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1 Introduction

A production level can be reached with different input alternatives, so firms can vary factor
usages in response to price or output changes. These effects on quantities demanded of factors
are the main concern of the traditional theory of derived demand.

Inputs can be characterized as either substitutes or complements depending on how they
enter the production function. For example, if labour and capital are substitutes a decrease
of capital price could entail the utilization of more capital and less labour, but if they are
complements the effect would be an increase of both inputs. Elasticities of substitution provide
information upon the direction and the degree of difficulty of these adjustments. In addition,
properties such as homogeneity or constant returns to scale allow to know the expansion path of
the firms, i.e. the curvature of isoquants will be independent of the level of output if homogeneity
condition holds. On the other hand, the property of separability between inputs also contributes
to improve the knowledge upon the sequential process of incorporating and replacing factors of
production.

The aim of this work is to characterize the structure of input usages in the Spanish food
industries at a microeconomic level. Perhaps cost functions would be the most appropriate way
to study the response to price changes but information on prices at firm level is not available. In
contrast, a huge quantity of data on inputs used and outputs obtained by firms can be extracted
from balance sheets. For this reason, translog production functions, which do not restrict the
issues mentioned above (homogeneity, constant returns to scale and separability), are specified
with three factors of production, labour, capital and materials.

A problem related with direct single-equation estimation is that endogeneity of inputs could
cause correlation between the regressors and the error term. However the panel data struc-
ture allows to use instrumental variable techniques that accounts for this and are robust to
heteroskedasticity and autocorrelation.

The remainder of the work is organized as follows. Section 2 presents the translog specifica-
tion for a production function in a panel data context as well as its properties. Section 3 deals
with different measures of substitutability , such as Allen, Morishima and Shadow elasticities
of substitution. Section 4 briefly outlines the data sets, Section 5 shows and comments the
estimates and the tests and finally Section 6 concludes.

2 The translog production function

It is assumed firms operate under perfect competition, in both output (y) and input (xj) markets,
and they use a common technology that can be represented by the production function

y = f(x1, · · · , xj , · · · , xJ). (1)

It can be specified using a flexible functional form such as the well known and widely used
transcendental logarithmic (translog) which provides a local second-order approximation to any
production frontier (Christensen et al., 1973). Adopting a panel data notation with subscript
j (1, . . . , J) for inputs, i (1, . . . , I) for firms and t (1, . . . , T ) for time periods, and adding
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individual (µi) and time (λt) effects, this function can be written as

ln yit =
∑
j

βj lnxjit +
1
2

∑
j

∑
k

βjk lnxjit lnxkit + µi + λt + νit (2)

where the β’s are parameters to be estimated, taking into account the symmetry condition
βjk = βkj . In contrast to other forms, the translog imposes neither elasticities to be fixed
throughout the input space nor separability of production factors. But it is necessary to verify
some basic properties of production functions at each point. So, positive monotonicity can be
checked by means of the output elasticities to input changes at each point it:

εjit =
∂f

∂xj

xj

f
= βj +

∑
k

βjk lnxkit > 0 ∀j, i, t (3)

On the other hand, convexity of the space requires a major computational effort since it demands
that the successive principal minors of the Hessian bordered by the partial derivatives (fj = ∂f

∂xj
)

to be alternatively negative and positive.
Once proved the function is well behaved over the data set, other properties of production

technology, such as homogeneity, constant returns to scale or separability of production factors,
can be tested.

The function f is homogeneous of degree h if

f(rx1, rx2, · · · , rxJ) = rhf(x1, x2, · · · , xJ) ∀r 6= 0

or alternatively by Euler’s theorem if

f1x1 + f2x2 + · · ·+ fJxJ ≡ hf(x1, x2, · · · , xJ) (4)

In the translog function fjxj = (βj +
∑

k βjk lnxkit)f , so the first term of equation (4) can be
rearranged to obtain

(
∑
j

βj + (
∑
k

β1k) ln x1it + · · ·+ (
∑
k

βJk) ln xJit)f

and Euler condition holds if ∑
k

βjk = 0 ∀j (5)

If that is so, the specified translog function is homogeneous of degree h =
∑

j βj , and constant
returns to scale are observed if, in addition, the restriction∑

j

βj = 1 (6)

is fulfilled.
Separability has to be with the possibility to form groups of inputs that are independent

in relation with their purchases. A set of inputs is said to be separable from the remaining
production factors if the marginal rates of technical substitution between pairs of inputs in that
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group are independent of the inputs outside the group. The mathematical condition for xj , xk

to be separable from xm is expressed as

fjfkm − fkfjm = 0 (7)

which in the translog case takes the form (Berndt and Christensen, 1973)

εjβkm − εkβjm = 0 (8)

or equivalently

βjβkm − βkβjm + (βj1βkm − βk1βjm) ln x1it + · · ·+ (βjJβkm − βkJβjm) ln xJit = 0 (9)

In relation to these expressions, Denny and Fuss (1977) distinguish several kinds of pairwise
separability of xj and xk from xm. The null hypothesis for approximate weak separability is

βjβkm − βkβjm = 0 (10)

whereas exact weak separability involves in addition more non-linear restrictions

βj1

βk1
=

βj2

βk2
= · · · = βjJ

βkJ
(11)

for any xj , xk inside the group. Pairwise strong separability of xj and xk from xm requires the
linear constraints

βkm = βjm = 0 (12)

3 Measuring substitution between production factors

The elasticity of substitution, introduced by Hicks (1932) for a two-input production function,
quantifies the curvature of the isoquant and is defined as the elasticity of the input ratio in
relation to the marginal rate of substitution:

σjk =
d(xj/xk)
d(fk/fj)

fk/fj

xj/xk
(13)

Since the marginal rate of substitution is equal to the ratio of input prices (−Pk
Pj

) at the minimum
cost combination of inputs under perfect competition, the elasticity of substitution can be seen
as a proportional rate of change in the input ratio with respect to the input price ratio. Thus,
substitutability between inputs is characterized by positive values of the elasticity of substitution,
as an increase (decrease) of the price ratio produces an increase (decrease) of the input ratio,
and complementarity by the reverse.

Several expressions have been proposed to generalize this concept to the case of more than
two inputs. The Allen partial elasticity of substitution expressed in terms of the production
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function can be shown to be 1:

σA
jk =

∑
j xjfj

xjxk

Fjk

F
(14)

with F being the bordered Hessian determinant and Fjk the cofactor associated with fjk. Since
fjk = fkj , the bordered Hessian and σA

jk are symmetric. Allen expression measures the change of
one input in response to the change in the price of another, maintaining output and other prices
fixed, and is classified as one-factor-one-price elasticity of substitution (following Mundlak, 1968;
Chambers, 1988). It is the most popular elasticity of substitution and has been reported in many
empirical studies on factor substitution. However, Blackorby and Russell (1989) demonstrate
that Allen elasticity does not succeed to grip the concept of curvature or ease with which one
input can be substituted for another since it is sensitive to variations in other input prices.
Thus, it has no meaning from a quantitative point of view, and qualitatively it produces the
same classification than that of the cross-price elasticity. They present Morishima elasticity as
the exact measure of curvature in the sense of the Hick’s two-dimensional definition. It can be
mathematically expressed as:

σM
jk =

fk

xj

Fjk

F
− fk

xk

Fkk

F
=

fkxk∑
j fjxj

(σA
jk − σA

kk) (15)

Morishima elasticities are not symmetric (σM
jk 6= σM

kj ). It is worth to note that two inputs
classified as Allen substitutes (σA

jk > 0) are always Morishima substitutes (σM
jk > 0) as can be

seen in the final part of (15): σA
jk > 0 leads to σM

jk > 0, provided σA
kk ≤ 0. But two Allen

complements can be Morishima substitutes if
∣∣∣σA

kk

∣∣∣ >
∣∣∣σA

jk

∣∣∣.
Chambers (1988) also thinks Morishima elasticity to be a more economically relevant concept

since it gives the exact variation of the input ratio in response to a change in an input price (two-
factor-one-price elasticity of substitution). But he proposes the so-called Shadow elasticity of
substitution (McFadden, 1963) as a two-factor-two-price elasticity of substitution and therefore
a closer candidate to the initial Hicksian idea. It can be expressed as a weighted average of
two Morishima elasticities with weights equal to input cost shares. In a cost minimization
environment, these weights might be replace by the estimates of input-output elasticity shares
(sj = εj∑

j
εj

), since input prices become equal to their marginal products. Shadow elasticity of

substitution would take the form:

σS
jk =

sj

sj + sk
σM

jk +
sk

sj + sk
σM

kj (16)

1In the translog case, an easier computational expression is obtained (Berndt and Christensen, 1973): σA
jk =

Gjk

G
where G is determinant of

0 ε1 ε2 · · · εJ

ε1 b11 + ε21 − ε1 b12 + ε1ε2 · · · b1J + ε1εJ

ε2 b12 + ε1ε2 b22 + ε22 − ε2 · · · b2J + ε2εJ

...
...

...
. . .

...
εJ b1J + ε1εJ b2J + ε2εJ . . . bJJ + ε2J − εJ


and Gjk the jk cofactor.
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Of course, Shadow elasticity of substitution can be put in terms of partial Allen elasticities (Sato
and Koizumi, 1973):

σS
jk =

sjsk(2σA
jk − σA

jj − σA
kk)

(sj + sk)
(17)

Taking into account zero-degree homogeneity in factor prices,
∑

k skσ
A
jk = 0, they give an equiv-

alent expression obtained by eliminating own elasticities:

σS
jk = (sj + sk)σA

jk +
sk

sj + sk

∑
m6=j,k

sm σA
jm +

sj

sj + sk

∑
m6=j,k

smσA
km (18)

4 Data

The information used in this work was taken from SABI 2 data base, which collects annual
balance sheet records from official registers. The initial sample includes data on food and bever-
age companies for the period 1993− 2002, coded following the CNAE-93 Spanish classification
system . The dependent variable yit is defined as the output sales (for firm i and year t) deflated
by the consumer price index. Labour, capital and materials are the three inputs considered for
analysis. Labour (n) is measured by the number of employees, capital (k) by the book value
of fixed assets less accumulated amortization deflated by an index of durable industrial goods,
and materials (m) by material purchases also converted into constant values using the consumer
price index.

Several filters were applied to the original sample of 6543 firms: those with less than six
consecutive years on the selected variables were eliminated and also those firms with annual rise
of the level of employment or fixed asset greater than 200%. This produced a final unbalanced
panel of 13552 observations corresponding to 1837 firms, from which 565 have information on 6
consecutive years, 553 on 7, 413 on 8, 73 on 9 and 233 on 10. With regard to the kind of activity
it is possible to distinguish 9 subsectors:

• 409 firms in ”151 meat industry” (Meat, hereafter),

• 80 in ”152 preserved fish” (Fish),

• 129 in ”153 preserved fruits and vegetables” (Fruits),

• 73 in ”154 organic oils and fats” (Oils),

• 78 in ”155 dairy industry” (Dairy),

• 70 in ”156 grain mill industry” (Grain),

• 126 in ”157 animal feeds” (Animal),

• 626 in ”158 other industries”, which encompasses bread, biscuits, puddings, sugar, choco-
late, pasta, coffee, tea, spices, sauces, baby foods, etc., (Miscellaneous) and

2http://www.informa.es
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Table 1: Mean values and coefficients of variation (in parentheses) for output, labour, capital
and materials

Meat Fish Fruits Oils Dairy Grain Animal Mis Drink
y 9452 13533 7833 17265 37656 7055 14321 8646 11756

(2.90) (1.66) (1.82) (3.45) (2.47) (1.38) (2.95) (5.17) (3.11)
n 49 97 61 39 149 33 35 67 50

(2.77) (1.40) (1.36) (2.23) (2.54) (1.93) (1.97) (3.98) (2.64)
k 2118 3165 2974 4734 10900 1670 3213 3517 7629

(6.63) (2.05) (3.06) (3.90) (2.85) (1.94) (3.91) (6.40) (4.54)
m 7175 9101 4967 14448 24856 5008 11755 4674 5764

(2.69) (1.68) (1.78) (3.73) (2.23) (1.31) (3.10) (4.85) (3.27)
Mean values are expressed in 103ε except for labour which refers to number of employees

• 246 in ”159 drink industry” (Drink).

Table 1 presents the sample means of the variables for each industry, together with the
coefficients of variation. On average, the largest firms of the Spanish food industry appear in
the Dairy industry, which has the highest mean values for all variables; the ranking by the
output variable is followed by Oils, Animal, Fish and Drink industries. It is worth to note that
micro companies were not eliminated and, for example, the minimum value for labour variable
is one employee in all industries. This leads to a huge degree of heterogeneity among firms
within each industry as the coefficients of variation show. In spite of this fact, the regression
analysis assumes companies use a similar technology. Miscellaneous is, by far, the sector with
more variability, followed by Drink, Meat, Animal and Oils.

5 Results

5.1 Estimation

Equation (2) can be estimated by different procedures, depending on the assumptions. Fixed
and random effects models have been widely used, but a less restrictive estimation is possible by
means of instrumental variables and the generalized method of moments (GMM). It is a more
robust alternative that allows to cope with potential heteroskedasticity and autocorrelation of
the error term and also endogeneity of the regressors. Given the difficulty in obtaining other
variables correlated with the original ones but not with the error term, it arises the possibility
of using these same variables but lagged as instruments. Time effects are modeled through
dummy variables and firm effects, provided their large number, are eliminated by estimating the
equation (2) in first differences:

∆ ln yit =
∑
j

βj∆ lnxjit +
1
2

∑
j

∑
k

βjk∆ lnxjit lnxkit + ∆λt + ∆νit (19)

Arellano and Bond (1991) propose the utilization of GMM and the orthogonality conditions
between ∆νit and the whole set of values ln yi1, . . . , ln yiT , ln x1i1, . . . , lnx1iT , lnx2i1, . . . , lnx2iT ,
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. . ., lnxJi1, . . . , lnxJiT , considering an assumption of strong exogeneity of the regressors. The
estimation by GMM is carried out in two stages, using the second a weighted matrix constructed
with the residuals obtained in the first stage. The procedure followed in this work consists in
regressing jointly the system of equations in first differences (19) and levels (2). It was proposed
(by Arellano and Bover, 1995; Blundell and Bond, 1998, among other) in order to reduce the
weakness of instruments, which is very common in production functions (see Blundell and Bond,
2000).

It is necessary to test lack of second order autocorrelation because the GMM estimator is
based on E(∆νit∆νi,t−2) = 0. In addition, a Sargan test of overidentifying is used to validate
the orthogonality restrictions.

DPD package for Ox (Doornik et al., 2002) was used for robust GMM estimations. Table 2
presents the second-step GMM translog coefficients for the nine industries considered and their
robust standard errors in parentheses. Table 2 also contains some specification tests (p-values
in parentheses) at the bottom.

The Wald statistics are distributed as χ2 with 9 degrees of freedom under the null of lack of
joint significance of the regressors, excluded time dummies. The hypothesis is clearly rejected
for all industries. Wald statistics for time dummies are not provided but joint insignificance is
always rejected.

The statistics for the null of no second-order serial correlation are asymptotically distributed
as N(0, 1). All AR(2) p-values are greater or equal than 5 per cent and second-order autocorre-
lation does not seem to be a serious problem.

The Sargan statistics contrast the null of not overidentifying of the instruments, and are
distributed as a chi-square with degrees of freedom equal to the number of instruments minus
regressors (in these cases χ2

383). The hypothesis of strong exogeneity (for each year all values of
the variables are employed as instruments) is only rejected for Miscellaneous, so the sets of the
instrumental variables are correctly used in 8 of 9 regressions. This rejection, for Miscellaneous,
of instrumental variables is guessed to be due to the heterogeneity of the production process
within this industry because when a deeper disaggregate level is chosen, the regressions over
more homogeneous data validate the instruments. And in the same way, the regression for the
overall Spanish food industry reject the use of the instruments.

Models with weaker exogeneity conditions, i.e. only past values of the variables as instru-
ments for the equation in first difference, were estimated, but those of the strongest assumption
are preferred taking into account the sequence of Sargan tests.

Output elasticities to input changes are calculated through the expression (3), which in
matrix form for a three factor production function would be:

εit = Ritβ (20)

where

Rit =

 1 0 0 lnnit 0 0 ln kit lnmit 0
0 1 0 0 ln kit 0 lnnit 0 lnmit

0 0 1 0 0 ln mit 0 lnnit ln kit

 (21)

and εit = ( εnit εkit εmit )′, β = ( βn βk βm βnn βkk βmm βnk βnm βkm )′. The
covariance matrix of these elasticities could be obtain using Rit and the covariance matrix of
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Table 2: Translog production functions and specification tests (second-step GMM estimation)

Meat Fish Fruits Oils Dairy Grain Animal Mis Drink
βn 0.75 0.65 0.21 1.09 0.44 0.37 0.48 0.30 0.83

(0.13) (0.15) (0.19) (0.37) (0.17) (0.20) (0.29) (0.13) (0.17)
βk 0.30 0.16 -0.11 0.03 0.30 0.12 0.17 0.20 0.14

(0.07) (0.14) (0.12) (0.15) (0.16) (0.16) (0.15) (0.10) (0.12)
βm -0.01 0.17 0.40 -0.07 0.27 0.38 0.14 -0.27 -0.29

(0.25) (0.11) (0.28) (0.25) (0.17) (0.22) (0.34) (0.10) (0.12)
βnn 0.19 0.12 -0.02 0.15 0.07 0.05 -0.01 -0.05 0.22

(0.04) (0.06) (0.05) (0.06) (0.06) (0.06) (0.07) (0.02) (0.07)
βkk 0.03 0.02 0.03 0.03 -0.04 0.01 -0.01 0.06 0.04

(0.02) (0.03) (0.02) (0.05) (0.03) (0.02) (0.03) (0.02) (0.02)
βmm 0.23 0.18 0.07 0.19 0.12 0.11 0.16 0.23 0.25

(0.04) (0.02) (0.05) (0.04) (0.03) (0.04) (0.05) (0.03) (0.03)
βnk 0.03 0.02 0.01 0.00 0.05 0.04 0.09 0.03 0.00

(0.03) (0.03) (0.03) (0.05) (0.03) (0.03) (0.03) (0.02) (0.03)
βnm -0.18 -0.14 -0.01 -0.18 -0.11 -0.08 -0.11 -0.03 -0.17

(0.02) (0.05) (0.03) (0.05) (0.03) (0.03) (0.05) (0.03) (0.03)
βkm -0.07 -0.05 -0.01 -0.02 -0.01 -0.03 -0.04 -0.08 -0.05

(0.01) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)
Wald (joint) 8914 1874 3919 7730 3126 3194 1703 4290 2500
p (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
AR(2) -0.54 -0.47 -1.58 -0.45 0.42 -1.12 -0.46 -1.57 -1.97
p (0.59) (0.64) (0.11) (0.65) (0.68) (0.26) (0.65) (0.12) (0.05)
Sargan 344.30 54.27 106.82 51.00 55.37 53.37 102.87 478.02 233.49
p (0.92) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.00) (1.00)

Robust standard deviations for coefficients and p-values for tests are given in parentheses.

Table 3: Output elasticities to input changes, evaluated at mean log values

Meat Fish Fruits Oils Dairy Grain Animal Drinks
εn 0.13 0.16 0.10 0.10 0.13 0.11 0.09 0.22

(0.02) (0.03) (0.03) (0.03) (0.04) (0.05) (0.03) (0.03)
εk 0.06 0.03 0.04 0.04 0.07 0.05 0.05 0.08

(0.01) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)
εm 0.80 0.73 0.81 0.86 0.77 0.79 0.88 0.67

(0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03)
Robust standard deviations are shown in parentheses.
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Table 4: Monotonicity (proportion of output elasticities greater than zero) and convexity

Meat Fish Fruits Oils Dairy Grain Animal Drinks
εn > 0 0.806 0.897 1.000 0.699 0.920 0.946 0.804 0.882
εk > 0 0.817 0.802 0.821 0.896 0.952 0.931 0.836 0.932
εm > 0 0.994 0.990 1.000 1.000 1.000 1.000 1.000 0.987
convexity 0.015 0.202 0.603 0.157 0.590 0.419 0.272 0.089

the translog coefficents (Σ):
V εit = RitΣR′

it

The average values of these elasticities are reported in Table 3. They are statistically significant
and reasonable from an economic point of view. So labour elasticities are ranged from 0.09
(Animal) to 0.22 (Drink), capital elasticities from 0.03 (Fish) to 0.08 (Drink), and materials from
0.67 (Drink) to 0.88 (Animal). These variations are explained by the different technologies these
industries use and indicate that a regression for the whole set would have not been appropriate.
One regression for each industry offers the possibility of distinguishing between industries with
the highest response to changes in labour input (and the least sensitive to material variations)
such as Drink and Fish, or the most sensitive to material changes (and the least responsive to
labour) such as Animal, Oils and Fruits. As regards capital input, the most sensitive are Drink,
Dairy and Meat, and the least are Fish, Oils and Fruits.

These same elasticities are estimated for 12 Italian industries using a panel of 1272 firms
in a recent work (Bottasso and Sembenelli, 2004) and are commented for comparison. Output
elasticities with respect to materials take similar values as they vary between 0.66 and 0.84. But
somewhat wider ranges are found for labour (from 0.10 to 0.37) and capital (between 0.03 and
0.12), probably due to a major difference in technology between Italian firms, with industries
such as metals, minerals, chemical products, textile, etc. Italian food and drink industry takes an
average output elasticity of 0.10 for labour, 0.06 for capital and 0.84 for materials in accordance
with this work.

5.2 Testing properties

Output elasticities are also calculated for each sample value, and the proportion of them with
input-output elasticities greater than zero (positive monotonicity) are shown in Table 4. The
major part of the estimated elasticities in each point are positive and the data comply very well
with the monotonicity condition. On average 92.04% of the input-output elasticities are positive
(89.77% for εn, 86.80% εk and 99.56% εm).

However the results for convexity are not satisfactory, and only two industries, Fruits and
Dairy, obtain satisfactory proportions. Perhaps this is the drawback of using the translog func-
tion: as a local approximation it seems difficult it satisfies convexity throughout a large domain
of observations. This implies that global conclusions should not be drawn and only local inter-
pretations are appropriate (Chambers, 1988).

Wald tests for restrictions on parameters (Greene, 2003) are reported in Table 5. The
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Table 5: Wald tests for restrictions on parameters: homogeneity, constant returns to scale (CRS)
and complete and pairwise strong and weak separability

Meat Fish Fruits Oils Dairy Grain Animal Drinks
Homogeneity 5.13 0.13 9.04 0.83 0.11 0.69 2.89 4.97

(0.16) (0.99) (0.03) (0.84) (0.99) (0.87) (0.41) (0.17)
CRS 8.97 8.01 12.03 1.02 1.20 3.05 3.70 7.86

(0.06) (0.09) (0.02) (0.91) (0.88) (0.55) (0.45) (0.10)
Complete 128.86 295.92 10.87 77.41 16.82 39.62 23.35 96.84

(0.00) (0.00) (0.09) (0.00) (0.01) (0.00) (0.00) (0.00)
Strong n,k 107.85 23.98 0.71 58.19 15.19 23.99 8.22 39.23

(0.00) (0.00) (0.70) (0.00) (0.00) (0.00) (0.02) (0.00)
n,m 29.39 5.20 0.43 0.99 3.42 3.67 15.14 5.13

(0.00) (0.07) (0.81) (0.61) (0.18) (0.16) (0.00) (0.08)
k,m 57.72 10.81 0.44 10.88 10.31 12.51 11.98 25.54

(0.00) (0.00) (0.80) (0.00) (0.01) (0.00) (0.00) (0.00)
Weak n,k 2.29 0.32 0.93 0.37 2.22 0.19 2.70 2.83

(0.32) (0.85) (0.63) (0.83) (0.33) (0.91) (0.26) (0.24)
n,m 30.07 6.78 0.47 2.71 2.95 6.59 5.89 6.92

(0.00) (0.03) (0.79) (0.26) (0.23) (0.04) (0.05) (0.03)
k,m 37.67 7.07 2.65 0.94 5.32 6.88 1.79 7.17

(0.00) (0.03) (0.27) (0.62) (0.07) (0.03) (0.41) (0.03)
p-values in parentheses.

Table 6: Number of scale elasticities lower and higher than unity at 5% level using a normal
distribution

Meat Fish Fruits Oils Dairy Grain Animal Drink
Eit < 1 GMM 263 221 466 0 0 7 0 568

OLS 3002 455 860 152 443 523 434 1791
Eit > 1 GMM 0 0 54 0 0 0 24 47

OLS 0 0 0 0 0 0 0 0
Observations 3017 585 988 509 566 540 941 1791

Eit < 1 → Eit−1√
V Eit

< −1.6449; Eit > 1 → Eit−1√
V Eit

> 1.6449.
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homogeneity hypotheses are not rejected at 1% level, and only Fruits offers a small critical value
(0.0288). The point is that, for these industries, one cannot reject the curvatures of isoquants are
independent of the size of the firm, and thus the relative usages of factors and their substitution
relationships are solely related to relative factor prices and not to output levels.

In a similar way, constant returns to scale are not rejected at 1% level for any industry
although Fruits gives a rather small p-value (0.0171). Since the elasticity of scale is the sum of
the output elasticities and these can be interpreted as the ratio between marginal productivity
and average productivity, the fact that scale elasticity is not rejected to be equal to one means
that the technologies analysed are placed at stage II of the production process. That is, they
have downward sloped average productivities that are higher than marginal productivies. This
can indicate that there are not too much room to increase the size of the firms. Furthermore, by
duality, the elasticity of scale is always equal to the elasticity of size in homothetic production
functions (Chambers, 1988, page 73). Therefore, constant returns lead to not reject that the
firms are in the minimum of the average cost curve without incentives neither to increase nor
to decrease.

OLS estimates have not included but they do not lead to the same conclusions: homogene-
ity is rejected for Meat, Dairy, Animal and Drink, whereas constant returns are reject for all
industries except for Oils.

Given convexity is not satisfactory, it seems advisable to study the behaviour of constant
returns to scale throughout the domain. The elasticity of scale at each point (Eit), and its
variance (V Eit), can be computed using (20), (21) and the unity vector i = ( 1 1 1 ) (Dios,
2003):

Eit = i εit

V Eit = i Rit Σ R′
it i′

Table 6 provides the number of observations with scale elasticities statistically lower and
higher than unity at 5% significance level. Industries in Table 5 with high probabilities for not
rejecting constant returns, such as Oils, Dairy, Grain and Animal present none or few elasticities
of scales not equal to one when GMM estimator is used. The other four industries gives many
observations for which decreasing returns to scales is an acceptable hipothesis. The proportion
of them for Meat is not too important, 8.7%. But it is for Drink 31.7%, Fish 37.8% and Fruits
47.2%. Note that the conclusion had been very different by using OLS because the bulk of
observations, whatever the industry, shows decreasing returns. On the other hand, increasing
returns to scales are only observed in three industries and not with much relevance: Animal
(2.5%), Drink (2.6%) and Fruits (5.5%).

Complete separability is sound rejected for all industries apart from Fruits, and this means
that for this industry strong and weak separability are found for all groups of inputs as can be
seen in Table 5. The production technology can be described by the Cobb-Douglas specification
only in the Fruits industry. In the remaining 7 industries strong separability n, k from m and
k, m from n are rejected, whereas strong separability n, m from k is not rejected in Oils, Dairy,
Grain, and more marginally in Drink and Fish. However the three weak separability conditions
are jointly satisfied in Fruits, Oils, Dairy and Animal and more marginally in Fish, Grain and
Drinks. Meat firms only fulfilled n, k from m weak separability.
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Table 7: Morishima and Shadow elasticities of substitution at mean log values

Meat Fish Fruits Oils Dairy Grain Animal Drink
Morishima
σM

nk 2.28 0.95 2.97 3.03 -0.06 -2.72 0.19 2.58
σM

kn 0.80 5.19 0.28 -0.26 3.17 7.70 0.71 -1.27
σM

nm -1.55 -2.40 1.40 -1.64 7.89 -42.59 -3.32 -4.72
σM

mn -0.88 -1.08 0.97 -1.35 6.44 -27.63 -1.74 -4.14
σM

km -0.06 -6.65 4.09 1.64 4.66 -53.01 -3.83 -0.87
σM

mk 1.62 -0.38 3.40 2.73 1.39 -17.69 -1.38 2.00
Shadow
σS

nk 1.81 1.61 2.16 2.05 1.06 0.29 0.39 1.55
σS

nm -0.98 -1.31 1.02 -1.38 6.65 -29.51 -1.88 -4.28
σS

km 1.50 -0.62 3.43 2.68 1.66 -19.65 -1.52 1.69

However, these results on separability should not be took as a definite conclusion because
translog function impose a rather inflexible structure of the coefficients to hold separability and
thus it is not a good way to treat this issue (Chambers, 1988).

5.3 Substitution elasticities

Substitutability and complementarity between production factors in response to price changes
are studied through Morishima and Shadow elasticities of substitution, whose estimates at mean
log values are shown in Table 7.

Labour and capital are always substitutes (σS
nk > 0), indicating that an increase in relative

price of one factor, say labour (∆Pn
Pk

) , would produce an increase in the relative use of capital
(∆ xk

xn
). The most sensitive industries seem to be Fruits (σS

nk = 2.16) and Oils (2.05) and the
least Grain (0.29) and Animal (0.39). The Morishima elasticities show the response to changes
in wages and capital prices is not homogeneous, and some industries present labour and capital
as Morishima complements (σM

nk < 0 or σM
kn < 0) although the compensated effect of Shadow

elasticities is always positive.
Labour and materials are complements (Morishima and Shadow) in six industries, with Fruits

and Dairy being the exception. This complementarity relationship means, for instance, that a
rise of relative material price would induce a decrease in the absolute and relative quantity of
labour (σM

nm < 0, σS
nm < 0). Extremely high values are obtained for the Grain industry. Looking

at Morishima elasticities, firms appear to be more sensitive to changes in material prices than
to labour prices since |σM

nm| > |σM
mn| is always found.

Major heterogeneity can be seen in capital and materials relationships. Five industries,
Meat, Fruits, Oils, Dairy and Drink, classify them as substitutes, and three, Fish, Grain and
Animal, as complements.

Table 8 gives information on how many positive elasticities are found throughout the domain.
It confirms the results mentioned above. Labour and capital, as well capital and materials,
are mainly p-substitutes For the labour-capital pair, on average 81.44% of σS

nk are positive,
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Table 8: Proportion of Shadow elasticities of substitution greater than zero

Meat Fish Fruits Oils Dairy Grain Animal Drink
σS

nk > 0 0.86 0.85 0.78 0.71 0.80 0.95 0.74 0.77
σS

nm > 0 0.26 0.57 0.99 0.52 0.67 0.53 0.52 0.24
σS

km > 0 0.67 0.61 0.78 0.74 0.83 0.57 0.52 0.56

whereas for capital-materials the figure is 64.84%. With regards to labour-material, they are
p-complements for Meat and Drink industries, as the bulk of elasticities are negative, and p-
substitutes for Fruits. But the remaining industries present similar quantities of positive and
negative elasticities.

6 Conclusions

The production structure of the Spanish food industry is analyzed at firm level using 9 panel
data sets and by means of (i) estimating three-factor translog production functions with a robust
procedure to heteroskedasticity, autocorrelation and endogeneity bias, (ii) testing restrictions on
parameters and (iii) estimating elasticities of substitution.

Only one out of nine regressions is not appropriate with the GMM procedure. The reason
seems to be the heterogeneity of the production process within Miscellaneous classification.

The Spanish food data used in this work do not seem to have problems of positive monotonic-
ity, as the 92% of the computed output elasticities to input changes are positive. But convexity
is not satisfactory and this leads to not take global conclusions and examine the behaviour of
the function at each point.

Neither homogeneity nor constant returns to scale are rejected at 1% level in the 8 industries.
But a more detailed analysis shows that only for Oils, Dairy, Grain and Animal industries the
hypotheses of constant returns are accepted throughout their domains; Meat industry presents a
relatively low rate of observations with decreasing returns; but the remaining industries, Drink,
Fish and Fruits, offer high proportions of firms for which decreasing returns to scale are not
rejected.

A major precaution is recommended for the separability between inputs because, besides the
convexity problem, the translog function is considered very inflexible to study these issues. Even
so, complete separability is overwhelmingly rejected for 7 industries and all seems to indicate
that the Cobb-Douglas function would not be appropriate to represent their technologies. Only
for Fruits it would be correct.

The response of output to input changes is not the same in each industry because of their
different production process. And output elasticities allow to classify them on their degree of
variation to changes in each input. In this way the industries with the highest sensitivity to
changes in labour input are Drink and Fish, the most sensitive to material changes are Animal,
Oils and Fruits, and the most sensitive to capital are Drink, Dairy and Meat.

The relations between pairs of inputs show that labour and capital, and capital and materials,
are p-substitutes for all industries. There is not evidence that the same conclusion would be
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appropriate for labour and materials, being the opposite plausible in Meat and Drink industries.
Finally, a comment on the estimation procedure. The generalised method of moments,

as mentioned above, is robust to heteroskedasticity and autocorrelation and copes with the
endogeneity of regressors, but from the point of view of the obtained results, the conclusion is
that it allows to not reject several hypotheses, such as constant returns, which had been rejected
using ordinary least squares.
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