the estimation will take up considerable computation time and

incur more rounding error in the estimation process. In this paper, a formula is

introduced to reduce the computation complexity, thus it speeds up the estimation

procedure leading to higher accuracy rate.

The method presented here rests solidly on the basis where past historical ob-

servations are relevant to the future dividends, notwithstanding situations where the

estimates cannot be precise. However it is common knowledge that estimates are

inherently inaccurate. Thompson and Wong (1996) concluded that the methods de-

veloped for the estimation of the cost of capital and its reliability in most situations
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are still relevant especially to regulated industries. This is because the statistical time

series models have the ability to track gradual changes and adapt to them.

After the 1980s, one cannot help but be struck by the massive changes taking place

in the business world. Changes would include precipitous declines in the business

fortunes of many highly regarded Þrms; deregulation in the trucking, airline, and

banking industries; restructuring in the oil industry; the rise and fall of internet

stocks; a move toward globalization and enhanced competition; and countless other

changes which were unexpected prior to the 1980s. One may wonder how well the cost

of capital can be applied in this changing environment. Even though the estimation

may not be so accurate, our approach is still useful due to the following reasons: (i) the

estimated cost of capital and its reliability provides the best information we can get

based on the present price and past and present dividends, which gives investors the

Þgure for estimated returns if the time series model for the past and present dividends

is correct, (ii) the model may change as time varies, and our approach provides the

formula for investors to update the cost of capital and its reliability from time to

time, and (iii) for those companies with signiÞcant dividend ßuctuations, the forecast

errors of the future dividends will consequently be large. In return the reliability of

the cost of capital will become immense and hence the conÞdence interval for the cost

of capital will be wider. Thus, the approach demonstrated in this paper still provides

investors useful information on the returns and reliability of the stocks purchased.

Nevertheless, investors may incorporate other approaches to improve the estima-

tion of the cost of capital and its reliability. One such technique is the Bayesian

approach (Matsumura et al 1990 and Wong and Bian 2000), while another is the

repeated time series approach, (Wong and Miller 1990 and Wong et al 2001b). Once

the cost of capital is computed, it may be applied in stock selection. It will deÞ-

nitely be better if some other methodologies are included, e.g. stochastic dominance

approach (Wong and Li 1999 and Li and Wong 1999), technical analysis approach

(Wong et al 2001a, 2003) and to incorporate the economic and Þnancial situations of

the market (Manzur et al 1999, Wan and Wong 2001 and Wong et al 2004) in the

decision-making process.

This paper has developed the estimators for the cost of capital and its reliability.

However, we are still not able to construct the conÞdence interval for the cost of

capital as the distribution of the estimator for the cost of capital is unknown. To

study its distribution, one may have to use Monte Carlo methods. The distribution
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may still be normal but it is more likely that it is non-normal or even be skewed.

One may refer to Tiku et al (2000) for the ßat-tailed symmetric distribution or to

Tiku et al (1999) for the asymmetric distribution. After acquiring information on

the distribution, one can then construct simulation to obtain the critical values and

thereafter the conÞdence intervals can be achieved.

Finally, although academics and Þnance practitioners usually believe that the

dividends series will be stationary, even after differencing once, the series may remain

stationary. In this situation, a unit root test and cointegration test (Tiku and Wong

1998 and Wong et al 2004) should be incorporated in the estimation.
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Appendix

For simplicity, we use a, aN , a, r and Σt,N for �at, �at,N , �at, �rt and �Σt,N respectively

for all the proofs below.

A1. Proof of Lemma 1:

We consider the norm in the vector space R of the set of real numbers to be 'r' = |r|
for r ∈ R. It is well-known that R is a Banach space. We deÞne the norms:

'dt'r0 =
∞!
i=1

|dt+i|
(1 + r0)i

and '(dt, r)'r0 = 'dt'r0 + |r|

where dt = (dt+1, dt+2, . . . , dt+i, . . .) ∈ R∞; r, r0 ∈ R; and r0 > −1. Let the normed
space Et,r0 be deÞned as

Et,r0 = {dt ∈ R∞ : 'dt'r0 <∞}

and the norm of the normed space Et,r0 × R be '(dt, r)'r0 . We show that Et,r0 and

Et,r0 × R are complete as follows:

Let the function F : Et,0 → Et,r0 to be

F (dt) =

%
dt+1

1 + r0

,
dt+2

(1 + r0)
2 , · · · ,

dt+n
(1 + r0)

n , · · ·
&
.

It is easy to check that F is a linear isometric isomorphism. Et,0, which is equal

to the Banach space l1, is well-known to be complete. Hence, Et,r0 is complete.

Consequently, Et,r0 × R is also complete. And therefore both are Banach spaces.

In the following we prove that if r0 satisÞes (4), then the function ft : Et,r0×R → R
deÞned in (5) is continuously differentiable with its derivative Dft(dt, r) satisfying:

Dft(dt, r) · (u, v) =
∞!
i=1

ui
(1 + r)i

+
∞!
i=1

−idt+i
(1 + r)i+1

· v (23)

where u = (u1, u2, · · · , ui, · · ·) ∈ Et,r0 and v ∈ R. First notice that

∆ ≡ 'ft(dt + u, r + v)− ft(dt, r)− [
∞!
i=1

ui
(1 + r)i

+
∞!
i=1

−idt+i
(1 + r)i+1

· v]'
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= '
∞!
i=1

dt+i

(1 + r0)
i [
(1 + r0)

i

(1 + r + v)i
− (1 + r0)

i

(1 + r)i
+
iv(1 + r0)

i

(1 + r)i+1 ]

+
∞!
i=1

ui

(1 + r0)
i [
(1 + r0)

i

(1 + r + v)i
− (1 + r0)

i

(1 + r)i
]'

≤ 'dt'r0 · |
∞!
i=1

[
(1 + r0)

i

(1 + r + v)i
− (1 + r0)

i

(1 + r)i
+
iv(1 + r0)

i

(1 + r)i+1 ]

+'u'r0 · |
∞!
i=1

[
(1 + r0)

i

(1 + r + v)i
− (1 + r0)

i

(1 + r)i
]|

where '(u, v)'r0 goes to zero implies both 'u'r0 and |v| tend to zero. As v → 0, we

can set v such that r0 < r + v and therefore

∆ ≤ 'dt'r0 · |
1 + r0

r + v − r0
− 1 + r0

r − r0
+
v(1 + r0)

(r − r0)
2 |

+'u'r0 · |
1 + r0

r + v − r0
− 1 + r0

r − r0
|

≤ M1v
2 +M2'u'r0 · |v|

where M1 and M2 are Þnite. Hence

∆

'(u, v)'r0

−→ 0 as '(u, v)'r0 → 0 ,

and therefore ft is differentiable with its derviative Dft(dt, r) satisfying (23). Simi-

larly, one can show that for any ε > 0, there exists a δ such that for '(s, t)'r0 ≤ δ

and '(u, v)'r0 ≤ 1,

sup '[Dft(dt + s, r + t)−Dft(dt, r)] · (u, v)'
≤

'''' 1 + r0

(r + t− r0)(r − r0)

'''' · |t|
+'d'r0 ·

'''' 2r + t− 2r0

(r + t− r0)
2(r − r0)

2

'''' · |t|'s'r0 ·
'''' 1 + r0

(r + t− r0)
2

''''
≤ ε

for any (dt, r) ∈ Et,r0 × (r0,∞). Hence ft is continuously differentiable.

Let D1ft(dt, r) and D2ft(dt, r) be the partial derivatives of ft with respect to dt

and r respectively. By Theorem 8.9.1 in Dieudonne (1960), the mappings (dt, r) →
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D1ft(dt, r) and (dt, r)→ D2ft(dt, r) are continuous in Et,r0 × (r0,∞), and

Dft(dt, r) · (u, v) = D1ft(dt, r) · u+D2ft(dt, r) · v.

For any point (dt, rt) ∈ St × (r0,∞) satisfying the equation of ft in (5), the second
partial derivatives D2ft(dt, rt) is linear homeomorphism since D2ft(dt, rt) )= 0. We

remark that St is the set of dt which satisÞes Assumptions 1 to 2.

Finally, by applying Theorem 10.2.1 in Dieudonne (1960), we have the follow-

ing results: There exists an open neighborhood U0 of dt in Et,r0 such that for every

open connected neighborhood U of dt, contained in U0, there is a unique continu-

ous mapping gt of U into R such that gt(dt) = rt, (dt, gt(dt)) ∈ St × (r0,∞) and
ft(dt, gt(dt)) = 0 for any dt ∈ U . Furthermore, gt is continuously differentiable in U
and its derivative is given by

Dgt(dt) = −D2f(dt, gt(dt))
−1D1f(dt, gt(dt)).

Besides, it is easy to show that

n!
i=1

idt+i
(1 + r)i

−→
∞!
i=1

idt+i
(1 + r)i

and gt,n −→ gt as n→∞

where gt,n is deÞned in (6). Hence, the equation in (8) holds.

A2. Proof of Theorem 1:

We only prove the Þniteness of |a#Σta| here. The rest of the proof is either straight-
forward or can be modiÞed from the proof in Thompson and Wong (1996). From

Assumption 4, as |σij| < M ki+j and k < 1+ r except for a Þnite set of {(i, j)}, there
exists a constant A such that

|a#Σta| < A+M
∞!
i=1

∞!
j=1

%
k

1 + r

&i+j
= A+M

(
1

1− k
1+r

)2

<∞.

20



A3. Proof of Equation (13):

One can easily show that the covariance for the future dividend (σnm) at time T + n

is

σnm = cov(eT+n, eT+m) =

*
σ2[1 + (n− 1) (1− θ)2] n = m ≥ 1,
σ2[(1− θ) + (m− 1)(1− θ)2] n > m ≥ 1.

For simplicity, we let Θ = 1− θ. Then, we have

�a#tΣt�at = σ2a#



1 Θ Θ · · · · · · Θ · · ·
Θ 1 +Θ2 Θ+Θ2 · · · · · · Θ+Θ2 · · ·
Θ Θ+Θ2 1 + 2Θ2 · · · · · · Θ+ 2Θ2 · · ·
...

...
...

. . .
...

...
...

· · · · · · · · · · · · 1 + (n− 1)Θ2 Θ+ nΘ2 · · ·
Θ Θ+Θ2 Θ+ 2Θ2 · · · Θ+ nΘ2 1 + nΘ2 · · ·
· · · · · · · · · · · · · · · · · · · · ·


a

= σ2a#



1 Θ Θ · · · · · · Θ · · ·
Θ 1 Θ · · · · · · Θ · · ·
Θ Θ 1 · · · · · · Θ · · ·
...

...
...

. . .
...

...
...

· · · · · · · · · · · · 1 Θ · · ·
Θ Θ Θ · · · Θ 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·


a

+a2σ2a#



Θ2 Θ2 · · · · · · Θ2 · · ·
Θ2 2Θ2 · · · · · · 2Θ2 · · ·
...

...
. . .

...
...

...

· · · · · · · · · (n− 1)Θ2 nΘ2 · · ·
Θ2 2Θ2 · · · nΘ2 nΘ2 · · ·
· · · · · · · · · · · · · · · · · ·


a

= θσ2a#Ia+Θσ2a#1a+ a2Θ2σ2a#



1 1 1 · · · 1 · · ·
1 2 2 · · · 2 · · ·
1 2 3 · · · 3 · · ·
...

...
...

. . .
...

...

1 2 3 · · · n · · ·
· · · · · · · · · · · · · · · · · ·


a
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= θσ2a#Ia+Θσ2a#1a+ a2Θ2σ2a#Ea,

where I and 1 are the identity matrix and matrix of all ones respectively. As

E =



1 1 1 · · · 1 · · ·
1 1 1 · · · 1 · · ·
1 1 1 · · · 1 · · ·
...

...
...

. . .
...

...

1 1 1 · · · 1 · · ·
· · · · · · · · · · · · · · · · · ·


+



0 0 0 · · · 0 · · ·
0 1 1 · · · 1 · · ·
0 1 2 · · · 2 · · ·
...

...
...

. . .
...

...

0 1 2 · · · n− 1 · · ·
· · · · · · · · · · · · · · · · · ·


,

we have

a#Ea = a#1a+ a2a#Ea.

Hence,

a#Ea =
1

1− a2
a#1a.

If we let s = a+ a2 + a3 + · · ·, we have

a#1a = a#


s

s

s

· · ·

 = a s+ a2s+ a3s + · · · = s2 =

%
a

1− a
&2

.

Since

a#Ia = a2 + a4 + a6 + · · · = a2

1− a2
,

we then have

a#Σta = θσ2a#Ia+Θσ2a#1a+ a2Θ2σ2 1

1− a2
a#1a

= θσ2 a2

1− a2
+Θσ2

%
a

1− a
&2

+ a2Θ2σ2 1

1− a2

%
a

1− a
&2

=
θa2σ2

1− a2
+
Θa2σ2

(1− a)2 +
a4Θ2σ2

(1− a2)(1− a)2 =
a2(1− θa)2σ2

(1− a2)(1− a)2 .
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A4. Proof of the Þniteness of a#Σta in Model B:

Let ki = 1−θ1− · · ·−θi with k0 = 1 and let si = 1+(1−θ1)
2+ · · ·+(1−θ1− · · ·−θi)2

for 1 ≤ i ≤ q with s0 = 1. One can easily show that the covariance for the future

dividend (σnm) at time T + n is:

σnn =

*
σ2sn−1 1 ≤ n ≤ q + 1,
σ2[sq−1 +mk

2
q ] n = m+ q,m ≥ 1, (24)

σn1 =

*
kn−1σ

2 2 ≤ n ≤ q + 1,
kqσ

2 n = m+ q,m ≥ 1, (25)

σnp =

*
σ2
"p−1

i=0 kn−p+iki 1 ≤ p ≤ q, p < n ≤ q + p− 1,
σ2kqK

p−1
0 n = q +m,m ≥ p, q ≥ p ≥ 1, (26)

σq+p+n,q+p =

*
σ2(
"q−1

i=0 kn+iki + pk
2
q) 1 ≤ n ≤ q − 1, p ≥ 1,

σ2(kqK
q−1
0 + pk2

q) n ≥ q, p ≥ 1 (27)

where Kp
0 =

"p
i=0 ki for p > 0. From (24)�(27), we can tell that σm,n is bounded

by an arithmetic process while an is a geometric process. Hence, a#Σta is Þnite and
Assumption 4 holds.

A5. Proof of Equation (14):

For the AR(1) model, one can easily show that the covariance for the future dividend

(σnm) at time T + n is:

σnm =

*
σ2
"n−1

i=0 φ
2i n = m ≥ 1,

σ2(φn−m + φn−m+2 + · · ·+ φn+m−2) n > m ≥ 1.

For simplicity, we let Φnm = φ
m + φm+2 + φm+4 + · · ·+ φn for n ≥ m,

D =


1 φ φ2 φ3 · · · · · ·
0 1 φ φ2 φ3 · · ·
0 0 1 φ φ2 · · ·
· · · · · · · · · · · · · · · · · ·

 ,
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and let Σ = D# +D − I. Then we have

Σt = σ
2



1 φ φ2 · · · φn−1 · · ·
φ Φ2

0 Φ3
1 · · · Φnn−2 · · ·

φ2 Φ3
1 Φ4

0 · · · Φn+1
n−3 · · ·

...
...

...
. . .

...
...

φn−1 Φnn−2 Φn+1
n−3 · · · Φ2n−2

0 · · ·
· · · · · · · · · · · · · · · · · ·


and

a#Σta = σ2a#Σa+ a2φ2a#Σta =
σ2

1− a2φ2
a#Σa. (28)

As

a#Da = a#D#a = a#


a+ a2φ+ a3φ2 + a4φ3 + · · ·
a2 + a3φ+ a4φ2 + a5φ3 + · · ·
a3 + a4φ+ a5φ2 + a6φ3 + · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

 = a#


a s

a2s

a3s

a4s

· · ·


= a2s+ a4s+ a6s+ · · · = s(a2 + a4 + a6 + · · ·)
= a2s t = a2

%
1

1− aφ
&%

1

1− a2

&
,

where s = 1 + aφ+ a2φ2 + a3φ3 + · · · and t = 1 + a2 + a4 + a6 + · · ·. Hence,

a#Σa = 2a2s t− a#Ia = 2a2s t− ||a||2

= 2a2

%
1

1− aφ
&%

1

1− a2

&
− a2

1− a2
=

%
a2

1− a2

&%
1 + aφ

1− aφ
&
. (29)

From (28) and (29), we have

a#Σta =
%

σ2

1− a2φ2

&%
a2

1− a2

&%
1 + aφ

1− aφ
&
=

a2σ2

(1− a2)(1− aφ)2 .
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A6. Proof of Theorem 2:

As the sequence 
#

n!
i=1

i �dt+i

(1 + �rt)
i+1

$−2


is a decreasing sequence while the sequence {�a#t,n �Σt,n�at,n} is an increasing sequence,
there exist subsequences

#
n1!
i=1

i �dt+i

(1 + �rt)
i+1

$−2
 ,


#
n2!
i=1

i �dt+i

(1 + �rt)
i+1

$−2
 ,

{�a#t,n3
�Σt,n3�at,n3} and {�a#t,n4

�Σt,n4�at,n4} such that
#
n1!
i=1

i �dt+i

(1 + �rt)
i+1

$−2

�a#t,n3
�Σt,n3

�at,n3


is increasing while the sequence

#
n2!
i=1

i �dt+i

(1 + �rt)
i+1

$−2

�a#t,n4
�Σt,n4

�at,n4


is decreasing.
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A7. Proof of Theorem 3:

One can easily show that the forecast error for the future dividend (eT+n), and the

covariance for the future dividend (σnm) at time T + n are respectively

eT+n =
n−1!
i=0

ψiεT+n−i,

σnm = cov(eT+n, eT+m) n > m ≥ 1

= cov (
n−1!
i=0

ψiεT+n−i ,
m−1!
j=0

ψjεT+m−j )

= σ2

m−1!
i=0

ψiψn−m+i.

Hence,

a#NΣt,NaN =
N!
m=1

N!
n=1

an+m(σnm)

= σ2

N!
m=1

N!
n=1

an+m

m−1!
i=0

n−1!
j=0

ψiψjδn−i,m−j

= σ2

N!
m=1

N!
n=1

m!
i=1

n!
j=1

an+mψi−1ψj−1δn−i,m−j

= σ2
N!
i=1

N!
j=1

N!
m=j

N!
n=i

ψi−1ψj−1a
n+mδn−i,m−j

= σ2
N!
i=1

N!
j=1

N!
m=j

ψi−1ψj−1a
i−j

N!
m=j

a2m

= σ2

N!
i=1

N!
j=1

N!
m=j

ψi−1ψj−1a
i−j
%
a2j − a2N+2

1− a2

&

= σ2

N!
i=1

ψi−1

N!
j=1

ai−jøj ,

where

øj = ψj−1

%
a2j − a2N+2

1− a2

&
.
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