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Abstract

This paper tries to reconcile growth and geographical economics by dealing di-
rectly with capital accumulation through time and space and by seeing growth conver-
gence and spatial agglomeration as jointly generated by dynamic processes displaying
pattern formation. It presents a centralized economy in which a Bergson-Samuelson-
Millian central planner finds a flow of optimal distributions of consumption, subject to
a spatial-temporal capital accumulation budget constraint. The main conclusions are:
first, if the behavioral parameters are symmetric, but there is an asymmetric distribu-
tion of the capital stock, then the long run asymptotic distribution will be spatially
homogeneous; second, if there is homogeneous distribution of the capital stock, but
there is an asymmetric shock in any parameter, then the economy will converge towards
a spatially heterogeneous asymptotic state; third, spatially heterogeneous asymptotic
states will only emerge exogenously, not endogenously; fourth, the spatial propagation
mechanism can give birth, when the production function is close to linear, to a Turing
instability, which implies that for some parameter values, a conditionally stable space-
time distribution should display spatial pattern formation.
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1 Introduction

The interaction between the temporal and the spatial dimensions of capital accumulation,

has been recently readdressed, both theoretically and empirically, by the new (endogenous)

growth and the new geography strands of literature. They tend to reach conflicting conclu-

sions about the dynamics of growth across space.

The existence of convergence towards a long run distribution, displaying a higher degree

of homogeneity across economies, seems to emerge as the consensus view among growth

theorists. This conclusion appears to be fairly robust across different data sets, not only

including countries but also regions within countries. There is empirical evidence of both

β− convergence and σ− convergence, or, at least, evidence in favor of the existence of an

ergodic long run distribution of income across countries (see the surveys by Temple (1999)

or in (Barro and Sala-I-Martin, 2004, ch.11-12)).

However, new economic geography observes that the world economic activity is highly

concentrated in a relatively tiny proportion of the earth’s surface, and that the agglomeration

seem to dominate the dispersive forces. Geographical concentration is observed, not only

for the world economy but also at many several other levels: on metropoli or coasts, within

countries, or on particular locations, for many industries (see Fujita et al. (1999) and Fujita

and Thisse (2002)).

How can we reconcile analytically those two observations ? We explore in this paper

the following answer: First, those disparate conclusions may be related to the structure of

Universidade Técnica de Lisboa, back in 1999. Several previous versions have been presented in conferences
(CEMAPRE 2000, Conference on complexity - Aix-en-Provence 2000, ASSET 2001), workshops (UECE
1999, Max Planck Institute, Rostock, 2001, Marseille 2001 ) and seminars (ISEG, Technical University
of Lisbon, 2002, Faculty of Economics of the Universidade Nova de Lisboa, 1999 and 2003, Universidade
Católica Portuguesa, 2001, Universidade do Minho, 2002, Tor Vergata, Rome, 2003 and Universita degli
Studi, Milan, 2003). In addition to the participants in those events, I thank, without implicating, the
comments, reactions, ideas or encouragement of the following colleagues, the late José João Marques da
Silva and Raouf Boucekkine, Pierre Cartigny, Rui Dilão, Gustav Feichtinger, Sofia Castro Gothen, Omar
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the benchmark models in both areas, in particular to the independence between the spatial

and the temporal dynamics of capital accumulation. Second, if we consider their interaction,

then heterogeneous local growth dynamics, associated to the emergence of pattern formation,

may exist.

The founding papers on the new endogenous growth theory, Romer (1986) and Lucas

(1988), and the voluminous subsequent literature deal mainly with closed economies 1. The

other core assumptions are: utility functions are homogeneous, marginal returns to capital

are decreasing, at the firm level, and there is a mechanism allowing for unbounded growth

(which can be aggregate constant returns to scale and accumulation of human capital or

externalities implying the existence of aggregate increasing returns to scale). Decreasing

marginal returns to capital at the firm level is the main mechanism generating conver-

gence, both within and across different locations. Asymmetry in parameters affecting the

endogenous growth rate explain differences in growth experiences, between different pairs of

countries and locations (absolute or relative β− convergence).

Included in this strand of literature, there are some recent contributions dealing with

endogenous growth in an open economy context, and with the existence of a (bounded)

world distribution of income. In particular, Acemoglu and Ventura (2002) prove that even

if there are some (mild) increasing returns domestically, the existence of a world capital

market, together with spatial frictions, will produce convergence towards an asymptotic

homogeneous long run world distribution of income. Capital diffusion and the dynamics of

the real exchange rate will tend to equalize real rates of return throughout space, thereby

producing aggregate decreasing returns at the country level.

The new economic geography strand of literature has elected location and agglomeration

as the main subjects of enquiry. Most of the contributions deal with the spatial dynamics

without considering capital accumulation through time. Agglomeration is conceived as a

result of the trade-off between transport costs and increasing returns, within a Dixit-Stiglitz

1In particular, Romer (1990), Rebelo (1991), Caballè and Santos (1993), Bond et al. (1996).
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monopolist competition framework (see Fujita et al. (1999) and Fujita and Thisse (2002)).

In general, the only factor that is mobile inter-regionally is labor and capital is immobile.

There is some work addressing endogenous growth and agglomeration in this framework,

where human capital externalities and/or Schumpeterian R&D activities are the engines of

growth, but again, the only mobile factor is labor (see Palivos and Wang (1996), (Fujita and

Thisse, 2002, ch 11) and Martin and Ottaviano (2002)).

Given the spatial-temporal framework which is chosen in both strands of literature, the

mechanisms that generate growth and convergence exclude the existence of agglomeration,

and vice-versa.

This paper tries to reconcile growth and geography by dealing directly with the dynamics

of heterogeneity and by defining variables as jointly dependent on time and a state variable

2. Three main assumptions define the setup of this framework.

The first assumption is related to the features of the support for heterogeneity. We

assume that there is a one-to-one correspondence between heterogeneous (or asymmetric)

agents and their location in a particular point in space. This space has a metric which is

related to economic distance, not geographical distance; we assume that it is one-dimensional

and unbounded and serves as an indexing device as in Hotelling (1929). This choice will

have consequences on the acceptable spatial weighting schemes and on spatial and temporal

boundary conditions.

The second is related to the specification of the spatial-temporal constraints. Though

the equilibrium condition between savings and investment still holds, the intertemporal and

interspatial allocation of capital are mutually consistent. Capital flows among regions is a

function of the spatial gradient of its initial distribution: regions with higher capital intensity

have smaller real rates of return and therefore export capital. Mathematically, a forward

2This approach is common in other fields of science. In economics by it is used by, among others,
Beckmann (1970) and, recently, by Robert E. Lucas and Rossi-Hansberg (2002), Quah (2002) and Mossay
(2003).
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parabolic partial differential equation represents the instantaneous budget constraint.

The last assumption is related to the specification of the spatial-temporal arbitrage condi-

tions. We present a centralized economy in which the planner decides on the spatial-temporal

allocation of consumption that maximizes a social welfare Bergson-Samuelson utility func-

tional 3. In order to deal with the problems arising from the unbounded support for space,

we assume a Millian average utility function. A generalized Euler condition is represented

by a backward parabolic partial differential equation.

In addition, the behavioral functions, which characterize the representative agents in ev-

ery point in space, are neo-classical: utility and production functions are concave. Therefore,

we present a generalization of the Ramsey (1928), Cass (1965) and Koopmans (1965) model

for a continuum of open and interacting economies.

There is some literature dealing with a similar economy: Chatterjee (1994), study a

discrete time discrete space economy, Isard and Liossatos (1979), present a continuous-time

continuous and bounded space economy, but do not attempt at solving the model, and

Camacho et al. (2004), which is closely related to our paper, deal extensively, and rigorously,

with existence results for a model with a bounded space and linear utility.

Our model boils down to a particular problem of optimal control of parabolic partial

differential equations, for which we derive heuristically a maximum principle. We also study

qualitatively both the asymptotic distribution and the local stability properties of the optimal

solution. The most surprising feature of the local (distributional) dynamics is the potential

occurrence of total instability, when the related a-spatial Ramsey-Cass-Koopmans model

displays conditional stability. The type of instability is analogous to the Turing (1952) type of

instability. (Fujita et al., 1999, ch. 6) also consider diffusion in a continuous space framework

and report the emergence of spatial heterogeneity, as a result of the existence of Turing

instability. They conclude that spatial interaction among symmetric regions may eventually

3In order to avoid the collective choice impossibility results (see Yaari (1981)), we assume that agents do
not have preferences on distributions of consumption but rather on their own level of consumption.
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lead to the emergence of agglomeration, through a mechanism of pattern formation. In our

model, spatial pattern formation may also emerge, for particular values of the parameters.

However, differently from the two previous cases, it may have to characterize the conditionally

(distributionally) stable optimal consumption and capital accumulation trajectories.

Intuitively, the two diffusion mechanisms, related to spatial contact, seem to generate

externality effects, both in consumption and in production that, in some cases, offset the

stabilizing properties of the decreasing marginal productivity of capital. In those cases, a

bounded long run distribution of consumption and capital will only exist if the central planner

limits the workings of the diffusion mechanisms. Therefore, both convergence towards a

asymptotic distribution of capital and agglomeration may occur.

The main conclusions of the paper are the following: first, if there is symmetry in the

behavioral parameters, but an initial non-homogeneous distribution of the capital stock,

then the long run asymptotic distribution will be spatially homogeneous; second, if there

is initially a homogeneous distribution of the capital stock, but there is an asymmetric

shock in any parameter, then the economy will converge towards a spatially heterogeneous

asymptotic state; third, spatially heterogeneous asymptotic states will only emerge as a result

of exogenously determined factors and will not be created endogenously; fourth, the spatial

propagation mechanism can give birth, when the production function is close to linear, to

an analogous of the Turing instability, which implies that for some parameter values, a

conditionally stable space-time distribution will have to display spatial pattern formation.

The rest of the paper is organized as follows: section 2 presents the components of the

model, section 3 presents and derives the optimality conditions according to a generalized

Pontriyagin principle, section 4 uses results on traveling waves’ literature to address the

asymptotic states for the optimal solution, section 5 studies local (distributional) stability by

using Fourier transform methods, section 6 derives the comparative (distributional) dynamics

formulae for productivity shocks and applies them to both symmetric and asymmetric shocks,

and section 7 concludes.
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2 The model

Let there be a continuum of potentially heterogeneous and interacting households. We will

identify the support of that continuum with space. All the variables are referred to the

time-space coordinates, (t, x) ∈ (X,T) = (R × R+). The reference location, at x = 0, may

be labeled after the location with an initially higher capital intensity 4.

We also assume that population is evenly distributed across space, that there is no

labor migration and that there is only one homogeneous good in the economy. For most of

the paper, spatial heterogeneity refers to differences in the quantities of the good which is

consumed and produced in different locations.

The representative household, in each location, performs production, consumption and

investment activities.

2.1 Households’ problem at location x

Let c(x, t) be the rate of consumption at time t and C(x)t := {c(x, τ) : t ≤ τ < +∞} be the

path of consumption starting at time t ∈ T, for the representative household located at x.

We assume that household preferences are symmetric across space: both the intertemporal

and the instantaneous utility functions and the rate of time preference are identical and

space-independent. The intertemporal utility function, for the household located at x, is

assumed to be additively separable and discounted,

V (C(x)0) :=

∫ +∞

0

u(c(x, t))e−δtdt (1)

where δ > 0 is the rate of time preference and u(.) is the instantaneous utility function, which

is assumed to be is increasing, concave and Inada: u′(.) > 0, u
′′
(.) < 0, limc→0 u(c) = +∞

and limc→+∞ u(c) = 0.

4If one would like to consider jointly heterogeneities related to both to economic distance and geographical
distance we could add another dimension, as x ∈ R2.
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In every location, production uses capital and labor with a space-independent neo-

classical technology. We exclude the existence of explicit externalities leading to the existence

of explicit agglomeration effects.

We work directly with per capita variables, by assuming that there is a fixed, constant

and immobile labor supply, L = 1. Let (per capita) production and the stock of physical

capital be y(x, t) and k(x, t), at location x at time t, respectively. The production function

is y(x, t) = Af(k(x, t)) where f(.) is increasing, concave and Inada: f ′(.) > 0, f
′′
(.) < 0,

limk→0 f(k) = +∞ and limk→+∞ f(k) = 0. A is an exogenous productivity parameter, not

necessarily space-independent. The marginal productivity, or the real rate of return, of cap-

ital is r(x, t) = Af
′
(k(x, t)). The former assumptions exclude the existence of differentiated

production technologies across space, implying that differences in the marginal productivity

of capital will only be related to the distribution of the per-capita stock of capital. There is

an inverse relationship between capital intensity and the real interest rate.

Households increase the scale of production by accumulating physical capital. If there

are no (intertemporal) adjustment costs nor depreciation, then gross investment in location

x at time t is ∂k
∂t

, and the x-household budget constraint is, for any pair (x, t) ∈ (X,T),

∂k(x, t)

∂t
+ c(x, t) + τ(x, t) = Af(k(x, t)),

where τ(x, t) denotes both the households’ excess of production over expenditures and its

net lending capacity. The non-Ponzi game condition holds for every point in space, x ∈ X,

lim
t→∞

e
R t
0 r(x,s)dsk(x, t) ≥ 0.

2.2 Regions

Identifying R with the world allows us to identify the σ−algebra of the Borel sets (R,B) with

the sets of all regions. Let a particular region, i, be represented byXi = [xi, xi+∆xi]. Assume

that the world is composed by the union of all the mutually disjoint regions, X =
⋃

iXi,

where Xi

⋂
Xj = ∅, for i 6= j.
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Preferences, technology and endowments are symmetric and the capital market is perfect

within regions. Therefore, we may consider a single representative agent located in each

region and we may address the interactions among regions as interactions among potentially

asymmetric representative agents.

As the world is a closed economy, meaning that∫
X

(
∂k(x, t)

∂t
+ c(x, t)− Af(k(x, t))

)
dx = −

∫
X
τ(x, t)dx = 0 ∀t ∈ T,

then, spatial interactions will only take place among regions, if regions are open. When

regions are closed, the aggregate distribution of capital may vary through time. But this will

only occur as a result of independent intertemporal arbitrages within each region. If regions

are open then there will be both (interdependent) intertemporal and interspatial arbitrages.

2.3 Autarkic regions

As a first approximation, assume that all regions are closed: there are no capital flows among

regions. Then, real transfers of goods between regions cannot be financed, and, therefore

trade balances must be instantaneously and permanently cleared, i.e.,
∫

Xi
τ(x, t) = 0 for all

(Xi, t) ∈ (B,T). Therefore, in an autarkic economy the following regional balance equation

should hold ∫
Xi

(
∂k(x, t)

∂t
+ c(x, t)− Af(k(x, t))

)
dx = 0, ∀(Xi, t) ∈ (B,T).

From now on, let ∆xi → 0 and denote the distribution of consumption and capital, at

time t as C(t) := {c(x, t) : x ∈ X} and K(t) := {k(x, t) : x ∈ X}.

A sufficient condition for regional balance is that

∂k(x, t)

∂t
= Af(k(x, t))− c(x, t), ∀(x, t) ∈ (X,T). (2)

Independently from the existence of a centralized planner, or a distribution of planners for

every region, the equilibrium for this economy will be Paretian. It can be seen as consisting
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of a continuum of spatially parameterized Ramsey (1928), Cass (1965), Koopmans (1965)

models, such that given an initial distribution of capital K(0), the representative agent

determines an optimal trajectory for consumption Ĉ(x)0 and capital accumulation K̂(x)0 :=

{k(x, t) : t ∈ T} such that it maximizes the intertemporal utility function (1) subject to the

budget constraint (2).

Applying the maximum principle to every autarkic location, x, there is a piecewise-

continuous function, in time, q(x, t) such that the first order conditions are, given by

u
′
(c(x, t)) = q(x, t)

dq(x, t)

dt
= q(x, t)(δ − r(x, t)) (3)

dk(x, t)

dt
= Af(k(x, t))− c(x, t) (4)

lim
t→∞

e−δtq(x, t)k(x, t) = 0.

The standard neoclassical assumptions on preferences and technology imply that there is

an equilibrium point for every location. If there is symmetry in the parameters, then there

will be an asymptotic homogeneous distribution of c (monotonously related with q) and k,

(c, k), which is continuously replicated in time and space. That is, c(x, t) = c, and k(x, t) = k

for every (x, t) ∈ (X,T), such that δ = Af
′
(k) = r(k) and c(q) = Af(k).

If there is an initial, non-steady state, asymmetric distribution of capital, K(0) 6= K :=

{k(x, t) = k : ∀(x, t) ∈ (X,T)}, then a distributional dynamics will follow. The evolution of

K(t) will only be generated by intertemporal arbitrage: first consumption will increase for

regions in which capital is bellow their steady state level (because in these regions the rate

on return of capital is higher than in the steady state) and net savings will also be positive,

which will imply an increase in the region’s stock of capital.

If, in a neighborhood of the homogeneous steady state, the determinant of jacobian of

equations (3)-(4), is

D := −c′(q)qAf ′′
(k) < 0 (5)
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then there will be conditional saddle-path stability and β-convergence. As every region dis-

plays conditional stability, then the world distribution will also converge to an homogeneous

distribution. If we measure the variance of the world’s distribution of the capital stock by

σ2(t; k) = lim
x→∞

1

2x

∫ x

−x

(k(x, t)− E(t; k))2dx

where the average is E(t; k) = limx→∞
1
2x

∫ x

−x
k(x, t)dx then we will also have σ−convergence

as σ(0) > σ(∞) = 0.

Even in the case in which the steady state distribution is heterogeneous (because there is

asymmetry in any parameter), two conclusions emerge: first, the dynamics of the aggregate

distribution is only determined by the fact that, for each region, the initial capital endow-

ment is different from the steady state capital stock, second, the dynamics of the capital

distribution is independent from any spatial interaction, it will only change as a result of

local intertemporal arbitrage.

2.4 Open regions

When capital and goods flow among regions, then the aggregate balance equation for region

Xi ∈ B now becomes∫
Xi

(
∂k(x, t)

∂t
+ c(x, t) + τ(x, t)− Af(k(x, t))

)
dx = 0, ∀(Xi, t) ∈ (B,T),

where τ(x, t) 6= 0 is the net sales of goods produced in Xi to other regions. In a centralized

economy, they will be matched by reallocations of capital among regions. In a decentralized

equilibrium setting, we would assume that there would exist an interspatial capital market

in which stocks would be traded. In the absence of adjustment, transactions or any other

frictional costs, for moving across space, physical capital and its collateral will have the same

value.

Then τ(x, t) represents both the trade balance of region x at time t and the symmetric

of the capital account balance. Capital flows in order to eliminate inter-regional arbitrage
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opportunities, by flowing from regions with lower marginal productivity of capital towards

regions with higher marginal productivity of capital. As there is symmetry in technology,

and the production function displays diminishing marginal returns to capital, then capital

flows from regions in which it is relatively abundant towards regions in which it is relatively

scarce. If there are no institutional barriers to capital flows, and as regions are internally

homogeneous, then the current account balance for region Xi is measured by the symmetric

of the difference of capital intensities with the adjacent regions∫
Xi

τ(x, t)dx = −
[
∂k

∂x
(xi + ∆xi, t)−

∂k

∂x
(xi, t)

]
.

As,
∂k

∂x
(xi + ∆xi, t)−

∂k

∂x
(xi, t) =

∫ xi+∆xi

xi

d

dx

(
∂k

∂x

)
dx =

∫
Xi

∂2k

∂x2
dx,

then the aggregate budget constraint, for region Xi is given by∫
Xi

[
∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
+ c(x, t)− Af(k((x, t))

]
dx = 0, ∀(Xi, t) ∈ (B,T).

If ∆xi → 0, then the instantaneous budget constraint is represented by the quasi-linear

parabolic partial differential equation

∂k(x, t)

∂t
=
∂2k(x, t)

∂x2
+ Af(k(x, t))− c(x, t) ∀(x, t) ∈ (X,T).. (6)

If the x−household has positive (negative) savings then this will imply both a temporal and

a spatial change in the distribution of capital: the household may accumulate (deccumulate)

capital by changing its capital stock, and therefore the level of its future production, and/or

shift capital to other regions (or, in a decentralized setting, sell or buy equities).

The new economic geography theory highlights two main forces that operate through

space: diffusion and agglomeration. Equation (8) presents capital accumulation through

time and diffusion across space 5. We will see that, when we consider the joint dynamics of

5See Isard and Liossatos (1979) for a more detailed exposition on the derivation of equation (8). Beckmann
(1970) presents similar reasonings as regards the spatial diffusion of prices and innovation.
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capital and consumption, agglomeration may emerge from their interplay, as a Turing insta-

bility. This means that by introducing spacial contact and diffusion we may get implicitly

agglomeration dynamics, and do not need to introduce it explicitly 6.

2.5 Efficient consumption distribution

When goods and capital may be freely reallocated among heterogenous agents, we should

have a single central planner that chooses not only the optimal intertemporal allocation of

consumption, but also the optimal intratemporal distribution across different locations. The

optimization criterium should consider not only aggregation of preferences across time but

also across space.

The discounted and additively separable intertemporal utility function (1) presents a

benchmark aggregation for utilities through time for the representative agent located in

each point in space. Even when we consider intertemporally dependent preferences, the

exponential time discounting would still present a natural weighting scheme.

Though we do not intend to dwell into the deep issues related to the definition of a

collective preference relationship, we should observe that the choice of an aggregate utility

function, when there is spatial asymmetry, is not as settled as for the case in which there is

asymmetry. In order to stay close to a Pareto criterium, based upon the maximization of

individual welfare, we will assume a Bergson-Samuelson social welfare function 7 and extend

it to an intertemporal context.

Accepting an aggregate criterium, based upon a weighted sum of independent individual

intertemporal utility functions, is only a first step. Next we have to address the problems of

6Explicit introduction of agglomeration may lead to a highly non-linear structure, that would have con-
sequences on the characteristics of the asymptotic distribution of capital.

7Bergson (1938) and (Samuelson, 1947, p.219-229) presented an additive social welfare function as a
sum of cardinal utility functions. Harsanyi (1955) showed that an aggregate social preference based upon
ordinal utility functions and obeying some postulates (v.g, symmetry, independence, transitivity etc) would
be represented as a weighted sum of individual cardinal (or Bernoullian) utility functions. These postulates
also verify the two main Rawlsian criteria, impartiality and unanimity (see Mueller (2003)).
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choosing a spatial weighting scheme and of dealing with the unboundedness of the spatial

support.

Benthamian, Millian, von-Neumann-Morgenstern, egalitarian or Rawlsian utility func-

tions 8 are based upon different weighting criteria, and verify reasonable ethical postulates.

A Benthamian utility function would be defined, in our setup, as a simple, unweighted, sum

of the individual intertemporal utility functions, for the representative households located

in every point in space, ∫ +∞

−∞

∫ ∞

0

u(c(x, t))e−δtdtdx.

This utility functional solves the aggregation problem but not the unboundedness problem:

the intertemporal aggregate utility will be unbounded, even in the case in which all the

admissible distributions would tend to a spatially homogeneous bounded steady state 9

All the other collective utility functions introduce some type of spatial weighting. The

simpler weighting schemes are based upon spatial discounting or averaging.

Spatial discounting introduces a symmetry between time and space, by penalizing dates

and locations far away from (x, t) = (0, 0) 10. For instance, space could be discounted in an

exponential way, leading to the utility functional∫ +∞

−∞

∫ ∞

0

u(c(x, t))e−(δt+δxx2)dtdx,

where δw > 0. However, spatial discounting has two unwelcome features: it introduces a

preference relation over locations in space, which violates Harsanyis’s symmetry postulate,

and tends to force rejection of an homogeneous spatial distribution as an optimal distribution

in the steady state (even in the case in which the other parameters of the model are spatially

homogeneous).

8See Atkinson and Stiglitz (1980) for the related static counterpart.
9This is the spatial counterpart of the unboundedness problem arising in the undiscounted Ramsey

intertemporal utility function,
∫∞
0

u(c(t))dt.
10Camacho et al. (2004) consider this case.
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Spatial averaging, weights all the locations in space by the inverse of their relative distance

to x = 0. As weights are spatially homogeneous, then there is not an implicit preference of

the central planner for any particular location in space. The following Millian intertemporal

utility function may be seen as a collective utility function based upon an averaging criteria

11

V := lim
x→∞

1

2x

∫ x

−x

∫ ∞

0

u(c(y, t))e−δtdtdy.

This utility functional will be bounded for steady state spatially symmetric distributions of

consumption, i.e., V = u(c)
δ

, allowing for the comparison of alternative optimal distributional

strategies. We will assume a Millian central planner from now on.

2.6 Boundary conditions

The solutions of partial differential equations depend on the specification of the boundary

conditions. Three types of alternative boundary conditions can be found in the applied

mathematics literature and be adapted to our model: free boundaries if limx→±∞ k(x, t) and

limx→±∞
∂k(x,t)

∂x
are not specified, or Cauchy or Dirichlet boundaries if limx→+∞ k(x, t) = k(t)

and limx→−∞ k(x, t) = k(t) or if limx→+∞
∂k(x,t)

∂x
= ∂k

∂x
(t) and limx→−∞

∂k(x,t)
∂x

= ∂k
∂x

(t) were

given, respectively. Neumann (or no-flux) boundaries limx→+∞
∂k(x,t)

∂x
= limx→−∞

∂k(x,t)
∂x

= 0

are a popular special case.

The choice of the particular boundary condition depends on the type of heterogeneity,

that we are considering. As, in our case, x is close to spatial location, the choice of the central

place is arbitrary. A boundary condition that ties down the stock of capital of distant regions,

would introduce incentives for the dispersion of capital and would imply that the choice of

the optimal distribution of consumption would be determined exogenously. As our focus is

related with the general properties of the dynamics of the capital distribution, it is irrelevant

which geographical regions lay at a particular point in the distribution along time. Then

11It could also be seen as a von-Neumann-Morgenstern utility function for the case in which the particular
location of a consumer is stochastic and equally probable.
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Cauchy boundaries would be inappropriate.

Neumann boundaries would be a candidate for a state-space as X = [0,+∞), where

x = 0 could stand for the richest region and x = +∞ for the poorest. The existence of

a smooth distribution function would be possible if we would assume, tautologically, that

capital could not move outside those boundaries. Neumann boundaries would allow for more

flexibility than the Cauchy boundaries, because they would not eliminate the limit situation

of homogeneity. However, from the application of Pontriyagin’s maximum principle, the

central planner would have a very strong incentive to allocate consumption to the extremes

of the distribution. The dual boundary conditions would be limk→±∞
∂c(x,t)

∂x
= +∞.

We will assume, instead, the following boundary conditions,

lim
x→±∞

k(x, t)

x
= 0, ∀t ∈ T.,

which is both weaker than the Neumann boundaries and is more realistic. It has the following

property: the ”tails” of the capital stock distribution are bounded functions of time and may

be approximated by constant functions of space.

3 The optimal distributed growth dynamics

The central planner’s problem is built by assembling the elements of the model presented in

the last section. It consists in determining an optimal distributive strategies for consumption

and capital, C∗ := {c∗(x, t) : (x, t) ∈ X × T} and K∗ := {k∗(x, t) : (x, t) ∈ X × T},

respectively, such that

V := max
{c(x,t):(x,t)∈(X,T)}

lim
x→∞

1

2x

∫ x

−x

∫ ∞

0

u(c(y, t))e−δtdtdy. (7)

subject to

∂k(x, t)

∂t
=

∂2k(x, t)

∂x2
+ Af(k(x, t))− c(x, t) ∀(x, t) ∈ (X,T), (8)

lim
t→∞

e−
R t
0 r(x,s)dsk(x, t) ≥ 0, ∀x ∈ X, (9)
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lim
x→∓∞

k(x, t)

x
= 0, ∀t ∈ T (10)

k(x, 0) = k0(x), ∀x ∈ X given. (11)

The next proposition, assumes that an optimal solution exists, and presents an heuristic

version of the necessary conditions according to the Pontryagin’s maximum principle 12.

Proposition 1. Let (C∗, K∗) be a solution of the centralized problem (7)-(11). Then there
is a flow of distributions, Q := {q(x, t) : (x, t) ∈ X × T}, where q(x, t) is continuous in X
and piecewise continuous in T, such that the solution verifies equations (8), (9), (10), (11)
and

u′(c∗(x, t)) = q(x, t), ∀(x, t) ∈ (X,T) (12)

∂q(x, t)

∂t
= −∂

2q(x, t)

∂x2
+ q(x, t) (δ − A(x)f ′(k∗(x, t))) ∀(x, t) ∈ (X,T) (13)

0 = lim
t→+∞

lim
x→∞

1

2x

∫ x

−x

e−δtq(y, t)k(y, t)dy, (14)

0 = lim
x→±∞

e−δtq(x, t)

x
. ∀t ∈ T (15)

The planar system of partial parabolic equations, (8)-(13), together with the space-time

limit conditions (10), (11), (14) and (15) and the optimality condition (12) present a direct

generalization of the standard Ramsey-Cass-Koopmans model, for an optimal distribution

policy.

Given an initial distribution of the stock of capital, K(0), as in equation (11), an admis-

sible solution should verify the open-economy budget constraint (8), for every date-location

pair, the non-Ponzi game condition (9), as a terminal time constraint for every point in space,

and the boundary conditions (10) for the ”tails” of the distribution of capital in space, for

every moment in time.

An optimal solution is an admissible solution that, in addition, has the following proper-

ties. First, a static arbitrage condition, given by equation (12), holds. It equates the measure

12All the proofs are presented in the Appendix.
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of the marginal value of capital, represented by the co-state variable, q(.), with the marginal

utility of consumption. For any moment in time, and between any pair of locations, the

ratios in q are directly related to the ratios in the true cost-of-living index, and inversely

related to the ratios of consumption. Therefore, if we interpret q as a real exchange rate,

locations in which consumption rises should face a real depreciation.

Second, an intertemporal-spatial arbitrage condition, given by equation (13), will also

hold: for every date-location pair, the rate of return on capital should be equal to the rate of

time preference. The rate of return on capital is equal to the sum of the real rate of interest

with the change in value of the stock of capital, resulting from capital accumulation through

time and space. In a decentralized economy setting, the temporal marginal income will be

equal to the change in the value of capital resulting from the investment in one extra unit of

equity, issued in the own region, and the spatial marginal income will be equal to the change

in income obtained from investing in equities issued by neighboring locations. If we use the

real exchange rate interpretation, then equation (13) states an arbitrage relationship between

the rate of time preference and the sum of the rate of return on domestic assets plus the

instantaneous rate of change in the real exchange rate (real appreciation) with neighboring

locations.

Third, a generalized transversality condition, (14), should also be met: the asymptotic

average value of capital should be dominated by an exponential discount factor, where the

rate of time preference is the discount rate.

At last, equation (15) presents a dual counterpart of the boundary condition (10): the

discounted shadow value of capital in the boundaries of the state space, should be close to

constant.

Two spatial diffusive forces are at work in our model. The first is related to the incentives

which drive the redistribution of consumption, seeking to equalize the marginal productivity

of capital with the rate of time preference through space and time. The second is related

to the dynamics of the open economy budget constraint. While the latter acts as a forward
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diffusive force, the first acts as a backward diffusive force. That is, if at a particular time-

space location there is an expectation that the rate of time preference is higher than the

marginal productivity of capital in any point in the future, which means that there is too

much capital, then consumption will not only increase in that location, but it also increases

more than in neighboring locations. There are, immediately, net imports of goods from

neighboring regions. If we consider the two effects together, then the increase in consumption

will imply both a reduction in net investment, in the own location, and in the investment in

assets on firms located in other regions. In the non-spatial Ramsey model, the decreasing

returns to capital act as a dampening force which generates conditional stability. In our

case, as we will see, the presence of both diffusion mechanisms generate instability, which

may more than offset the stabilizing effect of the decreasing returns.

Next, we will characterize the solutions of the system (8)-(13) by using qualitative meth-

ods 13. First, we will address the existence, uniqueness and characterization of an asymptotic

state, and, next, we will study the local dynamics associated to changes in productivity.

4 Asymptotic states

An (optimal) asymptotic state is defined by the distributions of the dual price and of capital,

Q̃ := {q(x), x ∈ X} and K̃ := {k(x), x ∈ X}, respectively, that solve the system of ordinary

differential equations on space,

∂2q(x)

∂x2
= q(x)(δ − Af ′(k(x))), (16)

∂2k(x)

∂x2
= −Af(k(x))) + c(q(x)), (17)

given the boundary conditions (10).

13There are several methods and a related huge literature in other fields of science on solving partial
differential equations. However, the negative dependence of the diffusion term in equation (13) and the
related terminal condition (14) is not common in the applied mathematics literature.
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The main issue to address is related to the existence of a spatially heterogeneous asymp-

totic state, i.e., to the existence of particular solutions to the system (16)-(17) which vary

with the independent variable. As the behavioral functions are defined implicitly, we may

only supply a qualitative answer.

Heterogeneous asymptotic states may occur exogenously or endogenously. If any param-

eter is spatially dependent, v.g., A = A(x), then the system becomes non-autonomous and

the solution will be space dependent. In this case we say that a spatially heterogeneous

asymptotic state is generated exogenously. If all the parameters are homogenous across

space, then two types of solutions may be obtained: a constant or a spatially variable so-

lution. In the first case we will have a spatially homogeneous asymptotic state, and, in the

second, an endogenously generated heterogeneous asymptotic state.

The traveling wave literature (see Volpert et al. (1994)) offers some useful results to

tackle this issue. Traveling waves are solutions of the system (8)-(13) such that the unknown

functions, q(.) and k(.), can be written as q(x, t) = y(ξ) and k(x, t) = w(ξ) where ξ := x−ηt.

The constant speed of wave propagation is denoted by η. The solutions of system (16)-(17)

are a particular case for η = 0.

Let y1(ξ) = dy(ξ)
dξ

and w1(ξ) = dw(ξ)
dξ

, then the PDE system (8)-(13) is equivalent to the

following four dimensional ODE system

ẏ(ξ) = y1(ξ) (18)

ẏ1(ξ) = ηy1(ξ) + y(ξ) (δ − Af ′(w(ξ))) (19)

ẇ(ξ) = w1(ξ) (20)

ẇ1(ξ) = −ηw1(ξ)− Af(w(ξ)) + c(y(ξ)). (21)

Again, two types of stationary solutions may exist:

Lemma 1. Let the parameters δ, A and η be independent from ξ. Then the system (18)-(21)
has only two possible stationary solutions: a stationary state or a stationary traveling wave
of the pulse type.
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The second case may occur because the equilibrium point of the system (18)-(21) is

unique and if an homoclinic orbit, such that limξ±∞ z(ξ) = z, for z := (y, y1, w, w1), exists.

Observe that if it exists for η = 0 then system (16)-(17) will have an homoclinic orbit as

well, and its existence is completely consistent with the boundary conditions (10).

Proposition 2. Let η = 0 and let the other parameters be constant. Then the only asymp-
totic equilibrium point is the homogeneous distribution.

This proposition is an implication of the fact that there is not enough curvature in

the production function for allowing to the existence of endogenously generated asymptotic

heterogeneous distributions of capital and consumption 14.

Summing up, we will only have a spatially heterogeneous asymptotic state if at least one

parameter is spatially asymmetric. When the parameters are spatially symmetric, then the

only asymptotic state for the system (8)-(13) is the Ramsey-Cass-Koopmans equilibrium,

replicated across space, K = {k(x) = k : δ = Af
′
(k), ∀x ∈ X}, and Q = {q(x) = q :

c(q) = Af(k), ∀x ∈ X}. Given the neo-classical assumptions on preferences and technology,

that spatially homogeneous steady state will exist and be unique, for any point in space.

5 Local dynamics in the neighborhood of an homoge-

neous asymptotic state

A solution to the optimal distribution problem exists if, for any given initial distribution of

capital, K(0), not necessarily spatially homogeneous, there is an initial distribution of prices,

Q(0), (or a monotonously initial distribution of consumption, C(0)) and flow distributions

through time, Q(t) and K(t), for t > 0, that will converge to a spatially homogeneous steady

state, limt→∞Q(t) = Q, limt→∞K(t) = K.

Any unbounded trajectory violates both the boundary and the transversality conditions.

As the forward-backward system of partial differential equations has not an explicit solution,

14The introduction of explicit externalities may produce enough non-linearities for allowing to the existence
of heterogenous steady states.
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we will have to rely again on qualitative methods in order to determine the existence and

characterize the (generalized) stable manifold based upon linearization 15.

5.1 Linearization

Let uq(x, t) := q(x, t) − q and uk(x, t) := k(x, t) − k denote the space-time local variations

of the marginal utility of consumption and of the capital stock, in the neighborhood of a

spatially homogeneous asymptotic state. Assume that at time t = 0 the deviation from

the steady state is given by (uq(x, 0), uk(x, 0)) 6= (0, 0), for any x ∈ X. If the integrability

and regularity conditions are fulfilled, then the local modified hamiltonian PDE system (8)-

(13), can be approximated, by a system of two homogeneous semi-linear parabolic PDE’s,

∀(x, t) ∈ (X× R++),

∂uq(x, t)

∂t
= −∂

2uq(x, t)

∂x2
− qAf

′′
(k)uk(x, t), (22)

∂uk(x, t)

∂t
=

∂2uk(x, t)

∂x2
− c′(q)uq(x, t) + δuk(x, t). (23)

As the spatial support is unbounded, −∞ < x < +∞, a Fourier transformation may be

applied 16 as

uj(x, t) =

∫ +∞

−∞
Uj(υ, t)e

iυxdυ, j = q, k, ∀(x, t) ∈ (X× R+)

where i =
√
−1 and υ ∈ Υ = R and

Uj(υ, t) =
1

2π

∫ +∞

−∞
uj(x, t)e

−iυxdx, j = q, k, ∀(υ, t) ∈ (Υ× R+).

That transformation changes the functional dependence of the variables from space, x, to

frequency υ, which represents the speed of spatial propagation of any shock located at x = 0.

This new representation has important analytical consequences. By using the properties of

15We will mainly develop a heuristic approach. See Henry (1981) and Evans (1998) for a rigorous approach
on the existence of solutions. See (Smoller, 1994, ch. 11) on the linearization of parabolic PDE’s.

16See (Evans, 1998, p. 182-190).
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the Fourier transforms, then system (22)-(23) becomes

0 =

∫ +∞

−∞

[
∂Uq(υ, t)

∂t
+ (iυ)2Uq(υ, t) + qAf

′′
(k)Uk(υ, t)

]
eiυxdυ,

0 =

∫ +∞

−∞

[
∂Uk(υ, t)

∂t
− (iυ)2Uk(υ, t) + c′(q)Uq(υ, t)− δUk(υ, t)

]
eiυxdυ.

A sufficient condition for the annihilation of the integrals is that integrand be equal to

zero. Then an equivalent spectral representation of (22)-(23) is the linear planar ODE,

parameterized by υ,

∂Uq(υ, t)

∂t
= υ2Uq(υ, t)− qAf

′′
(k)Uk(υ, t), (24)

∂Uk(υ, t)

∂t
= −c′(q)Uq(υ, t) + (δ − υ2)Uk(υ, t), (25)

∀(υ, t) ∈ (Υ × R++), given Uq(υ, 0) and Uk(υ, 0), at t = 0. This system can be solved

explicitly and its solution gives the local dynamics, through time, associated with every

spatial frequency.

5.2 Local conditional spectral stability and Turing instability

Recall, from equation (5), that D < 0 as an implication of the concavity of the production

and utility functions. Additionally, let

Υs =

 R if
(

δ
2

)2
+D < 0

(−∞, υ1) ∪ (υ2, υ3) ∪ (υ4,+∞) if
(

δ
2

)2
+D > 0,

where, υ1 < υ2 < 0 < υ3 < υ4, because

υ1,2 = −

δ
2
±

[(
δ

2

)2

+D

] 1
2


1
2

< 0

υ3,4 =

δ
2
∓

[(
δ

2

)2

+D

] 1
2


1
2

> 0.

We say that there is conditional spectral stability if the trajectory associated with any

frequency is saddle-point stable.
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Lemma 2. If υ ∈ Υs then there is conditional spectral stability.

Therefore two cases may occur: if
(

δ
2

)2
+ D < 0 then there is conditional spectral

stability for any frequency of spatial propagation; but, if
(

δ
2

)2
+D > 0 then there will only

be conditional spectral stability for some frequencies 17.

A similar result occurs in the presence of the Turing instability, which may exist in planar

forward parabolic partial differential equations. In those equations, Turing (1952) observed

that the diffusive terms may reduce the dimension of the stable manifold associated to the

kinetic part, for some parameter values. In initial value well posed problems, associated

to forward equations, it implies the emergence of pattern formation, i.e., emergence of a

non-homogenous asymptotic distributions. In our case, we have a mixed initial-terminal

condition in time, associated to a system composed by a forward and a backward parabolic

partial differential equation. Then, a transient pattern formation results, for the case in

which
(

δ
2

)2
+D > 0, when we are forced to eliminate the frequencies associated with total

instability, in order to get a non-empty stable manifold 18.

Formally, the conditions enabling the case
(

δ
2

)2
+D > 0 are the following:

Lemma 3. The likely occurrence of a Turing instability is higher when the rate of time pref-
erence and the concavity of the utility function are higher and the concavity of the production
function is lower.

5.3 The tangent to the generalized local stable manifold

Proposition 3. Assume that the system is at a given initial distribution K(0) 6= K, at time
t = 0, and let

λs =

δ

2
−

[(
υ2 − δ

2

)2

−D

] 1
2

: υ ∈ Υs

 < 0. (26)

17There will be mode interaction, associated to a fold bifurcation, if
(

δ
2

)2
+ D = 0. See Mei (2000).

18This solution is stronger than necessary. As the transversality condition is computed as an average and
as the sum of the eigenvalues is independent from frequencies, because λu + λs = δ, if we could compute an
explicit solution, then it is possible than the pattern formation may emerge not only locally but also globally.
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Then, the solutions along the stable space, which is tangent to the stable manifold, are

ũq(x, t) =

∫ +∞

−∞
hs(w)ũk(x− w, t)dw, (27)

ũk(x, t) =

∫ +∞

−∞
uk(z, 0)φ(x− z, t)dz, , (28)

for any pair (x, t) ∈ (X,R++), where the Green’s function for the stock of capital is

φ(y, t) =
1

2π

∫
Υs

eλs(υ)t+iυydυ, ∀(y, t) ∈ (X,R++), (29)

and the slope of the tangent to the stable manifold in the (q, k)-space is

hs(y) =
1

2π

∫
Υs

λu(υ)− υ2

c′(q)
eiυydυ, ∀y ∈ X. (30)

The economy will conditionally converge to a spatially homogeneous steady state (Q,K),

through a time-varying distribution which is tangent to (27)-(28). Though there is not an

explicit expression for the integrals, it is easy to see that

lim
t→∞

ũq(x, t) = lim
t→∞

ũk(x, t) = 0, ∀x ∈ X

and

lim
t↓0

ũq(x, t) 6= uq(x, 0) lim
t↓0

ũk(x, t) = uk(x, 0), ∀x ∈ X.

This result generalizes the well know result for the ”jump” to the saddle manifold in the

Ramsey-Cass-Koopmans model, to the distributional ”jump” ũq(x, 0)− uq(x, 0).

When we have both intertemporal and inter-spatial arbitrage mechanisms, their interac-

tion gives birth to an analogous to Turing instability, which is not present in the homogenous

agent model. In deriving the spectral conditional stability and the related (tangent to the)

stable manifold, we have to eliminate that source of instability. The intuition is the fol-

lowing: if the economy is not in an initial homogeneous asymptotic state, and the spatial

asymmetry generate two spatial diffusion forces, with a frequency belonging to Υs, then a
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particular generalized saddle path is followed, and the economy will converge to a spatially

homogeneous and bounded asymptotic state. If
(

δ
2

)2 − c
′
(q)qAf

′′
(k) < 0 then the optimal

consumption-investment policy will generate a spatially monotonous distribution realloca-

tion of consumption and capital. However, if the
(

δ
2

)2 − c
′
(q)qAf

′′
(k) > 0 then the spatial

reallocation of capital and consumption will tend to generate an unbounded asymptotic dis-

tribution if that reallocation does not ”discriminate” against particular locations. That is,

the optimal consumption and investment strategies may have to be non-monotonous across

space 19. Quah (2002) also found, in a spatial aggregation model, that some sinusoidal

components have to be omitted for the existence of convergence to a uniform steady-state

equilibrium. Looking at the expression for λs, in equation (26), it appears that the effect of

some medium-ranged spatial frequencies has to be eliminated. The explanation seems to be

the following: while the low frequencies tend to counter the effect of the decreasing marginal

productivity of capital, which will work for instability, they seem to inhibit the destabilizing

effect of the spatial re-distribution of consumption by the planner.

Even if we assume concave utility and production functions, as in the Ramsey-Cass-

Koopmans model, the spatial propagation mechanism may originate instability by the way

of an implicit externality. Therefore, spatial agglomeration is a property of the optimal

spatial capital allocation policy in the presence of a potential Turing instability. According

to lemma 3, an optimal agglomeration policy is likelier if the production function is close to

linear and the degree of relative risk aversion is high. This means that both spatial differences

among real interest rates and changes in the real exchange rates are not high. In this case,

there is a complementarity between stronger intertemporal mechanisms (as opposed to inter-

spatial) and the externality effects generated by diffusion. The optimal solution will only

verify the transversality condition if the working of that externality is hampered by the

presence of spatial agglomeration.

19The formal reason for the emergence of a transient pattern formation can be seen in the expressions for
the Green function for the stock of capital and for the slope of the stable manifold (φ(.) and hs(.)).

25



5.4 Numerical illustrations

To illustrate the results in Lemma 3 and Proposition 3, consider the examples in table 1.

Both assume an isoelastic utility function,u(c) = c1−θ

1−θ
, where θ > 0, and a Cobb-Douglas

production function, y = Akα, where 0 < α < 1. The two sets of parameters are chosen

in order to allow for
(

δ
2

)2
+ D < 0, in case 1, and

(
δ
2

)2
+ D > 0, in case 2. As D =

− c
θ
α(α − 1)k

α−2
, then case 2 occurs for higher δ and θ are an α close to one, as stated in

Lemma 3. We consider a slightly more general case with capital depreciation at a constant

rate ρ.

Table 1: Numerical examples

case δ α θ ρ A a12 a21

(
δ
2

)2
+D b1,A b2,A

1 0.03 0.3 0.5 0.1 0.704 0.051 1.431 -0.073 -0.207 1.421
2 0.2 0.9 5 0.1 0.357 0.046 0.052 0.008 -2.563 2.799

We also assume, in both cases, that there is an initial asymmetric deviation from a homoge-

neous steady state, given by uk(x, 0) ∼ N(0, 1). Figures 1 and 2 present the space tangent

to the saddle manifold for case 1 and case 2, respectively. We observe that the qualitative

dynamics is similar, in both cases. Initially, the locations with more initial capital have lower

relative prices. Therefore, they have higher consumption and a depreciated real exchange

rate. When time passes, those regions export capital and face a process of real appreciation

towards a long run homogeneous distribution of (optimal) capital, prices and consumption.

This positive correlation between the increase in capital endowments real depreciation is

consistent with the findings of Acemoglu and Ventura (2002), who models a world with

imperfectly substitutable goods.

Two other observations are worth mentioning: first, there is both absolute β- and σ-

convergence, and, second, the transition is slower through time and non-monotonous across
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space in case 2. This is, again, a consequence of the effects of the potential Turing instability

and of the their elimination through a transient pattern formation.

6 Comparative distributional dynamics

In the last section we considered an initial heterogeneous distribution, K(0), and symmet-

ric parameters. Now, we will assume that the economy is at a stationary homogeneous

distribution, (Q, K), and that there is a, possibly asymmetric, productivity shock dA(x).

The next proposition presents comparative dynamics formulae.

Proposition 4. Assume that υ ∈ Υs and that there is a permanent time-invariant and
possibly spatially asymmetric productivity shock, dA(x). Then the short run multipliers,
along the saddle manifold are given by equations

uq,A(x, t) = uq,A(x)−
∫ +∞

−∞
uk,A(w)

∫ +∞

−∞
hs(y)φ(x− y − w, t)dydw, (31)

uk,A(x, t) = uk,A(x)−
∫ +∞

−∞
uk,A(z)φ(x− z, t)dz, (32)

for (x, t) ∈ (X,R++), where φ(.) and hs(.) are given in equations (29) and (30), respectively,
and the asymptotic multipliers are

uq,A(x) =

∫
Υs

U q,A(υ)eiυxdυ (33)

uk,A(x) =

∫
Υs

Uk,A(υ)eiυxdυ, (34)

where

U q,A(υ) =
(δ − υ2)B1,A(υ) + qAf

′′
(k)B2,A(υ)

υ2(δ − υ2) +D
(35)

Uk,A(υ) =
c
′
(q)B1,A(υ) + υ2B2,A(υ)

υ2(δ − υ2) +D
. (36)

and

B1,A(υ) = − 1

2π

∫ +∞

−∞
qf ′(k)dA(x)e−iυxdx (37)

B2,A(υ) =
1

2π

∫ +∞

−∞
f(k)dA(x)e−iυxdx. (38)
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Figure 1: Local stable manifold: case 1
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Figure 2: Local stable manifold: case 2, transient spatial pattern formation

-10

-5

0

5

10

x

10

20

30

t

0

0.1

0.2

u_k

-10

-5

0

5

10

x

-10

-5

0

5

10

x

10

20

30

t

-0.14

-0.12

-0.1

u_q

-10

-5

0

5

10

x

29



Now, on impact, the changes in both variables are limt↓0 ũq,A(x, 0) 6= 0 and limt↓0 ũk,A(x, 0) =

0, for any x ∈ X.

Next, we determine the long run multipliers for two particular cases: for a symmetric

shock and for an asymmetric shock in location x = 0.

Corollary 1. Assume that there is a symmetric, constant, and permanent unit shock,
dA(x) = dA = 1 for any x ∈ X. Then, the long run multipliers are also symmetric,

uq,A =
(f

′
(k))2 − f(k)f

′′
(k)

c′(q)f ′′(k)
< 0, ∀x ∈ X

uk,A = − f
′
(k)

Af ′′(k)
> 0, ∀x ∈ X.

where (q, k) are the space-wise pre-shock values.

Corollary 2. Assume that there is a Dirac’s delta permanent productivity shock at location
x = 0, i.e., dA(x) = δ(x). Then the asymptotic multipliers are asymmetric across space,

uq,A(x) =

∫
Υs

q

2π

(
Af(k)f

′′
(k)− (δ − υ2)f

′
(k)

υ2(δ − υ2) +D

)
eiυxdυ

uk,A(x) = − 1

2π

∫
Υs

(
c
′
(q)qf

′
(k) + υ2f(k)

υ2(δ − υ2) +D

)
eiυxdυ

where (q, k) are the space-wise pre-shock values.

Given an initial symmetric state, a symmetric shock will generate an asymptotic sym-

metric shift in the capital stock and an asymmetric shock will generate an asymmetric one.

Also, the long run multipliers are formally the same, independently of the structure of Υs.

We get a geometrical representation by going back to the examples presented in the last

section and introducing a permanent asymmetric productivity shock dA(x) ∼ N(0,1)
A0

× 100

(see Figures 3 and 4). This case is a weighted sum of the Dirac’s delta shocks dealt in

Corollary 2.

They show, firstly, that there is both a short run and a long run increase in the asym-

metry of the distribution of capital and consumption, and there will be a permanent real
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Figure 3: Dynamics for a shock in A, percentage changes: case 1
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Figure 4: Dynamics for a shock in A: case 2, spatial pattern formation
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depreciation affecting the locations that benefit from the shock. Secondly, some partial

spillovers to neighboring locations occur, although the optimal growth and distribution of

consumption will be achieved by keeping capital concentrated in the locations in which it is

more productive. We have relative β-convergence but possibly not σ-convergence. At last,

in case 2, the optimal distributive policy is clearly non-monotonous across space and there

will be a clear local pattern formation: for a shock that varies monotonously across space,

there will be long run local agglomerations in the distribution of capital. In this case, the

pattern formation has both a transient and a long run nature.

7 Final remarks

This paper presented an attempt at integrating both spatial and temporal dynamics, by

dealing directly with distributions and with the dynamics of distributions. The main exten-

sions and questions worth addressing with our framework are the following, in our opinion.

First, under which conditions can we get an endogenous long run distribution of capital, v.g.

consistent with Quah (1996) bi-modal distribution of per capita income: will explicit agglom-

eration mechanisms do the job ? Second, the Turing instability may supply another avenue

for generating endogenous unbounded growth: will spatial spillovers generate unbounded

growth even when there are locally decreasing returns to capital ? At last, in modeling a

decentralized economy: is there a structure of markets and institutions which would generate

an equilibrium equivalent, in a Pareto sense, to the solutions of our model ?
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A Appendix: Proofs

Proof of Proposition 1. We have an optimal control problem of partial differential equa-

tions or an optimal distributed control problem 20. Let us assume that there is a solution

(C∗, K∗), for the problem, and define the value function as

V (C∗, K∗) = lim
x→∞

1

2x

∫ x

−x

∫ ∞

0

u(c∗(y, t))e−δtdtdy.

Consider a small continuous perturbation (C(ε), K(ε)) = {(c(x, t), k(x, t)) : (x, t) ∈ X×T},

where ε is any positive constant, such that c(x, t) = c∗(x, t)+εhc(x, t) and k(x, t) = k∗(x, t)+

εhk(x, t), for t > 0, and hc(x, 0) = hk(x, 0) = 0, for every x ∈ X. The value of this strategy

is

V (ε) = lim
x→∞

1

2x

∫ x

−x

∫ ∞

0

u(c(y, t))e−δtdtdy.

But,

V (ε) := lim
x→∞

1

2x

∫ x

−x

∫ ∞

0

u(c(y, t))e−δtdtdy −

− lim
x→∞

1

2x

∫ x

−x

∫ ∞

0

λ(y, t)

[
∂k(y, t)

∂t
− ∂2k(y, t)

∂y2
− Af(k(y, t)) + c(y, t)

]
dtdy +

+ lim
t→∞

lim
x→∞

1

2x

∫ x

−x

e−r(y,t)µ(y, t)k(y, t)dy

where λ(.) is the co-state variable and µ(.) is a Lagrange multiplier associated with the

solvability condition. In the optimum, the Kuhn-Tucker condition should hold

lim
t→∞

lim
x→∞

1

2x

∫ x

−x

e−r(y,t)µ(y, t)k(y, t)dy = 0.

By using integration by parts we find that∫ ∞

0

λ(x, t)
∂k(x, t)

∂t
dt = λ(x, t)k(x, t)|∞t=0 −

∫ ∞

0

∂λ(x, t)

∂t
k(x, t)dt

20Butkovskiy (1969), Lions (1971), Derzko et al. (1984) or Neittaanmaki and Tiba (1994) present optimality
results with varying generality. We draw mainly upon the last two references. See also, for applications in
economics Carlson et al. (1991, chap.9). Camacho et al. (2004) study the existence of solutions in a related
problem with a linear utility function.
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and that∫ x

−x

∫ ∞

0

λ(y, t)
∂2k(y, t)

∂y2
dtdy =

∫ ∞

0

λ(y, t)
∂k(y, t)

∂y

∣∣∣∣x
y=−x

− k(y, t)
∂λ(y, t)

∂y

∣∣∣∣x
y=−x

dt+

+

∫ x

−x

∫ ∞

0

∂2λ(y, t)

∂y2
k(y, t)dtdy,

where the second term is canceled by the boundary conditions (10). Then

V (ε) = lim
x→∞

1

2x

∫ x

−x

∫ ∞

0

(
u(c(y, t))e−δt+

+
∂λ(y, t)

∂t
k(y, t) +

∂2λ(y, t)

∂y2
k(y, t) + λ(y, t)[Af(k(y, t))− c(y, t)]

)
dtdy −

− lim
x→∞

1

2x

(∫ x

−x

λ(y, t)k(y, t)|∞t=0 dy +

∫ ∞

0

λ(y, t)
∂k(y, t)

∂y

∣∣∣∣x
y=−x

dt

)

If an optimal solution exists, then we may characterize it by applying the variational prin-

ciple,
∂V (C∗, K∗)

∂ε
= lim

ε→0

V (C(ε), K(ε))− V (C∗, K∗)

ε
= 0.

But

∂V

∂ε
= lim

x→∞

1

2x

{∫ x

−x

∫ ∞

0

[(
u
′
(c∗(y, t))e−δt − λ(y, t)

)
hc(y, t)+

+

(
∂λ(y, t)

∂t
+
∂2λ(y, t)

∂y2
+ λ(y, t)Af

′
(k∗(y, t))

)
hk(y, t)

]
−
∫ x

−x

λ(y, t)hk(y, t) |∞t=0 dy +

∫ ∞

0

λ(y, t)
∂hk(y, t)

∂y
|xy=−x dt −

− lim
t→∞

∫ x

−x

µ(y, t)e−r(y,t)hk(y, t)dy

}
.

The last and the third to last expressions are canceled if limt→∞[µ(x, t)e−r(x,t)−λ(t, x)] = 0,

and by the fact that hk(x, 0) = 0, for any x. Then, substituting in the Kuhn-Tucker condition

we get a generalized transversality condition. We get the first order conditions by equating

to zero all the remaining components of ∂V
∂ε

. Equations (12)-(15) are obtained by simply

making q(x, t) = eδtλ(x, t). �
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Proof of Lemma 1. The steady state of system (18)-(21) exists and is unique. It is

given by y1 = w1 = k̇ = ẇ = 0, k = w = {w > 0 : Af ′(w) = δ} and q = y = {y > 0 :

Af(w) = c(y)}. and is a function of the (constant) parameters. In this case, it has been

proved in the traveling wave literature ( see (Volpert et al., 1994, p.5)) that, in addition to

the equilibrium point, seen as a degenerate wave, the only stationary traveling wave that

may exist is of the pulse type. This is a stationary wave, which has a bell-like shape, that

traverses across a space-time frame with a constant speed and shape. If it exists, for a

speed of propagation as η = 0, then there will be an permanent spatially non-homogeneous

asymptotic state, for our original system. �

Proof of Proposition 2. Pulses exist if two conditions are met: first, the steady state

of system (18)-(21) is locally a saddle point, second, an homoclinic orbit, passing through

(y1, y, w1, w) exists. In order to check if those conditions are met, we start by computing the

Jacobian,

∂(ẏ, ẏ1, ẇ, ẇ1)

∂(y, y1, w, w1)
=


0 1 0 0

0 η −yAf ′′
(w) 0

0 0 0 1

c′(y) 0 −δ −η

 .

Its characteristic polynomial is c(λ) = λ4 + (δ − η2)λ2 − ηδλ − D, where the determinant,

det = −D := −c′(y)yAf ′′
(w), is strictly positive. The eigenvalues are

λ1,2 =
1

2

[√
ζ1 ±

(√
ζ2 +

√
ζ3

)]
λ1,2 = −1

2

[√
ζ1 ±

(√
ζ2 −

√
ζ3

)]
where ζ1 = s1 + s2 − 2

3
(δ − η2), ζ2,3 = −1

2
(s1 + s2) − 2

3
(δ − η2) ±

√
3

2
(s1 − s2)i, s1,2 =(

r ±
√
q3 + r2

) 1
3
, r = 1

3
(δ − η2)

3
+ 4

3
(δ − η2)D + η2δ2

2
and q = −1

9

[
(δ − η2)

2 − 12D
]
< 0

Therefore: (1) if η = 0, then the four eigenvalues will be complex with zero real parts;

(2) if η 6= 0, then the fixed point is hyperbolic, for any values of the parameters, and the

local stable manifold is two-dimensional. In the last case, the fixed point can be a saddle,
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or a saddle focus or a focus-focus, that is, we may have two real negative eigenvalues or two

complex conjugate eigenvalues with negative real parts.

An homoclinic orbit is associated to a global bifurcation, and therefore is related to the

structure of the non-linear part of system (18)-(21). However, there are necessary conditions

on the linear part, for its the existence, that can be checked ( see (Kuznetsov, 1998, chap.

6)): the saddle quantity should be different from zero, σs 6= 0. The saddle quantity is the

sum of the real parts of the two leading eigenvalues (i.e., the sum of the real parts of the

eigenvalues with positive and negative real parts with the smallest absolute value) evaluated

at the equilibrium point.

If δ − η2 > 0 then there will be two pairs of complex eigenvalues, with one pair having

negative real parts. This is so, because the discriminant ∆ := q3 + r2 is negative and some

other conditions are met. Then the eigenvalues may be represented as λ1,2 = α1 ± ψ1i and

λ3,4 = α2 ± ψ2i, where α1 < 0 < α2 and ψ1,2 > 0. Then σs = α1 + α2 = 0, and a homoclinic

will not exist.

If δ−η2 < 0, then the discriminant ∆ := q3 +r2 may have any sign. In this case, it is not

possible to prove unambiguously that the saddle quantity is equal to zero. If it is different

from zero, then an homoclinic orbit may exist.

However, if η = 0 then δ − η2 = δ > 0 and α1 = α2 = σs = 0. Then a homoclinic

bifurcation will not exist. �

Proof of Lemma 2. The jacobian matrix associated to equations (24)-(25) is

J(υ) =

 υ2 a12

a21 δ − υ2

 ,
where a12 := −qAf ′′

(k) and a21 := −c′(q) are positive constants, has tr(J) = δ and det(J) =

υ2(δ − υ2) +D, where D := −a12a21 < 0. Though the determinant of the kinetic part, D is

always negative, the determinant of J may have any sign. Therefore, the spectrum of matrix

J , σ(υ; δ,D) := {λ : λ2 − δλ+ υ2(δ − υ2) +D = 0, υ ∈ Υ, δ > 0, D < 0} is dependent not
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only on the parameters of the model but also on the frequencies υ. The eigenfunctions are

λu,s =
δ

2
±

[(
υ2 − δ

2

)2

−D

] 1
2

.

Then, for any value of υ ∈ Υ, the eigenfunctions are real, as D < 0, λu is positive and

λs + λu = δ. The eigenfunction λs may take positive or negative values, depending on the

value of υ. When it is positive we say that there is a Turing instability. Turing instability

is ruled out for the values of υ such that det(J) < 0. Let us define the subset of Υ,

Υs(δ,D) := {υ : det(J) = υ2(δ − υ2) +D < 0, }. Then,

Υs =

 R if
(

δ
2

)2
+D < 0

(−∞, υ1) ∪ (υ2, υ3) ∪ (υ4,+∞) if
(

δ
2

)2
+D > 0,

where υ1,2,3,4 = ∓
[

δ
2
±
[(

δ
2

)2
+D

] 1
2

] 1
2

. Therefore: if υ ∈ Υs then λs(υ) < 0 and if υ ∈ Υ/Υs

then λs(υ) > 0. In the second case the stable manifold is empty. �

Proof of Proposition 3. The solution of the system (24)-(25), along the stable manifold

is, using well-known methods,

Uq(υ, t) = Hs(υ)Uk(υ, 0)eλs(υ)t, υ ∈ Υs, t > 0,

Uk(υ, t) = Uk(υ, 0)eλs(υ)t, υ ∈ Υs, t > 0,

where we restrain the frequencies to Υs, in order to get λs(υ) < 0, and the slope of the stable

manifold is

Hs(υ) := − a12

υ2 − λs(υ)
= −δ − λs(υ)− υ2

a21

< 0, υ ∈ Υs.

If we observe that Uq depends upon Uk, and apply the convolution theorem for Fourier

transforms and the inverse Fourier transform, then we get the solutions of the linearized

system, along the stable manifold, (27)-(28). �

Proof of Proposition 4. In this case the variational system, differently of (22)-(23),

will become non-homogeneous and possibly non-autonomous, if the shocks are asymmetric,

∂uq(x, t)

∂t
= −∂

2uq(x, t)

∂x2
+ a12uk(x, t) + b1,A(x), ∀t > 0
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∂uk(x, t)

∂t
=

∂2uk(x, t)

∂x2
+ a21uq(x, t) + δuk(x, t) + b2,A(x), ∀t > 0

where the perturbation terms are b1,A(x) = −qf ′(k)dA(x) and b2,A(x) = f(k)dA(x). The

Fourier transforms of the perturbation terms, B1,A and B2,A, are given in equations (37)

(38) and the spectral representation of planar PDE is the following non-homogeneous planar

ODE

∂Uq,A(υ, t)

∂t
= υ2Uq,A(υ, t) + a12Uk,A(υ, t) + B1,A(υ), ∀t > 0

∂Uk,A(υ, t)

∂t
= a21Uq,A(υ, t) + (δ − υ2)Uk,A(υ, t) + B2,A(υ), ∀t > 0

for Uq,A(υ, 0) = Uk,A(υ, 0) = 0, if t = 0, for any υ ∈ Υs. As the dynamic properties are the

same as in system (24)-(25), the spectral representation of the stable manifold becomes

Uq,A(υ, t) = U q,A(υ)−Hs(υ)Uk,A(υ)eλs(υ)t, υ ∈ Υs, t > 0, (39)

Uk,A(υ, t) = Uk,A(υ)(1− eλs(υ)t), υ ∈ Υs, t > 0, , (40)

where U q,A and U q,A are given in equations (35) and (36). Then, equations (31) and (32)

are obtained as the solutions in the neighborhood of the stable manifold, after applying the

inverse Fourier transforms to (39) and (40). �

Proof of Corollary 1. The perturbation terms are constant, b1,A = −qf ′(k) and

b2,A = f(k). Their Fourier transforms are B1,A = b1,Aδ(υ) and B2,A = b1,Aδ(υ), where δ(υ) is

Dirac’s delta function centered at υ = 0. Then,

U q,A(υ) =
(δ − υ2)b1,Aδ(υ)− a12b2,Aδ(υ)

υ2(δ − υ2) +D

Uk,A(υ) = −a21b1,Aδ(υ)− υ2b2,Aδ(υ)

υ2(δ − υ2) +D
.

and the long run multipliers, uq,A and uk,A are their inverse Fourier transforms, for υ ∈ Υs.

�

Proof of Corollary 2. The perturbation terms are b1,Aδ(x) and b2,Aδ(x), where δ(x)

is Dirac’s delta function centered at x = 0. Their Fourier transforms are independent of υ,
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B1,A =
b1,A

2π
and B2,A =

b2,A

2π
. Then

U q,A(υ) =
(δ − υ2)b1,A − a12b2,A

2π[υ2(δ − υ2) +D]

Uk,A(υ) = − a21b1,A − υ2b2,A

2π[υ2(δ − υ2) +D]
.

�
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