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Spatial Aggregation and Weather Risk Management 

 

Abstract 

Previous studies identify limited potential efficacy of weather derivatives in hedging 

agricultural exposures.  In contrast to earlier studies which investigate the problem at 

low levels of aggregation, we find using straight forward temperature contracts that 

better weather hedging opportunities exist at higher levels of spatial aggregation.  

Aggregating production exposures reduces idiosyncratic (i.e. localized or region 

specific) risk, leaving a greater proportion of the total risk in the form of systemic 

weather risk which can be effectively hedged using weather derivatives.  The aggregation 

effect suggests that the potential for weather derivatives in agriculture may be greater 

than previously thought, particularly for aggregators of risk such as re/insurers.   

 
 
Keywords: weather derivatives, spatial aggregation, corn, yield risk, crop insurance, 
hedging 
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Spatial Aggregation and Weather Risk Management 
 
 
 

The failures of crop insurance markets in the form of high loss ratios, low participation 

rates, and the aversion of private insurance companies to bearing exposures have been 

documented extensively.  Early explanations attributed these failures primarily to 

information asymmetries related to moral hazard and adverse selection (Chambers 1989; 

Skees and Reed 1986; Nelson and Loehman 1987; Goodwin and Smith 1995; Gardner 

1994; Just and Calvin 1994; Quiggen 1994; Quiggen, Karagiannis and Stanton 1994).1  

More recently, a different view has gained support that relates market failures to the 

inherent systemic nature of the risks in insuring agricultural production (Miranda and 

Glauber 1997; Duncan and Meyers 2000; and Mason, Hayes and Lence 2003).   

Systemic risk in agricultural insurance markets stems from spatially correlated 

adverse weather events.  Research on this explanation concentrates primarily on 

identifying the nature and magnitude of systemic risks (Mason, Hayes and Lence 2003; 

Miranda and Glauber 1997) and on investigating ways in which the risks can be managed 

utilizing private reinsurance and capital markets (Hayes, Lence and Mason 2004; Turvey, 

Nayak and Sparling 1999; Miranda and Glauber 1997).  To date, no empirical 

investigation of reinsurance hedging with weather derivatives (WDs) has been conducted   

A key characteristic of agriculture is that it is extremely weather sensitive, and the 

use of WDs in agriculture has received increased attention recently.  Currently, the WD 

market is the fastest growing derivative market in the world (Brockett, Wang and Yang 

2005).  According to the Chicago Mercantile Exchange (CME) the value of CME 

Weather products grew nine fold in the first nine months of 2005, growing from $2.2 
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billion in 2004 to $22 billion through September 2005, with trading volume surpassing 

630,000 contracts.  While numerous authors have suggested the potential of weather 

hedging in a reinsurance context on conceptual grounds (Glauber 2004; Skees and 

Barnett 1999), earlier research suggests that the potential effectiveness of WDs at the 

farm level may be limited (Vedenov and Barnett 2004).  Evaluation at low levels of 

aggregation, however, may not be relevant for re/insurers who are exposed to more 

aggregated risks, but no clear explanation has been offered to clarify why one might 

expect improved WD hedging performance at the re/insurance (i.e. aggregate) versus the 

primary (i.e. farm) level.   

This study attempts to bridge these gaps in the literature by proposing that WD 

hedging may be more effective at higher levels of aggregation.  Specifically, aggregating 

production exposures across space may reduce idiosyncratic (i.e. localized or region 

specific) risk in the aggregate portfolio.  A greater proportion of the aggregate portfolio’s 

total risk may be left in the form of systemic weather risk relative to idiosyncratic risk, 

which may be effectively hedged using WDs.  A conceptual model that supports this 

notion is developed.  The hypothesis is investigated at varying levels of aggregation using 

Illinois corn during 1971-2002 at the CRD and state level.   

The hedging analysis assumes minimization of semi-variance. The expected-

shortfall measure of tail-risk is also evaluated.  These measures of downside risk are 

more relevant to re/insurers, as they are typically more concerned with loss events.  The 

hedging analysis focuses on seasonal temperature derivatives in lieu of more complex 

monthly precipitation and temperature derivatives used in previous studies for several 

reasons.  The interaction of temperature and precipitation during loss events, temperature 
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autocorrelations, and high computation costs limit the potential benefits of more complex 

WDs.  Also, transaction costs associated with negotiating over-the-counter (OTC) 

precipitation derivatives are likely high, and their potential for liquidity low, relative to 

temperature derivatives.  Further, the markets for the temperature derivatives traded at the 

CME are currently the most developed WD markets.  The WDs employed here, which 

are highly consistent with the CME contracts in structure, thus appear to present a 

promising avenue for current research.   

 

Weather Risk in Crop Insurance Markets 

In contrast to earlier studies on failures in crop insurance markets, Miranda and Glauber 

(1997; hereafter MG) propose that systemic weather risk poses a serious obstacle to the 

emergence of independent private crop insurance markets because widespread adverse 

weather induces significant correlations among individual farm-level yields.  MG 

estimate that US crop insurer portfolios are between twenty to fifty times riskier than they 

otherwise would be if yields were independent.  Thus, the lack of independence among 

individual yields causes crop insurers to bear substantially higher risk per unit of 

premium than other property liability and business insurers.   

In order to induce insurers to underwrite crop insurance, insurers in the United 

States are provided reinsurance protection by the government under the Standard 

Reinsurance Agreement (SRA).   The SRA imposes large administrative costs on the 

public.  Further, the extent to which the SRA effectively transfers systemic risks from the 

insurer to the government is not known.  Ineffective transfer of systemic risk under the 

SRA may impose additional costs on the government if insurers do not have the 
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incentives to appropriately monitor the policies they underwrite.  Also, the current 

structure of the SRA is restrictive in terms of how insurers may price the policies they 

underwrite.  All of these factors contribute to excess costs, whether implicit or explicit, 

generated by the absence of competitive and independent agricultural insurance markets.   

MG suggest that area yield reinsurance contracts may permit crop insurers to 

cover most of their systemic crop loss risk, reducing their risk exposure to levels typically 

experienced by conventional property liability insurers.2  Given the ability to hedge their 

systemic risk, crop insurers may be less averse to insuring crop production independently, 

lessening the need for government intervention and increasing the efficient functioning of 

agricultural insurance markets. 

Hayes, Lence and Mason (2004), 3 as well as MG (1997), investigate the 

effectiveness of area yield derivatives in hedging crop insurance risk.  Although area 

yield contracts did trade for a short time in an exchange setting, they eventually failed 

due to insufficient trading volume.  A major problem was that market-makers were 

largely uninterested in taking the other side of such specialized contracts because they 

were unable to offset the resulting risk.  This does not appear to be the case for weather 

derivatives.  The potential for liquidity in WD markets is greater due to the number of 

market agents with naturally opposing hedge preferences (e.g., electrical utilities).   

Hayes, Lence and Mason (2004) also investigate the hedging effectiveness of 

price derivatives.  The primary risk factor in crop insurance, however, is not price but 

rather widespread adverse weather events such as drought and extreme temperatures 

during critical growing periods.  In addition, plant disease and infection can be intensified 

by adverse weather.   
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While researchers have suggested that WDs may be useful for hedging systemic 

risk, the use of WDs by producers is questionable.  For example, Vedenov and Barnett 

(2004; hereafter VB) analyze the efficiency of WDs as primary hedging instruments for 

corn, soybeans, and cotton in the U.S. at the CRD level of aggregation.  Based on 

relatively complex non-linear combinations of monthly (June, July, and August) 

precipitation and temperature indexes, VB’s results suggest only the limited efficacy of 

WDs in hedging disaggregated production exposures.4   

This study builds on earlier research in two important dimensions.  First, hedging 

effectiveness of WDs are investigated at varying levels of spatial aggregation (i.e., the 

state and CRD level).  Yields evaluated at low levels of aggregation (e.g., farm or CRD 

level) are likely much riskier than those at higher levels (e.g., state level) because the 

potential degree to which idiosyncratic risks self-diversify increases as the level of 

aggregation increases.  Yet, high temperature spatial correlations induce significant 

correlations among low-level yield exposures.  Thus, relatively more risk may be left in 

the form of systemic weather risk and the hedging effectiveness of WDs may increase as 

the level of aggregation is increased.  Analysis of aggregated yields may also be more 

relevant from the re/insurers viewpoint as aggregate yield risk more accurately embodies 

their systemic risk.  

Second, we investigate straight forward seasonal temperature WDs in lieu of 

complex monthly temperature and precipitation WDs.  Persistence in weather conditions 

may induce a high degree of collinearity among precipitation and temperature (Namias 

1986).  This, along with the fact that weather conditions in the U.S. during the summer 

tend to be autocorrelated (Jewson and Brix 2005), increases the probability of 

 7



misspecifying weather hedges that involve multiple underlying indexes.  The current 

work simplifies the analysis by investigating seasonal (June, July, and August) 

temperature WDs.   

 

Conceptual Model 

Idiosyncratic effects may self-diversify when aggregated, leaving a greater proportion of 

the total risk in the form of weather risk.  Thus, WD hedging may be more effective for 

aggregate rather than disaggregate yield exposures.  The magnitude of the spatial 

aggregation effect depends on the relative correlations of weather and idiosyncratic yield 

effects across locations.  To illustrate, assume yields can be decomposed into two effects, 

weather effects, W , and all other effects,ε , which may be correlated.  Consider a simple 

model of crop yields which allows for non-linear terms  

(1)                                                , ,( )t k k k t k t kY f ,α ε= + +W      

where t is the time index, k is the location index,  is a vector of weather variables, 

 represents the systemic weather component of yields, 

,t kW

,(k t kf W ) ,t kε  represents the 

idiosyncratic risk component, and ,[ ] 0t kE ε = .  Summing across k locations, gives 

(2)                                   , ,[ ] [ ( )] [t k k k t k t k
k k k k

E Y E f E , ]α ε= + +∑ ∑ ∑ ∑W  

and 

(3)                 , , , ,[ ] [ ( )] [ ] [ ( ),t k k t k t k k t k t k
k k k k k

Var Y Var f Var Cov f , ]ε ε= + +∑ ∑ ∑ ∑ ∑W W .  

If the , 't k sε  are relatively less positively correlated than the ,( ) 'k t kf sW  across locations 

then, as the individual yields are summed, more variation in yields may be able to be 

attributed to the weather effects at larger levels of spatial aggregation.  Thus, WD 
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hedging may be more effective at larger levels of spatial aggregation.  

To illustrate consider an extreme case.  Suppose there are two locations and that 

the t k, 'sε  are perfectly negatively correlated, ,( ) 'k t kf sW  are perfectly positively 

correlated, and [ ( ), ] 0 ,k t k t jCov f j k, ,ε = ∀W .  In this case the variance of aggregate 

yields reduces t

(4)                        

o 

                   )] , ,[ ] [ (t k k t k
k k

Var Y Var f=∑ ∑ W ,    

and all variation in yields can be attributed to weather events.  This risk can be potentially 

e 

y not be useful for individual 

tors of 

y not always be the case.  At the other extreme, consider two 

location

hedged with a WD equal in size but opposite in direction to the underlying systemic 

weather effect, ,( )k t kf W .  This situation is depicted in Figure 1.  If W  can be 

approximated by erature index the risk of the aggregated expo re can b

effectively hedged with a call option on the index W with strike price K*.  This 

framework supports the notion that while WDs ma

producers they may still prove useful in hedging systemic risks borne by aggrega

risk such as re/insurers.   

Of course, this ma

 a temp su

s where the , 't k sε  are perfectly positively correlated, the ,( ) 'k t kf sW  are perfect

negatively correlated , ,[ ( ), ] 0 ,k t k t jCov f j k

ly 

, and ε = ∀W .  In this riance of 

aggregate yields reduces to

(5)                                         

case the va

 

 ] , ,[ ] [t k t k
k k

Var Y Var ε=∑ ∑ ,     

While both cases are unrealistic they illustrate the main point of the aggregation 

all variation in aggregate yields is attributed to idiosyncratic effects and none of the 

aggregate risk can be hedged using WDs. 
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argument.  If weather events across locations are highly correlated, but other yield effects 

are rela

e 

ields should have a diversifying 

effect a

 

Failure to account for technological advancements in crop production can produce 

rical yields may produce spurious 

ed as 

tively less correlated, then relatively more variation (i.e. risk) in yields can be 

attributed to weather events as yields are aggregated.  Empirically, the relevant question 

for the re/insurer is whether the differences in the correlations of weather effects and 

other yield effects are significant enough to see substantial differences in WD hedging 

effectiveness as the level of aggregation increases.   

There are good reasons to believe that WD hedging may be more effective as th

level of aggregation is increased.  First, aggregating y

cross locations.  Popp, Rudstrom and Manning (2005), for instance, find that the 

risk of farm-level yields is substantially higher than county-level yields.  This is partly 

due to the diversifying effect as yields are aggregated over individual farms.5  Second, 

weather events tend to be highly spatially correlated.6 For example, the average 

correlation between the temperature indexes used in this study (the temperature indexes

are described in section 5) across locations was 0.755.7   

 

Yields, Weather Indexes, Derivatives, and Pricing 

misleading hedging results.  Significant trends in histo

hedge ratios which are not representative of the underlying optimal hedge ratio 

distribution.  To account for changes in technology district level yields are detrended 

using a simple log-linear trend model (VB 2004)8

(6)                      2002,...,1972,1971),1971()log( 10 =−+= ttY tr
t αα .   

Detrended yields to 2002 equivalents are calculat
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(7)                                   2002,...,1971,2002det == t
Y

Y
YY tr

t

tr

tt     

where are observed yields and are the corresponding yield trends. 

The negative effect of temperature stress on corn yields during the summer season 

in l 1994; Tiegen 

1991; a

e 

he 

D’s for 

e 

tY tr
tY

is well accepted (see, e.g., Monjard o, Smith and Jones 2005; Dixon et a

nd Kaufmann and Snell 1997).  Furthermore, temperature derivatives are likely 

the most feasible weather variable on which to structure weather contracts from a 

transaction cost standpoint.  Thus temperature derivatives are adopted for this study.  Th

temperature variables used are Accumulated Cooling Degree Days (ACDD’s) for t

summer season: June, July, and August.  Agronomic experiments indicate that cooling 

degree days (CDD’s) are more relevant to crop yields than outright temperature 

measurements (Schlenker, Hanemann and Fisher 2006).  Further, the temperature 

derivatives traded on the CME are written on ACDD indexes.  The number of CD

a single day is defined as the amount by which the average temperature is above th

reference temperature, sixty-five degrees Fahrenheit.  Explicitly, the number of CDD’s 

on any day t is given by 

(8)                                             )65,0( −= tt TMaxCDD      

where tT  is the average temperature on day t.  The average temperature is the simple 

aximum and minimum

NMt

arithmetic average of the daily m  temperatures.  The index of 

ACDD’s on any date, t, is simply defined as 

(9)                                ∑=
M

t
NM

t CDDACDD ,,     MNMt ,...,−=     
−=

where  is the first day of the contract period and NM − M  is the expiration date. 
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Although precipitation is also an important ri yields, we restrict sk factor in crop 

analysis to temperature derivatives due to the higher potential for liquidity in temperature 

derivat e 

86).  In 

 

four of 

 

ct that 

 

y tradable 

s are systemically related to summer ACDD’s, 

there is

derivatives.  For instance, from October 14, 1997 to April 15, 2001, temperature 

ives represented over 98% of all WDs (Brockett, Wang and Yang 2005).    The us

of temperature derivatives may not be a major shortcoming as atmospheric flow patterns 

that control much of the North American climate tend to be persistent (Namias 19

particular, during extreme drought events—those most likely to result in widespread crop 

losses—this persistence phenomenon causes heat and precipitation conditions to interact 

causing a self-perpetuating event.  On a large scale, average temperature and precipitation 

conditions for a given region are likely highly negatively correlated in extreme events.  

Figure 2 displays aggregate detrended Illinois state corn yields for 1971-2002, 

with the x-axis ordered by summer season ACDD’s.  The hottest years, those in which 

ACDD’s exceeded approximately 900, corresponded roughly to the driest years. In fact,

the five hottest years were also drought years.  Furthermore, all droughts 

corresponded to temperatures in excess of 900 ACDD’s.  Thus, it appears that 

temperature derivatives may act as a suitable substitute in hedging precipitation risk when

it is most needed.  The use of an accumulated index is further motivated by the fa

in the U.S. corn growing regions, month-to-month temperatures are typically 

autocorrelated (Jewson and Brix 2005).   

Hedging yield risk with WDs becomes a difficult problem for two reasons.  First,

there is a high degree of yield variability that cannot be attributed to potentiall

weather indexes.  For instance, while yield

 still considerable yield variability that cannot be ascribed to ACDD’s.  For 
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example, large yield shortfalls may be due to other events not related to ACDD’s, such as 

in 1974 when late planting and an early season-ending frost were responsible for lar

yield shortfalls (Figure 2).  Second, the relationship between weather and yields is likely 

non-linear.  In Figure 2 a trend line is obtained by plotting the fitted values from 

regressing yields on ACCD’s for the highest (above 900) and lowest (below 900) 

observed ACCD’s separately.  For Illinois corn, it appears that yields are non-linearly

related to ACDD’s, suggesting the potential advantage in hedging applications of a

options contract which can be non-linearly related to an ACCD index.  In the analysis w

include swaps as well as options in order to investigate the degree to which non-linea

weather effects exist in yields.   

All derivatives are priced using burn analysis (BA).  BA is the simplest method 

for pricing weather derivatives, a

ge 

 

n 

e 

r 

nd is based on calculating what the contract would have 

paid ou

        )

t in the past based on observed historical distributions.9 It is attractive in that it 

does not require strong assumptions about the distribution of the underlying index, and it 

is simple to compute.10   

The pay-off, f, from a long swap contract is given by 

(10)                                   ( ) (f ACDD D ACDD K= −     

where A CCD, and K is the strike 

tract pays $D per ACCD ab

.  If 

e 

CDD is the index, D is the tick value measured in $/A

price of the contract (i.e. the con ove the chosen strike price 

K).  The pay-off is a linear function of the index.  The buyer is swapping a certain 

exposure, K, to the index for an uncertain exposure, ACDD, and thus the name swap.  

Most swaps are costless (i.e. there is no premium, and the pay-off equals the profit)

the swap contract is to be traded without a premium then the strike must be set at a valu
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such that the expected pay-off is zero, that is KF = E(ACDD), where  KF is known as the

“fair strike”.  Pricing of a swap thus entails determining the fair strike.  Pricing a zero-

cost linear swap using BA simply involves setting the fair strike equal to the historical 

average of the index.

 

 ))

11

The pay-off, p, from a long call option is given by  

(11)                                ( , ) (0, (p ACDD K Max D ACDD K= −     

and the

ACDD K Max D ACDD K

 profit, π, is given by 

(12)                             ( )P K( , ) (0, ( ))π = − −   

r premium.  For options, pricing entails simply determining 

ir price which is defined so that the expected pr

 and Risk Measures 

ollowing VB, the hedge ratio is determined by minimizing the semi-variance (SV) of a 

 SV only measures deviations below the mean 

  

where P is the option price, o

the fair premium, or fa ofit on the contract 

is zero.  The fair price is equal to the expected pay-off of the contract, or P = E(p), and 

pricing using BA simply consists of calculating the mean of the historical pay-offs, p, 

given a strike, K. 

 

Hedging Analysis

F

portfolio consisting of yields and a WD. 

and thus is a measure of downside risk.  Formally, for swaps the weight, or hedge ratio 

(contracts/acre), w, is chosen by solving   

(13)                                det 2
, ,min {max[ ( ),0]}k t k k t kY Y w f− +∑     

kw t

 

where w is the hedge ratio measured in contracts/acre,  is detrended yield in bu/acre, det
,t kY

kY  is the long-run average detrended yield, and ,t kf  is the return on the swap contract 
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which pays $1 per ACDD.  The tick is normalized to $1 for simplicity.  For options, the 

v, and strike price, K, are chosen by solving 

(14)                

weight, or hedge ratio (contracts/acre), 

( )2det
,,

min max{ [ ( )],0}
k k

k t k k k kw K t
Y Y v Kπ− +∑   

where ( )k Kπ  is the profit of an ACDD call option with strike price K. 

The hedging effectiveness of weather derivatives is evaluated by comparing 

portfolios with and without derivatives and at different levels of aggregation using a 

simple historical simulation.  Hedging effectiveness is evaluated using hypothetical 

ACDD derivatives written for the locations in Table 1.

The criterion used to evaluate the change in risk exposure is the root mean square 

loss (RMSL).  RMSL is a simple function of SV 

(15)     

12

21
k kRMSL

T
σ −=      

_
2

                                         

where T=32 is the sample size, and  is the SV from equations (13) and (14).   

t losses, insurers may

magnitude of losses given an extreme event occurs.  Thus, expected shortfall (ES) is also 

reported (Dowd and Blake 2006).  ES is the probability weighted average of the worst 

kσ

In addition to expected ne  also be interested in the 

13

α  revenues.  In the case of a discrete distribution, the ES is given by 

(16)           
0

1 (pth worst outcome) (probability of pth worst outcome)
p

ESα α =

= ×∑    

d is reported for 

α

 

an α = 6%, 9%.  The ES measurements are calculated using a historical 

here each observation is assigned an equal probability of 1/T  (T=3 Thus,

ES 6% equals the average of the two lowest valued observations, and ES 9% equals the 

average of the three lowest observations. It can be interpreted as an expectation of yields 

simulation w 2).   
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in the case that a tail event does occur, and thus is a preference free measure of tail-risk.14 

The expected shortfall measure is used rather than the Value-at-Risk (VaR), which 

provides an estimate of the worst loss that one might expect given a tail event does not 

occur, because it is subadditive making it less likely to produce puzzling and inconsistent 

findings in hedging applications (Dowd and Blake 2006).   

 

Data 

The data used are Illinois CRD corn yields for 1971-2002.  Illinois consists of nine 

RD’s.  Temperature data were collected for a location within each CRD.  An attempt 

ade to select the most centralized location in each district (Table 1).  Yield data 

r data 

of 

s 2 and 3.  All estimates are obtained 

y minimizing SV as outlined above assuming a constant price of $2.50/bu.16  Results are 

ple (Table 2), and then for the 2nd half (Table 3) sub-sample 

C

was m

were obtained from the National Agricultural Statistics Service website, and weathe

from United States Historical Climatology Network (USHCN) website.  The state level 

(i.e. aggregated) yield and ACDD index measures were calculated as a simple average 

the individual district yields and ACDD indexes.15

 

Results and Discussion 

The results of the hedging analysis appear in Table

b

presented for the full-sam

period which provides an out-of-sample dimension to the analysis.  Out-of-sample 

estimates in Table 3 are obtained by applying the in-sample solution for the 1st half of the 

sample to the 2nd half of the sample.  

 16



Within the tables, the “Average of Districts” column statistics are calculated as 

the average of the individual district statistics, and are presented as a basis of comparison 

to the “

 

resulting from the addition of a WD is 

negativ S a 

r 

on pricing.  

Hedgin

t low 

 crop yields. 

State (aggregated)” portfolio statistics which are obtained by averaging the data 

across districts (i.e. aggregating) and then performing the analysis.  Notice, if the weather 

effects captured by an ACCD index across districts are relatively uncorrelated and/or the

other factors affecting yields are strongly correlated then the “State (Aggregated)” results 

will closely mirror the “Average of Districts” results.  Thus, substantial differences in the 

risk-reducing effectiveness of WDs for the “State (Aggregated)” portfolio compared to 

the “Average of Districts” portfolio indicates that the risk reduction offered by WDs at 

the aggregate level is stronger than what would be implied by evaluating the hedging 

effectiveness of the individual districts separately. 

Statistics measuring changes in RMSL and ES are calculated relative to the 

unhedged yield exposures.  If the change in RMSL 

e (positive) then the WD is risk-reducing (risk-enhancing), whereas for the E

positive (negative) change implies risk-reduction (risk-enhancement).   

The results for the full sample are presented in Table 2.  The return is the same fo

all hedged and unhedged portfolios in-sample, a direct result of fair opti

g effectiveness varied widely across districts, with reductions in RMSL (change in 

ES 6%) ranging from 11.45% ($15.58) in the Southwest D80 (East Southeast D70) 

region when hedging with swaps, to 41.76% ($67.76) for Southeast D90  

(Southeast 90) when hedging with call options.  The large variability indicates that a

levels of aggregation there is a high degree of idiosyncratic risk present in

Hedging with options was consistently more effective than hedging with swaps 
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due to the presence of strong non-linear temperature effects.  The superior performance 

of optio

 

) 

r the full-sample (Table 2) show that the RMSL (ES 6% and 

9%) is d 

mine 

 hedging will be more effective at larger levels of aggregation.  For this we 

must tu

d)” portfolio for the full sample, 

43.31%  in 

ation 

er 

 

ns, which is illustrated in Figure 2, is consistent across risk measures.  For 

example, in Table 2 the “State (Aggregated)” portfolio reduction in RMSL (change in ES

6%) was 43.31% ($59.91) when hedging with options compared to 31.88% ($46.37

when hedging with swaps.   

Next, we turn attention to investigation of the spatial aggregation effect.  The 

unhedged portfolio results fo

(are) lower (higher) for the “State (Aggregated)” portfolio, $39.80 ($235.38 an

$255.18), than for the “Average of Districts” portfolio, $45.42 ($221.48 and $235.55).  

This result implies that yield risk “self diversifies” to some extent in the aggregate 

portfolio.   

The comparison of unhedged portfolios, however, does not allow us to deter

whether WD

rn attention to the hedged portfolios.  We restrict attention to portfolios hedged 

with options for the remainder of the discussion.  The results from the swap hedging 

analysis, however, lead to similar conclusions.   

All estimates of hedging effectiveness support the aggregation argument.  

Reduction in the RMSL for the “State (Aggregate

, was greater than for the average of the districts, 28.93%, an improvement

hedging effectiveness of approximately 50% over what is implied by separate evalu

of the individual districts on average.  The intuition behind this result is that the weath

effects are strongly correlated across the districts while the other effects are relatively less

correlated.  Thus, the aggregated exposure is highly systemic and a substantial portion of 
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this can be effectively managed using WDs.  The ES measure leads to similar 

conclusions.  For instance, the full-sample results indicate an ES 6% increase of $59.91 

for the State portfolio, versus $46.57 for the averaged district portfolios.   

The hedging effectiveness results were also stronger for the “State (Aggregated)”

portfolio than for any of the individual districts.  For instance, Table 2 show

 

s that the 

reducti

g 

s in 

ow reductions in RMSL of 

25.66% he 

 

 

 and 

 can 

s the 

r proportion of the aggregated 

on in RMSL was greater for the State portfolio, 43.31%, than for any of the 

individual district portfolios, the next closest being 41.76% for D90.  Also, the hedgin

effectiveness for the individual districts varied widely across districts with reduction

RMSL ranging from 41.76% for D90 to 13.81% for D80. 

The out-of-sample results lead to similar conclusions.17  The out-of-sample 

estimates for the 2nd half (Table 3) of the sample period sh

 for the State portfolio, versus 16.85% for the averaged district portfolios.  T

change in ES as well as the level of ES was greater for the State portfolio in all out-of-

sample cases.  For instance, Table 3 shows that the ES 6% (9%) was $291.85 ($296.17)

for the State portfolio versus $268.41 ($279.99) for the averaged district portfolios.  On

average, the hedging effectiveness for the out-of-sample results in this study, which 

employs simple seasonal temperature contracts, are comparable to those obtained by 

VB’s (2004) analysis which employs complex combinations of monthly precipitation

temperature derivatives.  This suggests that although substantial amounts of yield risk

be hedged using WDs, the marginal risk of overfitting weather hedges increases 

substantially as more complex instruments are employed. 

The findings suggest that aggregating individual production exposures ha

effect of reducing idiosyncratic yield risk, leaving a greate
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portfoli  

he study investigates whether WDs are more effective for hedging yield exposures at 

mall levels of aggregation.  This study builds on earlier research in some 

s 

higher 

ive 

, and 

or 

reinsurance versus the primary 

level, s

os total risk in the form of systemic weather risk, a substantial portion of which

can be effectively hedged using WDs.  These results support the notion that WDs may be 

more useful than previously thought, particularly for aggregators of risk such as 

re/insurers.  In addition, the results show that the use of relatively simple temperature 

contracts can achieve reasonable hedging effectiveness.     

 

Conclusion 

T

large versus s

important dimensions.  We establish a simpler but clearer link between yields and 

temperature indexes and highlight how market agents may employ relatively simple WD

to hedge yield risk.  Also, we establish a link between temperatures and yields at a 

level of aggregation than previous studies.   The high performance of the temperature 

contracts in hedging systemic risk is related to three factors: the autocorrelations in 

month-to-month temperatures (Namias 1986; Jewson and Brix 2005), the highly negat

correlations between temperature and precipitation in extreme events (Namias 1986)

the non-linear response of yields to temperatures (VB 2004; Dixon et al 1994) which 

emerges most noticeably at higher levels of aggregation. 

The study provides two contributions.  First, a conceptual basis is established f

the notion that WD hedging may be more effective at the 

uggesting the potential of WDs for re/insurers.  Second, the empirical evidence 

substantiates the presence of the aggregation effect which supports the proposition that 

WDs, although likely not useful for individual producers, may provide benefits for 
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aggregators of risk such as re/insurers.  Further, the use of simple temperature derivative

may provide risk management benefits which are reasonably effective and also more

consistent than those provided by complex multivariate WDs.  Given the problems that 

systemic weather risk has caused in crop insurance markets and also considering that 

crop insurance is now widespread with more than 75% of corn and soybeans planted in 

2003 insured (Coble et al 2004), our findings may be of interest to market-makers, 

re/insurers, and policy makers.  In addition, the aggregation effect outlined here may also

be applicable to other domains such as natural gas consumption. 

Several qualifications are in order.  First, this study only considers WDs written 

on local and relatively remote weather stations.  It is likely that th

s 

 

 

e transaction costs 

associa

itten 

ield hedging applications 

involvi surer 

 risk 

ted with negotiating WDs in the OTC market on remote weather stations would 

entail high transaction costs and render these contracts infeasible.  However, WDs wr

on ACDD indexes for major international cities trade on the CME.  Given the great 

potential liquidity for these CME contracts and the high degree of spatial correlation in 

temperatures, an assessment of geographical basis risk for larger areas using CME 

contracts may be an interesting area of future research.   

This analysis does not consider actual re/insurer portfolios, but rather only 

establishes the basis for the spatial aggregation effect in y

ng WDs.  It is likely, however, that yield risk is a reasonable proxy for re/in

risk.  For instance, Hayes, Lence and Mason (2004) find that the RMA’s reinsurance

stems mostly from yield, or quantity, risk.  Still, future research of WD hedging with 

special attention to specification of the re/insurer portfolio is needed.  This may also 

include addressing price risk, which is not considered here.  Given the growing 
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popularity of revenue products and the interaction between prices and yields at the 

aggregate level, optimal hedging of the re/insurer portfolio may involve simultan

determination of optimal hedge ratios with both price and weather derivatives.   

eous 
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Footnotes 

1 Other explanations for low producer participation include crowding-out by other risk 

management tools and government programs (Wright and Hewitt 1994; and Schmitz, Just 

and Furtan 1994), heterogeneity in the financial conditions of farms (Leathers 1994), and 

the whole farm portfolio diversification effect (Schoney, Taylor and Hayward 1994). 

2 Most insurance markets have some degree of systemic risk.  For example, life insurance 

may be sensitive to interest rates, and health insurance markets may be sensitive to health 

care cost inflation.  Agricultural insurance markets, however, are unique in that the 

degree of systemic risk is so high that private markets have failed to develop without 

extreme government intervention. 

3 Hayes et al investigate reinsurance hedging for the Risk Management Agency (RMA), 

the government agency which administers the federal crop insurance program.  Although 

the RMA is technically a reinsurer, it is likely that the high degree of systemic risk in 

agricultural insurance markets exposes reinsures to the same fundamental problem faced 

by insurers in bearing systemic risk.  Because the exposure to systemic risk is similar, we 

don’t differentiate between hedging by the insurer and reinsurer in the discussion. 

4 VB (2004) investigate the hedging effectiveness of WDs at the CRD level and make the 

assumption that farmer level yield risk is accurately reflected in CRD level yield risk.  

They acknowledge, however, that typical farmer yields are likely much riskier than CRD 

yields. 

5 Preliminary analysis strongly suggested the presence of a self-diversifying aggregation 

effect.  The average correlation among individual district detrended yields was 0.746. 
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Also, the data suggests that the variance of aggregate yields was significantly less than 

the variance of the individual yields. 

6 The disperse nature of rainfall in the summer months, which is frequently generated by 

spatially sporadic thunderstorms, contributes to the insurance portfolio’s ability to self-

diversify.  On aggregate however, rainfall and temperature tend to be highly correlated 

during drought events. 

7 In addition, preliminary analysis strongly supported the spatial aggregation hypothesis.  

Preliminary analysis was conducted by regressing individual district detrended yields on 

the temperature and temperature-squared indexes for all districts.  The average of the 

district adjusted R-squares was 0.366, versus 0.526 for aggregated yields.  The average 

correlation of the temperature effects across all districts was 0.72, and the average 

correlation of the residuals was 0.52.  

8 This procedure does not impose any distributional assumptions on the residuals but 

removes their central tendency (VB 2004). While OLS is inefficient when errors are not 

normally distributed, the econometric properties of an uninterrupted series independent 

variable as well as the level of skewness typical of corn yields can permit OLS to 

generate better crop yield coefficient estimates than many robust regression methods 

(Swinton and King 1991). 

9 The assumptions of BA are that the historical index time series is stationary, and 

statistically consistent with the prevailing climate during the contract period (i.e., the 

historical distribution of weather accurately reflects the true underlying distribution), and 

that the values are independent across different years (Jewson and Brix 2005).  
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Regressing the temperature indexes on a linear trend suggested no significant warming or 

cooling trends in our data. 

10 We offer BA as a sufficient pricing method.  While a change in the contract price 

would uniformly shift the ex-post revenue of the buyer up or down, this would not affect 

the payment schedule and the correlation between losses and payoffs embedded in the 

contract structure (VB 2004). 

11 Most exchange traded swap contracts, such as those traded on the CME, are settled 

daily and are technically known as futures contracts.  Most OTC swap contracts are 

settled at the end of the contract and are known as forwards.  This study uses derivatives 

that are settled as forwards, and assumes that borrowing and lending exists at the risk-free 

rate.  It is unlikely that settlement method would change the qualitative results in a 

significant way. 

12 CME exchanged traded WDs do not exist for these specific locations, introducing 

additional geographic basis risk to the results.  Analysis of this basis risk may be a 

promising area of future research.   

13 The ES measure used here is based on the revenue distribution, and is thus a 

modification of the measure reported in Dowd and Blake 2006, which is calculated in 

terms of the loss distribution. 

14 The ES measure has also been referred to as the Conditional Tail Expectation, 

Expected Tail Loss, Tail VaR, Conditional VaR, Tail Conditional VaR, and Worst 

Conditional Expectation. Alternatively, ES can be interpreted as the utility of tail-risk for 

an agent with risk neutral tail-risk preferences. 
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15 The choice of weighting scheme for the districts is not central to the findings. The 

analysis was also conducted using a production weighted average which as expected 

produced slightly stronger aggregation effects.   

16 Similar to previous research, the results are presented in terms of revenues assuming a 

constant price.  Thus, we do not address price risk, but rather restrict analysis to quantity 

risk only.  Evaluation of the price-quantity interaction effect, however, may be an 

interesting area of future research. 

17 In-sample estimates of two sub periods, 1971-1986 and 1987-2002, were highly 

consistent with the out-of-sample estimates.  For example, separate analysis of the in-

sample sub periods (not reported) revealed reductions in RMSL ranging from 3.88% 

(26.02%) in the 1st half of the sample, to 42.59% (4.68%) for the 2nd half for district D20 

(D80), whereas the State portfolio RMSL’s ranged only from 40.24% to 58.66%.   
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Table 1. Selected Weather Stations for 

 Illinois Crop Reporting Districts 

District City County 
D10 Northwest Dixon Lee 
D20 Northeast Ottawa LaSalle 
D30 West LaHarpe Hancock 
D40 Central Lincoln Logan 
D50 East Hoopeston Vermillion 
D60 West Southwest Whitehall Greene 
D70 East Southeast Olney Richland 
D80 Southwest Sparta Randolph 
D90 Southeast Mcleansboro Hamilton 
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aThe table presents results of the hedging analysis under the assumed objective of minimization of SV with an assumed constant price of 

$2.50/bu.  In-sample estimates were obtained by optimizing the objective with respect to the WD weight (WD weight and optimal strike) 

when hedging with swaps (options).  Statistics measuring changes in RMSL and ES are calculated relative to the unhedged revenue 

exposures.  “Average of Districts” column statistic values were obtained by averaging the individual district statistic values and is provided 

to serve as a basis of comparison to the “State (Aggregated)” results.  A decrease (increase) in the RMSL corresponds to a reduction 

(increase) in risk as a result of the addition of a WD.  In contrast, an increase (decrease) in the ES indicates a reduction (increase) in risk 

exposure from adding a WD. 

Table 2a. Hedging Results of Historical Simulation, In-Sample Estimates, Full Sample, 1971-2002 

 District   
 D10 D20 D30 D40 D50 D60 D70 D80 D90 Average of State 

          Districts  (Aggregated) 
            
Unhedged            
Avg. Yield 152.09 147.44 151.81 158.60 144.36 157.66 139.80 123.89 126.29 144.66 144.66 
RMSL 43.07 42.06 48.90 50.42 52.97 42.89 43.07 41.07 44.34 45.42 39.80 
ES 6% 240.56 237.91 224.41 235.23 201.04 251.92 227.55 192.83 181.88 221.48 235.38 
ES 9% 258.39 246.09 235.74 252.45 216.20 277.84 241.14 195.22 196.93 235.55 255.18 
            
Hedged: Swap            
Weight                             
(contracts/acre, $1 tick) 0.17 0.19 0.26 0.31 0.33 0.28 0.27 0.15 0.30 0.25 0.27 
Swap Fair Strike 644.26 803.91 798.75 851.04 804.03 907.38 1000.38 1092.37 994.53 877.40 877.40 
RMSL 36.62 35.78 39.71 35.94 33.94 28.33 34.25 36.36 29.35 34.47 27.11 
Change RMSL -6.45 -6.29 -9.19 -14.48 -19.04 -14.56 -8.82 -4.70 -14.99 -10.95 -12.69 
% Change RMSL -14.97 -14.95 -18.80 -28.72 -35.94 -33.95 -20.48 -11.45 -33.80 -23.67 -31.88 
ES 6% 268.96 265.89 253.94 276.25 263.69 318.32 243.14 216.71 230.44 259.71 281.75 
ES 9% 281.75 268.19 273.14 292.36 270.04 326.55 258.27 222.80 234.68 269.75 284.68 
Change ES 6% 28.41 27.98 29.53 41.03 62.65 66.40 15.58 23.88 48.57 38.23 46.37 
Change ES 9% 23.36 22.10 37.40 39.91 53.85 48.72 17.13 27.59 37.75 34.20 29.49 
            
Hedged: Call Option            
WEIGHT  (contracts/Acre, 
$1 tick) 2.44 0.69 0.59 0.73 0.56 0.39 0.69 0.18 0.54 0.76 0.68 
Optimal Call Strike 864.96 875.89 876.00 920.78 819.00 929.68 1056.00 943.00 1014.00 922.15 953.48 
RMSL 28.15 34.54 37.08 32.74 32.00 30.05 32.94 35.40 25.82 32.08 22.56 
Change RMSL -14.91 -7.53 -11.82 -17.68 -20.98 -12.84 -10.13 -5.67 -18.52 -13.34 -17.23 
% Change RMSL -34.63 -17.90 -24.17 -35.06 -39.59 -29.93 -23.51 -13.81 -41.76 -28.93 -43.31 
ES 6% 296.46 254.24 265.16 290.69 263.34 314.05 257.82 221.10 249.64 268.06 295.29 
ES 9% 304.80 273.51 274.00 306.76 271.39 319.75 264.94 227.23 253.43 277.31 302.31 
Change ES 6% 55.90 16.33 40.75 55.46 62.30 62.13 30.26 28.28 67.76 46.57 59.91 
Change ES 9% 46.41 27.42 38.26 54.31 55.19 41.91 23.80 32.01 56.51 41.76 47.13 
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Table 3a. Hedging Results of Historical Simulation, 

Out-of-Sample Estimates, 1987-2002 

 Average of State 
Hedged: Call Option Districts  (Aggregated) 

   
MRSL 25.56 19.65 
Change MRSL -5.93 -6.78 
% Change MRSL -16.85 -25.66 
ES 6% 268.41 291.85 

ES 9% 279.96 296.17 
aThe table presents out-of-sample estimates for the 

second half of the data period (1987-2002) when 

hedging with call options.  Out-of-sample estimates are 

obtained by applying the optimal hedge estimated from 

the first half of the data period to the second.   
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 Figure 1. Spatial aggregation effect and weather hedging 
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Figure 2. Illinois state corn yields (bu/acre)
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