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Abstract

Many natural systems have the potential to switch betwetemaltive dynamic behaviors. We
consider a system with two distinct equations of motion #natseparated by a threshold value
of the state variable. We show that utility maximizationlwgilve a decisionmaking rule that
is consistent with ecosystem-based management objethiseaim to reduce the probability
that the system crosses the threshold. Moreover, we findinhetasing uncertainty (both
uncertainty embedded in the natural system and uncertairnfye decisionmaker about the
location of the threshold) can lead to nhonmonotonic chamggsecaution. Although small
increases in uncertainty may at first increase precaut@oge lenough increases in uncertainty
will lead to a decrease in precaution.
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Many natural systems can be divided into domains with disteystem dynamics. In such
multistate systems, the equation of motion changes disaonisly or nonlinearly when system
variables such as climate, nutrient flux, or human harvgsates are changing gradually [20, 27].
For example, shifts in system dynamics have been observedasystems such as freshwater
lakes [28], coral reefs [15], riparian meadows [6], tropifmaests [29], and savanna [26]. At a
much larger scale, multiple stable states separated bgrtiscious shifts are also thought to be
important processes in climate change and global biogeaichécycles [3, 30]. A key feature
of multistate ecosystems is that environmental monitotivag occurs in one stable domain of the
system has little or no predictive power about proximity tbr@shold and shifts to alternative sta-
bility domains [27]. Consequently, ecosystem manageniategies that are based strictly around
the attainment of fixed environmental targets, or that vievals perturbations to such targets as
sustainable, may lead to unexpected, catastrophic cellapd accompanying ecologic and eco-
nomic damages to ecosystem functions [25]. Recent reseaedology has emphasized the need
to increase the resilientand stability domains of desirable ecosystem states agithany goals
of scientifically-based ecosystem management [20, 27].

In this study, we analyze a multistate system with two dgdtdomains that are separated by a
possibly unknown, reversible threshold. We assume thairnklerlying stochastic natural process
and management actions together determine which domasys$iem is in, and thus the appropri-
ate equation of motion. The contributions of this paper arobows: First, under our model setup
we obtain a differentiable value function, even at the thoés Thus, while earlier studies had
to rely on numerical simulations, we use stochastic dyngrogramming to obtain an analytical
solution as well as comparative statics results on premaaty behavior. Second, we show that
utility maximization yields a decision rule with precautery behavior if the system is close to
the threshold, thereby increasing system resilience.dJlas the variance in the stochastic com-
ponent of thenatural systenthat determines whether the threshold is passed incretheeevel
of precautionary behavior may first increase, but for lamgyeugh variance will eventually always
decrease. Fourth, we show that there is also a honmonotatonship between the uncertainty
of the utility maximizerabout the unknown threshold and precautionary behavituitively, if a
decisionmaker knows with certainty that he/she is righowethe threshold, there is no expected
benefit from engaging in precautionary reductions. Onceedamty increases (either about the
natural system or the utility maximizer’s belief about theeshold), so does the probability that

1There are several definitions of resilience in the ecolagydiure. The Resilience Alliance research consortium
defines it as "the capacity of an ecosystem to tolerate diahae without collapsing into a qualitatively differereatst
that is controlled by a different set of processes.”



the threshold will be crossed and hence precautionary tiescin loading have a payoff from
lowering that probability. If the uncertainty continuesgimw, the decisionmaker will eventually
feel he/she has no knowledge at all and precautionary nedscivill be too costly compared to
the negligible reduction in the probability that the thralshis crossed. These results are different
to previous results from analyses of both reversible ntalisssystems and reversible catastrophic
systems with instantaneous penalty functions, where itdeas argued that increased threshold
uncertainty always leads to an increase in precautiondrsnber [5, 18, 32, 33], or that the thresh-
old and associated uncertainty have no effect on precariidrehavior [25].

Several strands of economic research are relevant to tiepnaf optimal resource manage-
ment when catastrophic events can occur. The most commorofmapdeling catastrophes in
the economic literature is to consider catastrophic evasgenalty functions with an associated
hazard rate. The state of the resource — and hence optimabmdio behavior — may or may not
influence the probability of event occurrence. By using sahprobability as a state variable,
the optimization problem can then be treated as a deterigimigntrol problem. In general, an
irreversible catastrophe is viewed as instantaneouslypantanently reducing social welfare to
zero (e.g. [9]), whereas a reversible catastrophe is mddelemposing an instantaneous penalty
equal to the sum of damages from the catastrophes and heafitgffor the resource (e.g. [32, 33]).

When catastrophic, irreversible thresholds exist, ecao@tudies suggest that some precau-
tionary reduction in economic activity may be desirableafples of irreversible thresholds that
have been studied by economists include species extinaidiapse of thermohaline circulation
[17], disintegration of the West Antarctic ice sheet [24jdaquifer salinization [31, 33]. Many
of these studies find that increasing uncertainty decreth®@amount of managers’ precaution.
Clarke and Reed [9] show that an exogenous increase in thefrisatastrophe can increase or
decrease the degree of precaution undertaken by resouragera behaving optimally. Tsur and
Zemel [32, 33] argue that such nonmonoticity in behavior dsnation of increasing risk is a
characteristic of irreversible catastrophes, resultmognfthe tradeoff as pollution levels increase
between increasing hazard rate and a decreasing penatiydiurfbecause the value function is
decreasing in pollution level). Conversely, Tsur and Zeangle that for reversible events with an
instantaneous penalty function, increasing pollutiomeases both the hazard rate and the penalty,
so that exogenous increases in the risk of a catastrophgsinerease the degree of precaution.
Finally, Tsur and Zemel [33] show that in the absence of eroge uncertainty in pollution, when
the only uncertainty is in the location of the threshold réasing uncertainty always makes the



manager more careful. In these latter papers, it is neveratids to cross the threshold, and once
it has been located, it is never crossed again. Note thaisrsttand of literature, an increase in
uncertainty corresponds to an increase in the hazard rateurlmodel this need not be the case
as the threshold separates domains with distinct systemndigs rather than representing an in-
stantaneous penalty function. Thus, depending on curtatd, san increase in uncertainty in our
model can increase or decrease the probability of switchétgeen states.

A smaller body of literature considers thresholds not imteof penalty functions but as points
or regions in which system behavior switches between atemstates, where one state is viewed
as more ‘desirable’ than the other, either in terms of ecanomecologic benefits. Most economic
models of environmental systems with reversible threshaltl multiple dynamic states assume
perfect knowledge of system dynamics and focus on targgictaies to optimal steady states
[2, 14, 19]. The majority of these studies have analyzed éaksystems, where excess nutrient in-
puts can cause switching from oligotrophic to eutrophitestaSuch environmental systems have
been modeled in two ways. First, some studies use continoousonvex equations of motion
that show a rapid change in system behavior over a smallvaitée.g. [2, 14, 16, 19]); to date,
these types of system have only been solved numericallprifesome studies use multiple equa-
tions of motion with switches occurring when a thresholdrsssed (e.g. [5, 18, 25]). In general,
these studies use numerical approximation methods andesutigat optimal policy choices are
insensitive to threshold proximity. An exception is Nae\@8], who uses a deterministic optimal
control model with a jump equation at the threshold to obtamix of analytical and numerical
solutions and shows that for at least some parameter vdhesptimal control ‘chatters’ around
the threshold.

Finally, a broad definition of a catastrophic event can idelextinction of a renewable re-
source. Analysis of the conditions under which extinctioaynbe optimal goes back to the de-
terministic model of Clark [7], who showed that if the resorigrowth rate is below the discount
rate, immediate extinction of the resource is economiaalfypnal. More recent work shows that
in stochastic systems, it is also necessary to consideactaaistics of the welfare function, non-
concave biological growth functions, and the initial statke in determining optimal outcome
[12, 21, 22]. Olson and Roy [21] find that the choice betweeamseovation and extinction may
be complex: for example, an increased but uncertain prodiyctan reduce the range of ini-
tial stocks for which conservation is efficient, and therefmcrease the likelihood of extinction.
There is also an analogous literature on optimal nonrenkewabource extraction, where extrac-



tion occurs while the ultimate size of the resource is unkm@w this case, the ‘threshold’ event
is exhaustion of the resource). Cropper [11] showed thahweserves are uncertain, the optimal
path of planned extraction is no longer necessarily monoton

The paper is laid out as follows. In Section 1, we present t@cbmodel we use in our
analysis. In the following section (Section 2), we deriveules and analyze the case when there
is stochastic pollutant loading but the threshold locat®known. In Section 3, we extend this
analysis to the case where threshold location is also wainerFollowing this, we reconcile the
differences between our results and those of previousegtudiSection 4. Finally, we explain the
policy implications of our results.

1 Modeling framework

We begin by presenting a minimal model for the managementrotiiistate ecosystem with a
reversible threshold that describes the dynamics of anginradide ecosystem pollutant or charac-
teristic, X;, through time:

BX,+b+ 1 + v +uyy if BX;+b+ 1 +v < X,
Xt+1 = (1)

BX;+b+r+l+uv,+uy HBX,+b+1+v > X,
The parameteB € [0, 1] represents the proportion of the pollutantthat carries over from one
period to the next) represents the mean natural input of pollutant to the enmental system, and
l; is the anthropogenic pollutant input. Uncertainty aboetsfistem dynamics is captured by the
parameters,, uy;, andus;, which are error terms with means = pu,, = (., = 0 and standard
deviationss,, o,, ando,,.> We assume that, is normally distributed, but place no restrictions
onuy; anduy,. Two interpretations of our model are possible: if polldtEvels must be greater
than zero, therX,; can be taken to represent the logarithm of the amount of {awituat timet, so
that the stochastic input terms follow a lognormal disttidio. Alternatively, if we takeX; to be
the pollutant level relative to some baseline, and negéixas are allowed, theX; can represent
the pollutant level relative to that baseline, and stocbasputs are normally distributed. Either
of these interpretations is consistent with the model priesk

20ur baseline model assumes, = o,,, but the above setup incorporates the case where the addikiadingr
is random. Since the sum of two normal variables is normahagach a case is equivalent to choosing a non-random
rando?, =02 + o2



The system represented by the equations¥ar, has two domains of behavior, separated by
a threshold af{,. which may or may not be known with certainty. We assume thamthe pol-
lutant level is belowX., the system is in a desirable stability domain, as for angmgivatural and
anthropogenic pollutant inputs, the expected pollutavellen the following period will be less
— by an amount equal to > 0 — than when the current pollutant level is aba¥ge A model
specification similar to ours was used by Petersbal. [25] to study the dynamics of a fresh-
water lake ecosystem. In that setting, the pollutsinepresented phosphorus loading to the lake,
andr represented additional phosphorus recycling that ocdumeen the lake switched between
oligotrophic (desirable) and eutrophic (undesirable)estat the threshol& .. Petersoret al’s
model assumes that current management actions and pollagaing have no effect on recycling
in the current period, but only in future time periods. Instpaper, we make the more realistic
assumption that threshold crossings (such as caused bphros recyling) depend not only on
the carryover from the previous period but also on curreadlilog and an error component An
intuitive interpretation of the error componentis that it represents uncertainty in thatural
system This may be because the threshold itself may be subjectni@ snovement, ecosystem
processes operate at differing rates, or real ecologicashiolds may involve multiple interacting
slow and fast variables [4]. The advantage of includipgs that the resulting value function is
concave, continuous, and differentiable, everXat As a result, we are able to obtain an exact
analytical solution to the optimization problem, rathearitrequiring numerical approximations
such as those used in previous studies [5, 18]. Our apprdketsaus to analyze the range and
characteristics of optimal behavior in much greater déf@h existing studies that use numerical
solution methods.

We assume that society derives economic benefits from tHigyabi increase the pollutant
loading of the environmental system. These benefits are giMeach period by the utility function
U(l;, X;) = kl, — X?. Examples of such benefits might include the capacity of ystems to
assimilate waste by-products from industry or agricultorehe value of ecosystem functionality
in maintaining habitat. Note that from society’s point oéwi the utility function shows a tradeoff
between the benefits of allowing increased pollutant logadimd the negative consequences of the
increased pollutant stock.



2 Optimal management with certain threshold location

We consider the problem of a decisionmaker choosing a valuéhé anthropogenic portion of
pollutant loading in each time period, so as to maximize the discounted value of all future
utilities derived from the environmental system. We begynassuming that the decisionmaker
knows the exact location of the threshold. Given a per-pidiscount factor o, the maximization
problem is then given by

V(X,) = max Zat [kl — X7

{lt}toio t=0

(2)

BXt—|—b—|—lt—|—vt—|—u1t |fBXt—|—b—|—lt+Ut<Xc
S.t.Xt+1:
BXt+b+T+lt+Ut+U2t |fBXt+b+lt+Ut2Xc

wheref; (u), f2(u), andg(v) are the density functions af;, us, andv, andF (u), F»(u), andG(v)
are the corresponding cumulative density functions. Régeal all error terms are mean zero. We

assume that is normally distributed, but place no restrictionsignandus.
The Bellman equation of the value function that equals teealinted value of all future utili-
tiesis

V(X)) = max{kl; — X} +0E [V (Xei1)]}

Xc—BX;—li—b 00
max {klt - X2+ 5/ / V(BX; +1; +b+v+u)fi(u)du g(v)dv +
) / V(BXi+ 1l +b+1r+v+u)fo(u)du g(v)dv} (3)
X.—BX:—li—bJ—0

For ease of notation, defin€X,, ;) = BX, + [; + b. Note that the maximization in the Bellman
equation is with respect to loadimg so that all other variables are constants. The next proposi

establishes that under the optimal loading(X,, [(X,)) = BX, +[,(X,) + b = ¢ is independent

of X;, which we use in the consecutive proof that the value funasdifferentiable (both proofs

are given in the Appendix).

Proposition 1 Under the optimal loading, ¢(X;, [,(X,)) is independent ok,

This aries from the fact that the dynamic programming eguatan be rewritten as
Xc—c o)
V(Xy) = max{kc+5/ / Vie+v+u)fi(u)du g(v)dv +
5/ / Vic+r+v+u)folu)du g(v)dv} — k[BX;+b] — X? (4)
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Proposition 2 V/(X) is concave and differentiable wilh'(X) = —Bk — 2X

We will briefly outline the idea behind the second proof andeggome intuition why the value
function is differentiable even &X..

The proof uses a contraction mapping argument. Contractiappings have a unique fixed
point, which is the value function: continuous applicatafrthe contraction mapping will lead to
convergence towards the value function. The first step istabéish that the Bellman equation
constitutes a contraction mapping. In the second step we #iat the Bellman equation maps
concave functions into concave functions. We can hencewitlr an arbitrary concave function,
and after repeatedly applying the contraction mapping, Wleanverge to the true value function,
which must be concave as well. In the third step we use thdt@fsBenveniste and Scheinkman
[1] that gives conditions under which concave functionsdafferentiable.

The reason why the value function is differentiable eveX alies with the error termy;. Re-
call thatv, enters the equation that determines whether the threshplssed. Start with the case
wheres, = 0, so that there is no uncertainty whether the threshold sse@or not. If we slightly
perturb the loading3 X; + b + [; aroundX,, the equation of motion has a discrete discontinuous
jump equal tor > 0 and hence the value function would not be continuous eitHewever, as
long aso, > 0, there is no discrete jump as the system crosses the thdedtyeéndent on whether
BX;+b+1; isless or more thaX . —v;. By designy; has a continuous probability distribution, so
changing the combined loading shifts this continuous podityadistribution of the discontinuous
jump, which ensures that the value function is itself défgtrable. Note that, can be as small as
desired, so long as it is nonzero.

Using the fact that is differentiable we can now solve for the optimal loadirigy maximizing
the right hand side of the Bellman equation.

Proposition 3 The optimal combined loading is given by

__]C 1 Xc_é 1 XC_E 2 2 2
0—5{5—3]—7’[1—®< - )]—QUvgb( - )[Bkr+2Xcr+r +o2,— oo ]

The derivation is again given in the Appendix.

Several things deserve further explanation. First, thev@algmuation includes the results of
[25] as special cases. A model with no additional inpug equivalent to saying that, = oo,
which implies thatp (%) =0,® (%) = 1 and hence the expected stock in the next period

k

is E[X;.1] = ¢ = £[5— B]. On the other hand, if the additional inputis always present,

X, = —oo, which implies thatp (%) =0,® (%) = 0, and hence the expected stock in

8



the next period i€[X, 1] = ¢+ r = £ [} — B]. Note that when there is certainty whether the
additional pollutant input termis present or not, the expected stock in the next periéc{gs— B}

in each case, which we call thargetstock. Furthermore, let the precautionary reduction it nex
period’s expected state variable BeX,,,,: — X¢+1], i.€. the drop in the state variable below the
level that is desirable if the manager knows whether theesyst below or above the threshold.
Figure 1 shows both the optimal combined loadir(teft panel) and the expected state variable in
the next period (right panel). Each graph displays the gwidbr various values of,, while all
other parameters are taken from [25].

Second, if the variances of the error termsandu, are the same, then they do not enter the
results at all, and have no influence on optimal loading. Thithe case because we model a
reversible system and hence any arbitrary shock to theraysta be completely counterbalanced
in the next period (and does not impact whether the threshalds crossed or not). As mentioned
before, if the additional loading is not deterministic but itself random, thet], > 72 , which
further reduces.

Third, uncertainty in the form of the error ternminfluences the optimal loading. Recall that the
error termw is partially responsible in determining whether the addidl inputr is present or not:
switching to the undesirable state occur®&ik; + I, + b + v, > X.. Uncertainty about whether
the threshold has been crossed and the additional ingupresent induces the decisionmaker to
become more cautious so that the following period’s expkstate variable is below,, 4 in
the right panel of Figure 1. We briefly establish that the pauionary reduction in next period’s
expected pollutant stodR[ X4+ — X¢+1] IS NONNegative.

Proposition 4 A sufficient condition for the precautionary reductiBnX;,,4.: — X;+1] to be non-
negative isX,. > 0

Proof: Follows directly fromX,,.e: = & [+ — B] andE[X;4] = ¢+ [1 — P (%)] Using

the solution forz in Proposition 3 we get

20, O “

1 X.—¢
E[Xtarget — Xeg1] = ) ( C) [Bk;r +2X. 4+ r? 4 052 — o2 } >0 |

We now consider the relationship between uncertainty itupaoit loading and precautionary
behavior in more detail.



Proposition 5 The optimal combined loadingapproaches; [+ — B] — £ if o, — o0

Proof: Recall the equation that implicitly defines Proposition 3 (using\o? = 02, — 02,

u2

é—g E—B] +T[1—<I>(XC_C)] +21 ¢<XC_C) [Bkr +2X . +1* + Ac?] =0
v Oy v

Since0 < ¢() < 1 and0 < ¢() < \/%_W we know thatc has to be bounded far, > 1. Hence,
X, — ¢ is bounded as well and the rati@v;é approaches zero far, — oo andlim,, .. ¢ =

sG-5)-5 !

The intuition is as follows: as uncertainty in the randonmeat of pollutant loading in-
creases, the manager’s actions have less and less influendeich state the environmental sys-
tem will be in, and the probability that the system will be ither state approaches one half.
Thus, the optimal loading includes a term that approactiesrepresenting the expected addi-
tional pollutant loading as, — oo. The next period’s expected state variable again equals the
target levek [; — B]. The right graph of Figure 1 shows that the next period’s etqukstate vari-
able approaches the flat horizontal Ii@% — B] if o, increases. It is reasonable to ask whether
an increase in uncertainty, gives less incentive for precaution and always increasesptimal
loading. As the next proposition shows, such monotoniditlgehavior is not found. To the con-
trary, for all possible parameter assumptions one can findieat value X, such that an increase
in o, will decrease the optimal loading, increasing precaut®aoraertainty increases.

Proposition 6 For all values of parameters, k, r, §, ando,, there exists a critical levek,. such
that an increase in the varianeg’ decreases the optimal loadirg

Proof: We will show that there exists a critical level for whid% is negative. Considek, =
kow|[+—B|+202—2ra, [1-®(1)]—¢(1)[Bkr+r2+Ac?)]
2[ré(1)+ov] '
It is shown in the Appendix that the the optimal combined Ingdinder these parameters is

¢ = X, — o,. This simplifies equations aB(%) = ®(1) and¢ (%) = ¢(1).
Using this result in the derivative obtained after totaliffedentiating the equation that implic-
itly definesc gives (for a derivation see the Appendix):

de —ro(1)
do, koy[L—B|+202—2ra, [1-®(1)]— (1) [Bkr+r2+Ac2
oy + (1) |7 + 5 [Bkr + il [TL(I)ig)j] OBk }r+r2+A03]
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The last term of the denominator becomes

1 ko, [2 — B] + 202 — 20, [1 — ®(1)] — ¢(1)[Bkr + 12 + Ac?]
20, DkT + [ro(1) + ou)
1

N 1 o ) o
= o) ol [Bkrav + kroy, {5 B} + drol 4 2r9o,[®(1) + &(1) — 1] + oy [r® + Aoy

r+

r 417+ Ac?

which is positive a$ < §, B < 1 and hence — B > 0 as well asb(1) + ¢(1) — 1 > 0. |

The proceeding proposition implies that for all values of frarameter$3. k, r, 4, and o,
there is a critical threshold level for which the regulatecbmes more cautious as uncertainty
in pollutant loading increases. While one can always findrastmold levelX,. such thatd% is
negative, it is also true that fdixed parameter values and threshadld, this derivative becomes
positive ass, increases, so that the level of precaution ultimately deszs.

Proposition 7 For given parameters including ., the optimal loading is increasing in, onceo,
becomes large.

Proof: From Proposition 5 we know thé(;vi approaches zero as increases. Using <%> —

L

T and¢’ (%) — 0 in the derivative derived in the previous proposition

e 0 (XU——) [[Bkr +20r + 12 + Ao?] — B [Bhr + 2X,r + 02 + Ao—g]}

doy, 202 4 20,0 <—X;f5> [7’ + ZSE[Bkr + 2Xor + 12 4 Aag]}

we see thag% > ( as all terms that could potentially be negative approaah aes faster rate. [

Extremely large values af, correspond to the case where the manager’s actions havstalmo
no effect on the probability of a threshold crossing ocayrifmhus, if anthropogenic pollutant
loading has almost no influence on whether a threshold cr@ssill occur, a reduced level of
precaution and increased loading are optimal, as any reduict loading is too costly compared
to the negligible reduction in the probability of crossiing threshold.

We have shown that thiotal deterministic pollutant loading in any period, consisting of
the sum of carry-over from the previous period, natural gacknd inputs (not including), and
(optimal) anthropogenic inputs, does not depend on theotpollutant level. The optimal pollu-
tant loadingz changes nonlinearly as the threshalgdbetween stability domains changes (Figure
1). As X, becomes very large, it becomes very unlikely that transitiwo the undesirable state

11



will occur, and optimal loading approaches a target leygl,.,;, of §[§ — B] (whereé is the
per-period discount rate), which is then also equal to thpeeted pollutant stock in the next time
period. Conversely, wheX, becomes small, so that additional loading equal t® present and
transition from the undesirable state to the desirable ssatery unlikely, the optimal loading ap-
proacheéj— [% — B] —r, while the expected pollutant stock in the next period oryz@raapproaches
the target level. Importantly however, for intermediatirea of X, the optimal pollutant loading
may be much less than that for both small and large valué§. gnd as a result the next period’s
expected state variable may be much less than the targépledicted whenX.. is either small or
large (Figure 1). The intuition behind these results is dev: if the threshold is either extremely
low or extremely high then precautionary activity is unvearted. In the former case, decreasing
loading will not significantly change the probability of igition out of the undesirable state. In the
latter case, additional precaution will decrease the poitibaof transitioning into the undesirable
state only negligibly. However, if there is a possibilityrabving between states in either direc-
tion, then additional precautionary activity carries apented economic benefit. Note that our
result assumes a reversible process. With an irreversilblgsteretic threshold, the decisionmaker
would presumably have an even larger incentive to avoidsangsa threshold into the undesirable
state. Finally, we have demonstrated that there is a noronmntelationship between increasing
uncertainty in the natural system (as represented by tloe &mmv;) and the optimal combined
loadingg, i.e. increasing uncertainty can first decrease the opiimaaling but will eventually al-
ways increase it. Intuitively, if a manager is absolutelst@i@ that the system is right below the
threshold, then any precautionary reduction is unwarthnt@nce uncertainty about the natural
system increases, so does the probability of crossing tieshbld, and hence it might be worth-
while to reduce loadings for a reduction in the probabilitycmwssing the threshold. However, if
the uncertainty about the natural system continues to asereany reduction in loadings implies
only a negligible reduction in the probability of crossimgtthreshold and hence is too costly.

12



3 Optimal management with uncertain threshold location

To make our problem more realistic we next assume that thisidemaker is aware of the exis-
tence of the threshold’. between stability domains, but is uncertain of its locati@refine the
probability distribution over the critical value #$X.). Hence the dynamic programming equa-
tion (4) now becomes (using conditional expectations anpmng the time subscript for ease of
notation):

/ _C/ V(c+v+u)fi(u)du g(v)dv +

VX)) = max{kc+6/
5/ 76/7 V(c+r+v+u)f2(u)dug(v)dv] h(Xc)ch}—k[BX+b]—X2 (5)

The first order condition is the same as in the previous seetaept that there is an additional
integration overX,.. More formally, the revised first-order condition for thetiopal combined
loading becomes

X.—¢

Oy

5[Bk+26]:k—6/ {igb(XC_E) [Bkr +2X.r +1° + Ao?l] +2r [1—@<
— oo LOw

Ov

e

And the optimal choice fof is given implicitly where

azg [%—B} —/_O:o [r [1—@(‘){0—0)} 42 ¢<X°_C) [Bkr+2Xcr+r2+Aai]} h(X.)dX.

Ov 20, Ov

Note that the solution is simply a weighted average of thénwgdtc under certainty, where the
weight is given by beliefs over the critical threshdldX.). As before, if the decisionmaker be-
lieves with a high degree of certainty that the thresholdtisee very high or very low, then optimal
pollutant loadings approad}*[ s — BJandg k [— — B] — r respectively; the expected pollutant stock
in the next periodE[ X 4], approache§(mmet = §[§ — BJ in both cases. However, if the deci-
sionmaker is uncertain about the location of the threshbisleconomically optimal to undertake
some precautionary reduction in pollutant loading. Imiely, we are integrating over the optimal
¢ in the left graph of Figure 1. This explains why an increasarnnoertainty can lead to both an
increase and a decrease in the optimal loading. For the foesgume that(.X,) places all mass
on X, wherec¢(X,) is at its minimum, e.g. around, = 0.4 for o, = 0.2 in the left graph of
Figure 1. An increase in uncertainty implies that more pbiliig mass is put onX. where it does
not pay to be cautious arads larger. Alternatively, a decrease in the optimal loadsgasible if
initially h(X.) places most mass on outcomes@fwherec is large, e.g.X. = 1.4,0, = 0.2/in
the left graph of Figure 1. Increasing the uncertainty wilftsmore weight on cases where it pays
to be cautious and reduce the loading.

Before we examine the comparative statics results withe@gp an increase in the utility max-
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imizer’s uncertainty about the critical threshotd, we briefly show that precautionary reductions
in loadings are equivalent to reductions in the expectee stxiable in the next period below the
target level. This is necessary as the expected pollutack s the next period is a functidmoth

of the loadingandthe endogenous probability that the threshold is crossed.

Proposition 8 An increase inox, increases the precautionary reduction in the state vagabl
E[Xarget — Xt+1] if and only if it decreases the optimal loading

Proof: Taking the derivative and noting th&t,, .., is a constant we get

= X.—¢
dE[Xtarget — Xia] _ dE[Xipa] _ _d{c+ [1 -2 ( z )} T} R P, Xe—c\ r| de
dox, dox, dox, Ov oy | dox,

>0

How important is threshold uncertainty in inducing the demmaker to reduce pollutant load-
ings as a precautionary measure? In the context of our mexigdcted ecosystem resilience can
be defined as the expected difference between the threshdltha pollutant stock in the next
period, E[X. — X,.4]. With this definition, a large positive value implies higlsiteence of the
desirable state and a large negative value implies highenese of the undesirable state. When
the decisionmaker is almost certain that the ecosystemnailswitch between states — whether
it is currently in the desirable or the undesirable statee-etkpected pollutant stock approaches
the previously defined target levél,, ... A measure of the extent to which uncertainty about
the location of the threshold induces reductions in pofititaading in the economic optimum is
thus given by the difference between the target level angdfiatant stock that is expected in the
next period when an optimum policy is followed, nam&X,,, ;. — X;11]. This follows because
expected ecosystem resilien€eX. — X, ,,] can be decomposed into the difference between the
critical level and a constant target level if resilience ighh(X. — Xy.,4:), @s well as additional
precautionary reductions below this target [e¥&1X,,,,.: — X;11]). This enables us to look at what
happens to the optimal loading and precautionary reduatitime next period’s pollution stock.

Proposition 9 An increase in the variancey_ can result in nonmonotonic behavior in precau-
tionary reductions, e.g. it can first decrease and then iasesthe optimal loading.

Totally differentiating the equation that defines the opilifrin case the threshold is unknown gives
(for a derivation see the Appendix)

g [ oo ()] 4 e () 1Bl 42X+ 2+ Ad] 00X,
dox., 1+ L [ ¢ (ﬁ—‘) [7“ + 5[ Bhr + 2Xr + 12 + Aag]} h(X.)dX.
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[Xe—px,]?

Assuming a normal density( X.) = \/2_”10)( e *% weget
(&
2 _ [XC7MXC]2
P o L G Rt G L | e e e
do’XC - 7[X(27“"‘XC]2
1+ % ¢ (X;—:E> [r + )EZ%E[B]CT +2Xor + 12 4 Aag}] \/2_730)( e X dX,

Consider the numerator. The tetm= [1 — [%” is positive ifX. € (ux,—ox,, tx.+0x,)

and negative otherwise. Furthermore, the integﬁcfgoF t1(X)dX,. = f:; t1(X.)dX. = 0. Hence,

if most of the weight is shifted on regions whefas negative, the overall integral will be negative.
If pux, —ox, > ¢thenthe ratio)%—u‘@ will be zero for a value)/(\c < ux, — 0x,, i.e., wheref;

is negative. Furthermore, ify, ando, are small, this implies that— ¢ (%) is approximately

1on (—oo,)/(\c) and 0 otherwise, while <X6‘5> rapidly approaches zero as one deviates from

X.. This implies that bothy™_r [1 — (XO——)] th(X.)dX, < 0and [*, ¢ (XO——) [Bkr +
2X.r + 12+ Ac?|tyh(X.)dX. < 0.

Now consider the denominator: since all terms exe’é;gﬁ are positive, and%‘é =0, itis
easy to construct a case where the denominator is positive.

A negative numerator combined with a positive denominatgglies that the optimal loading
decreases asy, increases. The intuition is very similar to the nonmonatpiwith respect to
o, in the certainty case (as the uncertainty about the natysés is replaced with uncertainty
of the utility maximizer about the location of the threshold\n example of the nonmonotonic-
ity is displayed in Figure 2. The x-axis displays the systesilience . — X;4¢c:), i.€. larger
positive values indicate that the target level (the despeltlition stock if the system were for
sure in either state for sure) is further below the criticallue X.. The y-axis displays the un-
certaintyox,. The graph displays contour maps of the precautionary temum the expected
pollution stockE[X,,.: — X¢+1]. The grey areas indicate the regions where an increasg,in
(moving up vertically) will increase the precautionaryuetion in next period’s pollution stock (or
equivalently reduce the optimal loading). The white areasthe other hand, indicate the region
where an increase iny, reduces the precautionary reduction in next period’s gioliustock® |

As expected ecosystem resilience and the decisionmakeréstainty about threshold location
change, there is a wide variation in the degree of optimalaargonary activity (Figure 2). Even if

3We should note that similar results are obtained for varammsbinations of the parameters, i.e. it is not the result
of one particular set of parameter assumptions.
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the decisionmaker believes that the ecosystem is in theatidsistate (has positive resilience), it is
economically optimal to undertake precautionary redudiim loading. The relationship between
precautionary reductions in loading and uncertainty abmithreshold location is nonmonotonic.
The parameter space of threshold uncertainty and expexdé@nce is divided into regions where
increasing uncertainty increases the level of precautimhragions where increasing uncertainty
decreases the level of precaution (Figure 2). For a givereard resilience, as uncertainty in-
creases, it may be optimal first to increase precaution atthdecrease precaution. This result
is one of our key findings, and has an intuitive explanatibthd decisionmaker is almost certain
that ecosystem resilience is very high — in either state n this quite unlikely that any combi-
nation of management actions and random shocks will leadr@naition between states. Thus,
a large precautionary reduction in loading is unwarrantedet benefits are almost certain to be
negligible. On the other hand, if the decisionmaker bebdabat ecosystem resilience is high, but
is unsure of this, then it is possible that transition betw&ates will occur. If resilience is thought
to be negative, the possibility of transition to the dedeadtate is a good outcome, and thus war-
rants a precautionary reduction in loading. If resiliene¢hiought to be positive, the possibility
of transition to the undesirable state is a bad outcome, and again a precautionary reduction
in loading is economically justified. This explains why aitial increase in precautionary load
reduction can be optimal as uncertainty increases. Howeventually, an increase in uncertainty
will always reduce precautionary reductions in loadinggiiFe 2); if the decisionmaker believes
that the threshold could be almost anywhere, a large remuatiloading is no longer optimal as
the economic benefits are no longer well defined.

We have shown that nonmonotonicity can exist for intermedralues otrx, and now extend
the analysis to the limiting case where the uncertaintyragpproaches infinity.

de
dox

Proposition 10 approaches zero fary, — oo

(&

Proof: Consider the derivative obtained in the previouppsition

i e I[P (Fe0)] + e (K B+ 2Xer 402 4+ A0Y)] {1 - [Xcafxixcﬂ Vrox, e TR ax.
dox, -  [Xe—nx,)?
L 3 2% 0 (252 [+ Bt iBhr + 2Xer 472 + Aod]| e ke dXe

If ox, — oo then most of the probability mass will lie whepé. differs greatly frome¢ and
hencep <%) andX.¢ (%) will be close to zero. Hence the denominator approaches®ne a
the integral approaches zero.
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Similarly, the integral in the numerator is bounded and esirtgés divided byo x, it will ap-
proach zero oncey, — oo. This implies that the entire fraction will approach zero. |

4 Discussion

Our results are different to those reported in previousyaeasl of both reversible catastrophic sys-
tems with instantaneous penalty functions (where it has laegued that increased uncertainty
always leads to an increase in precautionary behavior [3]},ad reversible multistate systems
(where it has been argued that threshold uncertainty hkesditno effect on precautionary behav-
ior [18, 25]). How can these differences be reconciled?

When the catastrophic event is modeled as an instantaneoadtyy as in Tsur and Zemel's
[32, 33] studies, an increase in uncertainty corresponds timcrease in the risk of event occur-
rence, and thus always increases precautionary behavia. niultistate system, uncertainty in
pollutant loadings has a more complicated effect. In paldic large negative shocks in pollutant
loading will reduce the pollutant stock, and may move theéesysrom the undesirable to the de-
sirable state (i.e. a positive utility shock, as the valuecfion is decreasing iX), even when
it may not be economically optimal to do so. As a result, iasezl uncertainty in the stochastic
component of pollutant loading does not always increasegoitéon in a multistate reversible sys-
tem. Indeed, for a large enough uncertainty, increasingahniance of the stochastic component
of pollutant loading will always decrease caution, as is tlase, the anthropogenic component of
pollutant loading has almost no influence on the probalulity threshold crossing occurring.

The results of our study are also quite different from thasgorted in previous studies of
multistate environmental systems [5, 18, 25]. Several ef¢hstudies have also suggested that
increased threshold uncertainty always increases theedagrprecaution [5, 18]. Whereas we
derive exact analytical solutions to the decisionmakeblem, previous studies used numerical
approximations to calculate optimal policies, which mayenmited the parameter space con-
sidered and the resolution of observable optimal behawwleed, some of the results presented
in both Carpenteet al. [5] and Ludwiget al. [18] show a nonmonotonic relationship between
uncertainty and precaution analogous to that found in thidys However, because of the coarse
resolution of the numerical approximations used, this n@motonicity is either unreported [5] or
reported as a numerical artifact [18]. In light of our an&yan alternative interpretation is that the

17



level of precaution may increase or decrease as unceriaindgolved in a broad class of models
with unknown thresholds, whether these thresholds aregibe, hysteretic, or irreversible. Fi-
nally, Petersoret al. [25] suggest that mistaken overconfidence in system paeamksads naive
managers to overload pollutant inputs to ecosystems bed¢haptimal strategy is insensitive to
the existence of a threshold, causing cycles of collapseesalery. While recurrent overloading
of an ecosystem may well lead to its collapse, in Peteet@l’s model mismanagement results
because the decisionmaker is not allowed to recognize thatahold exists, rather than as an
inherent feature of utility maximization. An important vétsof our study is that if the existence of
a threshold is suspected, some precaution is warranteduexdsm uncertainty about its location.

Many versions of the precautionary principle have been @eg to justify reductions in the
level of polluting activities in the face of large uncertgirabout the consequences of such ac-
tivities [13]. Our analysis gives both an economic justifiza for precautionary reductions in
pollutant loading — in terms of the expected economic gaiasd-a more nuanced view of how
beliefs about system thresholds should affect precautydmehavior. In particular, a decrease in
uncertainty about the location of a threshold may eithereiase or decrease the desirable level
of precaution, depending on the expected resilience of cbheystem as well as the initial level
of uncertainty. Thus, stakeholder conflict in some kindsmeiinmental dispute may be a result
of different beliefs about threshold proximity and uncery even when there is broad consensus
about underlying processes and system dynamics. For egamplent views on climate change
policy can be broadly divided into those that are pessimastid those that are optimistic. Climate
change pessimists advocate for an immediate reductioriprtsduction of greenhouse gases until
uncertainty about the processes of climate change is rdd@m@®versely, climate change optimists
suggest that no costly reductions in greenhouse gas prodwsttould be undertaken until the same
uncertainty about climate change is reduced. Our analygigests that there may be much more
common ground between these two views than might othervasdught: both optimists’ and
pessimists’ views can be consistent with the same undgr@onomic or ecologic objectives and
expected system resilience, and their differences cartfieuaed to different beliefs about the un-
certainty with which important thresholds are known (asllastrative example, if both pessimists
and optimists assume a system resilieaCe- X, = 0.2 in Figure 2, but pessimists believe
ox, = 0.4 while optimists believery, = 0.1, then a reduction in uncertainty, would warrant
increased precaution for the former and decreased preodoti the latter).

Our analysis contains several key insights for the choiakiamplementation of ecosystem
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management policies. In our model of an ecosystem with anawik, reversible threshold, com-
monly stated goals for managing multistate ecosystems Ateiaing resilience and applying a
precautionary principle in decisionmaking — are completeinsistent with, and can be justified
by, economic theory. Thus, we suggest that economic opioiz approaches and empirical
scientific approaches for ecosystem management are quitplementary. Thus, the kinds of
policies suggested by economic analysis, including ineefiased management schemes such as
taxes, subsidies, and tradable permit markets, and sommandiand-control approaches, should
be considered as potential instruments for scientifidadlged ecosystem management in the pres-
ence of thresholds. In particular, it may be effective teetthke current regulatory framework and
adjust the level of existing damaging activities based aih legpected ecosystem resilience and
uncertainty. This proposal may be viewed as an economidaliived equivalent to the concept of
“bet-hedging” against uncertainty [8, 10]. Such adjusttaenay be considerably easier to imple-
ment than large-scale stakeholder involvement schemewauld be both flexible and adaptable
to future advances in scientific knowledge about ecosysterardics.

5 Conclusions

Many natural systems have the potential to switch betwdaennative system dynamics. We ana-
lyze a multistate system with two distinct domains, eacthg own equation of motion. While
earlier studies of multistate systems rely on numericabtions, by considering both uncertainty
of threshold location and a random component to the unaeylgtynamic natural process we are
able to formulate the manager’s decision as a stochastandigrprogramming problem and show
that the value function is differentiable, even at the thadd. We show that utility maximization
leads to a decision rule with precautionary behavior thereiases system resilience, if the system
is thought to be close to the threshold. We find that increasittertainty (both uncertainty associ-
ated with natural processes and uncertainty of the decisaérr about threshold location) can lead
to nonmonotonic changes in precautionary actvity. In paldr, as the variance in the stochastic
component of the natural system increases, the level ohptemnary activity may first increase,
but for large enough variance, precaution will eventuallyags decrease. Similarly, there is also
a nonmonotonic relationship between the uncertainty otithi#y maximizer about the unknown
threshold and precautionary behavior. If the decisionmakeertain that he/she is right below
the threshold, there is no expected benefit from engagingeirapitionary activities. If uncertainty
about threshold location increases, so does the prohathiit the threshold will be crossed and
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hence precautionary reductions in loading have a payofh flevering that probability. If the
uncertainty continues to grow, precautionary reductioneading eventually become too costly
compared to the negligible reduction in the probabilityt th& threshold is crossed.
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Figure 1: Optimal Loading and Expected Pollutant Stock ui@tainty for Variousr,
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Notes:The left graph displays the optimal loadiag= BX +[+b as a function of the critical valu¥,, the right graph
displays the next period’s expected pollutant stBEK, ;1] as a function ofX.. The constant target levéd; ;.. the
expected level in the next period if a manager were to asshatétte system is in either state with certainty (i.e. above
or below the critical value without a chance of switchinghifled as a dotted line to the right panel. Eoryx,
andlimx, ., the expected stock approaches this target leygl ... However, if this target level is close to the
critical level X, additional precaution is optimal to avoid transition te tindesirable state. Parameter values used
follow Petersoret al. [25] where:k = 1.5,§ = 0.99, B = 0.1,b = 0.02,r = 0.2,02 = 0.02.
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Figure 2: Contour map of precautionary reduction in loag£{&4,e: — X:+1], under uncertainty.
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X. — Xtarget @nd uncertainty about the critical levelyx,, with other parameter values as in Figure 1. The areas
shaded gray represent regions of the parameter space fdn imlereasing uncertainty about the expected resilience of
the system leads to a reduction in loading. Unshaded arpessent regions for which increasing uncertainty about
expected resilience leads to an increase in loading. Thedllime separates the two states of the ecosystem, with the
desirable state on the right-hand side and the undesirttéean the left-hand side. Thus, increasing positive \&alue
of expected resilience refer to increasing resilience efdbsirable state, and increasing negative values of eeghect
resilience refer to increasing resilience of the undegratate.
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Mathematical Appendix

Proof of Proposition 1: Under the optimal loading, ¢(X,, ;(X;)) is independent ok,

Proof: Rewriting the Bellman equation using the fact thatitse constants do not influence the
optimal load; we get

Xo—BX;—li—b oo
V(X)) = max {k[BXt +l+ 0+ 6/ / V(BX;+ 1l + b+ v+ u)fi(u)du g(v)dv +

] / V(BXi+lL+b+r+v+u)fa(u)du g(v)dv } — k[BX; +b] — X?
Xo—BX;—li—bJ —oo

Note that/, only enters the maximization in the form of= BX, + [, + b, and hence the above
problem is equivalent to

V(X) = max {kc + 5/_1(:0 /: Vie+ v+ u) fu(u)du g(v)dv +
5/(10_0 /:; Vie+r+v+u)fo(u)du g(v)dv} — k[BX, +0b] — X}

And hence the optimal solutianis independent oX;. |

Proof of Proposition 2: V(X)) is concave and differentiable with'(X ) = —Bk — 2X

Proof: We will first show that the dynamic programming prableonstitutes a contraction map-
ping and maps concave function into concave functions. iftiign implies that the value function
itself must be concave. Finally, we use the theorem by [Lhtmsthat the value function is differ-
entiable.

Define the operator

Xe—c(X,l) poo
T(m) = max {kl - X’ + 5/ / m(c(X, 1) + v+ u) fi(u)du g(v)dv

—00

+0 /Xc—c(x,z) /OO m(c(X, 1) +r+v+u)fo(u)du g(v)dv}

We can show thdf’ constitutes a contraction mapping using Blackwell’s sigdficconditions:
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(i) Monotonicity: If m(z) < n(z)Vx € Ry then
c—c(X,0)
T(m) = max {kl X2 4 6/ / m(e(X,1) + v+ u) fi(u)du g(v)dv+

6/ —ch)/ m(c(X,)+r+v+u)fa(u )dug(v)dv}

IN

c—c(X,0)
mlax{kl X2+5/ /_OO n(e(X,1) + v+ u) fi1(u)du g(v)dv+

5/ o) / (X, ) +r+v+u)fz(u )dug(v)dv}

as n(x) pointwise and the integral is a linear operator

= T(n)

(i) Discounting: For alla > 0 there exits) < 1 with

c—c(X,1)
T(m+a) = mlax{kl X2+5/ [ [m(c(X,1) +v+u) + a]fi(u)du g(v)dv+

6/00 (X,0) /OO [m(e(X, 1) + 7+ v+ u) + a] fo(u)du g(v)dv}
c—c(X,1)
- mlax{kl X2+6/ /m m(e(X,1) + v+ u) fi(u)du g(v)dv+

6/ —cxz)/ m(e(X, 1) + 7 4 v +u) fo(u )dug(v)dv}+§a
= T(m)+da
The second line follows from the fact that the densitigs:), f2(«) integrate to one.

Points (i) and (ii) are sufficient to show thatis a contraction mapping. This implies that we can
start with an arbitrary functiom () and repeated application dfwill converge to the unique fixed
point, the true value function.

We will next show thatl” maps concave functions into concave functions. Hence, i$tag
with a concave functiom and repeatedly apply, all resulting functions will be concave as well.
This implies that the unique attractor, the true value fiomgtis concave as well.

Concavity: VX;, X, € R, define the optimal loading ds and/,, respectively. Note that
for the convex combinatioX’s = 60X, + (1 — 0)X,, wheref € (0,1), the convex combination
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I; = 01, + (1 — 6)l, is feasible as the choice set of possible loadings is unbedind

Xe—c(X,l) poo
[T (m)](X3) mlax{kl - X2 +6L L m(c(X3,l) + v+ u)fi(u)du g(v)dv

6/00 /oom(c(Xg,l) +r+v+u)fo(u)du g(v)dv}

Xe—ce(X,l) Joo

Y

_ 5 " Xe—c(X3,l3) N
kls — X35 + 6/ / m(c(Xs,l3) + v+ u) fi(u)du g(v)dv
— 00

— 00

5/ B / m(c(X3,13) + 7 + v+ u) fa(u)du g(v)dv
Xe—c(Xs,l3)

= &k [91} +(1- e)ig] —[0X1 + (1 — 6)X3]?

+Xe=0c(X1,01) = (1-0)e(X2,2) roo R R
+6/ / m(@ [C(Xl,ll)—i-v-l—u] +(1-90) [c(Xg,lg)-i—v—i—uDfl(u)dug(v)dv
- —o0

)

+4 /Oo m (9 [C(Xl,[l) +r+ov +u] +(1-9) [c(Xg,[2) +r+ov +uD f2(u)du g(v)dv

Xe—0c(X1,0l1)—(1—0)e(Xo,lz) J —

The second line uses the fact thais feasible and hence the vaIueAunder the optimum by definitio
has to be at least as high. The third line uses the definitiof;@ndi;. Using Proposition 1 in the
above equation, namely thatX, l;) = ¢(Xs, ls) = ¢ we get (the second line utilizes the fact that

bothm and—2? are concave functions).

\Y

[T(m)](X3) k [91} +(1- e)ig] —[0X1 + (1 — 0)X2]?

FXe—0c(X1,01)—(1-0)c(X2,l2) foo R R
+6/ / m(@ [C(Xl,ll)—i-v-l—u] +(1-90) [c(Xg,lg)-i—v—i—uDfl(u)dug(v)dv
— o0 — 00

')

+4 /Oo m (9 [C(Xl,[l) +r+v +u] +(1-9) [c(Xg,[2) +r+ov +uD f2(u)du g(v)dv

Xe—0c(X1,01)—(1—0)c(X2,l2) /-
Okl + (1 — O)klz — 6XF — (1 — 6)X3

+6/X676/00 om (c(Xl,il) +v+u) +(1=0)m (C(X%[?)*”Jr“)] fi(udu gv)dv

Y

+6/ / om (e(X0,10) 47+ v+ u) + (1= 0)m (c(Xa, ) 7+ + )| fo(u)du g(v)dv
_ [kzl_xl +5/ / m (e(X1,00) + v+ ) f1(w)du g(u)do
+5/ /Oo e(X1,01) + 7+ v+ ) fou)du g(v)dv }

+(1-0) {kl2—X2+6/ / m (e(Xz,l2) + v+ u) fi(w)du g(v)dv

—|—5/XC CL e(Xa,l2) +r+v+u> f2(u)du g(v)dv}

= [T(m)(X1) + (1 = O)[T(m)] (X2)

The last two lines are simple rearrangements and definifitimeovalue function. We hence know

that the unique attractor, the value functigiX) is concave.
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We are now equipped to show the differentiability of the eafunction with the help of the
theorem by [1]. Definé(X,.) as the optimal strategy if the threshold¥s. Now define

W(X) = k [i(xo) + B[Xo — X}] _x?

T
Xc—¢C (o) _ oo oo ~
+6L L V (e(X, ) + v+ u) fi(u)du g(v)dv + 6/X 77/7 V (e(X, 1) +7 +v+u) fa(u)du g(v)dv

independent ofX’

Thus, all perturbations iX aroundX, are immediately offset in the first period by an adjustment
in the loading equal tdB [ X, — X]. The advantage dfl’ is that the payoff in future periods is
independendf X and only depends o/, as by definition:(X,l) = BX + [+ b = BX +
I(Xo) + B[Xo— X]+b= BXy+(Xy) +0b.

Note thatlV (X) is defined on a neighborhood arouq. Clearly, W (X) is concave, dif-
ferentiable atX,,, andW (X) < V(X) asW (X) uses just one feasible stratefgyut of the set of
possible strategies whose maximum yigldsY ). Furthermore, by constructid# (X,) = V(X).
Using the above result that(X) is concave, as well as the theorem of [1], it follows thdtX ) is
differentiable atX, as well andV’(X,) = W'(X,) = —Bk — 2X, |

Corollary: The critical levelX. influences the value function only as an additive consiant
Given thatV’(X) = —Bk — 2X, we also know that the value function is given by .X)
a — BkX — X?

Proof of Proposition 3 The optimal combined loading is given by

_ k|1 X.—¢ 1 X.—¢
C:E[S—B]—r[l—q)( - )]—20v¢( p )[Bkr+2Xcr+T2+a§2—aiJ

Proof: Maximizing the right hand side of the Bellman equatlyy setting the derivative with
respect ta equal to zero we get

C

0 k— 6i¢ (Xc — ) /Z V(X —i—u)fl(u)du—l-é/):c/o; V(e +v+u)fi(u)du g(v)dv

Oy
X.—c¢

v

L ¢>(XC_C) [/_OO V(Xc+r+u)f2(u)du—/oo VX, + u) f(w)du

Oy

)/_O:O V(Xc—l—r—i-U)fQ(U)du—i-é/Xoic/_Z V(€4 r+v+u)fo(u)du g(v)dv

|
o
+
[

X.—¢ ) IS _Oooo
+5/_OO /_OO V(e +v+u)fi(u)du g(v)du+6/xc_c/_oo V(E+714 v+ u) fo(u)du g(v)dv
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Examining terms on the right hand side and using the defirsta¥}/(X) andV’(X), we get

[ v ernnemgwa= [T [T sk 2 i g

X.—¢C o X.—¢C
/ —Bk —2¢—2v— 2/ ufi(u)du| g(v)dv = / [-Bk — 2¢ — 2v] g(v)dv

— 00
—_———
0

= —[Bk+2d® <XC — E> + 20,0 (XC — E>
Oy Oy

as well as

/X /, (Etr+otufiudegl dv—/x [ =Bk —2[+r + v+ ull fo(u)du g(v)dv

/ —Bk —2¢—2v—2r — 2/ ufo(u)du| g(v)dv = / [-Bk — 2¢ — 2r — 2v] g(v)dv
X.—¢C — 00 X.—¢C

0

= —[Bk+2e+2r] [1 % (Xc —c)} — 20,6 (Xc —c)

Oy Oy

and finally

/_OO V(X +r+u)fo(u)du — /_OO V(Xe+u)fi(u)du

= /_OO [0 — BE[Xc 4+ r+u] — [Xe + 7 +u)?] fa(u)du — / [ — BE[X, + u] — [Xc + u]?] f1(u)du

— 00
oo

= [a— BkX.— X2 /OO fa(u)du —[Bk + 2X ] /OO [r + u] fo(u)du — / [r 4 u)? f2(u)du
—co — 0 —0o0

2 2
1 T oyt

—[a — BEX,. — X7 /_OO fi(u)du +[Bk + 2X ] /_OO ufl(u)du+/_oo u? f1(u)du

2
1 0 o2,

= —[Bk+2X/]r—1* -0l +oo,

Putting things together, the first-order condition becomes

0 = k—6—¢ (XC — C) [Bkr +2X.r +1° + 02, — 02,] — 6Bk + 2@ (XC — C)

UU v UU

c—¢€ c—C X.—¢
+20,0¢ (X C> — §[Bk + 2¢ + 2r] {1 —® (X C)] — 20,06 ( C>

Ov Oy Ov

1 (X.-¢ } X, —¢

- k—§—¢< C) [Bkr +2X.r + 12 + 02, — 02, ] — 6[Bk + 2] — 20r {1—@( C)]
Oy Oy Oy
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Which implies

1 [(X.—¢ X.—¢
6[Bk:+20]:k:—5—¢< ‘ C) [Bk:r+2Xcr+r2+U§2—U§J—257’{1—@( C)}

Oy Oy

or equivalently

G EY RS P (PACt ) | I (. [Bkr +2X.r + 1% + 02, — 02, ]
210 Oy 20, 2 !

Proof of Proposition 6 For all values of parameters, k, r, 6, ando,, there exists a critical level
X. such that an increase in the varian¢edecreases the optimal loading

Proof: First, we will show that using the above parametegoitimal loading: = X, — 0, Using
the proposed in the equation that implicitly defineswe get

1_¢<XC—C>
Oy

= E—UU—SF—B} +r[1—®(1)

E——{%—B}—i—r

1 X.—¢ —
+ ¢>< ° C) [Bkr + 2X.r 4+ 12 + Ac?)

20y o

)[Bkr + 2Xer + 172 + Ac?]

0

= E{M}—UU—SE—B}HD—@@ )[BEr + 12 + Ac?)
Oy
1 _ 2 _ _ _ 2 2
_ kow [} — B] + 202 2mu[12 ®(1)] — p(V)[bK T + 72 + Ac?] e g [% _B} el e) \BEr 41 4+ Ac?]
Tv

k1

= 3 [E_B] + oy —7[1 —®(1)

= 0

VKT 4+ 12 + Ac2] — oy —g {l —B} +r[l—®(1)

3 )[Bkr + r? + Ac?]

The first line is the equatlon that definesThe second line uses the proposed X — o,. The
third line factors outX before the fourth line uses the expressmnXQr

Second, to gegfri totally differentiate the above equation that implicidgfines: to obtain

Xc.—c¢ 1 X.—¢
{1+L¢< c>_ 2¢’< C) [Bkr+2Xcr+r2+A05}}dE
o

ov 20% v

+ {T[Xc_5]¢(XC_E)— ! ¢>(XC_E> [Bkr+2XCr+r2+Aoﬁ]—[XC_E]¢'<XC_E) [Bkr+2Xcr+r2+Acri}}dov
g,

oy 20% ov 20% oy

= 0
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After collecting terms

{1 T {m (XC - C) Ly (—XC - C) [Bkr + 2Xor + 12 + Aag]] } de
Oy Oy 20'1; Oy

+ {—i [¢ (X — ) (Bhr + 260 + 12 + Ao?) + By (XC — C) [Bkr + 2X.r + 17 + Aag]] } do,
Oy Oy

= {1+— ( )[ — Bkr—|—2XCT—|—T + Ao? ]Hda

= _ A2

—|—{— L gb(X C) [Bkr+2cr+7’ + Ad? [Xc g
202 2

The second line useg(r) = —z¢(z). If X, is as defined above, we know th;ﬁ(%) = ¢(1).
Using this in the derivative we get

[Bkr + 2X.r 4+ 1% + AUZ]] } do,

v

dé %Q[Bkrjt%r—l—ﬁthai — Bkr —2X.r —r? —Aag]
do, 1+% [r—l— ﬁ[Bkr+2Xcr+r2+Aag]}
%[—QTUU]

1+ (ba—l [7’ + —[Bk:r +2Xor+1r2+ Aag]]
—r¢(1)

kow|$—B|+203—2ro, [1-®(1)]—¢(1)[Bkr+72+Ao?]
[ro(1)+o]

o, + ¢(1) [r+ ﬁ[Bkr%— r+r2+ Aol

The last term of the denominator becomes

1 kow [% - B] + 202 = 2r0,[1 — ®(1)] — $(1)[Bkr + r2 + Ac2]
[Bkr +

204, [ro(1) + o]
1

= - [20 rlré(1) + ou] + Bkr[ré(1) + ou] + kro [l - B] +2ro2 — 220, [1 — ®(1)] — rp(1)[Bkr + 12 + Ac2] + [r2 + Ac2][r¢(1) + o ]]
204 [ré(1) + oy |7 ! ! “le v ! “ “ !

T+

r 4+ r2 + Aoi]

1 1 2 2 2 2]
= — |Bkroy 4+ kroy|-—B| +4 2120, [®(1 1) -1 » A 0
2UU[T.¢(1)+UU][ roy + kro [6 ]+ roy + 2r°o, [®(1) + ¢(1) ]+ ou[r® + Aoy ]| >

Itis positive a9) < §, B < 1 implies that; — B > 0 and®(1) + ¢(1) — 1 > 0. [

Proof of Proposition 9 An increase in the varianeg;_can result in nonmonotonic behavior in
precautionary reductions, e.g., it can first decrease adititrease the optimal loadiiag

The optimal loading when there is uncertainty ab&utwas defined as

C—S[%—B]-ﬁ-/m [r {1—¢(X°_C)]+ ! ¢(XC_C> [Bkr +2Xcr + 1% + Ac2] | h(X.)dX. =

Ov 20, Ov
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Taking the total derivative we get

o0 X.—¢ 1 -z
{1+/ [i¢<°7c> R <X° c) [Bkr+2Xcr+r2+AUﬁ]} h(XC)ch}dE
oo LOW oy 20 oy

o Lt L F

v dox,
and hence
. [t ()| + 2o (K52 Bhr + 2Xer 402 + Ac2]| GEELdx,
dox. 14 L2 [rg (2=t - plg/ (Xe=0) (Bl + 2Xer + 72 + Ao h(Xc)ch
ffooo [r [1 ) (X;;Eﬂ n 2;U¢ (XC c) [Bkr—i-ZXcr—i-r + Ao }] %ﬁz)dxc
B T L 206 (2e22) [+ Zest Bhr + 2Xer + 12 + AcZ]| h(Xo)dX.
where the second line uses the fact hdt) = —z¢(z). Assuming a normal density(X.) =
_ [XC*MXC]Z _ [XC*“X‘:]2
\/2_730){.6 2% we getdh(xj> — \/%_We 2% [7{&;;&}2 — 0%{ ] and hence
) [Xe gxc]2
e e I (B + ok o (25E) [BRr + 2Xer + 12 + A0 {1 ~ [Feme } e TR ax.
dox, -  [Xe—nx ]2
1+ =% ¢ ( X;f) [r + et 7% [Br + 2Xer + 72 + Aaﬂ] \/2_ﬂlgx e X dX,
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