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1. Introduction

The estimation of coefficients in a simple regression model with autocorrlelated errors is

an important problem and has received a great deal of attention in the literature. Most of

the work reported is, however, based on the assumption of normality; see, for example, An-

derson (1949), Cochrane and Orcutt (1949), Durbin (1960), Beach and Machinnon (1978),

Magee et al (1987), Dielman and Pfuffenberger (1989), Maller (1989), Cogger (1990), Weiss

(1990), Schäffler (1991), Nagaraja et al (1992), Tan and Lin (1993). The paper by Tan and

Lin (1993) is of particular interest. They assumed normality but based their estimators

on censored samples. They showed that the resulting estimators are robust to plausible

deviations from normality. In recent years, however, it has been recognized that the un-

derlying distribution is, in most situations, basically not normal; see, for example, Huber

(1981), Tiku et al (1986, 1999, 2000), Wong and Miller (1990) and Bian and Wong (1997).

The problem, therefore, is to develop efficient estimators of coefficients in autoregressive

models when the underlying distribution is non-normal. Naturally, one would prefer closed

form estimators which are fully efficient (or nearly so). Preferably, these estimators should

also be robust to plausible deviations from an assumed model.

Tiku et al (1999) studied the estimation in autoregressive models with the underly-

ing distribution be a shift-scaled Student�s t distribution. They developed the modiÞed

maximum likelihood (MML) estimators of the parameters and showed that the proposed

estimators had closed forms and were remarkably efficient and robust.

In this paper, we extend the work of Tiku et al (1999) to the case, where the underlying

distribution is a generalized logistic distribution. The generalized logistic distribution fam-

ily represents a very wide skew distributions ranging from highly right skewed to highly left

skewed. Analgously, we develop the MML estimators since the ML (maximum likelihood)

estimators are intractable for the generalized logistic data. Then we study the asymptotic

properties of the proposed estimators and conduct simulation to the study.

2. Regression model with autoregressive error

Consider the autoregressive model

yt = µ! + δxt + ηt (1)

ηt = φ ηt−1 + εt (t = 1, 2, 3, · · · , n)
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where

yt = observed value of a random variable y at time t ,

xt = value of a nonstochastic design variable x at time t , and

φ = autoregressive coefficient (|φ| < 1).

The autoregressive model (1) has many applications. For example, in predicting future

stock prices the effect of an intervention might persist for some time. Numerous other

applications of the above model are in agricultural, biological and biomedical problems

besides business and economics; see, for example, Anderson (1949), Durbin (1960), Beach

and Machinnon (1978), Cogger (1990), Weiss (1990), Schäffler (1991) and Wong and Bian

(2000).

It is assumed that the innovations et are independent and identically distributed accord-

ing to a generalized logistic distribution. Namely, the density function of εt (t = 1, 2, · · · , n)
is

f(ε) =
b e−ε/σ

σ(1 + e−ε/σ)b+1
(−∞ < ε <∞) . (2)

The cumulative distribution is given by

F (ε) = (1 + e−ε/σ)−b . (3)

The logistic distribution is negatively skew as b < 1 and positively skew as b > 1. It is

symmetric when b = 1.

3. Modified maximum likelihood estimators

An alternative form of the model (1) is

yt − φ yt−1 = µ+ δ(xt − φxt−1) + εt (1 ≤ t ≤ n) (4)

or

(1− ΦB)Y = µ1+ δ(1− φD)X + e
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where

Y =


y1

y2

...

yn

 , X =


x1

x2

...

xn

 , e =


ε1

ε2

...

εn


and 1 is an n× 1 of 1�s and B is the backward shift operator.

Conditional on y0, the likelihood function for the model (4) is

L(µ, δ,φ, σ) ∝ σ−nΠni=1

e−zi

(1 + e−zi)b+1

where zt = (1/σ){(yt−φyt−1)−µ−δ( xt−φxt−1)}; see Hamilton (1994, p123) for numerous
advantages of conditional likelihoods. The log-likelihood function is

ln L (µ, δ,φ,σ) ∝ −nln(σ)−
n'
i=1

zi − (b+ 1)
n'
i=1

ln[1 + e−zi] . (5)

Denote g(z) = 1
1+ez and take the derivatives of the log-likeihood, we obtain

∂ ln L

∂ µ
=

n

σ
− b+ 1

σ

n'
i=1

g( zi)

∂ ln L

∂ δ
=

1

σ

n'
i=1

( xi − φxi−1)− b+ 1
σ

n'
i=1

( xi − φxi−1)g(zi) (6)

∂ ln L

∂ φ
=

1

σ

n'
i=1

(yi−1 − δxi−1)− b+ 1
σ

n'
i=1

(yi−1 − δxi−1)g(zi)

∂ ln L

∂ σ
= −n

σ
+
1

σ

n'
i=1

zi − b+ 1
σ

n'
i=1

zi g(zi) .

The ML estimators are solutions of the likelihood equations,

∂ ln L

∂ µ
= 0 ,

∂ ln L

∂ δ
= 0 ,

∂ ln L

∂ φ
= 0 , and

∂ ln L

∂ σ
= 0 . (7)

These equations are, however, intractable. Solving them by iterative methods can be very

problematic, e.g., one may encounter multiple roots, slow convergence, or converge to

wrong values or even divergence; see speciÞcally Barnett (1966) and Lee et al (1980).

To obtain efficient closed form estimators, we invoke Tiku�s method of modiÞed likeli-
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hood estimation which is by now well established (Smith et al 1973, Lee et al 1980, Tan

1985, Schneider 1986, Vaughan 1992, Tiku, et al 1986, 1999, 2000). For given values of µ, δ

and φ, let z(1) ≤ z(2) ≤ · · · ≤ z(n) (arranged in ascending order) be the order statistics of zi

(1 ≤ i ≤ n). Let t(i) = E{z(i)} (1 ≤ i ≤ n) be the expected values of the standardized order
statistics. Denote [i] as the concomitant index of the ith observation which corresponds to

the order statistic z(i). Clearly,

[i] = j if zi = z(j) . (8)

Since g(z) is almost linear in a small interval c ≤ z ≤ d (Tiku 1967, 1968; Tiku and Suresh
1992) and realizing that under some very general regularity conditions z(i) converges to t(i)

as n becomes large, we use the Þrst two terms of a Taylor series expansion to obtain

g(z(i)) % ai − bi z(i) ( 1 ≤ i ≤ n ) . (9)

where

ai = (1 + e
ti)−1 + biti , bi = e

ti(1 + eti)−2 , and t(i) = E{z(i)} = −ln
* i

n+ 1

+−1
b − 1

 .
Substituting (9) in (7), we obtain the modiÞed likelihood equations which can be written

as

∂ ln L

∂ µ
% ∂ ln L∗

∂ µ
=
n

σ
− b+ 1

σ

n'
i=1

(a[i] − b[i]zi) = 0 ,

∂ ln L

∂ δ
% ∂ ln L∗

∂ δ
=
1

σ

n'
i=1

(xi − φxi−1)− b+ 1
σ

n'
i=1

(xi − φxi−1)(a[i] − b[i]zi) = 0 , (10)

∂ ln L

∂ φ
% ∂ ln L∗

∂ φ
=
1

σ

n'
i=1

(yi−1 − δxi−1)− b+ 1
σ

n'
i=1

(yi−1 − δxi−1)(a[i] − b[i]zi) = 0 ,

∂ ln L

∂ σ
% ∂ ln L∗

∂ σ
= −n

σ
+
1

σ

n'
i=1

zi − b+ 1
σ

n'
i=1

zi(a[i] − b[i]zi) = 0 .

Solving the estimating equations (10), we obtain the MML estimators:

 �µ
�δ

 = (X !
1WX1)

−1[X !
1W (1− �φB)Y +X !

1a�σ] (11)
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 �µ
�φ

 = (X !
2WX2)

−1[X !
2W (Y − �δX) +X !

2a�σ] (12)

�σ =
B +

√
B2 + 4nC

2n
(13)

where

W = Diagonal(b[1], b[2], · · · , b[n])

a =
1

b+ 1
1−


a[1]

...

a[n]


X1 = (1, (1− �φB)X)

X2 = (1, B(Y − �δX))
B = −(b+ 1)[(1− �φB)Y ]!a
C = (b+ 1)[(1− �φB)Y ]!W [(1− �φB)Y − �δ(1− �φB)X − �µ1] .

It is clear that the MML estimators above have all closed form algebraic expressions.

Moreover, they are asymptotically equivalent to the ML (maximum likelihood) estimators.

Computations: To initialize ordering of z(i), we ignore the constraint γ = −δφ (Durbin
1960, Tan and Lin 1993, Tiku et al 1999) and calculate the LS estimators �µ0, �δ0, �φ0 and

�γ0 such that:


�µ0

�δ0

�φ0

�γ0

 =


n
.
xi

.
yi−1

.
xi−1.

xi
.
x2
i

.
yi−1xi

.
xixi−1.

yi−1
.
yi−1xi

.
y2
i

.
yi−1xi−1.

xi
.
xixi−1

.
yi−1xi−1

.
x2
i



−1 
.
yi.
yixi.
yiyi−1.
yixi−1

 ;

each sum is carried over i = 1, 2, ..., n. Initially, we set

z(i) = (1/σ){(y[i] − �φ0y[i]−1)− �µ0 − �δ0(x[i] − �φ0x[i]−1)} (1 ≤ i ≤ n). (14)

Using the initial concomitants (y[i], x[i]) (1 ≤ i ≤ n) determined by (14), the MML estimator
�σ is Þrst calculated from (13) with φ = �φ0 and δ = �δ0. The MML estimator �µ, �φ and �δ are

then calculated from equation (11), (12) with σ = �σ. Few more iterations are carried out
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till the estimates stabilize (Tiku 1999, 2000). In all our computations partly presented in

this paper, no more than three iterarions were needed for the estimates to stabilize.

4. Asymptotic results

Since ∂ ln L∗/∂ µ, ∂ ln L∗/∂ δ, ∂ ln L∗/∂ φ and ∂ ln L∗/∂ σ are, as discussed earlier, as-

ymptotically equivalent to ∂ ln L/∂ µ, ∂ ln L/∂ δ, ∂ ln L/∂ φ and ∂ ln L/∂ σ respectively,

we have the following asymptotic results. efficient estimators, typically, have these prop-

erties.

Lemma 1: The MML estimators, �µ(φ, σ) and �δ(φ,σ) are asymptotically and conditionally

(for known φ and σ) the MVB (minimum variance bound) estimator with variance

σ2

b+ 1
(X !

1WX1)
−1

Proof: From (10), we have

 ∂ ln L∗
∂ µ

∂ ln L∗
∂ δ

 = b+ 1

σ2
(X !

1WX1)
−1

 �µ(φ, σ)− µ
�δ(φ, σ)− δ


where  �µ(φ, σ)− µ

�δ(φ, σ)− δ

 = (X !
1WX1)

−1[X !
1W (1− �φB)Y +X !

1aσ] .

When φ and σ are given, (X !
1WX1) is independent from observations and

1
n

///∂ ln L
∂ µ

− ∂ ln L∗
∂ µ

///
1
n

///∂ ln L
∂ δ

− ∂ ln L∗
∂ δ

/// tend to zero as n goes to inÞnity (Kendell and Stuart, 1979, Chapter 18).
Hence, �µ(φ, σ) and �δ(φ, σ) are asymptotically the MVB estimators.

Theorem 1: For given φ and σ, �µ, �δ are asymptotically unbiased and normally distributed

with the variance-covariance matrix

Σ(φ, σ) =
σ2

n

b+ 2

b

1

m2 −m2
1

 m2 −m1

−m1 1


where m1 =

1
n

.n
i=1(xi − φxi−1), m2 =

1
n

.n
i=1(xi − φxi−1)

2.
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Proof: This follows from Lemma 1 and the fact that when n goes to inÞnity,

X !
1WX1 −→ b

(b+ 1)(b+ 2)
n

 1 m1

m1 m2

 .

Lemma 2: The MML estimator �σ is asymptotically unbiased and normally distributed

with the variance

σ2

n

0
−1 + 2E(z)− 2(b+ 1)E

*
z

1 + ez

+
+ (b+ 1)E

1
z2ez

(1 + ez)2

23−1

.

Proof: This follows from the fact that 1
n

///∂ ln L
∂ σ

− ∂ ln L∗
∂ σ

/// goes to zero as n goes to inÞnity
and

∂2 ln L∗

∂ σ2
= − n

σ2
[−1 + 2

n

n'
i=1

zi − b+ 1
n

n'
i=1

(2α[i]zi − 3β[i]z
2
i )]

which gives

−E
1
∂2 ln L∗

∂ σ2

2
=

n

σ2
[−1 + 2E(z)− b+ 1

n

n'
i=1

(2αiti − 3βit2i )]

−→ n

σ2

0
−1 + 2E(z)− 2(b+ 1)E

*
z

1 + ez

+
+ (b+ 1)E

1
z2ez

(1 + ez)2

23
as n→∞ .

Lemma 3: The MML estimator �φ is conditionally (known δ and σ) asymptotically unbi-

ased with the variance given by

σ2

n
(b+ 1)[

1

n
E(

n'
i=1

β[i](yi−1 − δxi−1)
2]−1 .

Proof: This follows from the fact that

∂2 ln L∗

∂ φ2
= −−(b+ 1)

σ2

n'
i=1

β[i](yi−1 − δxi−1)
2 .
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5. Simulation

AS the MML estimators �µ, �δ, �σ and �φ are asymptotically unbiased and normally distributed

with the same variance as the minimum variance bound estimators while the LS estimators

are wildly used irrespective of the nature of the underlying distribution, MML estimators

are expected to be more efficient than the LS estimators. In this paper, we investigate

their efficiencies for sample size of 100 with the x-values (common to all y-samples) being

generated from a normal distribution N(0, 1) (Tan and Lin 1993). For simplicity, we only

consider b to be 1 and 2 in our simulation. Without loss of generality, we chose the following

settings in our simulation:

1. µ=0, δ=1, φ=0.1 and σ=1;

2. µ=0, δ=1, φ=0.5 and σ=1; and

3. µ=0, δ=1, φ=0.8 and σ=1.

In the 10,000 Monte Carlo runs, we simulate the estimates of all parameters for each

run and for each of the parameters µ, δ, φ and σ, we compute the mean, 100 × (bias)2,
variance and MSE for both the LS and the MML estimators and for n = 100 with three

alternative settings and with b=1 and 2. The results reported in Table 1 show that the

MML estimators are considerably more efficient than the LS estimators for all parameters

as almost all MML estimators have smaller bias, smaller variance and smaller MSE than

the LS estimators.

6. Summary

In this paper, we extend the results of Tiku et al (1999) to the case, where the underlying

distribution for the error term is a generalized logistic distribution. We develop the MML

estimators and Þnd that the MML estimators are asymptotically unbiased and normally

distributed with the same variance as the minimum variance bound estimators. Further

extension includes applying the work to Economics or Finance, see for example Thompson

and Wong (1991, 1996), Wong and Li (1999), Wong et al (2001), Wong and Chan (2004)

and Fong et al (2004); and incorporating Bayesian approach (Matsumura, et al 1990 and

Wong and Bian 2000) in the MMLE estimation.
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TABLE I : The Simulated Values of Mean, Bias Square and Mean Square Error of the

LS Estimators �φ0, �δ0, �µ0 and �σ0, and the MML Estimators �φ, �δ, �µ and �σ; n = 100

b=1.0 b=2.0

Mean 100× (Bias)2 MSE var Mean 100× (Bias)2 MSE var

µ = 0.0 �µ0 -.0033 .0011 .0347 .0347 1.0110 102.2169 1.0576 .0355

�µ -.0022 .0005 .0276 .0276 .3415 11.6632 .1443 .0277

δ = 1.0 �δ0 1.0014 .0002 .0294 .0294 1.0010 .0001 .0205 .0205
�δ 1.0006 .0000 .0226 .0226 1.0008 .0001 .0157 .0157

φ = .10 �φ0 .0879 .0145 .0102 .0101 .0876 .0153 .0102 .0100
�φ .0916 .0070 .0077 .0076 .0917 .0069 .0076 .0075

σ = 1.0 �σ0 1.1472 2.1674 .0546 .0329 1.6178 38.1724 .4088 .0270

�σ 1.0230 .0529 .0082 .0077 1.3333 11.1074 .1312 .0201

µ = 0.0 �µ0 -.0034 .0012 .0377 .0377 1.0445 109.0989 1.1468 .0558

�µ -.0034 .0012 .0303 .0303 .3560 12.6766 .1717 .0449

δ = 1.0 �δ0 1.0014 .0002 .0294 .0294 1.0012 .0002 .0204 .0204
�δ 1.0008 .0001 .0186 .0186 1.0006 .0000 .0130 .0130

φ = .50 �φ0 .4757 .0590 .0087 .0081 .4760 .0006 .0085 .0079
�φ .4828 .0295 .0065 .0062 .4847 .0235 .0063 .0060

σ = 1.0 �σ0 1.5467 29.8860 .3523 .0535 2.4899 221.9896 2.3008 .0809

�σ 1.0287 .0824 .0123 .0115 1.3218 11.1412 .1341 .0227

µ = 0.0 �µ0 -.0036 .0013 .0496 .0496 1.1502 132.2960 1.4490 .1260

�µ -.0050 .0025 .0381 .0381 .3369 11.3511 .2153 .1018

δ = 1.0 �δ0 1.0011 .0001 .0295 .0295 1.0028 .0008 .0205 .0205
�δ .9992 .0001 .0142 .0142 1.0016 .0002 .0097 .0097

φ = .80 �φ0 .7641 .1287 .0061 .0048 .7677 .1044 .0053 .0043
�φ .7757 .0590 .0043 .0037 .7841 .0251 .0033 .0030

σ = 1.0 �σ0 2.6449 270.5623 2.9559 .2502 5.4392 1970.6780 20.2371 .5303

�σ 1.0250 .0627 .0131 .0125 1.3440 11.8336 .1457 .0274
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