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Abstract

Many natural systems have the potential to switch between alternative dynamic behaviors. We
consider a system with two distinct equations of motion thatare separated by a threshold value
of the state variable. We show that utility maximization will give a decisionmaking rule that
is consistent with ecosystem-based management objectivesthat aim to reduce the probability
that the system crosses the threshold. Moreover, we find thatincreasing uncertainty (both
uncertainty embedded in the natural system and uncertaintyof the decisionmaker about the
location of the threshold) can lead to nonmonotonic changesin precaution. Although small
increases in uncertainty may at first increase precaution, large enough increases in uncertainty
will lead to a decrease in precaution.
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Many natural systems can be divided into domains with distinct system dynamics. In such

multistate systems, the equation of motion changes discontinuously or nonlinearly when system

variables such as climate, nutrient flux, or human harvesting rates are changing gradually [20, 27].

For example, shifts in system dynamics have been observed inecosystems such as freshwater

lakes [28], coral reefs [15], riparian meadows [6], tropical forests [29], and savanna [26]. At a

much larger scale, multiple stable states separated by discontinuous shifts are also thought to be

important processes in climate change and global biogeochemical cycles [3, 30]. A key feature

of multistate ecosystems is that environmental monitoringthat occurs in one stable domain of the

system has little or no predictive power about proximity to athreshold and shifts to alternative sta-

bility domains [27]. Consequently, ecosystem management strategies that are based strictly around

the attainment of fixed environmental targets, or that view small perturbations to such targets as

sustainable, may lead to unexpected, catastrophic collapse and accompanying ecologic and eco-

nomic damages to ecosystem functions [25]. Recent researchin ecology has emphasized the need

to increase the resilience1 and stability domains of desirable ecosystem states as the primary goals

of scientifically-based ecosystem management [20, 27].

In this study, we analyze a multistate system with two distinct domains that are separated by a

possibly unknown, reversible threshold. We assume that theunderlying stochastic natural process

and management actions together determine which domain thesystem is in, and thus the appropri-

ate equation of motion. The contributions of this paper are as follows: First, under our model setup

we obtain a differentiable value function, even at the threshold. Thus, while earlier studies had

to rely on numerical simulations, we use stochastic dynamicprogramming to obtain an analytical

solution as well as comparative statics results on precautionary behavior. Second, we show that

utility maximization yields a decision rule with precautionary behavior if the system is close to

the threshold, thereby increasing system resilience. Third, as the variance in the stochastic com-

ponent of thenatural systemthat determines whether the threshold is passed increases,the level

of precautionary behavior may first increase, but for large enough variance will eventually always

decrease. Fourth, we show that there is also a nonmonotonic relationship between the uncertainty

of theutility maximizerabout the unknown threshold and precautionary behavior. Intuitively, if a

decisionmaker knows with certainty that he/she is right below the threshold, there is no expected

benefit from engaging in precautionary reductions. Once uncertainty increases (either about the

natural system or the utility maximizer’s belief about the threshold), so does the probability that

1There are several definitions of resilience in the ecology literature. The Resilience Alliance research consortium
defines it as ”the capacity of an ecosystem to tolerate disturbance without collapsing into a qualitatively different state
that is controlled by a different set of processes.”
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the threshold will be crossed and hence precautionary reductions in loading have a payoff from

lowering that probability. If the uncertainty continues togrow, the decisionmaker will eventually

feel he/she has no knowledge at all and precautionary reductions will be too costly compared to

the negligible reduction in the probability that the threshold is crossed. These results are different

to previous results from analyses of both reversible multistate systems and reversible catastrophic

systems with instantaneous penalty functions, where it hasbeen argued that increased threshold

uncertainty always leads to an increase in precautionary behavior [5, 18, 32, 33], or that the thresh-

old and associated uncertainty have no effect on precautionary behavior [25].

Several strands of economic research are relevant to the problem of optimal resource manage-

ment when catastrophic events can occur. The most common wayof modeling catastrophes in

the economic literature is to consider catastrophic eventsas penalty functions with an associated

hazard rate. The state of the resource – and hence optimal economic behavior – may or may not

influence the probability of event occurrence. By using survival probability as a state variable,

the optimization problem can then be treated as a deterministic control problem. In general, an

irreversible catastrophe is viewed as instantaneously andpermanently reducing social welfare to

zero (e.g. [9]), whereas a reversible catastrophe is modeled as imposing an instantaneous penalty

equal to the sum of damages from the catastrophes and healingcosts for the resource (e.g. [32, 33]).

When catastrophic, irreversible thresholds exist, economic studies suggest that some precau-

tionary reduction in economic activity may be desirable. Examples of irreversible thresholds that

have been studied by economists include species extinction, collapse of thermohaline circulation

[17], disintegration of the West Antarctic ice sheet [24], and aquifer salinization [31, 33]. Many

of these studies find that increasing uncertainty decreasesthe amount of managers’ precaution.

Clarke and Reed [9] show that an exogenous increase in the risk of catastrophe can increase or

decrease the degree of precaution undertaken by resource managers behaving optimally. Tsur and

Zemel [32, 33] argue that such nonmonoticity in behavior as afunction of increasing risk is a

characteristic of irreversible catastrophes, resulting from the tradeoff as pollution levels increase

between increasing hazard rate and a decreasing penalty function (because the value function is

decreasing in pollution level). Conversely, Tsur and Zemelargue that for reversible events with an

instantaneous penalty function, increasing pollution increases both the hazard rate and the penalty,

so that exogenous increases in the risk of a catastrophe always increase the degree of precaution.

Finally, Tsur and Zemel [33] show that in the absence of exogenous uncertainty in pollution, when

the only uncertainty is in the location of the threshold, increasing uncertainty always makes the

3



manager more careful. In these latter papers, it is never desirable to cross the threshold, and once

it has been located, it is never crossed again. Note that in this strand of literature, an increase in

uncertainty corresponds to an increase in the hazard rate. In our model this need not be the case

as the threshold separates domains with distinct system dynamics rather than representing an in-

stantaneous penalty function. Thus, depending on current state, an increase in uncertainty in our

model can increase or decrease the probability of switchingbetween states.

A smaller body of literature considers thresholds not in terms of penalty functions but as points

or regions in which system behavior switches between alternative states, where one state is viewed

as more ‘desirable’ than the other, either in terms of economic or ecologic benefits. Most economic

models of environmental systems with reversible thresholds and multiple dynamic states assume

perfect knowledge of system dynamics and focus on target trajectories to optimal steady states

[2, 14, 19]. The majority of these studies have analyzed lakeecosystems, where excess nutrient in-

puts can cause switching from oligotrophic to eutrophic states. Such environmental systems have

been modeled in two ways. First, some studies use continuousnonconvex equations of motion

that show a rapid change in system behavior over a small interval (e.g. [2, 14, 16, 19]); to date,

these types of system have only been solved numerically. Second, some studies use multiple equa-

tions of motion with switches occurring when a threshold is crossed (e.g. [5, 18, 25]). In general,

these studies use numerical approximation methods and suggest that optimal policy choices are

insensitive to threshold proximity. An exception is Naevdal [23], who uses a deterministic optimal

control model with a jump equation at the threshold to obtaina mix of analytical and numerical

solutions and shows that for at least some parameter values,the optimal control ‘chatters’ around

the threshold.

Finally, a broad definition of a catastrophic event can include extinction of a renewable re-

source. Analysis of the conditions under which extinction may be optimal goes back to the de-

terministic model of Clark [7], who showed that if the resource growth rate is below the discount

rate, immediate extinction of the resource is economicallyrational. More recent work shows that

in stochastic systems, it is also necessary to consider characteristics of the welfare function, non-

concave biological growth functions, and the initial stocksize in determining optimal outcome

[12, 21, 22]. Olson and Roy [21] find that the choice between conservation and extinction may

be complex: for example, an increased but uncertain productivity can reduce the range of ini-

tial stocks for which conservation is efficient, and therefore increase the likelihood of extinction.

There is also an analogous literature on optimal nonrenewable resource extraction, where extrac-
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tion occurs while the ultimate size of the resource is unknown (in this case, the ‘threshold’ event

is exhaustion of the resource). Cropper [11] showed that when reserves are uncertain, the optimal

path of planned extraction is no longer necessarily monotonic.

The paper is laid out as follows. In Section 1, we present the basic model we use in our

analysis. In the following section (Section 2), we derive results and analyze the case when there

is stochastic pollutant loading but the threshold locationis known. In Section 3, we extend this

analysis to the case where threshold location is also uncertain. Following this, we reconcile the

differences between our results and those of previous studies in Section 4. Finally, we explain the

policy implications of our results.

1 Modeling framework

We begin by presenting a minimal model for the management of amultistate ecosystem with a

reversible threshold that describes the dynamics of an undesirable ecosystem pollutant or charac-

teristic,Xt, through time:

Xt+1 =





BXt + b + lt + vt + u1t if BXt + b + lt + vt < Xc

BXt + b + r + lt + vt + u2t if BXt + b + lt + vt ≥ Xc

(1)

The parameterB ∈ [0, 1] represents the proportion of the pollutantX that carries over from one

period to the next,b represents the mean natural input of pollutant to the environmental system, and

lt is the anthropogenic pollutant input. Uncertainty about the system dynamics is captured by the

parametersvt, u1t, andu2t, which are error terms with meansµv = µu1 = µu2 = 0 and standard

deviationsσv, σu1 andσu2 .
2 We assume thatvt is normally distributed, but place no restrictions

on u1t andu2t. Two interpretations of our model are possible: if pollutant levels must be greater

than zero, thenXt can be taken to represent the logarithm of the amount of pollutant at timet, so

that the stochastic input terms follow a lognormal distribution. Alternatively, if we takeXt to be

the pollutant level relative to some baseline, and negativelevels are allowed, thenXt can represent

the pollutant level relative to that baseline, and stochastic inputs are normally distributed. Either

of these interpretations is consistent with the model presented.

2Our baseline model assumesσu1 = σu2 , but the above setup incorporates the case where the additional loadingr
is random. Since the sum of two normal variables is normal again, such a case is equivalent to choosing a non-random
r andσ2

u2
= σ2

u1
+ σ2

r .
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The system represented by the equations forXt+1 has two domains of behavior, separated by

a threshold atXc which may or may not be known with certainty. We assume that when the pol-

lutant level is belowXc, the system is in a desirable stability domain, as for any given natural and

anthropogenic pollutant inputs, the expected pollutant level in the following period will be less

– by an amount equal tor > 0 – than when the current pollutant level is aboveXc. A model

specification similar to ours was used by Petersonet al. [25] to study the dynamics of a fresh-

water lake ecosystem. In that setting, the pollutantX represented phosphorus loading to the lake,

andr represented additional phosphorus recycling that occurred when the lake switched between

oligotrophic (desirable) and eutrophic (undesirable) states at the thresholdXc. Petersonet al.’s

model assumes that current management actions and pollutant loading have no effect on recycling

in the current period, but only in future time periods. In this paper, we make the more realistic

assumption that threshold crossings (such as caused by phosphorus recyling) depend not only on

the carryover from the previous period but also on current loading and an error componentvt. An

intuitive interpretation of the error componentvt is that it represents uncertainty in thenatural

system. This may be because the threshold itself may be subject to some movement, ecosystem

processes operate at differing rates, or real ecological thresholds may involve multiple interacting

slow and fast variables [4]. The advantage of includingvt is that the resulting value function is

concave, continuous, and differentiable, even atXc. As a result, we are able to obtain an exact

analytical solution to the optimization problem, rather than requiring numerical approximations

such as those used in previous studies [5, 18]. Our approach allows us to analyze the range and

characteristics of optimal behavior in much greater detailthan existing studies that use numerical

solution methods.

We assume that society derives economic benefits from the ability to increase the pollutant

loading of the environmental system. These benefits are given in each period by the utility function

U(lt, Xt) = klt − X2
t . Examples of such benefits might include the capacity of ecosystems to

assimilate waste by-products from industry or agriculture, or the value of ecosystem functionality

in maintaining habitat. Note that from society’s point of view, the utility function shows a tradeoff

between the benefits of allowing increased pollutant loading and the negative consequences of the

increased pollutant stock.
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2 Optimal management with certain threshold location

We consider the problem of a decisionmaker choosing a value for the anthropogenic portion of

pollutant loading in each time period,lt, so as to maximize the discounted value of all future

utilities derived from the environmental system. We begin by assuming that the decisionmaker

knows the exact location of the threshold. Given a per-period discount factor ofδ, the maximization

problem is then given by

V (Xt) = max
{lt}∞t=0

∞∑

t=0

δt
[
klt − X2

t

]

s.t.Xt+1 =





BXt + b + lt + vt + u1t if BXt + b + lt + vt < Xc

BXt + b + r + lt + vt + u2t if BXt + b + lt + vt ≥ Xc

(2)

wheref1(u), f2(u), andg(v) are the density functions ofu1, u2, andv, andF1(u), F2(u), andG(v)

are the corresponding cumulative density functions. Recall that all error terms are mean zero. We

assume thatv is normally distributed, but place no restrictions onu1 andu2.
The Bellman equation of the value function that equals the discounted value of all future utili-

ties is

V (Xt) = max
lt

{
klt − X2

t + δE [V (Xt+1)]
}

= max
lt

{
klt − X2

t + δ

∫ Xc−BXt−lt−b

−∞

∫ ∞

−∞

V (BXt + lt + b + v + u)f1(u)du g(v)dv +

δ

∫ ∞

Xc−BXt−lt−b

∫ ∞

−∞

V (BXt + lt + b + r + v + u)f2(u)du g(v)dv

}
(3)

For ease of notation, definec(Xt, lt) = BXt + lt + b. Note that the maximization in the Bellman

equation is with respect to loadinglt, so that all other variables are constants. The next proposition

establishes that under the optimal loadingl̂t, c(Xt, l̂t(Xt)) = BXt + l̂t(Xt) + b = c̄ is independent

of Xt, which we use in the consecutive proof that the value function is differentiable (both proofs

are given in the Appendix).

Proposition 1 Under the optimal loadinĝlt, c(Xt, l̂t(Xt)) is independent ofXt

This aries from the fact that the dynamic programming equation can be rewritten as

V (Xt) = max
c

{
kc + δ

∫ Xc−c

−∞

∫ ∞

−∞
V (c + v + u)f1(u)du g(v)dv +

δ

∫ ∞

Xc−c

∫ ∞

−∞
V (c + r + v + u)f2(u)du g(v)dv

}
− k[BXt + b] − X2

t (4)
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Proposition 2 V (X) is concave and differentiable withV ′(X) = −Bk − 2X

We will briefly outline the idea behind the second proof and give some intuition why the value

function is differentiable even atXc.

The proof uses a contraction mapping argument. Contractionmappings have a unique fixed

point, which is the value function: continuous applicationof the contraction mapping will lead to

convergence towards the value function. The first step is to establish that the Bellman equation

constitutes a contraction mapping. In the second step we show that the Bellman equation maps

concave functions into concave functions. We can hence start with an arbitrary concave function,

and after repeatedly applying the contraction mapping, we will converge to the true value function,

which must be concave as well. In the third step we use the result of Benveniste and Scheinkman

[1] that gives conditions under which concave functions aredifferentiable.

The reason why the value function is differentiable even atXc lies with the error termvt. Re-

call thatvt enters the equation that determines whether the threshold is passed. Start with the case

whereσv = 0, so that there is no uncertainty whether the threshold is crossed or not. If we slightly

perturb the loadingBXt + b + lt aroundXc, the equation of motion has a discrete discontinuous

jump equal tor > 0 and hence the value function would not be continuous either.However, as

long asσv > 0, there is no discrete jump as the system crosses the threshold dependent on whether

BXt+b+ lt is less or more thanXc−vt. By design,vt has a continuous probability distribution, so

changing the combined loading shifts this continuous probability distribution of the discontinuous

jump, which ensures that the value function is itself differentiable. Note thatσv can be as small as

desired, so long as it is nonzero.

Using the fact thatV is differentiable we can now solve for the optimal loadingc̄ by maximizing

the right hand side of the Bellman equation.

Proposition 3 The optimal combined loading is given by

c̄ =
k

2

[
1

δ
− B

]
− r

[
1 − Φ

(
Xc − c̄

σv

)]
−

1

2σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + σ2

u2
− σ2

u1

]

The derivation is again given in the Appendix.

Several things deserve further explanation. First, the above equation includes the results of

[25] as special cases. A model with no additional inputr is equivalent to saying thatXc = ∞,

which implies thatφ
(

Xc−c̄
σv

)
= 0, Φ

(
Xc−c̄

σv

)
= 1 and hence the expected stock in the next period

is E[Xt+1] = c̄ = k
2

[
1
δ
− B

]
. On the other hand, if the additional inputr is always present,

Xc = −∞, which implies thatφ
(

Xc−c̄
σv

)
= 0, Φ

(
Xc−c̄

σv

)
= 0, and hence the expected stock in
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the next period isE[Xt+1] = c̄ + r = k
2

[
1
δ
− B

]
. Note that when there is certainty whether the

additional pollutant input termr is present or not, the expected stock in the next period isk
2

[
1
δ
− B

]

in each case, which we call thetargetstock. Furthermore, let the precautionary reduction in next

period’s expected state variable beE[Xtarget − Xt+1], i.e. the drop in the state variable below the

level that is desirable if the manager knows whether the system is below or above the thresholdXc.

Figure 1 shows both the optimal combined loadingc̄ (left panel) and the expected state variable in

the next period (right panel). Each graph displays the solution for various values ofσv, while all

other parameters are taken from [25].

Second, if the variances of the error termsu1 andu2 are the same, then they do not enter the

results at all, and have no influence on optimal loading. Thisis the case because we model a

reversible system and hence any arbitrary shock to the system can be completely counterbalanced

in the next period (andu does not impact whether the thresholdX is crossed or not). As mentioned

before, if the additional loadingr is not deterministic but itself random, thenσ2
u2

> σ2
u1

, which

further reduces̄c.

Third, uncertainty in the form of the error termv influences the optimal loading. Recall that the

error termv is partially responsible in determining whether the additional inputr is present or not:

switching to the undesirable state occurs ifBXt + lt + b + vt ≥ Xc. Uncertainty about whether

the threshold has been crossed and the additional inputr is present induces the decisionmaker to

become more cautious so that the following period’s expected state variable is belowXtarget in

the right panel of Figure 1. We briefly establish that the precautionary reduction in next period’s

expected pollutant stockE[Xtarget − Xt+1] is nonnegative.

Proposition 4 A sufficient condition for the precautionary reductionE[Xtarget −Xt+1] to be non-

negative isXc > 0

Proof: Follows directly fromXtarget = k
2

[
1
δ
− B

]
andE[Xt+1] = c̄ + r

[
1 − Φ

(
Xc−c̄

σv

)]
. Using

the solution for̄c in Proposition 3 we get

E[Xtarget − Xt+1] =
1

2σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + σ2

u2
− σ2

u1

]
≥ 0

We now consider the relationship between uncertainty in pollutant loading and precautionary

behavior in more detail.
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Proposition 5 The optimal combined loadinḡc approachesk
2

[
1
δ
− B

]
− r

2
if σv → ∞

Proof: Recall the equation that implicitly definesc̄ in Proposition 3 (using∆σ2
u = σ2

u2
− σ2

u1
)

c̄ −
k

2

[
1

δ
− B

]
+ r

[
1 − Φ

(
Xc − c̄

σv

)]
+

1

2σv

φ

(
Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u] = 0

Since0 < Φ() < 1 and0 < φ() < 1√
2π

we know that̄c has to be bounded forσv ≥ 1. Hence,

Xc − c̄ is bounded as well and the ratioXc−c̄
σv

approaches zero forσv → ∞ and limσv→∞ c̄ =
k
2

[
1
δ
− B

]
− r

2
.

The intuition is as follows: as uncertainty in the random element of pollutant loadingv in-

creases, the manager’s actions have less and less influence on which state the environmental sys-

tem will be in, and the probability that the system will be in either state approaches one half.

Thus, the optimal loading includes a term that approachesr/2, representing the expected addi-

tional pollutant loading asσv → ∞. The next period’s expected state variable again equals the

target levelk
2

[
1
δ
− B

]
. The right graph of Figure 1 shows that the next period’s expected state vari-

able approaches the flat horizontal linek
2

[
1
δ
− B

]
if σv increases. It is reasonable to ask whether

an increase in uncertaintyσv gives less incentive for precaution and always increases the optimal

loading. As the next proposition shows, such monotonicity of behavior is not found. To the con-

trary, for all possible parameter assumptions one can find a critical valueXc such that an increase

in σv will decrease the optimal loading, increasing precaution as uncertainty increases.

Proposition 6 For all values of parametersB, k, r, δ, andσv, there exists a critical levelXc such

that an increase in the varianceσ2
v decreases the optimal loadinḡc.

Proof: We will show that there exists a critical level for which dc̄
dσv

is negative. Consider̂Xc =
kσv[ 1

δ
−B]+2σ2

v−2rσv [1−Φ(1)]−φ(1)[Bkr+r2+∆σ2
u]

2[rφ(1)+σv ]
.

It is shown in the Appendix that the the optimal combined loading under these parameters is

c̄ = X̂c − σv. This simplifies equations asΦ
(

X̂c−c̄
σv

)
= Φ(1) andφ

(
X̂c−c̄

σv

)
= φ(1).

Using this result in the derivative obtained after totally differentiating the equation that implic-

itly definesc̄ gives (for a derivation see the Appendix):

dc̄

dσv

=
−rφ(1)

σv + φ(1)

[
r + 1

2σv
[Bkr +

kσv[ 1
δ
−B]+2σ2

v−2rσv[1−Φ(1)]−φ(1)[Bkr+r2+∆σ2
u]

[rφ(1)+σv ]
r + r2 + ∆σ2

u]

]
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The last term of the denominator becomes

r +
1

2σv

[Bkr +
kσv

[
1
δ
− B

]
+ 2σ2

v − 2rσv[1 − Φ(1)] − φ(1)[Bkr + r2 + ∆σ2
u]

[rφ(1) + σv]
r + r2 + ∆σ2

u]

=
1

2σv[rφ(1) + σv]

[
Bkrσv + krσv

[
1

δ
− B

]
+ 4rσ2

v + 2r2σv[Φ(1) + φ(1) − 1] + σv[r
2 + ∆σ2

u]

]

which is positive as0 < δ, B < 1 and hence1
δ
− B > 0 as well asΦ(1) + φ(1) − 1 > 0.

The proceeding proposition implies that for all values of the parametersB, k, r, δ, andσv,

there is a critical threshold level for which the regulator becomes more cautious as uncertainty

in pollutant loading increases. While one can always find a threshold levelXc such that dc̄
dσv

is

negative, it is also true that forfixedparameter values and thresholdXc, this derivative becomes

positive asσv increases, so that the level of precaution ultimately decreases.

Proposition 7 For given parameters includingXc, the optimal loading is increasing inσv onceσv

becomes large.

Proof: From Proposition 5 we know thatXc−c̄
σv

approaches zero asσv increases. Usingφ
(

Xc−c̄
σv

)
→

1√
2π

andφ′
(

Xc−c̄
σv

)
→ 0 in the derivative derived in the previous proposition

dc̄

dσv

=
φ
(

Xc−c̄
σv

) [
[Bkr + 2c̄r + r2 + ∆σ2

u] −
[Xc−c̄]2

σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]
]

2σ2
v + 2σvφ

(
Xc−c̄

σv

) [
r + Xc−c̄

2σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]
]

we see thatdc̄
dσv

> 0 as all terms that could potentially be negative approach zero at a faster rate.

Extremely large values ofσv correspond to the case where the manager’s actions have almost

no effect on the probability of a threshold crossing occuring. Thus, if anthropogenic pollutant

loading has almost no influence on whether a threshold crossing will occur, a reduced level of

precaution and increased loading are optimal, as any reduction in loading is too costly compared

to the negligible reduction in the probability of crossing the threshold.

We have shown that thetotal deterministic pollutant loading in any period,c̄, consisting of

the sum of carry-over from the previous period, natural background inputs (not includingr), and

(optimal) anthropogenic inputs, does not depend on the current pollutant level. The optimal pollu-

tant loadinḡc changes nonlinearly as the thresholdXc between stability domains changes (Figure

1). As Xc becomes very large, it becomes very unlikely that transition into the undesirable state
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will occur, and optimal loading approaches a target level,Xtarget, of k
2
[1
δ
− B] (whereδ is the

per-period discount rate), which is then also equal to the expected pollutant stock in the next time

period. Conversely, whenXc becomes small, so that additional loading equal tor is present and

transition from the undesirable state to the desirable state is very unlikely, the optimal loading ap-

proachesk
2
[1
δ
−B]−r, while the expected pollutant stock in the next period once again approaches

the target level. Importantly however, for intermediate values ofXc, the optimal pollutant loading

may be much less than that for both small and large values ofXc, and as a result the next period’s

expected state variable may be much less than the target level predicted whenXc is either small or

large (Figure 1). The intuition behind these results is as follows: if the threshold is either extremely

low or extremely high then precautionary activity is unwarranted. In the former case, decreasing

loading will not significantly change the probability of transition out of the undesirable state. In the

latter case, additional precaution will decrease the probability of transitioning into the undesirable

state only negligibly. However, if there is a possibility ofmoving between states in either direc-

tion, then additional precautionary activity carries an expected economic benefit. Note that our

result assumes a reversible process. With an irreversible or hysteretic threshold, the decisionmaker

would presumably have an even larger incentive to avoid crossing a threshold into the undesirable

state. Finally, we have demonstrated that there is a nonmontonic relationship between increasing

uncertainty in the natural system (as represented by the error termvt) and the optimal combined

loadingc̄, i.e. increasing uncertainty can first decrease the optimalloading but will eventually al-

ways increase it. Intuitively, if a manager is absolutely certain that the system is right below the

threshold, then any precautionary reduction is unwarranted. Once uncertainty about the natural

system increases, so does the probability of crossing the threshold, and hence it might be worth-

while to reduce loadings for a reduction in the probability of crossing the threshold. However, if

the uncertainty about the natural system continues to increase, any reduction in loadings implies

only a negligible reduction in the probability of crossing the threshold and hence is too costly.
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3 Optimal management with uncertain threshold location

To make our problem more realistic we next assume that the decisionmaker is aware of the exis-
tence of the thresholdXc between stability domains, but is uncertain of its location. Define the
probability distribution over the critical value ash(Xc). Hence the dynamic programming equa-
tion (4) now becomes (using conditional expectations ans dropping the time subscript for ease of
notation):

V (X) = max
c

{
kc + δ

∫ ∞

−∞

[∫ Xc−c

−∞

∫ ∞

−∞

V (c + v + u)f1(u)du g(v)dv +

δ

∫ ∞

Xc−c

∫ ∞

−∞

V (c + r + v + u)f2(u)du g(v)dv

]
h(Xc)dXc

}
− k[BX + b] − X2 (5)

The first order condition is the same as in the previous section except that there is an additional
integration overXc. More formally, the revised first-order condition for the optimal combined
loading becomes

δ[Bk + 2c̄] = k − δ

∫ ∞

−∞

[
1

σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + ∆σ2

u

]
+ 2r

[
1 − Φ

(
Xc − c̄

σv

)]]
h(Xc)dXc

And the optimal choice for̄c is given implicitly where

c̄ =
k

2

[
1

δ
− B

]
−

∫ ∞

−∞

[
r

[
1 − Φ

(
Xc − c̄

σv

)]
+

1

2σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + ∆σ2

u

]]
h(Xc)dXc

Note that the solution is simply a weighted average of the optimal c̄ under certainty, where the

weight is given by beliefs over the critical thresholdh(Xc). As before, if the decisionmaker be-

lieves with a high degree of certainty that the threshold is either very high or very low, then optimal

pollutant loadings approachk
2
[1
δ
− B] and k

2
[1
δ
− B] − r respectively; the expected pollutant stock

in the next period,E[Xt+1], approachesXtarget = k
2
[1
δ
− B] in both cases. However, if the deci-

sionmaker is uncertain about the location of the threshold,it is economically optimal to undertake

some precautionary reduction in pollutant loading. Intuitively, we are integrating over the optimal

c̄ in the left graph of Figure 1. This explains why an increase inuncertainty can lead to both an

increase and a decrease in the optimal loading. For the former, assume thath(Xc) places all mass

on Xc wherec̄(Xc) is at its minimum, e.g. aroundXc = 0.4 for σv = 0.2 in the left graph of

Figure 1. An increase in uncertainty implies that more probability mass is put onXc where it does

not pay to be cautious and̄c is larger. Alternatively, a decrease in the optimal loadingis feasible if

initially h(Xc) places most mass on outcomes ofXc wherec̄ is large, e.g.,Xc = 1.4, σv = 0.2 in

the left graph of Figure 1. Increasing the uncertainty will shift more weight on cases where it pays

to be cautious and reduce the loading.

Before we examine the comparative statics results with respect to an increase in the utility max-
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imizer’s uncertainty about the critical thresholdXc, we briefly show that precautionary reductions

in loadings are equivalent to reductions in the expected state variable in the next period below the

target level. This is necessary as the expected pollutant stock in the next period is a functionboth

of the loadingand the endogenous probability that the threshold is crossed.

Proposition 8 An increase inσXc increases the precautionary reduction in the state variable

E[Xtarget − Xt+1] if and only if it decreases the optimal loadingc̄.

Proof: Taking the derivative and noting thatXtarget is a constant we get

dE[Xtarget − Xt+1]

dσXc

= −
dE[Xt+1]

dσXc

= −
d
{
c̄ +

[
1 − Φ

(
Xc−c̄

σv

)]
r
}

dσXc

= −

[
1 + φ

(
Xc − c̄

σv

)
r

σv

]

︸ ︷︷ ︸
>0

dc̄

dσXc

How important is threshold uncertainty in inducing the decisionmaker to reduce pollutant load-

ings as a precautionary measure? In the context of our model,expected ecosystem resilience can

be defined as the expected difference between the threshold and the pollutant stock in the next

period,E[Xc − Xt+1]. With this definition, a large positive value implies high resilience of the

desirable state and a large negative value implies high resilience of the undesirable state. When

the decisionmaker is almost certain that the ecosystem willnot switch between states – whether

it is currently in the desirable or the undesirable state – the expected pollutant stock approaches

the previously defined target levelXtarget. A measure of the extent to which uncertainty about

the location of the threshold induces reductions in pollutant loading in the economic optimum is

thus given by the difference between the target level and thepollutant stock that is expected in the

next period when an optimum policy is followed, namelyE[Xtarget −Xt+1]. This follows because

expected ecosystem resilienceE[Xc − Xt+1] can be decomposed into the difference between the

critical level and a constant target level if resilience is high (Xc − Xtarget), as well as additional

precautionary reductions below this target level (E[Xtarget−Xt+1]). This enables us to look at what

happens to the optimal loading and precautionary reductionin the next period’s pollution stock.

Proposition 9 An increase in the varianceσ2
Xc

can result in nonmonotonic behavior in precau-

tionary reductions, e.g. it can first decrease and then increase the optimal loadinḡc.

Totally differentiating the equation that defines the optimal c̄ in case the threshold is unknown gives

(for a derivation see the Appendix)

dc̄

dσXc

=

∫∞
−∞

[
r
[
1 − Φ

(
Xc−c̄

σv

)]
+ 1

2σv
φ
(

Xc−c̄
σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]
]

dh(Xc)
dσXc

dXc

1 + 1
σv

∫∞
−∞ φ

(
Xc−c̄

σv

) [
r + Xc−c̄

2σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]
]
h(Xc)dXc
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Assuming a normal densityh(Xc) = 1√
2πσXc

e
− [Xc−µXc

]2

2σ2
Xc we get

dc̄

dσXc

=

1
σXc

∫∞
−∞

[
r
[
1 − Φ

(
Xc−c̄

σv

)]
+ 1

2σv
φ
(

Xc−c̄
σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]
] [

1 −
[

Xc−µXc
σXc

]2]
1√

2πσXc

e
−

[Xc−µXc
]2

2σ2
Xc dXc

1 + 1
σv

∫∞
−∞ φ

(
Xc−c̄

σv

) [
r + Xc−c̄

2σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]
]

1√
2πσXc

e
−

[Xc−µXc
]2

2σ2
Xc dXc

Consider the numerator. The termt1 =
[
1 −

[
Xc−µXc

σXc

]]
is positive ifXc ∈ (µXc−σXc , µXc +σXc)

and negative otherwise. Furthermore, the integral
∫ µXc

−∞ t1(Xc)dXc =
∫∞

µXc
t1(Xc)dXc = 0. Hence,

if most of the weight is shifted on regions wheret1 is negative, the overall integral will be negative.

If µXc − σXc > c̄ then the ratioXc−c̄
σv

will be zero for a valuêXc < µXc − σXc , i.e., wheret1

is negative. Furthermore, ifσXc andσv are small, this implies that1−Φ
(

Xc−c̄
σv

)
is approximately

1 on (−∞, X̂c) and 0 otherwise, whileφ
(

Xc−c̄
σv

)
rapidly approaches zero as one deviates from

X̂c. This implies that both
∫∞
−∞ r

[
1 − Φ

(
Xc−c̄

σv

)]
t1h(Xc)dXc < 0 and

∫∞
−∞

1
2σv

φ
(

Xc−c̄
σv

)
[Bkr +

2Xcr + r2 + ∆σ2
u]t1h(Xc)dXc < 0.

Now consider the denominator: since all terms exceptXc−c̄
σv

are positive, andX̂c−c̄
σv

= 0, it is

easy to construct a case where the denominator is positive.

A negative numerator combined with a positive denominator implies that the optimal loading

decreases asσXc increases. The intuition is very similar to the nonmonotonicity with respect to

σv in the certainty case (as the uncertainty about the natural system is replaced with uncertainty

of the utility maximizer about the location of the threshold). An example of the nonmonotonic-

ity is displayed in Figure 2. The x-axis displays the system resilience (Xc − Xtarget), i.e. larger

positive values indicate that the target level (the desiredpollution stock if the system were for

sure in either state for sure) is further below the critical valueXc. The y-axis displays the un-

certaintyσXc . The graph displays contour maps of the precautionary reduction in the expected

pollution stockE[Xtarget − Xt+1]. The grey areas indicate the regions where an increase inσXc

(moving up vertically) will increase the precautionary reduction in next period’s pollution stock (or

equivalently reduce the optimal loading). The white areas,on the other hand, indicate the region

where an increase inσXc reduces the precautionary reduction in next period’s pollution stock.3

As expected ecosystem resilience and the decisionmaker’s uncertainty about threshold location

change, there is a wide variation in the degree of optimal precautionary activity (Figure 2). Even if

3We should note that similar results are obtained for variouscombinations of the parameters, i.e. it is not the result
of one particular set of parameter assumptions.
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the decisionmaker believes that the ecosystem is in the desirable state (has positive resilience), it is

economically optimal to undertake precautionary reductions in loading. The relationship between

precautionary reductions in loading and uncertainty aboutthe threshold location is nonmonotonic.

The parameter space of threshold uncertainty and expected resilience is divided into regions where

increasing uncertainty increases the level of precaution and regions where increasing uncertainty

decreases the level of precaution (Figure 2). For a given expected resilience, as uncertainty in-

creases, it may be optimal first to increase precaution and then to decrease precaution. This result

is one of our key findings, and has an intuitive explanation. If the decisionmaker is almost certain

that ecosystem resilience is very high – in either state – then it is quite unlikely that any combi-

nation of management actions and random shocks will lead to atransition between states. Thus,

a large precautionary reduction in loading is unwarranted as net benefits are almost certain to be

negligible. On the other hand, if the decisionmaker believes that ecosystem resilience is high, but

is unsure of this, then it is possible that transition between states will occur. If resilience is thought

to be negative, the possibility of transition to the desirable state is a good outcome, and thus war-

rants a precautionary reduction in loading. If resilience is thought to be positive, the possibility

of transition to the undesirable state is a bad outcome, and once again a precautionary reduction

in loading is economically justified. This explains why an initial increase in precautionary load

reduction can be optimal as uncertainty increases. However, eventually, an increase in uncertainty

will always reduce precautionary reductions in loadings (Figure 2); if the decisionmaker believes

that the threshold could be almost anywhere, a large reduction in loading is no longer optimal as

the economic benefits are no longer well defined.

We have shown that nonmonotonicity can exist for intermediate values ofσXc and now extend

the analysis to the limiting case where the uncertainty again approaches infinity.

Proposition 10 dc̄
dσXc

approaches zero forσXc → ∞

Proof: Consider the derivative obtained in the previous proposition

dc̄

dσXc

=

1
σXc

∫∞
−∞

[
r
[
1 − Φ

(
Xc−c̄

σv

)]
+ 1

2σv
φ
(

Xc−c̄
σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]
] [

1 −
[

Xc−µXc
σXc

]2]
1√

2πσXc

e
−

[Xc−µXc
]2

2σ2
Xc dXc

1 + 1
σv

∫∞
−∞ φ

(
Xc−c̄

σv

) [
r + Xc−c̄

2σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]
]

1√
2πσXc

e
−

[Xc−µXc
]2

2σ2
Xc dXc

If σXc → ∞ then most of the probability mass will lie whereXc differs greatly fromc̄ and

henceφ
(

Xc−c̄
σv

)
andXcφ

(
Xc−c̄

σv

)
will be close to zero. Hence the denominator approaches one as

the integral approaches zero.
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Similarly, the integral in the numerator is bounded and since it is divided byσXc it will ap-

proach zero onceσXc → ∞. This implies that the entire fraction will approach zero.

4 Discussion

Our results are different to those reported in previous analyses of both reversible catastrophic sys-

tems with instantaneous penalty functions (where it has been argued that increased uncertainty

always leads to an increase in precautionary behavior [32, 33]) and reversible multistate systems

(where it has been argued that threshold uncertainty has little or no effect on precautionary behav-

ior [18, 25]). How can these differences be reconciled?

When the catastrophic event is modeled as an instantaneous penalty, as in Tsur and Zemel’s

[32, 33] studies, an increase in uncertainty corresponds toan increase in the risk of event occur-

rence, and thus always increases precautionary behavior. In a multistate system, uncertainty in

pollutant loadings has a more complicated effect. In particular, large negative shocks in pollutant

loading will reduce the pollutant stock, and may move the system from the undesirable to the de-

sirable state (i.e. a positive utility shock, as the value function is decreasing inX), even when

it may not be economically optimal to do so. As a result, increased uncertainty in the stochastic

component of pollutant loading does not always increase precaution in a multistate reversible sys-

tem. Indeed, for a large enough uncertainty, increasing thevariance of the stochastic component

of pollutant loading will always decrease caution, as in this case, the anthropogenic component of

pollutant loading has almost no influence on the probabilityof a threshold crossing occurring.

The results of our study are also quite different from those reported in previous studies of

multistate environmental systems [5, 18, 25]. Several of these studies have also suggested that

increased threshold uncertainty always increases the degree of precaution [5, 18]. Whereas we

derive exact analytical solutions to the decisionmaker’s problem, previous studies used numerical

approximations to calculate optimal policies, which may have limited the parameter space con-

sidered and the resolution of observable optimal behavior.Indeed, some of the results presented

in both Carpenteret al. [5] and Ludwiget al. [18] show a nonmonotonic relationship between

uncertainty and precaution analogous to that found in this study. However, because of the coarse

resolution of the numerical approximations used, this nonmonotonicity is either unreported [5] or

reported as a numerical artifact [18]. In light of our analysis, an alternative interpretation is that the
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level of precaution may increase or decrease as uncertaintyis resolved in a broad class of models

with unknown thresholds, whether these thresholds are reversible, hysteretic, or irreversible. Fi-

nally, Petersonet al. [25] suggest that mistaken overconfidence in system parameters leads naive

managers to overload pollutant inputs to ecosystems because the optimal strategy is insensitive to

the existence of a threshold, causing cycles of collapse andrecovery. While recurrent overloading

of an ecosystem may well lead to its collapse, in Petersonet al.’s model mismanagement results

because the decisionmaker is not allowed to recognize that athreshold exists, rather than as an

inherent feature of utility maximization. An important result of our study is that if the existence of

a threshold is suspected, some precaution is warranted evenunder uncertainty about its location.

Many versions of the precautionary principle have been proposed to justify reductions in the

level of polluting activities in the face of large uncertainty about the consequences of such ac-

tivities [13]. Our analysis gives both an economic justification for precautionary reductions in

pollutant loading – in terms of the expected economic gains –and a more nuanced view of how

beliefs about system thresholds should affect precautionary behavior. In particular, a decrease in

uncertainty about the location of a threshold may either increase or decrease the desirable level

of precaution, depending on the expected resilience of the ecosystem as well as the initial level

of uncertainty. Thus, stakeholder conflict in some kinds of environmental dispute may be a result

of different beliefs about threshold proximity and uncertainty, even when there is broad consensus

about underlying processes and system dynamics. For example, current views on climate change

policy can be broadly divided into those that are pessimistic and those that are optimistic. Climate

change pessimists advocate for an immediate reduction in the production of greenhouse gases until

uncertainty about the processes of climate change is reduced. Conversely, climate change optimists

suggest that no costly reductions in greenhouse gas production should be undertaken until the same

uncertainty about climate change is reduced. Our analysis suggests that there may be much more

common ground between these two views than might otherwise be thought: both optimists’ and

pessimists’ views can be consistent with the same underlying economic or ecologic objectives and

expected system resilience, and their differences can be attributed to different beliefs about the un-

certainty with which important thresholds are known (as an illustrative example, if both pessimists

and optimists assume a system resilienceXc − Xtarget = 0.2 in Figure 2, but pessimists believe

σXc = 0.4 while optimists believeσXc = 0.1, then a reduction in uncertaintyσXc would warrant

increased precaution for the former and decreased precaution for the latter).

Our analysis contains several key insights for the choice and implementation of ecosystem
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management policies. In our model of an ecosystem with an unknown, reversible threshold, com-

monly stated goals for managing multistate ecosystems – maintaining resilience and applying a

precautionary principle in decisionmaking – are completely consistent with, and can be justified

by, economic theory. Thus, we suggest that economic optimization approaches and empirical

scientific approaches for ecosystem management are quite complementary. Thus, the kinds of

policies suggested by economic analysis, including incentive-based management schemes such as

taxes, subsidies, and tradable permit markets, and some command-and-control approaches, should

be considered as potential instruments for scientifically-based ecosystem management in the pres-

ence of thresholds. In particular, it may be effective to take the current regulatory framework and

adjust the level of existing damaging activities based on both expected ecosystem resilience and

uncertainty. This proposal may be viewed as an economically-derived equivalent to the concept of

“bet-hedging” against uncertainty [8, 10]. Such adjustments may be considerably easier to imple-

ment than large-scale stakeholder involvement schemes andwould be both flexible and adaptable

to future advances in scientific knowledge about ecosystem dynamics.

5 Conclusions

Many natural systems have the potential to switch between alternative system dynamics. We ana-

lyze a multistate system with two distinct domains, each with its own equation of motion. While

earlier studies of multistate systems rely on numerical simulations, by considering both uncertainty

of threshold location and a random component to the underlying dynamic natural process we are

able to formulate the manager’s decision as a stochastic dynamic programming problem and show

that the value function is differentiable, even at the threshold. We show that utility maximization

leads to a decision rule with precautionary behavior that increases system resilience, if the system

is thought to be close to the threshold. We find that increasing uncertainty (both uncertainty associ-

ated with natural processes and uncertainty of the decisionmaker about threshold location) can lead

to nonmonotonic changes in precautionary actvity. In particular, as the variance in the stochastic

component of the natural system increases, the level of precautionary activity may first increase,

but for large enough variance, precaution will eventually always decrease. Similarly, there is also

a nonmonotonic relationship between the uncertainty of theutility maximizer about the unknown

threshold and precautionary behavior. If the decisionmaker is certain that he/she is right below

the threshold, there is no expected benefit from engaging in precautionary activities. If uncertainty

about threshold location increases, so does the probability that the threshold will be crossed and
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hence precautionary reductions in loading have a payoff from lowering that probability. If the

uncertainty continues to grow, precautionary reductions in loading eventually become too costly

compared to the negligible reduction in the probability that the threshold is crossed.
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Figure 1: Optimal Loading and Expected Pollutant Stock under Certainty for Variousσv
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expected level in the next period if a manager were to assume that the system is in either state with certainty (i.e. above

or below the critical value without a chance of switching) isadded as a dotted line to the right panel. ForlimXc→−∞

and limXc→∞, the expected stock approaches this target levelXtarget. However, if this target level is close to the

critical levelX , additional precaution is optimal to avoid transition to the undesirable state. Parameter values used

follow Petersonet al. [25] where:k = 1.5, δ = 0.99, B = 0.1, b = 0.02, r = 0.2, σ2
v = 0.02.
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Figure 2: Contour map of precautionary reduction in loading, E[Xtarget−Xt+1], under uncertainty.
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Mathematical Appendix

Proof of Proposition 1: Under the optimal loadinĝlt, c(Xt, l̂t(Xt)) is independent ofXt

Proof: Rewriting the Bellman equation using the fact that additive constants do not influence the
optimal load̂lt we get

V (Xt) = max
lt

{
k[BXt + lt + b] + δ

∫ Xc−BXt−lt−b

−∞

∫ ∞

−∞

V (BXt + lt + b + v + u)f1(u)du g(v)dv +

δ

∫ ∞

Xc−BXt−lt−b

∫ ∞

−∞

V (BXt + lt + b + r + v + u)f2(u)du g(v)dv

}
− k[BXt + b] − X2

t

Note thatlt only enters the maximization in the form ofc = BXt + lt + b, and hence the above
problem is equivalent to

V (Xt) = max
c

{
kc + δ

∫ Xc−c

−∞

∫ ∞

−∞
V (c + v + u)f1(u)du g(v)dv +

δ

∫ ∞

Xc−c

∫ ∞

−∞
V (c + r + v + u)f2(u)du g(v)dv

}
− k[BXt + b] − X2

t

And hence the optimal solution̄c is independent ofXt.

Proof of Proposition 2: V (X) is concave and differentiable withV ′(X) = −Bk − 2X

Proof: We will first show that the dynamic programming problem constitutes a contraction map-
ping and maps concave function into concave functions. Thisin turn implies that the value function
itself must be concave. Finally, we use the theorem by [1] to show that the value function is differ-
entiable.

Define the operator

T (m) = max
l

{
kl − X2 + δ

∫ Xc−c(X,l)

−∞

∫ ∞

−∞
m(c(X, l) + v + u)f1(u)du g(v)dv

+δ

∫ ∞

Xc−c(X,l)

∫ ∞

−∞
m(c(X, l) + r + v + u)f2(u)du g(v)dv

}

We can show thatT constitutes a contraction mapping using Blackwell’s sufficient conditions:
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(i) Monotonicity: If m(x) ≤ n(x)∀x ∈ R+ then

T (m) = max
l

{
kl − X2 + δ

∫ Xc−c(X,l)

−∞

∫ ∞

−∞

m(c(X, l) + v + u)f1(u)du g(v)dv+

δ

∫ ∞

Xc−c(X,l)

∫ ∞

−∞

m(c(X, l) + r + v + u)f2(u)du g(v)dv

}

≤ max
l

{
kl − X2 + δ

∫ Xc−c(X,l)

−∞

∫ ∞

−∞

n(c(X, l) + v + u)f1(u)du g(v)dv+

δ

∫ ∞

Xc−c(X,l)

∫ ∞

−∞

n(c(X, l) + r + v + u)f2(u)du g(v)dv

}

asm(x) ≤ n(x) pointwise and the integral is a linear operator

= T (n)

(ii) Discounting: For alla ≥ 0 there exitsδ < 1 with

T (m + a) = max
l

{
kl − X2 + δ

∫ Xc−c(X,l)

−∞

∫ ∞

−∞

[m(c(X, l) + v + u) + a]f1(u)du g(v)dv+

δ

∫ ∞

Xcrit−c(X,l)

∫ ∞

−∞

[m(c(X, l) + r + v + u) + a]f2(u)du g(v)dv

}

= max
l

{
kl − X2 + δ

∫ Xc−c(X,l)

−∞

∫ ∞

−∞

m(c(X, l) + v + u)f1(u)du g(v)dv+

δ

∫ ∞

Xc−c(X,l)

∫ ∞

−∞

m(c(X, l) + r + v + u)f2(u)du g(v)dv

}
+ δa

= T (m) + δa

The second line follows from the fact that the densitiesf1(u), f2(u) integrate to one.

Points (i) and (ii) are sufficient to show thatT is a contraction mapping. This implies that we can
start with an arbitrary functionm() and repeated application ofT will converge to the unique fixed
point, the true value function.

We will next show thatT maps concave functions into concave functions. Hence, if westart
with a concave functionm and repeatedly applyT , all resulting functions will be concave as well.
This implies that the unique attractor, the true value function, is concave as well.

Concavity: ∀X1, X2 ∈ R+ define the optimal loading aŝl1 and l̂2, respectively. Note that
for the convex combinationX3 = θX1 + (1 − θ)X2, whereθ ∈ (0, 1), the convex combination
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l̄3 = θl̂1 + (1 − θ)l̂2 is feasible as the choice set of possible loadings is unbounded.

[T (m)](X3) = max
l

{
kl − X2

3 + δ

∫ Xc−c(X,l)

−∞

∫ ∞

−∞
m(c(X3, l) + v + u)f1(u)du g(v)dv

δ

∫ ∞

Xc−c(X,l)

∫ ∞

∞
m(c(X3, l) + r + v + u)f2(u)du g(v)dv

}

≥ kl̄3 − X2
3 + δ

∫ Xc−c(X3,l̄3)

−∞

∫ ∞

−∞
m(c(X3, l̄3) + v + u)f1(u)du g(v)dv

δ

∫ ∞

Xc−c(X3,l̄3)

∫ ∞

−∞
m(c(X3, l̄3) + r + v + u)f2(u)du g(v)dv

= k
[
θl̂1 + (1 − θ)l̂2

]
− [θX1 + (1 − θ)X2]2

+δ

∫ Xc−θc(X1,l̂1)−(1−θ)c(X2,l̂2)

−∞

∫ ∞

−∞
m
(
θ
[
c(X1, l̂1) + v + u

]
+ (1 − θ)

[
c(X2, l̂2) + v + u

])
f1(u)du g(v)dv

+δ

∫ ∞

Xc−θc(X1,l̂1)−(1−θ)c(X2,l̂2)

∫ ∞

−∞
m
(
θ
[
c(X1, l̂1) + r + v + u

]
+ (1 − θ)

[
c(X2, l̂2) + r + v + u

])
f2(u)du g(v)dv

The second line uses the fact thatl̄3 is feasible and hence the value under the optimum by definition
has to be at least as high. The third line uses the definition ofX3 andl̂3. Using Proposition 1 in the
above equation, namely thatc(X1, l̂1) = c(X2, l̂2) = c̄ we get (the second line utilizes the fact that
bothm and−x2 are concave functions).

[T (m)](X3) ≥ k
[
θl̂1 + (1 − θ)l̂2

]
− [θX1 + (1 − θ)X2]2

+δ

∫ Xc−θc(X1,l̂1)−(1−θ)c(X2,l̂2)

−∞

∫ ∞

−∞
m
(
θ
[
c(X1, l̂1) + v + u

]
+ (1 − θ)

[
c(X2, l̂2) + v + u

])
f1(u)du g(v)dv

+δ

∫ ∞

Xc−θc(X1,l̂1)−(1−θ)c(X2,l̂2)

∫ ∞

−∞
m
(
θ
[
c(X1, l̂1) + r + v + u

]
+ (1 − θ)

[
c(X2, l̂2) + r + v + u

])
f2(u)du g(v)dv

≥ θkl̂1 + (1 − θ)kl̂2 − θX2
1 − (1 − θ)X2

2

+δ

∫ Xc−c̄

−∞

∫ ∞

−∞

[
θm

(
c(X1, l̂1) + v + u

)
+ (1 − θ)m

(
c(X2, l̂2) + v + u

)]
f1(u)du g(v)dv

+δ

∫ ∞

Xc−c̄

∫ ∞

−∞

[
θm

(
c(X1, l̂1) + r + v + u

)
+ (1 − θ)m

(
c(X2, l̂2) + r + v + u

)]
f2(u)du g(v)dv

= θ

[
kl̂1 − X2

1 + δ

∫ Xc−c̄

−∞

∫ ∞

−∞
m
(
c(X1, l̂1) + v + u

)
f1(u)du g(v)dv

+δ

∫ ∞

Xc−c̄

∫ ∞

−∞
m
(
c(X1, l̂1) + r + v + u

)
f2(u)du g(v)dv

]

+(1 − θ)

[
kl̂2 − X2

2 + δ

∫ Xc−c̄

−∞

∫ ∞

−∞
m
(
c(X2, l̂2) + v + u

)
f1(u)du g(v)dv

+δ

∫ ∞

Xc−c̄

∫ ∞

−∞
m
(
c(X2, l̂2) + r + v + u

)
f2(u)du g(v)dv

]

= θ[T (m)](X1) + (1 − θ)[T (m)](X2)

The last two lines are simple rearrangements and definition of the value function. We hence know
that the unique attractor, the value functionV (X) is concave.
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We are now equipped to show the differentiability of the value function with the help of the
theorem by [1]. Definêl(Xc) as the optimal strategy if the threshold isXc. Now define

W (X) = k
[
l̂(X0) + B [X0 − X]

]

︸ ︷︷ ︸
l̄

−X2

+ δ

∫ Xc−c̄

−∞

∫ ∞

−∞
V
(
c(X, l̄) + v + u

)
f1(u)du g(v)dv + δ

∫ ∞

Xc−c̄

∫ ∞

−∞
V
(
c(X, l̄) + r + v + u

)
f2(u)du g(v)dv

︸ ︷︷ ︸
independent ofX

Thus, all perturbations inX aroundX0 are immediately offset in the first period by an adjustment
in the loading equal toB [X0 − X]. The advantage ofW is that the payoff in future periods is
independentof X and only depends onX0, as by definitionc(X, l̄) = BX + l̄ + b = BX +
l̂(X0) + B[X0 − X] + b = BX0 + l̂(X0) + b.

Note thatW (X) is defined on a neighborhood aroundX0. Clearly,W (X) is concave, dif-
ferentiable atX0, andW (X) ≤ V (X) asW (X) uses just one feasible strategyl̄ out of the set of
possible strategies whose maximum yieldsV (X). Furthermore, by constructionW (X0) = V (X0).
Using the above result thatV (X) is concave, as well as the theorem of [1], it follows thatV (X) is
differentiable atX0 as well andV ′(X0) = W ′(X0) = −Bk − 2X0

Corollary: The critical levelXc influences the value function only as an additive constantα
Given thatV ′(X) = −Bk − 2X, we also know that the value function is given byV (X) =
α − BkX − X2 .

Proof of Proposition 3 The optimal combined loading is given by

c̄ =
k

2

[
1

δ
− B

]
− r

[
1 − Φ

(
Xc − c̄

σv

)]
−

1

2σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + σ2

u2
− σ2

u1

]

Proof: Maximizing the right hand side of the Bellman equation by setting the derivative with
respect tōc equal to zero we get

0 = k − δ
1

σv

φ

(
Xc − c̄

σv

)∫ ∞

−∞

V (Xc + u)f1(u)du + δ

∫ Xc−c̄

−∞

∫ ∞

−∞

V ′(c̄ + v + u)f1(u)du g(v)dv

+δ
1

σv

φ

(
Xc − c̄

σv

)∫ ∞

−∞

V (Xc + r + u)f2(u)du + δ

∫ ∞

X−c̄

∫ ∞

−∞

V ′(c̄ + r + v + u)f2(u)du g(v)dv

= k + δ
1

σv

φ

(
Xc − c̄

σv

)[∫ ∞

−∞

V (Xc + r + u)f2(u)du −

∫ ∞

−∞

V (Xc + u)f1(u)du

]

+δ

∫ Xc−c̄

−∞

∫ ∞

−∞

V ′(c̄ + v + u)f1(u)du g(v)dv + δ

∫ ∞

Xc−c̄

∫ ∞

−∞

V ′(c̄ + r + v + u)f2(u)du g(v)dv
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Examining terms on the right hand side and using the definitions ofV (X) andV ′(X), we get
∫ Xc−c̄

−∞

∫ ∞

−∞

V ′(c̄ + v + u)f1(u)du g(v)dv =

∫ Xc−c̄

−∞

∫ ∞

−∞

[−Bk − 2[c̄ + v + u]]f1(u)du g(v)dv

=

∫ Xc−c̄

−∞


−Bk − 2c̄ − 2v − 2

∫ ∞

−∞

uf1(u)du

︸ ︷︷ ︸
0


 g(v)dv =

∫ Xc−c̄

−∞

[−Bk − 2c̄ − 2v] g(v)dv

= −[Bk + 2c̄]Φ

(
Xc − c̄

σv

)
+ 2σvφ

(
Xc − c̄

σv

)

as well as
∫ ∞

Xc−c̄

∫ ∞

−∞

V ′(c̄ + r + v + u)f2(u)du g(v)dv =

∫ ∞

Xc−c̄

∫ ∞

−∞

[−Bk − 2[c̄ + r + v + u]]f2(u)du g(v)dv

=

∫ ∞

Xc−c̄


−Bk − 2c̄ − 2v − 2r − 2

∫ ∞

−∞

uf2(u)du

︸ ︷︷ ︸
0


 g(v)dv =

∫ ∞

Xc−c̄

[−Bk − 2c̄ − 2r − 2v] g(v)dv

= −[Bk + 2c̄ + 2r]

[
1 − Φ

(
Xc − c̄

σv

)]
− 2σvφ

(
Xc − c̄

σv

)

and finally
∫ ∞

−∞

V (Xc + r + u)f2(u)du −

∫ ∞

−∞

V (Xc + u)f1(u)du

=

∫ ∞

−∞

[
α − Bk[Xc + r + u] − [Xc + r + u]2

]
f2(u)du −

∫ ∞

−∞

[
α − Bk[Xc + u] − [Xc + u]2

]
f1(u)du

= [α − BkXc − X2
c ]

∫ ∞

−∞

f2(u)du

︸ ︷︷ ︸
1

−[Bk + 2Xc]

∫ ∞

−∞

[r + u]f2(u)du

︸ ︷︷ ︸
r

−

∫ ∞

−∞

[r + u]2f2(u)du

︸ ︷︷ ︸
σ2

u2
+r2

−[α − BkXc − X2
c ]

∫ ∞

−∞

f1(u)du

︸ ︷︷ ︸
1

+[Bk + 2Xc]

∫ ∞

−∞

uf1(u)du

︸ ︷︷ ︸
0

+

∫ ∞

−∞

u2f1(u)du

︸ ︷︷ ︸
σ2

u1

= −[Bk + 2Xc]r − r2 − σ2
u2

+ σ2
u1

Putting things together, the first-order condition becomes

0 = k − δ
1

σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + σ2

u2
− σ2

u1

]
− δ[Bk + 2c̄]Φ

(
Xc − c̄

σv

)

+2σvδφ

(
Xc − c̄

σv

)
− δ[Bk + 2c̄ + 2r]

[
1 − Φ

(
Xc − c̄

σv

)]
− 2σvδφ

(
Xc − c̄

σv

)

= k − δ
1

σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + σ2

u2
− σ2

u1

]
− δ[Bk + 2c̄] − 2δr

[
1 − Φ

(
Xc − c̄

σv

)]
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Which implies

δ [Bk + 2c̄] = k − δ
1

σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + σ2

u2
− σ2

u1

]
− 2δr

[
1 − Φ

(
Xc − c̄

σv

)]

or equivalently

c̄ =
k

2

[
1

δ
− B

]
− r

[
1 − Φ

(
Xc − c̄

σv

)]
−

1

2σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + σ2

u2
− σ2

u1

]

Proof of Proposition 6 For all values of parametersB, k, r, δ, andσv, there exists a critical level
Xc such that an increase in the varianceσ2

v decreases the optimal loadingc̄.

Proof: First, we will show that using the above parameters the optimal loadinḡc = X̂c−σv. Using
the proposed̄c in the equation that implicitly defines̄c we get

c̄ − k

2

[
1

δ
− B

]
+ r

[
1 − Φ

(
X̂c − c̄

σv

)]
+

1

2σv

φ

(
X̂c − c̄

σv

)
[Bkr + 2X̂cr + r2 + ∆σ2

u]

= X̂c − σv − k

2

[
1

δ
− B

]
+ r [1 − Φ(1)] +

1

2σv

φ(1)[Bkr + 2X̂cr + r2 + ∆σ2
u]

= X̂c

[
σv + rφ(1)

σv

]
− σv − k

2

[
1

δ
− B

]
+ r [1 − Φ(1)] +

1

2σv
φ(1)[Bkr + r2 + ∆σ2

u]

=
kσv

[
1
δ
− B

]
+ 2σ2

v − 2rσv[1 − Φ(1)] − φ(1)[bKr + r2 + ∆σ2
u]

2σv

− σv − k

2

[
1

δ
− B

]
+ r [1 − Φ(1)] +

1

2σv

φ(1)[Bkr + r2 + ∆σ2
u]

=
k

2

[
1

δ
− B

]
+ σv − r[1 − Φ(1)] − 1

2σv

φ(1)[bKr + r2 + ∆σ2
u] − σv − k

2

[
1

δ
− B

]
+ r [1 − Φ(1)] +

1

2σv

φ(1)[Bkr + r2 + ∆σ2
u]

= 0

The first line is the equation that definesc̄. The second line uses the proposedc̄ = X̂c − σv. The
third line factors out̂Xc before the fourth line uses the expression forX̂c.

Second, to getdc̄
dσv

, totally differentiate the above equation that implicitlydefines̄c to obtain

{
1 +

r

σv
φ

(
Xc − c̄

σv

)
− 1

2σ2
v

φ′
(

Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]

}
dc̄

+

{
r[Xc − c̄]

σ2
v

φ

(
Xc − c̄

σv

)
− 1

2σ2
v

φ

(
Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u] − [Xc − c̄]

2σ3
v

φ′
(

Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]

}
dσv

= 0
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After collecting terms
{

1 +
1

σv

[
rφ

(
Xc − c̄

σv

)
−

1

2σv

φ′

(
Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]

]}
dc̄

+

{
−

1

2σ2
v

[
φ

(
Xc − c̄

σv

)
[Bkr + 2c̄r + r2 + ∆σ2

u] +
[Xc − c̄]

σv

φ′

(
Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]

]}
dσv

=

{
1 +

1

σv

φ

(
Xc − c̄

σv

)[
r +

Xc − c̄

2σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]

]}
dc̄

+

{
−

1

2σ2
v

φ

(
Xc − c̄

σv

)[
Bkr + 2c̄r + r2 + ∆σ2

u −
[Xc − c̄]2

σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]

]}
dσv

The second line usesφ′(x) = −xφ(x). If Xc is as defined above, we know thatφ
(

Xc−c̄
σv

)
= φ(1).

Using this in the derivative we get

dc̄

dσv

=

φ(1)
2σ2

v
[Bkr + 2c̄r + r2 + ∆σ2

u − Bkr − 2Xcr − r2 − ∆σ2
u]

1 + φ(1)
σv

[
r + 1

2σv
[Bkr + 2Xcr + r2 + ∆σ2

u]
]

=

φ(1)
2σ2

v
[−2rσv]

1 + φ(1)
σv

[
r + 1

2σv
[Bkr + 2Xcr + r2 + ∆σ2

u]
]

=
−rφ(1)

σv + φ(1)

[
r + 1

2σv
[Bkr +

kσv[ 1
δ
−B]+2σ2

v−2rσv[1−Φ(1)]−φ(1)[Bkr+r2+∆σ2
u]

[rφ(1)+σv ]
r + r2 + ∆σ2

u]

]

The last term of the denominator becomes

r +
1

2σv

[Bkr +
kσv

[
1
δ

− B
]

+ 2σ2
v − 2rσv [1 − Φ(1)] − φ(1)[Bkr + r2 + ∆σ2

u]

[rφ(1) + σv]
r + r

2
+ ∆σ

2
u]

=
1

2σv[rφ(1) + σv]

[
2σvr[rφ(1) + σv ] + Bkr[rφ(1) + σv ] + krσv

[
1

δ
− B

]
+ 2rσ

2
v − 2r

2
σv[1 − Φ(1)] − rφ(1)[Bkr + r

2
+ ∆σ

2
u] + [r

2
+ ∆σ

2
u][rφ(1) + σv]

]

=
1

2σv[rφ(1) + σv]

[
Bkrσv + krσv

[
1

δ
− B

]
+ 4rσ

2
v + 2r

2
σv[Φ(1) + φ(1) − 1] + σv[r

2
+ ∆σ

2
u]

]
> 0

It is positive as0 < δ, B < 1 implies that1
δ
− B > 0 andΦ(1) + φ(1) − 1 > 0.

Proof of Proposition 9 An increase in the varianceσ2
Xc

can result in nonmonotonic behavior in
precautionary reductions, e.g., it can first decrease and then increase the optimal loadingc̄.

The optimal loading when there is uncertainty aboutXc was defined as

c̄ −
k

2

[
1

δ
− B

]
+

∫ ∞

−∞

[
r

[
1 − Φ

(
Xc − c̄

σv

)]
+

1

2σv

φ

(
Xc − c̄

σv

)[
Bkr + 2Xcr + r2 + ∆σ2

u

]]
h(Xc)dXc = 0
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Taking the total derivative we get
{

1 +

∫ ∞

−∞

[
r

σv

φ

(
Xc − c̄

σv

)
− 1

2σ2
v

φ′
(

Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]

]
h(Xc)dXc

}
dc̄

+

{∫ ∞

−∞

[
r

[
1 − Φ

(
Xc − c̄

σv

)]
+

1

2σv

φ

(
Xc − c̄

σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]

]
dh(Xc)

dσXc

dXc

}
dσXc = 0

and hence

dc̄

dσXc

=

∫∞
−∞

[
r
[
1 − Φ

(
Xc−c̄

σv

)]
+ 1

2σv
φ
(

Xc−c̄
σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]
]

dh(Xc)
dσXc

dXc

1 + 1
σv

∫∞
−∞

[
rφ
(

Xc−c̄
σv

)
− 1

2σv
φ′
(

Xc−c̄
σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]
]

h(Xc)dXc

=

∫∞
−∞

[
r
[
1 − Φ

(
Xc−c̄

σv

)]
+ 1

2σv
φ
(

Xc−c̄
σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]
]

dh(Xc)
dσXc

dXc

1 + 1
σv

∫∞
−∞ φ

(
Xc−c̄

σv

) [
r + Xc−c̄

2σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]
]
h(Xc)dXc

where the second line uses the fact thatφ′(x) = −xφ(x). Assuming a normal densityh(Xc) =

1√
2πσXc

e
− [Xc−µXc

]2

2σ2
Xc we getdh(Xc)

dσXc
= 1√

2π
e
− [Xc−µXc

]2

2σ2
Xc

[
[Xc−µXc ]2

σ4
Xc

− 1
σ2

Xc

]
and hence

dc̄

dσXc

=

1
σXc

∫∞
−∞

[
r
[
1 − Φ

(
Xc−c̄

σv

)]
+ 1

2σv
φ
(

Xc−c̄
σv

)
[Bkr + 2Xcr + r2 + ∆σ2

u]
] [

1 −
[

Xc−µXc
σXc

]2]
1√

2πσXc

e
−

[Xc−µXc
]2

2σ2
Xc dXc

1 + 1
σv

∫∞
−∞ φ

(
Xc−c̄

σv

) [
r + Xc−c̄

2σ2
v

[Bkr + 2Xcr + r2 + ∆σ2
u]
]

1√
2πσXc

e
−

[Xc−µXc
]2

2σ2
Xc dXc
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