
 1

“An Empirically-Grounded Comparison of the Johnson System versus the Beta 

as Crop Yield Distribution Models” 

 

 

by 

Octavio A. Ramirez1 

and 

Tanya U. McDonald2 

 
 
 
 

Paper Accepted for Presentation at the Annual Meeting of the 
American Agricultural Economics Association 

Portland, Oregon, July 29-August 1 2007 
 
 
 
 
 
 

 
 

1 Professor and Head, Department of Agricultural Economics and Agricultural 
Business, New Mexico State University, Box 30003, MSC 3169, Las Cruces, NM 
88003-8003, e-mail: oramirez@nmsu.edu, phone: (505) 646-3215. 

2 Research Specialist, Department of Agricultural Economics and Agricultural 
Business, New Mexico State University.  

 
This research was supported by the National Research Initiative of the Cooperative 
State Research, Education and Extension Service, USDA, Grant # 2004-35400-14194 
and by the Agricultural Experiment Station of New Mexico State University. 
 
Copyright 2006 by Octavio A. Ramirez and Tanya U. McDonald. All rights reserved. 
Readers may make verbatim copies of this document for non-commercial purposes by any 
means, provided that this copyright notice appears on all such copies. The authors would 
like to thank Bruce Sherrick and Jonathan Norvell for graciously sharing the high quality 
yield data from the University of Illinois Endowment Farms. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7025732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

For many years, agricultural economists have recognized that the choice of an 

appropriate probability distribution to represent crop yields is critical for an accurate 

measurement of the risks associated with crop production. Recent research on this issue 

has been conducted by Gallagher 1987; Nelson and Preckel 1989; Moss and Shonkwiler 

1993; Ramirez, Moss, and Boggess 1994; Coble, Knight, Pope, and Williams 1996; and 

Ramirez 1997; among several others. This research has provided statistical evidence of 

non-normality and heteroskedasticity in crop-yield distributions, specifically of the 

existence of positive kurtosis and negative skewness in most cases. 

Gallagher (1987) used the well-known Gamma density as a parametric model for 

the distribution of soybean yields.  Nelson and Preckel (1989) proposed a conditional 

Beta distribution to model corn yields.  Taylor (1990) estimated multivariate non-normal 

densities using a conditional distribution approach based on the hyperbolic tangent 

transformation.  Ramirez (1997) introduced a modified inverse hyperbolic sine (IHS) 

transformation (also known as the SU family) as a possible non-normal, heteroskedastic 

multivariate probability distribution model.  Ker and Coble (2003) proposed a semi-

parametric model based on the Normal and the Beta densities to represent crop yields.  

The three major statistical approaches that have been used for the modeling and 

simulation of crop yield distributions, namely the parametric, non-parametric and semi-

parametric methods, all have distinct advantages and disadvantages. The parametric 

method is based on assuming that the stochastic behavior of the underlying the variable 

of interest can be adequately represented by a particular parametric probability 

distribution function. For this reason, its main weakness is the potential error resulting 

from assuming a probability distribution that is not flexible enough to properly represent 
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the yield data. The main advantage of the parametric method is that it performs relatively 

well in small sample applications. The leading distributions that have been used as a basis 

for this method are the Beta and the Gamma (Norwood, Roberts, and Lusk 2004).   

 Most recently, however, Ramirez and McDonald (2006a) introduced an expanded 

form of the Johnson system, which is composed of the SU, SB and SL distributions. They 

hypothesize that, because their expanded Johnson system can accommodate all mean-

variance-skewness-kurtosis (MVSK) combinations that may be theoretically exhibited by 

a random variable, it should provide for a reasonably accurate modeling of any 

probability distribution that might be encountered in practice. This would clearly address 

the main disadvantage of parametric models cited in the literature, i.e. their lack of 

flexibility and the resulting specification error risk, and provide for a system that 

supersedes all other densities that have been considered as a basis for these models.  

This hypothesis, however, has not been empirically tested. In fact, because the 

precise stochastic behavior of a random variable (i.e. the exact shape of its density 

function) is characterized by an infinite number of central moments, it is possible that 

accommodating its first four moments does not provide for a sufficiently accurate 

representation of the variable’s probabilistic behavior. The validity of Ramirez and 

McDonald (2006a) hypothesis is explored in this article. 

The Expanded Johnson System 

Unlike other frequently assumed distributions such as the Beta and the Gamma, the 

original Johnson system exhibits the key property of being able to accommodate any 

theoretically feasible skewness-kurtosis combination (figure 1), although each of those 

combinations is inherently associated with a fixed set of mean-variance values. Ramirez 
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and McDonald (2006a) developed an expanded parameterization of the Johnson system 

that can accommodate the same skewness-kutosis (S-K) combinations allowed by the 

original system in conjunction with any mean and variance. 

Figure 1 illustrates the different skewness-kurtosis regions covered by each of the 

three families in the Johnson system, as well as by the Beta and the Gamma distributions. 

Note again that any theoretically feasible S-K combination can be accommodated by one 

of the three families in this system. In fact, just the SU and SB are sufficient for this 

purpose, as the SL only spans the curvilinear boundary between the SU and SB. The lower 

bound of the SB distribution is given by 22 −= SK , which is also the upper bound for the 

theoretically impossible S-K region. 

In contrast, note that the Gamma distribution only spans a curvilinear segment on 

the upper right quadrant of the S-K plane. Although, as the SL, the Gamma distribution 

can be adapted to cover the mirror image of this segment on the upper left quadrant, the 

combinations of S-K values allowed by it are still very limited. Also note that the Gamma 

segment is the upper boundary of the S-K area covered by the Beta distribution. Although 

the Beta covers a significant area of the S-K plane, the SB can accommodate all S-K 

combinations allowed by the Beta while the Beta only covers a subset of the S-K area 

spanned by the SB. 

In addition to their limited coverage of the S-K plane, the Gamma and the Beta 

exhibit the same handicap of the original Johnson system. That is, because they are two-

parameter distributions, any particular S-K combination is always arbitrarily associated 

with a specific set of mean and variance values. 
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Estimation of the Expanded Johnson System 

Estimation of the expanded Johnson system can be accomplished by maximum likelihood 

procedures. The log-likelihood functions to be maximized in order to estimate the 

parameters of each of the three distributions in the system (SU, SB and SL) are (Ramirez 

and McDonald 2006a): 
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for the SU, SL and SB distributions, respectively; 0>tG ; and SUG , SUF , SLG , SLtF , SBG  

and SBtF  are  the exponential and trigonometric functions the shape parameters γ  and δ . 

Ramirez and McDonald (2006a) also show that: 

(5)  βtt
F
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where tX  and tZ  represent vectors of explanatory variables believed to affect the means 

and variances of the distributions, andβ andσ are conformable parameter vectors. In 

short, the mean and the variance of the SU, SB and SL random variables ( t
FY ) can be 

independently controlled by βtt X=Μ and 2)( σtZ while the shape parameters γ  and δ  

separately determine the distribution’s skewness and kurtosis.  

A final adjustment that facilitates estimation and interpretation is re-defining these 

distributional shape parameters as follows: for the SU γ=-µ, for the SB γ=µ, and for all 

three families δ=1/θ.  Also in the case of the SL, after re-parameterization, γ becomes a 

redundant coefficient and, thus has to be set to zero. Then, for both the SU and the SB 

µ<0, µ=0 and µ>0 are associated with negative, zero and positive skewness, respectively, 

and all three families approach a normal distribution as θ goes to zero. This also allows 

for testing the null hypothesis of normality as Ho: θ=µ=0.  

The Expanded Beta Distribution 

An expanded parameterization of the Beta distribution that can accommodate any mean 

and variance in conjunction with all skewness-kurtosis combinations allowed by the 

original Beta is needed for the purposes of this research. This expanded Beta distribution 

is obtained by applying the procedure outlined by Ramirez and McDonald (2006b). With 
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this procedure, any two-parameter non-normal distribution pdf(y)=f(y,δ,λ) with mean 

E[y]=f1(δ,λ), variance E[(y-E[y])2]=V[y]=f2(δ,λ), skewness E[(y-E[y])3/f2(δ,λ)3/2]=S[y]= 

f3(δ,λ)≠0, and kurtosis E[(y-E[y])4/f2(δ,λ)2]=K[y]=f4(δ,λ)≠0, can be expanded as follows: 

 (6) y’ = {y- f1(δ,λ)}/f2(δ,λ)1/2 

yields a pdf {pdf’(y’)} with a constant mean (E[y’]=0) and variance (V[y’]=1) without 

altering its skewness and kurtosis coefficients. Then, 

(7) y” = σy’+µ 

yields an expanded, more flexible, pdf {pdf”(y”)=f”(y”,µ,σ,δ,λ)} which mean and 

variance are solely determined by µ and σ2, respectively (i.e. E[y”]=µ and V[y”]=σ2), 

while its skewness and kurtosis coefficients depend on the original distributional shape 

parameters (δ and λ) only. As in the case of the Johnson system, the mean and the 

variance can be specified as linear functions of relevant explanatory variables: 

(8) µt = Xtβ,  and σt = Ztσ, 

where Xi and Zi are the explanatory variable matrices, and β and σ are parameter vectors. 

 In the case of the Beta distribution: 

(9) f1(δ,λ) = BF  =  ( )λδδ +  

f2(δ,λ) = BG = 
( )( )21 λδλδ

δλ
+++

 

Thus, the transformation from the original Beta distributed variable (y) into the 

random variable exhibiting the expanded Beta distribution (y”) is: 

(10) y” = ( ) tBBt GFy µσ +− 2/1/ . 
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 The probability density function for y” is obtained through a straightforward 

application of the transformation technique (Mood, Graybill, and Boes 1974), which 

leads to the following log-likelihood function: 
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 This log-likelihood function is maximized with respect to δ, λ, β and σ in order to 

obtain estimates for these parameters and parameter vectors.  

Evaluating the Flexibility of the Johnson System 

Ramirez and McDonald (2006a) hypothesis is that, because their expanded Johnson 

system can accommodate all MVSK combinations that may be exhibited by a random 

variable, it should provide for a reasonably accurate modeling of any probability 

distribution that might be encountered in practice and thus supersede all other densities 

which have been considered as the basis for parametric models. Of the two distributions 

that have been widely used for the probabilistic modeling of crop yields, namely the 

Gamma and the Beta, the latter is clearly the most flexible as it can accommodate a much 

wider range of skewness-kurtosis combinations (figure 1). Also, theoretically, the Beta 

distribution is not related to the Johnson system. Therefore, the Beta distribution is 

selected for use in this comparative evaluation of the Johnson system. 
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 The yield data used by Ramirez and McDonald (2006a) to introduce and illustrate 

applications of the expanded Johnson system is chosen as a basis for the evaluation.   

The data, obtained from the University of Illinois Endowment Farms database, includes 

26 corn farms located in twelve counties across that State. Data are available from 1959 

to 2003, with the sample size varying from 20 to 45. 

Gauss 6.0 Constrained Maximum Likelihood (CML) programs are used to 

estimate the parameters of yield models based on the expanded Beta distribution for each 

of these 26 farms. The means, variances, skewness and kurtosis coefficients implied by 

the models are computed through those programs as well (all programs are available from 

the authors upon request). As in Ramirez and McDonald (2006a), the means and standard 

deviations are specified as second and first degree polynomial functions of time: 

(12)  2
210 ttX tt ββββ ++==Μ , and 

 tZtt 10)( σσσσ +== ; t=1,…,T. 

As in the case of the SU and SB models estimated by Ramirez and McDonald, the 

Beta models initially include seven parameters (β0, β1, β2, σ0, σ1, θ and µ). Select 

statistics about the estimated Beta models, as well as the SU, SB and normal models (from 

Ramirez and McDonald 2006a), are presented in table 1. The SL is excluded from the 

comparison on the basis of Ramirez and McDonald’s finding that the SL models are 

always outperformed by the SU and the SB in this particular application. This is expected 

since Corn Belt corn yields have been previously found to be left-skewed (Nelson and 

Preckel 1989; Taylor 1990; Ramirez 1997; Ker and Coble 2003; Harri, Coble, Erdem, 

and Knight 2006) and the SL family only allows for positive skewness (figure 1). 
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Likelihood ratio (LR) tests reject the null hypothesis of normality (Ho: θ=µ=0; 

χ2
2,0.1=4.61) in 17 of the 26 SU models and in 18 of the 26 SB and Beta models (α=0.10). 

Normality is rejected by both the SB and Beta models in 17 cases and not rejected by 

either in seven cases. There is only one instance in which normality is marginally rejected 

by the Beta model (2xMLLFV=5.08) but not by the SB (2xMLLFV=3.8), and one in 

which it is rejected by the SB (2xMLLFV=4.64) but not by the Beta (2xMLLFV=2.20). 

Interestingly, in the two of seven cases in which normality is not rejected by the 

SB and the Beta models, it is rejected by the SU model; and in four of the nine cases in 

which normality is not rejected by the SU model, it is rejected by the SB or the Beta 

models. These results are consistent with the previously discussed theoretical properties 

of these distributions, i.e. the fact that the S-K areas covered by the SB and the Beta 

overlap substantially while the SU spans an entirely different S-K region.  

The SB model shows the highest maximum log-likelihood function value 

(MLLFV) in 11 of the 26 cases, versus nine for the Beta and six for the SU. When the SU, 

SB or Beta model with the highest MLLFV is selected as the most suitable non-normal 

model, the normality hypothesis  (Ho: θ=µ=0) is rejected 21, 17 and 10 out of 26 times at 

the ten, five and one percent significance levels, respectively. Note than four of the five 

non-rejections of normality (α=0.10) correspond to the smaller (T≤30) sample sizes and 

the fifth corresponds to a relatively small sample size of 34. This suggests that normality 

could also be rejected in at least some of those cases if larger sample sizes were available. 

Of the 21 models in which normality is rejected (α=0.10), the SB model shows the 

highest MLLFV in seven cases, versus eight for the Beta and six for the SU. The S-K 

combinations corresponding to the highest MLLFV models are presented in figure 2.  
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Note that three of the estimated SU distributions exhibit quite large (>50) kurtosis values 

and are thus not shown in figure 2. The S-K combinations of the remaining 18 non-

normal distributions stretch from fairly low to relatively high S-K value combinations.  

Because these three models are not nested to each other, a LR test to ascertain if 

one is statistically superior to the other in a particular application is theoretically 

inappropriate. Note, however, that no MLLFV differences of more than 1.61 units are 

found between the eight Beta models with the highest MLLFV and the corresponding SB 

models. That is, when the Beta model exhibits the highest MLLFV the corresponding SB 

model’s MLLFV is no more than 1.61 units lower. The average (Beta-SB) MLLFV 

difference in these eight cases is 0.62. This supports the hypothesis that, in any particular 

application, the SB distribution model is a fairly close statistical substitute for the Beta in 

terms of the likelihood of having generated the yield sample corresponding to that 

application. However, the question remains of how these seemingly small MLLFV 

differences translate into cumulative probability discrepancies. This question will be 

explored through simulation analyses in the next section.   

Two noticeably larger MLLFV differences (2.86 and 2.59) are found between the 

seven SB models with the highest MLLFV and the corresponding Beta models. The 

average (SB-Beta) MLLFV difference in these seven cases is 1.12. These results are not 

surprising since, according to theory, all S-K combinations allowed by the Beta can also 

be modeled by the SB but a significant portion of the S-K space spanned by the SB is 

unattainable with the Beta. In other words, it is possible that the Beta model is not a close 

statistical substitute for the SB in terms of the likelihood of having generated the yield 

sample corresponding to some applications.  
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Out of the six non-normal models for which the SU exhibits the highest MLLFV, 

there are two cases where the MLLFV corresponding to the SU model is substantially 

higher (3.05 and 3.58 units) than the highest of the SB and Beta models. The average of 

these six MLLFV differences is 1.33. Alternatively, out of the 15 non-normal models for 

which the SB or the Beta model exhibits the highest MLLFV, there are four cases where 

this highest MLLFV is substantially higher (4.23, 2.09, 2.31, and 2.10 units) than the 

MLLFV corresponding to the SU model. The average of these 15 MLLFV differences is 

1.19. This is consistent with the theoretical knowledge that the S-K region covered by the 

SU model is does not overlap with the areas covered by the SB or the Beta models. 

In short the claim that, because it can accommodate all theoretically possible 

MVSK combinations, the expanded Johnson system is flexible enough to properly 

represent the diversity of continuous distributions that might be encountered in practice, 

is supported by the previously discussed empirical results. Specifically, these results 

suggest that the while the SB distribution may be an adequate substitute for the Beta 

model, the Beta might not be able to effectively replace the SU and the SB models in some 

applications. The following simulation analyses provide further evidence in this regard. 

Simulation Evidence of the Flexibility of the Johnson System 

While the previous section provides interesting insights about the flexibility of the 

Johnson system, an assessment of how well this system can approximate a variety of 

distributional shapes generated from the Beta density is a more definitive means to test 

Ramirez and McDonald (2006a) hypothesis. Such evaluation is more credible if the Beta-

generated distributional shapes are empirically motivated, i.e. derived from parametric 

Beta models that have been estimated on the basis of actual yield data. The previously 
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discussed SU, SB and Beta models are used for this purpose. Specifically, 21 datasets of 

100,000 observations each are simulated on the basis of the six SU, seven SB and eight 

estimated Beta models. The following simulation formulas are based on equations (10) to 

(13) in Ramirez and McDonald (2006a) and equation (10) above: 

(13) }]}){[sinh({ SUSUttU GFZMSS θµθσ ÷−++=  

(14) ]}])[exp(1[])[exp({ SBSBttSB FZGZMSS −−+÷−+= µθµθσ  

(15) }){( BBttB GFBMS ÷−+= σ  

where Z is a draw from a standard normal and B is a draw from a Beta distribution with 

parameters µ and 1/θ. Also in order to replicate the original data-generating process tM  

and tσ  are computed 2500 times for values of t ranging from 1 to 40 to obtain the desired 

total of 100,000 observations. Although most yield distribution estimation applications 

involve small samples, very large simulated samples are required to precisely evaluate 

how closely a probability distribution function can approximate another. 

 Next, a second round of SU, SB, Beta and Normal models are estimated on the 

basis of each of those 21 datasets. Key statistics about these models are presented in table 

2 (data-generating process=SB), 3 (data-generating process=Beta) and 4 (data-generating 

process=SU). The MLLFVs reported in these tables are divided by 2500 in order to make 

them comparable in magnitude to those that would be expected from a sample of size 40.  

As expected, in all 21 cases, the models that exhibit the highest MLLFVs are 

those that are based on the probability distribution (SU, SB, or Beta) that was used to 

simulate the data, and the parameter estimates corresponding to those models (available 

form the authors) are very close to the parameter values used for the simulations. 
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In the case of the seven sets of models corresponding to the SB-generated datasets 

(farms B, C, J, K, N, O and P in table 2) the MLLFVs of the Beta models seem relatively 

close to those of the SB models, with differences ranging from 0.03 (farm P) to 2.05 (farm 

N) and averaging 1.02 units. At 2.53 units, the average MLLFV difference between the 

SB and the SU models is substantially larger. The normal models show substantially lower 

MLLFVs than any of the three non-normal models in all cases. 

In the case of the eight sets of models corresponding to the Beta-generated 

datasets (farms E, G, M, Q, T, U, V, and Y in table 3), with differences ranging from 0.06 

(farm M) to 0.68 (farm Q) and averaging 0.39 units, the MLLFVs of the SB models are 

noticeably closer to those of the Beta models. At 1.26 units, the average MLLFV 

difference between the Beta and the SU models is again markedly larger. As before, the 

normal models show much lower MLLFVs than any of the three non-normal models. 

In the case of the six sets of models corresponding to the SU-generated datasets 

(farms A, D, I, R, S and X in table 4), both the SB and the Beta models yield MLLFVs 

that are substantially lower than those of the SU models. On average, the MLLFVs are 

11.71 units lower in the SB models, 12.60 units lower in the Beta models, and 13.94 units 

lower in the normal models. In two of the six cases (farms I and X), the SB and the Beta 

models can not do any better than the normal, while in the other four cases the low 

skewness and kurtosis and the MLLFVs suggest a relative closeness to normality. 

In short, the MLLFV analysis suggests that the SU model is not a good substitute 

for either the SB or the Beta, and the SB and the Beta models are poor surrogates for the 

SU. On the positive side, it appears that the SB and the Beta models could be acceptable 

substitutes for each other, with the SB being a better surrogate for the Beta than the Beta 
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is for the SB. However, the question remains of exactly how well these non-normal 

models can substitute for each other. To answer this question, the cumulative distribution 

functions (CDFs) implied by the second-round SU, SB, Beta and Normal models, are 

derived for each of the 21 cases. These are based on a second round of yield simulations 

(n=20 million) using these models’ parameter estimates and equations (12)-(15) setting 

t=40. Equation (12) and a standard normal generator are used in the case of the normal 

models. The “true” CDFs are also derived using the correct distribution and the exact 

parameters underlying each of the 21 data-generating processes.  

Two main statistics related to these CDFs are also presented in tables 2, 3 and 4. 

AD is the average of 125 vertical percentage distances between the true and the estimated 

CDFs. Distances are computed for yield values ranging from 25% to 150% of the average 

yields at equal 1% intervals (CDF values beyond that range are negligible in all cases). 

MD represents the maximum of those 125 vertical distances. 

In the case of farm B (table 2), for example, the data-generating process is SB and, 

therefore, the CDF corresponding to the estimated SB model is extremely close to the true 

CDF (AD=0.02%, MD=0.22%). Interestingly, the CDF derived from the estimated SU 

model (AD=0.07%, MD=0.31%) is also very close to the true CDF. Note that this 

closeness is reflected in a minimal (0.01 unit) MLLFV difference between the SU and the 

SB models. The outstanding performance of the SU model in this case might be explained 

by the fact that the skewness-kurtosis mixture of the SB is relatively close to the SB-SU 

boundary. A similarly accurate approximation of the SB by the SU model is observed in 

the case of farm J, which is almost at the boundary (figure 2). 



 16

In contrast, with an AD of 0.95% and a MD if 4.58%, the CDF associated with 

the estimated Beta model for farm B is not that close to the true SB-based CDF. This is 

consistent with the relative large, 1.33 unit difference, between the SB and the Beta model 

MLLFVs. This relatively poor performance of the Beta model could be related to the fact 

that the skewness-kurtosis mixture of the SB is outside of the region allowed by the Beta 

distribution (figure 2). With an AD of 3.54% and a MD of 14.28%, the normal model’s 

performance is abysmal in this case, which is reflected on its much lower MLLFV. 

Farm O (table 2) is an example of a case where the estimated Beta model 

(AD=0.53%, MD=1.82%) does a fairly good job of approximating the SB data-generating 

process. The relatively small (0.36 unit) MLLFV difference between the Beta and the SB 

models is again a consistent signal of a good fit. In addition, the skewness and kurtosis 

values implied by the estimated SB (-0.81 and -0.06) and Beta (-0.75 and 0.01) models 

are very close to each other. With an AD of 1.60%, a MD of 4.23%, and a MLLFV 

difference of 1.79 units, the SU model does not provide for a very good fit of the SB data-

generating process in this case. The normal model is again the worse fitting. 

Of the eight cases in which the data-generating process is Beta (table 3), farm V is 

the one where the estimated SB model does worse on being able to replicate the Beta-

generated CDF. Even in this case, an AD of 0.66%, a MD of 3.23% and a MLLFV 

difference of 0.50 indicate a fairly decent fit. At -2.05 and 5.30, the skewness and 

kurtosis values implied by the SB model are very close to those implied by the estimated 

Beta model (-1.85 and 5.00) and to the true underlying values (-1.87 and 5.08). With an 

AD of 1.11%, a MD of 5.01%, and a MLLFV difference of 1.20 units the estimated SU 
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model’s fit is noticeably worse. The normal model’s AD, MD, and MLLFV difference 

(3.09%, 14.11%, and 14.95 units, respectively) are by far the largest. 

With an AD of 0.58%, a MD of 1.95%, and a MLLFV difference of 0.47 units, 

farm Y is the most typical of the eight cases in representing the SB model’s capacity to 

replicate a Beta-generated CDF. Figure 3 provides a visual cue of the closeness with 

which the estimated SB model approximates the true CDF. All vertical differences in the 

lower one-third of the CDF are in fact less than 1.1%. That is, the SB model can predict 

cumulative probability at any point within the lower third of the true CDF with a margin 

of error of 1.1% or less. This is particularly significant because the lower (left) tail is the 

relevant segment of the CDF for the purposes of risk analyses. 

Of the six cases where the data-generating process is SU (table 4), farm D is the 

only one in which the estimated SB and, to a lesser extent, the Beta model, do a relatively 

good job at approximating the true CDF (ADs of 0.95% and 1.42%, MDs of 3.11% and 

4.61%, and MLLFV differences of 0.65 and 1.36, respectively). This might be related to 

the fact that the SU skewness and kurtosis values are not too far form the S-K regions that 

can be accommodated by the SB and the Beta distributions (figure 2). Both the SB and the 

Beta approximations are progressively worse in the case of farm S and R. 

In the case of farms I and X (SU model skewness and kurtosis not shown in figure 

2 due to scale limitations), in contrast, the MLLFVs of the SB and Beta models approach 

that of the normal model as their implied skewness and kurtosis near zero. That is, 

because of the high kurtosis and kurtosis/skewness ratios associated with these two SU 

data-generating processes, the normal models turn out to be better in approximating the 

true CDFs that any possible SB or Beta models. With an AD of 5.04% and a MD of 
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15.60% (farm I), and an AD of 9.25% and a MD of 24.85% (farm X), however, the 

approximations are far from acceptable. 

Averages of the previously discussed statistics for the seven SB, eight Beta and six 

SU data-generating processes are also presented in tables 2, 3 and 4. These averages 

provide additional support towards the following conclusions: a) The SB can approximate 

the Beta distribution with a relatively low margin of error; b) The SB distribution is more 

precise in approximating the Beta than the Beta distribution is at approximating the SB;  

c) In general, the SU can not approximate the SB or the Beta distributions as well as these 

two are able to approximate each other; d) Some of the SB and Beta approximations of 

the SU distribution are subject to very large error; and e) In most cases the normal 

approximations of any of these three non-normal models are by far the least accurate. 

These conclusions are consistent with theoretical expectations based on the S-K 

regions that are covered by these distributions (figure 1) and support Ramirez and 

McDonald’s hypothesis that the Johnson system (i.e. a combination of the SU and the SB 

distributions) is sufficient to approximate any probability distribution that might be 

encountered in practice. At the very least, the results suggest that the Johnson system is a 

superior alternative to the Beta for the modeling of crop yield distributions. 

Concluding Remarks 

This research demonstrates that a comprehensive coverage of the theoretically feasible 

region of the S-K plane by a parametric probability distribution model is an essential 

condition for the model to provide for an acceptable approximation of the “unknown” 

probability distribution underlying a data-generating process. For instance, it is shown 

that if the “unknown” distribution is a SU with a skewness-kurtosis combination much 
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beyond the SB (or the Beta) S-K coverage area, the accuracy of a SB model-based (or a 

Beta model-based) approximation deteriorates substantially, and vice versa. Therefore, it 

is clear that parametric models based on a distribution such as the Beta, which leaves 

substantial areas of the theoretically feasible S-K region uncovered, might not provide for 

an acceptable approximation of the true underlying distribution in some applications. 

 The choice of the SB versus the Beta as a complement to the SU distribution is 

justified on the following basis: a) The SB’s ability to accommodate all S-K combinations 

allowed by the Beta plus an additional, non-negligible, area of the theoretically feasible 

S-K region that is not covered by the SU; b) This research’s empirical finding that the SB 

distribution is more precise in approximating the Beta than the Beta distribution is at 

approximating the SB; and 3) The empirically valuable fact that a multivariate density 

involving SB and SU distributions can be specified, estimated and used as a basis for joint 

simulation (as exemplified in Ramirez and McDonald 2006).  

 The Beta was selected for this comparative evaluation of the Johnson system 

because its spanning of the theoretically feasible S-K space is much more comprehensive 

than the coverage afforded by the other distributions that have been used for the 

parametric modeling and simulation of crop yields. The fact the SB can approximate the 

Beta with a relatively low margin of error does not necessarily imply that it can 

approximate all other possible alternative distributions with skewness-kurtosis values on 

its S-K coverage area with similar accuracy. Likewise, it does not ensure that the SU can 

approximate all alternative distributions on its S-K coverage area with comparable levels 

of precision. However, the results from this SB-Beta comparison are likely indicative of 

how well the Johnson system may be able to approximate other distributions. 
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Undoubtedly, using parametric models that are based on the Johnson system 

instead of on distributions such as the Beta or the Gamma would substantially reduce the 

specification error risk that has long been associated with these models, perhaps to a level 

that is acceptable in most applications. Although it is not possible to prove a negative, 

additional comparative evaluations including lesser-known alternative distributions such 

as normal mixtures could provide further support to this claim 
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Table 1. Select Statistics for Illinois Farm-level Corn Yield Models Based on the SU, 

the SB, the Beta and the Normal Distributions 

 
Farm 
Label 

Sample 
Size 

SU 
MLLFV

SB 
MLLFV

Beta 
MLLFV

Normal 
MLLFV LRTS Final 

Model 
A 44 -183.62 -186.67 -187.24 -191.64 16.033 SU 
B 32 -123.81 -123.81 -126.39 -134.94 22.273 SB 
C 44 -186.38 -182.15 -185.00 -187.61 10.913 SB 
D 43 -189.23 -189.39 -189.54 -192.55 6.632 SU 
E 25 -108.09 -108.00 -107.72 -112.23 9.012 Beta 
F 27 -128.31 -127.08 -127.55 -128.98 3.810 N 
G 31 -133.58 -133.57 -133.26 -140.68 14.833 Beta 
H 34 -161.15 -160.20 -160.93 -161.80 3.200 N 
I 43 -181.27 -184.84 -184.94 -185.62 8.712 SU 
J 32 -145.96 -145.94 -146.56 -149.20 6.532 SB 
K 27 -120.75 -118.66 -118.98 -126.11 14.903 SB 
L 29 -132.56 -132.49 -132.55 -132.56 0.130 N 
M 37 -169.08 -169.00 -168.95 -171.97 6.022 Beta 
N 45 -197.46 -195.15 -196.37 -197.47 4.641 SB 
O 42 -189.54 -188.40 -188.55 -194.36 11.923 SB 
P 42 -195.34 -195.28 -195.31 -197.77 4.971 SB 
Q 40 -174.07 -173.55 -172.74 -178.18 10.883 Beta 
R 33 -145.36 -145.47 -145.67 -150.09 9.463 SU 
S 40 -181.77 -182.35 -182.50 -184.12 4.701 SU 
T 29 -131.07 -131.05 -129.44 -133.79 8.692 Beta 
U 44 -201.83 -201.21 -200.55 -204.01 6.912 Beta 
V 29 -127.78 -126.34 -125.69 -131.64 11.913 Beta 
W 29 -131.22 -131.24 -131.20 -132.56 2.710 N 
X 20 -93.45 -93.96 -94.00 -98.42 9.943 SU 
Y 29 -135.14 -135.00 -134.35 -136.90 5.083 Beta 
Z 30 -143.92 -143.26 -143.37 -144.92 3.320 N 

 
Notes: MLLFV stands for the maximum log-likelihood function value and LRTS indicates 
the likelihood ratio test statistic, which compares the non-normal model with the highest 
MLLFV with the normal model. The superscripts 1, 2 and 3 denote rejection of the null 
hypothesis of normality and the 10, 5 and 1% levels, respectively, according to the 
likelihood ratio test, while 0 indicates non rejection at the 10% level. If the null hypothesis 
of normality is rejected at the 10% level the final model is the one with the highest 
MLLFV, otherwise the final model is the normal. 
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Table 2. Key Statistics about the SU, SB, Beta and Normal Models Estimated on the Basis of the Seven SB-Simulated Datasets 

 
Notes: DGP stands for data-generating process; MLLFV, Skew and Kurt refer to the maximum log-likelihood function, skewness and 
kurtosis values; AD is the average of 125 vertical percentage distances between the true and the estimated CDFs and MD represents 
the maximum of those 125 vertical distances. Distances are computed for yield values ranging from 25% to 150% of the mean yields 
at equal 1% intervals (CDF values beyond that range are negligible in all cases). 

  FARM B (DGP=SB) FARM C (DGP=SB) FARM J (DGP=SB) 
Model SU SB Beta Norm SU SB Beta Norm SU SB Beta Norm 
MLLFV -156.70 -156.69 -158.02 -172.58 -168.81 -163.41 -164.79 -173.64 -181.44 -181.44 -181.97 -190.54
Skew -3.25 -2.77 -1.46 0 -3.24 -0.63 -0.71 0 -2.01 -1.93 -1.19 0
Kurt 23.27 14.25 3.04 0 23.15 -0.74 -0.30 0 7.92 7.04 2.08 0
AD 0.07% 0.02% 0.95% 3.54% 2.65% 0.02% 1.13% 2.67% 0.04% 0.01% 0.78% 3.44%
MD 0.31% 0.22% 4.58% 14.28% 7.67% 0.25% 4.83% 10.21% 0.14% 0.07% 2.77% 10.78%

  FARM K (DGP=SB) FARM N (DGP=SB) FARM O (DGP=SB) 
Model SU SB Beta Norm SU SB Beta Norm SU SB Beta Norm 
MLLFV -180.46 -176.62 -178.09 -192.06 -177.98 -171.56 -173.61 -178.09 -180.70 -178.92 -179.29 -185.33
Skew -7.42 -1.05 -1.50 0 0.36 -0.09 -0.16 0 -2.13 -0.81 -0.75 0
Kurt 176.36 0.17 2.62 0 0.23 -1.21 -1.09 0 9.02 -0.06 0.01 0
AD 4.20% 0.04% 1.36% 5.04% 2.19% 0.04% 0.74% 2.18% 1.60% 0.02% 0.53% 2.94%
MD 11.26% 0.29% 3.80% 14.06% 6.41% 0.14% 2.51% 6.70% 4.23% 0.13% 1.82% 8.92%

  FARM P (DGP=SB) AVERAGES (DGP=SB)     
Model SU SB Beta Norm SU SB Beta Norm         
MLLFV -185.85 -185.56 -185.59 -187.83 -175.99 -173.46 -174.48 -182.87         
Skew -0.96 -0.66 -0.67 0 -2.66 -1.13 -0.92 0.00         
Kurt 1.70 0.19 0.32 0 34.52 2.81 0.95 0.00         
AD 0.62% 0.04% 0.21% 2.13% 1.62% 0.03% 0.81% 3.13%         
MD 1.49% 0.07% 0.57% 5.56% 4.50% 0.17% 2.98% 10.07%         
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Table 3. Key Statistics about the SU, SB, Beta and Normal Models Estimated on the Basis of the Eight Beta-Simulated Datasets 

 
Notes: DGP stands for data-generating process; MLLFV, Skew and Kurt refer to the maximum log-likelihood function, skewness and 
kurtosis values; AD is the average of 125 vertical percentage distances between the true and the estimated CDFs and MD represents 
the maximum of those 125 vertical distances. Distances are computed for yield values ranging from 25% to 150% of the mean yields 
at equal 1% intervals (CDF values beyond that range are negligible in all cases). 

  FARM E (DGP=Beta) FARM G (DGP=Beta) FARM M (DGP=Beta) 
Model SU SB Beta Norm SU SB Beta Norm SU SB Beta Norm 
MLLFV -181.38 -181.00 -180.71 -190.63 -172.60 -172.16 -171.79 -182.69 -183.60 -183.20 -183.14 -186.53
Skew -2.78 -1.71 -1.56 0 -3.16 -1.83 -1.59 0 -1.24 -0.84 -0.81 0
Kurt 16.32 3.94 3.56 0 21.83 4.55 3.62 0 2.86 0.51 0.54 0
AD 0.83% 0.49% 0.05% 3.44% 0.86% 0.49% 0.00% 2.91% 0.58% 0.16% 0.02% 1.93%
MD 2.88% 1.79% 0.24% 10.73% 3.46% 2.11% 0.04% 11.22% 1.75% 0.62% 0.08% 6.36%

  FARM Q (DGP=Beta) FARM T (DGP=Beta) FARM U (DGP=Beta) 
Model SU SB Beta Norm SU SB Beta Norm SU SB Beta Norm 
MLLFV -173.72 -173.09 -172.41 -186.76 -178.86 -178.21 -177.71 -191.80 -183.79 -181.38 -181.12 -186.05
Skew -3.98 -2.09 -1.80 0 4.45 -2.00 -1.79 0 -1.41 -0.61 -0.55 0
Kurt 37.64 5.75 4.64 0 49.11 5.09 4.66 0 3.72 -0.50 -0.53 0
AD 0.98% 0.71% 0.01% 3.46% 1.52% 0.97% 0.13% 4.56% 2.02% 0.51% 0.01% 2.83%
MD 3.85% 2.97% 0.04% 14.16% 4.99% 3.15% 0.55% 13.74% 4.34% 1.23% 0.05% 6.89%

  FARM V (DGP=Beta) FARM Y (DGP=Beta) AVERAGES (DGP=Beta) 
Model SU SB Beta Norm SU SB Beta Norm SU SB Beta Norm 
MLLFV -173.22 -172.52 -172.02 -186.98 -186.69 -184.53 -184.06 -191.69 -179.23 -178.26 -177.87 -187.89
Skew -4.74 -2.05 -1.85 0 -2.41 -0.95 -0.84 0 -1.91 -1.51 -1.35 0.00
Kurt 57.24 5.30 5.00 0 11.79 0.22 0.07 0 25.06 3.11 2.70 0.00
AD 1.11% 0.66% 0.03% 3.09% 1.76% 0.58% 0.05% 2.80% 1.21% 0.57% 0.04% 3.13%
MD 5.01% 3.23% 0.18% 14.11% 5.00% 1.95% 0.30% 9.14% 3.91% 2.13% 0.19% 10.79%
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Table 4. Key Statistics about the SU, SB, Beta and Normal Models Estimated on the Basis of the Six SU-Simulated Datasets 

 
Notes: DGP stands for data-generating process; MLLFV, Skew and Kurt refer to the maximum log-likelihood function, skewness and 
kurtosis values; AD is the average of 125 vertical percentage distances between the true and the estimated CDFs and MD represents 
the maximum of those 125 vertical distances. Distances are computed for yield values ranging from 25% to 150% of the mean yields 
at equal 1% intervals (CDF values beyond that range are negligible in all cases). 

  FARM A (DGP=SU) FARM D (DGP=SU) FARM I (DGP=SU) 
Model SU SB Beta Norm SU SB Beta Norm SU SB Beta Norm 
MLLFV -165.79 -174.33 -176.38 -177.93 -175.40 -176.05 -176.76 -178.60 -167.28 -185.23 -185.23 -185.23
Skew -3.94 -0.31 -0.21 0 -1.18 -0.58 -0.35 0 -0.83 0 0 0
Kurt 58.33 0.14 0.03 0 3.44 0.60 0.15 0 369.63 0 0 0
AD 0.06% 2.96% 3.74% 3.91% 0.02% 0.95% 1.42% 2.03% 0.08% 5.04% 5.04% 5.04%
MD 0.25% 11.34% 12.92% 14.02% 0.09% 3.11% 4.61% 6.73% 0.18% 15.60% 15.60% 15.60%

  FARM R (DGP=SU) FARM S (DGP=SU) FARM X (DGP=SU) 
Model SU SB Beta Norm SU SB Beta Norm SU SB Beta Norm 
MLLFV -176.92 -178.85 -180.59 -184.67 -181.43 -183.89 -184.68 -185.28 -186.37 -225.13 -225.13 -225.13
Skew -2.11 -0.73 -0.45 0 -1.39 -0.25 -0.13 0 -29.46 0 0 0
Kurt 10.14 0.95 0.27 0 5.71 0.09 -0.01 0 10369.3 0 0 0
AD 0.10% 1.86% 2.57% 3.80% 0.06% 1.56% 1.93% 2.45% 0.04% 9.25% 9.25% 9.25%
MD 0.35% 5.75% 7.56% 10.69% 0.17% 5.42% 6.47% 7.68% 0.18% 24.85% 24.85% 24.85%

  AVERAGES (DGP=SU)      
Model SU SB Beta Norm             
MLLFV -175.53 -187.24 -188.13 -189.47          
Skew -6.49 -0.31 -0.19 0.00          
Kurt 1802.76 0.30 0.07 0.00          
AD 0.06% 3.60% 3.99% 4.41%          
MD 0.20% 11.01% 12.00% 13.26%          
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Figure 1. SU, SL, SB, Beta and Gamma distributions in the S-K plane 

 
Note: The SB distribution allows all S-K combinations in the blue as well as in the yellow (Beta) and pink 
(Gamma) areas. 
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Figure 2.  Skewness-kurtosis combinations of estimated non-normal models 
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Figure 3. Estimated SU, SB and Normal versus the true (Beta) CDF for farm Y 
 


