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Abstract

One of the most enduring problems in cross-section or panel data models is heterogeneity

among individual observations. Different approaches have been proposed to deal with this issue,

but threshold regression models offer intuitively appealing econometric methods to account for

heterogeneity. We propose three different estimators that can accommodate multiple thresholds.

The first two, allowing respectively for fixed and random effects, assume that the firms’ specific

inefficiency scores are time-invariant while the third one allows for time-varying inefficiency scores.

We rely on a likelihood ratio test with m − 1 regimes under the null against m regimes. Testing

for threshold effects is problematic because of the presence of a nuisance parameter which is not

identified under the null hypothesis. This is known as Davies’ problem. We apply procedures

pioneered by Hansen (1999) to test for the presence of threshold effects and to obtain a confidence

set for the threshold parameter. These procedures specifically account for Davies problem and are

based on non-standard asymptotic theory. Finally, we perform an empirical application of the fixed

effects model on a panel of Quebec dairy farms. The specifications involving a trend and the Cobb-

Douglas and Translog functional forms support three thresholds or four regimes based on farm size.

The efficiency scores vary between 0.95 and 1 in models with and without thresholds. Therefore,

productivity differences across farm sizes are most likely due to technological heterogeneity.

Key words: Stochastic frontier models; threshold regression; technical efficiency; bootstrap;

dairy production.

Journal of Economic Literature classification: C12, C13, C23, C52.
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1 Introduction

Structural change and threshold effects are two related issues that have motivated considerable

empirical and theoretical research in time series econometrics (e.g. Tsay (1989, 1998), Enders and

Granger (1998), Hansen (2000b, 2000a)). This paper considers statistical inference methods for

threshold effects in panel data stochastic frontier models. One of the most enduring problems in

cross-section or panel data models is heterogeneity among individual observations. One approach

to address the heterogeneity issue is to compare a regression function that is identical across all

observations in a sample to a set of regression functions that allow for observations to fall into

discrete classes as in Hansen (1999).

Threshold regression models offer intuitively appealing econometric methods to account for het-

erogeneity. In the context of stochastic production frontier models, the question may be whether

large firms use a production technology that differs from that of small firms. This would allow

researchers to determine whether the higher productivity of large firms stems from the use of a

different technology or simply a more efficient use of inputs given the constraints imposed by the

common technology as measured by technical efficiency scores (see Tran and Tsionas (2006)). Re-

lated methods that allow for heterogeneity in stochastic frontier models include latent class models

(Greene (2002, 2005); Orea and Kumbhakar (2004)), random coefficients models (Tsionas (2002);

Greene (2002, 2005)) and Markov switching frontier models (Tsionas and Kumbhakar (2004)). The

distinguishing feature of threshold models is that they assume that heterogeneity is induced by an

observable exogenous variable, e.g. firm size, while in the other methods cited above heterogeneity

is introduced in the models through exogenous variables or unobservable random terms.

Recently, Tsionas and Tran (2006) have proposed various models to allow for heterogeneity in

technology and in the distribution of technical inefficiency. Bayesian inference methods are proposed

for the estimation of these models and for model comparisons. Bayesian tools such as the posterior

odds ratio and the Bayes factor are proposed for model selection, including the comparison of a

threshold model against a model without threshold effects. These statistics are used as evidence

pertaining to the presence of threshold effects in the data. However, from a classical inference

approach, such evidence needs to be based on a test of the null hypothesis of no threshold effect.

Testing for threshold effects is problematic and requires non standard tools because of the presence

of a nuisance parameter which is not identified under the null hypothesis. This is known as Davies’

problem and appropriate techniques have been proposed in Davies (1987), Andrews (1993) and

Hansen (1996, 1999, 2000a). For our specific threshold effects problem, the nuisance parameter

is the value of the threshold. In this paper, we consider one of the threshold models analyzed

in Tsionas and Tran (2006), the simple threshold stochastic frontier model and provide a testing
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strategy for the presence of threshold effects in a parametric stochastic frontier model with panel

data.

Our methodology is anchored on three formulations of the panel data stochastic frontier model,

which differ by the time dependence of the inefficiency term as follows: (i) a fixed effect time

invariant inefficiency term, (ii) a random effect time invariant inefficiency term, and (iii) a random

time varying inefficiency term. For specifications (i)-(ii), we assume that the technical inefficiency

term is a firm-specific constant, so we obtain a fixed effects or random effects panel data model as in

Schmidt and Sickles (1984), Horrace and Schmidt (1996) and Greene (1997). These specifications

of the panel data stochastic frontier model have the advantage of not requiring any distributional

assumption for technical inefficiency. Therefore, for the fixed effects case we apply procedures

pioneered by Hansen (1999) to test for the presence of threshold effects and to obtain a confidence

set for the threshold parameter. These procedures are based on non-standard asymptotic theory

and specifically account for Davies’ problem. We then examine the extension of these procedures to

random effects the case. However, these time invariant specifications for the inefficiency term may

not be adequate for panel data with a number of time periods large enough to jeopardize the validity

of the assumption of constant technical inefficiency. For long panels, our alternative specification

(iii) is more appropriate. With this specification, we assume a half-normal distribution for the

inefficiency term and a normal distribution for the two-sided error term of the model. We consider

sup-type tests initially proposed by Davies (1987) and extended by Andrews (1993) and Hansen

(1996). Given a known specific value for the threshold parameter, the model is estimated by the

maximum likelihood method without threshold effects (the model under the null hypothesis) and

with threshold effects (the model under the alternative hypothesis). For both models, we measure

technical inefficiency using the Jondrow, Lovell, Materov and Schmidt (1982) estimator. As in

Hansen (1999, 2000a), our test statistic is a LR-type statistic defined from the residuals sums of

squares under the null and the alternative hypotheses respectively. Since the value of the threshold

is unknown, we consider a supremum of the test statistic over a relevant subset of values of the

threshold parameter. The problem under consideration is more complex than the one considered

in Hansen (1999, 2000a) because we address Davies’ problem for a highly nonlinear model. As

a result, the asymptotic theory for inference on the threshold parameter is non-standard and we

propose a bootstrap strategy to obtain an asymptotic p-value and to construct a confidence set. Our

bootstrap method involves a combination of bootstrap techniques used for the stochastic frontier

model (Hall, Härdle and Simar (1995), Simar and Wilson (2000), Kim, Kim and Schmidt (2006))

and the bootstrap procedure proposed in Hansen (2000a). The test procedures discussed in this

paper have wide-ranging empirical applications. To illustrate the applicability of the proposed tests,

we report results from one empirical application involving a panel of 302 dairy farms located in the
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province of Quebec and observed during 11 years, over the period 1993-2003. For this application,

the threshold variable is the number of dairy cows, a proxy for farm size.

The rest of the paper is organized as follows. Section 2 describes the basic framework under

which our estimators and testing procedures are developed. The three different estimators are

presented in Section 3 while Sections 4 describes the test statistic about a single regime/technology.

Section 5 focuses on inference issues pertaining to the threshold parameter and methods to address

them. Section 6 presents results from an application involving Quebec dairy farms. This section

showcases our fixed effects estimator and our testing procedure to identify the presence of one

or more thresholds. The concluding section summarizes our contribution to the literature and

discusses future research avenues.

2 Framework

We consider the following threshold effects panel data stochastic frontier model

yit = α + β′1xitI (qit ≤ γ) + β′2xitI (qit > γ)− uit + vit, uit ≥ 0, (2.1)

where for firm i at time period t, i = 1, ..., N, t = 1, ..., T , yit is the logarithm of output, xit ∈ Rk is a
vector of logarithm of inputs, I (.) is the indicator function, β1 and β2 are two vectors of parameters

associated with two different technologies Γ1 and Γ2. qit is an exogenous and observable threshold

variable that governs the technology regime of firms. γ is the threshold value such that if qit ≤ γ

then firm i adopts the technology Γ1 at time period t, otherwise firm i adopts technology Γ2. vit is

statistical error term, and uit ≥ 0 represents technical inefficiency. We assume throughout that the

error term vit is independent and identically distributed with mean zero and finite variance σ2v. For

β1 = β2, we get the basic panel data stochastic frontier model (see Pitt and Lee (1981), Schmidt

and Sickles (1984), Cornwell and Schmidt (1995), Greene (1997)). As in Hansen (1999), this model

can be written in a more compact form as follows. Let

xit (γ) =

(
xitI (qit ≤ γ)

xitI (qit > γ)

)
,

and β =
(
β′1, β

′

2

)′. With this notation, equation (2.1) can be written as

yit = α + β′xit (γ)− uit + vit, uit ≥ 0. (2.2)

Statistical procedures to test for threshold effects in this model will strongly depend on distribu-

tional and time dependence assumptions made on the inefficiency term uit. Our analysis considers

in turn the following cases:
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Case 1 uit is a fixed time invariant effect, uit ≡ µi, for all t = 1, ..., T.

Case 2 uit is a time-invariant random variable ui.

Case 3 uit is a time-varying random variable.

Under Case 1, model (2.2) can be written as a fixed effects panel data model. Let αi = α− µi;

then αi ≤ α for all i and αi may take positive or negative values. Therefore, we can re-write model

(2.2) as the following non-dynamic panel model with firm-specific fixed effects:

yit = αi + β′xit (γ) + vit; i = 1, ...,N, t = 1, ..., T. (2.3)

Model (2.3) assumes absence of any unmeasured time invariant heterogeneity across firms (for

further details see Greene (2005, p. 277))1. The time invariance assumption for technical inefficiency

may be an unreasonable one in long panels. Kumbhakar (1990) argued that this assumption is

inadequate because firms aware of their relative inefficiency would take steps to catch-up over time.

However, this fixed effects formulation is standard in the panel data stochastic frontier literature

and has the obvious advandage that no distributional or independence assumption on inefficiency

terms is needed (Schmidt and Sickles (1984), Greene (1997), Horrace and Schmidt (1996), Kim

et al. (2006)). For least squares estimation and asymptotic inference on threshold effects in this

model, we rely on Hansen (1999).

Under Case 2, we get the random effects stochastic frontier model (see Pitt and Lee (1981),

Schmidt and Sickles (1984))

yit = α + β′xit (γ)− ui + vit, ui ≥ 0; i = 1, ..., N, t = 1, ..., T. (2.4)

One further assumes that inefficiencies ui are uncorrelated with the regressors, which implies that

any unmeasured heterogeneity across firms must be independent of the inputs variables.

Finally, Case 3 represents a more flexible and realistic model by having inefficiencies vary over

time for each firm. This is an obvious advantage when dealing with long panels. For simplicity, we

assume in addition that uit and vit are independent over time and across individuals, so no specific

panel data treatment is needed (Greene (1997)). For various formulations and specifications for the

time dependence of technical inefficiency, see Cornwell, Schmidt and Sickles (1990), Kumbhakar

(1990), Lee and Schmidt (1993) and Battese and Coelli (1992, 1995) among others; we defer the

extension of our test methods to accomodate these models to future research.
1This model is different from the true fixed effects stochastic frontier model, which is subject (i) to practical

estimation problems as the number of firms in the sample is very large, and (ii) to the incidental parameters’ problem

Greene (2005, p. 277).
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3 Estimation methods

3.1 Time-invariant fixed effects model

Under Case 1, the stochastic frontier model, written in the form (2.3), is the standard threshold

regression for non-dynamic panel with individual-specific fixed effects discussed by Hansen (1999).

Estimates for threshold and slopes parameters can be obtained using a least squares estimation.

Specifically, the estimation proceeds as follows. Assume that γ is known and let

yi = T−1
∑T

t=1
yit, xi (γ) = T−1

∑T

t=1
xit (γ) , vi = T−1

∑T

t=1
vit; i = 1, ...,N.

If we apply a fixed-effect transformation to (2.3) in order to remove firm-specific means, we get

y∗it = β′x∗it (γ) + v∗it, (3.5)

where

y∗it = yit − yi, x
∗

it (γ) = xit (γ)− xi (γ) , v∗it = vit − vi; i = 1, ..., N, t = 1, ..., T.

Model (3.5) can be written in matrix form as

Y ∗ = X∗ (γ)β + v∗, (3.6)

where Y ∗, X∗ (γ) and v∗ are the data stacked over all N firms and over T time periods as follows:

for Y ∗, form Y ∗ = (y∗1, ..., y
∗

N)′ where y∗i = (y∗i1, y
∗

i2, ..., y
∗

iT )′; proceed similarly to obtain X∗ (γ) and

v∗. From (3.6), the ordinary least squares estimator of β as a function of γ is given by

β̂F (γ) =
[
X∗ (γ)′X∗ (γ)

]−1
X∗ (γ)′ Y ∗,

and the residual sum of squares is

SF (γ) =
[
Y ∗ −X∗ (γ) β̂ (γ)

]′ [
Y ∗ −X∗ (γ) β̂ (γ)

]

= Y ∗′
(
I −X∗ (γ)′

[
X∗ (γ)′X∗ (γ)

]−1
X∗ (γ)′

)
Y ∗. (3.7)

Since γ is unknown, it must be estimated from the data set. Least squares estimation of γ can be

done by minimization of the residual sum of squares as

γ̂F = arg min
γ∈Γ̄⊂Γ

SF (γ) . (3.8)

The minimization in (3.8) can be restricted to a specific subset Γ̄ ⊂ Γ, where Γ is the set of all

possible values of γ, if we want a minimal percentage of the observations to lie in each of the two

technology regimes defined by the threshold. A grid search over values in Γ̄ is used in practice to

solve this problem; see Hansen (1999, pp. 349-350) for details. The final estimate of the regression

coefficients β is β̂F = β̂F (γ̂F ) ; the vector of residuals is v̂∗F = Y ∗ −X∗ (γ̂F ) β̂F (γ̂F ) and the error

variance is estimated by σ̂2vF = (1/NT )SF (γ̂F ).
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3.2 Time-invariant random effects model

We now consider the stochastic frontier model defined by (2.4). For any given γ, the inefficiency

terms ui are assumed to be uncorrelated with the inputs variables xit (γ). In addition, we assume

that the ui are i.i.d. with E (ui) = µ and V ar (ui) = σ2u and that ui are independent of the vit. It

is convenient to rewrite the model as follows. Let α∗ = α − µ, and u∗i = ui − µ . Then, (2.4) is

equivalent to

yit = α∗ + β′xit (γ)− u∗i + vit; i = 1, ...,N, t = 1, ..., T.

where the error terms u∗i and vit have zero mean.

Assuming that N is large, we can obtain a consistent estimate σ̂2u (γ) of σ2u, and we also assume

that a consitent estimator σ̂2v (γ) of σ2v is available. Then, the regression coefficients β can be

estimated by β̂R (γ) using feasible generalized least squares. Provided T −→ ∞, for firm i, αi =

α∗ − u∗i can be consistently estimated by

α̂i (γ) =
1

T

∑T

t=1

(
yit − β̂R (γ)′ xit (γ)

)
; i = 1, ...,N.

Then, we form the residual and the residual sum of squares of the random effects model as

v̂itR (γ) = yit − β̂R (γ)′ xit (γ)− α̂i (γ) , SR (γ) =
∑T

t=1

∑N

i=1
v̂itR (γ) .

As is the case of the fixed effects model, γ needs to be estimated from the data set, and we also

rely on least squares estimation method. Thus, γ̂R is defined by

γ̂R = arg min
γ∈Γ̄⊂Γ

SR (γ) . (3.9)

The final estimator of the regression coefficients β is β̂R = β̂R (γ̂R) ; the error variance σ2v is

estimated by σ̂2vR = (1/NT )SR (γ̂R).

3.3 Independent time-varying technical inefficiency model

Under Case 3 and under the assumption that the inefficiency terms uit are serially and contempo-

raneously uncorrelated we get, for any given γ, the panel data version of the standard stochastic

frontier model. These assumptions correspond to that maintained in the various threshold stochas-

tic frontier models discussed in Tsionas and Tran (2006) and imply that despite its variation over

time, there is non persistance effect in technical inefficiency. Estimation proceeds as set in Aigner,

K. and Schmidt (1977) and Jondrow et al. (1982) for the case of cross-sectional data.
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Assuming that γ is known, let εit ≡= vit − uit, where vit
i.i.d.∼ N(0, σ2v), and uit = |Uit| , Uit ∼

N(µ, σ2u), i = 1, ...,N, t = 1, ..., T. Under these distributional assumptions, the parameters of the

models can be estimated using the maximum likelihood (ML) method.

Let
(
α̂I (γ) , β̂I (γ) , σ̂2uI (γ) , σ̂2vI (γ)

)
denote the ML estimates of

(
α, β, σ2u, σ

2
v

)
, given a specified

value γ. The technical inefficiency term can then be estimated by the ML estimate of the conditional

expectation E (uit|εit = eit), where E (.|εit = eit) is the conditional expectation operator conditioned

on εit = eit. The result is as follows:

ûit (γ) = E (uit|εit = eit (γ)) =




φ
(
eitλ̂ (γ) /σ̂ (γ)

)

1−Φ
(
eitλ̂ (γ) /σ̂ (γ)

) − eitλ̂ (γ)

σ̂ (γ)


 σ̂∗ (γ) ,

where φ and Φ denotes the standard normal density and cumulative distribution function and

λ̂ (γ) = σ̂uI (γ) /σ̂vI (γ) , σ̂2 (γ) = σ̂2uI (γ) + σ̂2vI (γ) ,

σ̂∗ (γ) =
σ̂2vI (γ) σ̂2uI (γ)

σ̂2vI (γ) + σ̂2uI (γ)
, eit (γ) = yit − α̂I (γ) + β̂

′

I (γ)xit (γ) .

We define the residual and the residual sum of squares as

v̂itI (γ) = yit − α̂I (γ) + β̂
′

I (γ)xit (γ)− ûit (γ) , SI (γ) =
∑T

t=1

∑N

i=1
v̂itI (γ) .

The least squares estimator γ̂I of γ is defined by

γ̂I = arg min
γ∈Γ̄⊂Γ

SI (γ) . (3.10)

The final estimator of the model parameters are obtained as
(
α̂I , β̂I , σ̂

2
uI , σ̂

2
vI

)
=
(
α̂I (γ̂I) , β̂I (γ̂I) , σ̂

2
uI (γ̂I) , σ̂

2
vI (γ̂I)

)
.

4 Testing for a threshold

The model formulation (2.1) and the estimation methods discussed in the previous section assumed

that there exists some threshold effect in the data. However, since this formulation introduces an

extra (threshold) parameter in the model, estimation problems may arise due to specification error

when there is actually no threshold effects in the data. Therefore, it is important to assess the

presence of a threshold using a formal statistical test. We rely on the likelihood ratio test proposed

in Hansen (1999).

The null hypothesis of no threshold effect in the model (2.1) can be written as

H0 : β1 = β2. (4.11)
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Clearly, under H0 the model (2.1) takes the form

yit = α + β′1xit − uit + vit, uit ≥ 0, (4.12)

i = 1, ...,N, t = 1, ..., T,

which does not involve the threshold parameter γ. So for the problem at hand, the parameter γ is

not identified under the null hypothesis and usual test statistics have non-standard distributions.

This is the so-called Davies’ Problem (Davies (1977, 1987)). For this problem, Hansen (1999)

suggested to simulate the non-standard asymptotic distribution of the likelihood ratio (LR) test

using a bootstrap method. The test procedure proposed in Hansen (1999) works as follows.

For Case 1 (it is similar for Cases 2 and 3), we estimate the fixed-effects panel data stochastic

frontier model associated to model 4.12 under Case 1 using the fixed-effect transformation as

described in section 3.1. Let us write the model after the within transformation as

y∗it = β′1x
∗

it + v∗it, (4.13)

where y∗it, x
∗

it, and v∗it are the within transformation version of yit, xit, and vit respectively (see

section 3.1). For further reference, let β̃1F denote the within estimator of β1. Let ṽ∗F denote the

vector of residuals and S0F = (ṽ∗F )′ (ṽ∗F ) be the residual sum of squares under H0 .The LR test

statistic may be defined as

LRF = (S0F − SF (γ̂F )) /σ̂2vF . (4.14)

The statistic LRF has a non-standard asymptotic distribution whose characteristics may be affected

by the asymmetric distribution of the technical efficiency terms. This is likely to be problematic in

the case of random-effects and time varying technical inefficiency models. We rely on the bootstrap

procedure proposed by Hansen (1999) for the standard fixed-effects panel model, even though

its validity has not been established yet for the latter two cases. The resampling is based on the

sample of firms, and once a firm is selected all its observations over the T periods are included in the

bootstrap sample. We resample residuals as follows. Let v̂∗F,i =
(
v̂∗F,i1, v̂

∗

F,i2, ..., v̂
∗

F,iT

)′
, i = 1, ..., N ,

denote the T ×1 vector of residuals computed for firm i from the model assuming threshold effects.

Then form the sample
(
v̂∗F,1, v̂

∗

F,2, ..., v̂
∗

F,N

)
. The empirical distribution of

(
v̂∗F,1, v̂

∗

F,2, ..., v̂
∗

F,N

)
is

used for bootstrap resampling, i.e. we draw randomly with replacement a sample of size N from(
v̂∗F,1, v̂

∗

F,2, ..., v̂
∗

F,N

)
. These draws are treated as errors to be used to create a bootstrap sample

under H0. For each bootstrap replication b = 1, ..., B, let
(
v
(b)
1 , ..., v

(b)
i , ..., v

(b)
N

)
represents the

bootstrap draw. We should generate the output variable using

y
(b)
it = ŷit + v

(b)
it ,
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where ŷit is the predicted value of yit under H0. In the case of the fixed-effects model, we consider

ŷit ≡ ỹ∗it = β̃
′

1Fxit, while for the random-effects and time varying technical inefficiency models,

prediction of yit under H0 should explicitly account for the estimated value of the inefficiency term

ui or uit. Using the bootstrap sample data
(
y
(b)
it , xit

)
, we estimate in turn the model under H0

and without imposing H0. For the fixed-effects model, these correspond to models (4.13) and (3.5)

respectively. We compute the bootstrap value LR
(b)
F of the LR test statistic using 4.14. If we let

LR0F denote the value of the test statistic calculated from the observed data, we can define the

approximate bootstrap p-value p̂B
(
LR0F

)
as

p̂B
(
LR0F

)
=
BĜB

(
LR0F

)
+ 1

B + 1
, (4.15)

where BĜB
(
LR0F

)
is the number of bootstrap statistics LR

(b)
F greater than or equal to LR0F . A

test of level α, 0 < α < 1, is defined by the critical region p̂B
(
LR0F

)
≤ α; that is, we reject the null

hypothesis at level α if p̂B
(
LR0F

)
≤ α, 0 < α < 1.

5 Inference about the threshold parameter

In the presence of threshold effects, it would be useful to make a statistical inference about the

threshold parameter in addition to have its point estimate discussed in section 3. Indeed, in

the related time series structural change literature a confidence set for the break date can be

constructed using the asymptotic distribution of the estimator of the break point parameter (see

Bai, Lumsdaine and Stock (1998)). In Hansen (2000a), it is shown that the asymptotic distribution

of the threshold estimator γ̂ = γ̂F , γ̂R, γ̂I is highly non-standard and this distribution depends

on unknown parameters. In such contexts, a confidence set based on the inversion of Wald or t

statistics may behave very poorly in finite sample.

5.1 Inverting a likelihood ratio test

The asymptotic distribution of γ̂ = γ̂F , γ̂R, γ̂I is highly non-standard and Wald or t statistics-based

confidence sets may not be reliable, particularly in finite sample; Hansen (2000a) recommended

confidence set estimation based on inverting likelihood ratio tests on γ. Inverting a test with

respect to a parameter means that we collect all the values of this parameter for which the test is

not significant. So we consider the test of the hypothesis H0 (γ0) : γ = γ0, where γ0 is any specified

value for γ. The LR statistic to test H0 (γ0) is

LRm (γ0) = (Sm (γ0)− Sm (γ̂m)) /σ̂2vm, m = F,R, I, (5.16)

9



where we index on m to emphasize that the test statistic is defined for any of the three model for-

mulations and corresponding estimation methods. Hansen (1999, 2000a) shows that the asymptotic

distribution of LRm (γ0) under H0 (γ0) is non-standard and free of nuisance parameters.

Under regularity conditions, LRm (γ0)
asy∼ ω, where ω is a random variable with distribution

function P (ω ≤ x) = (1− exp (−x/2))2 . The critical value of the latter distribution at level α, 0 <

α < 1, is c (α) = −2 ln
(
1−

√
1− α

)
. An asymptotic test of H0 (γ0) rejects at level α if LRm (γ0) >

c (α). A (1− α)-level confidence set for γ can be defined by the ‘no-rejection region’ of the LR test

as

CS (γ;α) = {γ0 : LRm (γ0) ≤ c (α)} . (5.17)

The asymptotic validity of this confidence set requires, among other conditions (Hansen (2000a, p.

579)), that the difference in the slope parameters between the two regimes be small and tend to

zero as the sample size increases. This confidence set is rather asymptotically conservative if the

error terms vit are i.i.d. N
(
0, σ2v

)
and strictly independent of the regressors and of the threshold

variable (see Hansen (2000a, Theorem 3)). Even if the gaussian errors assumption is not unusual

in the literature on parametric stochastic frontier models, we also consider an alternative bootstrap

approach to confidence set estimation of the threshold parameter.

5.2 Bootstrap confidence set

In spite of the presence of unknown parameters in the asymptotic distribution of γ̂, we suggest

the use of a bootstrap method to obtain an approximation to the sampling distribution of γ̂. The

validity of the bootstrap in this context can be justified using the same arguments as for the case

of bootstrapping the asymptotic distribution of the statistic LRF defined in (4.14) (see Hansen

(1999, 2000a)). We suggest using an i.i.d. resampling scheme as opposed to resampling regression

residuals. The i.i.d. resampling has been recently used by Seo and Linton (2007) for bootstrap

inference on any scalar function of the parameters of a threshold regression model estimated through

a smoothed least squares estimator; note, however, that in Seo and Linton (2007), the estimator

is shown to be asymptotically normal and thus its asymptotic distribution is free of nuisance

parameters.

Let {Zit : i = 1, ..., N ; t = 1, ..., T} denote the data set, with Zit = (yit, x′it)
′ . Then, let Zi =

(Zi1, Zi2, ..., ZiT ). In order to account for the panel structure, the empirical distribution to be used

for bootstrapping is (Z1, Z2, ..., ZN) ; that is, resampling is based on firms and once a firm is resam-

pled, all its observations over the T time periods enter the bootstrap sample. For b = 1, 2, ..., B,

where B is the number of bootstrap replications used, let
(
Z
(b)
1 , Z

(b)
2 , ..., Z

(b)
N

)
be a random sample

drawn with replacement from (Z1, Z2, ..., ZN); let Z(b)i =
(
Z
(b)
i1 , Z

(b)
i2 , ..., Z

(b)
iT

)
for all i = 1, 2, ..., N .
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Then, using the bootstrap data set
{
Z
(b)
it : i = 1, ..., N ; t = 1, ..., T

}
, estimate the stochastic fron-

tier model 2.1 using any of the three formulations and corresponding estimation techniques; let

γ̂(b) denote the bootstrap estimate of γ. The key result of the bootstrap is that, conditionally on

the observed data {Zit : i = 1, ...,N ; t = 1, ..., T}, the asymptotic distribution of N1/2
(
γ̂(b) − γ̂

)

approximates the asymptotic sampling distribution of N1/2 (γ̂ − γ) for any b = 1, ..., B. The con-

ditional distribution of the bootstrap estimator N1/2
(
γ̂(b) − γ̂

)
can be approximated by Monte

Carlo replication of the resampling procedure. So, the collection
{
γ̂(b) − γ̂ : b = 1, 2, ..., B

}
can be

treated as a random sample from the asymptotic distribution of γ̂−γ. So, this sample can be used

to construct a confidence interval for γ.

To obtain a confidence interval based on the percentile method, we need to compute the quantiles

qγ (α) of the empirical distribution
{
γ̂(b) : b = 1, 2, ..., B

}
as qγ (α) = G−1γ,B (α) , 0 ≤ α ≤ 1, where

Gγ,B denotes the empirical cumulative distribution function of{
γ̂(b) : b = 1, 2, ..., B

}
. For 0 ≤ α ≤ 1, a confidence set of asymptotic level (1− α) for γ is given by

[γ̂ + qγ (α/2) , γ̂ + qγ (1− α/2)] . (5.18)

Moreover, due to bias in the sample estimate γ̂, there is some bias in the position of the

bootstrap estimates γ̂(b) relative to γ̂. Therefore, generally it does not hold that Gγ,B (γ̂) = 1/2,

which means that the bootstrap sample
{
γ̂(b) : b = 1, 2, ..., B

}
is not centered around the sample

estimate γ̂. We can construct a bias-corrected confidence interval for γ as follows. Let Φ be the

standard normal cumulative distribution function and zα denote the standard normal cut-off point

of level α, 0 ≤ α ≤ 1; then, qγ (α) = G−1γ,B (Φ (zα)). Define

qbcγ (τ) = G−1γ,B [Φ (mγ̂ + (mγ̂ + zτ ))] = G−1γ,B [Φ (2mγ̂ + zτ )] , 0 < τ < 1, (5.19)

where mγ̂ = Φ−1 (Gγ,B (γ̂)) is a bias-correction term. Then, the lower and upper confidence limits

of a bias-corrected confidence interval for γ with asymptotic confidence level (1− α) , 0 ≤ α ≤ 1

are respectively given by

γbcL,α = qbcγ (1− α/2) , γbcU,α = qbcγ (α/2) . (5.20)

The accuracy of these confidence intervals in term of coverage rate strongly relies on the quality of

the bootstrap approximation.

We next report results from an empirical application of one of the methods discussed previously

to an empirical data set featuring a panel of dairy farms located in the province of Quebec.
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Table 1. Summary statistics for dairy production variables

Variables mean Std. dev. Min. Max.

Production function:

Total volume of milk/cow (litre) 8304.03 1281.12 4557.87 12253.09

Concentrates (kg) 2879.73 741.77 632.30 6417.81

Forages (kg) 5273.25 949.78 390.44 9270.93

Capital ($) 4801.67 2545.28 372.84 34917.92

Labor (hour) 57.28 13.92 23.49 120.93

Threshold:

Number of cows 51.64 25.58 18.70 451.90

6 Empirical application

6.1 Data sources and descriptive statistics

We consider a balanced panel covering 11 annual observations for 302 dairy farms that were in

business between 1993 and 2003. Thus, our data set has a total of 3322 observations. This so-

called Agritel database was collected by the Federation of Management Clubs in the province of

Quebec. Summary statistics on the different variables used in our stochastic frontier production

models and the threshold variable are presented in Table 1.

Canada’s dairy production is governed by a supply management policy featuring tight import

controls and domestic production quotas to insure a “fair” return for dairy producers. Basically,

supply is constrained to achieve a domestic price target (Larue, Gervais and Pouliot (2007)). Indi-

vidual production licences or quotas are traded between producers within the province of Quebec

through a double-auction. The value of these individual quotas has steadily increased over time

and represents a significant financial barrier deterring entry and expansion. This explains why

the average number of cows is low compared to U.S. standards and why there are so few large

dairy farms in Quebec2. The inputs selected as arguments of the production function are the most

important ones in terms of cost shares. The standard deviations are much smaller than the means

because there is a significant proportion of farms that are quite similar size-wise. We begin our

investigation with a fixed effects stochastic frontier model without threshold(s).

2According to http://www.dairyfarmingtoday.org/DairyFarmingToday/Learn-More/Facts-And-Figures/ con-

sulted on May 30, 2007, the average herd size in the U.S. is 135 cows. See also Romain and Sumner (2001) on

comparisons between the Canadian and U.S. dairy industries.

12



Table 2. Summary statistics for estimated technical efficiency scores derived from a fixed-effects

production frontier without threshold(s)

Specification Cobb-Douglas Translog

Statistics No trend Trend No trend Trend

Mean 96.03 96.64 95.69 96.58

Stand. dev. .69 .65 .72 .64

Median 96 96.65 95.62 96.60

Minimum 94.27 95.09 94.04 95

Note. This table reports descriptive statistics for technical efficiency scores (in %) estimated in the framework

of a panel data stochastic production frontier model with fixed-effects inefficieny terms. The estimation

method assumes that there is at least one fully efficient firm in the sample, so the maximum value is 100 for

all model specifications.

6.2 A stochastic production frontier with a homogenous technology

The fixed effects stochastic frontier model without threshold can be considered as our benchmark.

We estimated four different versions to assess the robustness of the results. We consider two

different functional forms for the production technology which could be specified with or without

a trend. The most popular functional forms used in the applied literature are the Cobb-Douglas

and the Translog. The latter is more flexible than the former, but it involves the estimation of

more parameters which increases the risk of convergence problems. The presence of a trend allows

for dynamic effects or structural change. The summary statistics for estimated technical efficiency

scores derived from the four competing specifications are presented in Table 2. Our results suggest

that the choice of the functional form does not have much influence on the central tendency and

dispersion statistics of the (time-invariant) efficiency scores. The mean and median are very close

to 96% in all cases. The standard deviations are very small, which is not surprising given that the

minima vary between 94% and 95%. Such high efficiency scores for Quebec dairy farms are to be

expected because the supply management policy has been in place for a long time and, despite all

of its flaws, it cannot be denied that it has contributed to create a stable environment for dairy

farmers. Technical efficiency is a relative concept since the frontier is defined by the firms included

in the sample. The Quebec dairy industry is subject to far less volatility than the U.S. dairy

industry and this should make management easier.
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Table 3. Tests of m − 1 thresholds against m in a fixed-effects production frontier: bootstrap

p-values

Specification Cobb-Douglas Translog

m No trend Trend No trend Trend

1 .627 .007 .076 .004

2 .406 .001 .650 .004

3 .771 .006 .720 .018

Note. The numbers in this table are bootstrap p-values for the test of the null hypothesis that there exists

m− 1 threshold values for the production function against the alternative of m, m = 1, 2, 3. For a test of

level α, the null hypothesis is rejected if the reported p-value is less than or equal to α.

6.3 A stochastic production frontier with threshold(s)

Even though Quebec has a high proportion of small dairy farms, not all of the farms use the same

milking system. Some farms are large enough to mix their feed on the farm. Some have little land or

are located in areas where it is difficult to produce corn. Hence, it is not inappropriate to entertain

the possibility that farms need not have the exact same technology. In this section, we posit that

technological jumps occur at various farm sizes. The methodology presented previously focused on a

single threshold parameter allowing for two regimes or production technologies. However, it is easy

to accommodate multiple thresholds and to use the LR statistic to find the appropriate thresholds

consistent with the data (see Hansen (1999, Section 5)). We find numerically the least squares

estimates of the threshold parameters through a grid search over 500 quantiles of the empirical

distribution of the threshold variable; we trimmed out top and bottom 1% or 5%. We used 500

replications for the bootstrap tests, which implies that 250000 regressions were needed to run a

test.

In our application, we allowed for up to three thresholds supporting four different regimes.

Table 3 reports test results pertaining to the number of thresholds. Under the null hypothesis,

the model has m − 1 thresholds while the alternative has m thresholds. The presence of a trend

in the specification makes a huge difference and in the Cobb-Douglas and Translog cases, there is

empirical evidence for three thresholds. For the Translog without trend, there is apparently only

one threshold (interpreting a p-value of 0.08 as rejection at 10% level). For the Cobb-Douglas case

without trend, the tests results suggest that there is no evidence for the presence of any threshold

value in the model.

The point estimates for the threshold parameters are presented in Table 4 along with lower

14



Table 4. Point estimates and 95% level confidence set for threshold parameters in a m thresholds

fixed-effects production frontier

Specification Cobb-Douglas Translog

Parameter Trend No trend Trend

γ̂1 34.4 42.6 34.1

γ1 γ1L 34.0 42.5 34.9

γ1U 67.3 48.4 34.6

γ̂2 45.1 - 44.7

γ2 γ2L 44.7 - 26.2

γ2U 50.0 - 45.5

γ̂3 66.3 - 66.7

γ3 γ3L 65.6 - 44.7

γ3U 68.1 - 67.7

Note. This table reports the point estimates and the lower and upper bounds of 95% level confidence sets

for the threshold parameters constructed by inverting an LR test statistic in a model with fixed-effects

inefficiency terms. The threshold parameters are γ1, γ2, γ3; γ̂i , i = 1, ..., 3 denote the point estimate of γi;

γiL and γiU respectively denote the lower and upper bounds of the confidence set.

Table 5. Regression estimates: triple threshold model for Cobb-Douglas technology with a trend

under fixed-effects inefficiency

regime 1 regime 2 regime 3 regime 4

Variables Estimate t-ratio Estimate t-ratio Estimate t-ratio Estimate t-ratio

Concent. .1185 7.57 .1495 14.22 0.1612 15.30 0.0950 5.14

Forages .0487 3.75 .0317 3.87 0.0362 3.79 0.0588 4.72

Capital -.0034 -.53 .0042 0.89 0.0029 0.67 0.0152 2.45

Labor .0911 5.22 .0424 3.26 0.0150 1.11 0.0582 3.29

Trend .0257 22.32 .0256 33.24 0.0205 25.89 0.0252 21.67

Note. Results for the estimation of stochastic production frontier with three thresholds values with fixed

effects inefficiency; the production function relies on a Cobb-Douglas technology with a trend; t-ratios based

on White-corrected standard errors are in parentheses.
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Table 6. Summary statistics for estimated technical efficiency scores derived from a threshold effects

stochastic production frontier with fixed-effects inefficiency

Specification Cobb-Douglas Translog

Statistics Trend No trend Trend

Mean 96.68 95.93 96.64

Stand. dev. .62 .73 .66

Median 96.72 95.84 96.67

Minimum 95.11 94.31 95.03

Note. This table reports descriptive statistics for technical efficiency scores (in %) estimated in the framework

of a threshold panel data stochastic production frontier model with fixed-effects inefficieny terms. The

estimation method assumes that there is at least one fully efficient firm in the sample, so the maximum value

is 100 for all model specifications.

and upper bounds of the corresponding 95% confidence sets for the Cobb-Douglas and Translog

forms with and without a trend. The presence of thresholds in the Cobb-Douglas model without

a trend did not significantly improve the model without threshold and this is why there are no

thresholds reported. In contrast, the Cobb-Douglas frontier with trend has three thresholds whose

point estimates are 34, 45 and 66. The second and third thresholds have narrow confidence sets,

but the first threshold has a high upper bound. The point estimates obtained from the Translog

with a trend are nearly identical, but the confidence sets differ. In this instance, the confidence set

for the first threshold is very narrow while the second and third thresholds have low lower bounds.

The Translog frontier without a trend supports a single threshold. The latter’s point estimate is

48 with a lower bound of 46 and an upper bound of 49. Some of our confidence sets are skewed,

as either the lower bound or the upper bound of the bootstrap confidence set are very close to

the reported point estimate. This is also apparent in Hansen (1999) but to a lesser degree. The

implication is that the probability that the true threshold be far away from the point estimate is

quite low. This is why for instance the null of two thresholds is soundly rejected (p-value equals

.006) even though the confidence set of the first threshold spans the confidence set of the second

threshold.

Table 5 reports estimates of the coefficients characterizing the production technologies of the

four regimes associated with the Cobb-Douglas with trend frontier. The concentrate coefficients

vary between 0.095 and 0.161 across regimes while the range for the forage coefficients is 0.031-

0.059. The coefficients on capital are small and not significantly different from zeros for the three

smallest categories of farms. In contrast, labour is most important for the smallest farm group.
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The labour coefficient for the smallest farms is roughly 50% larger than that for the largest farms.

The trend coefficients are very similar across regimes.

Results about the efficiency scores associated with the threshold models are presented in Table

6. The mean efficiency level is close to 96% in all cases. This is what we got with the estimation of

a stochastic frontier without thresholds. This suggests that productivity advantage of larger dairy

farms over smaller farms are due to technological advantages and not to technical efficiency.

7 Conclusion

Heterogeneity among individual observations in cross-section or panel data models is an issue

that has motivated a rapidly-increasing literature. Applied econometricians estimating panel data

stochastic frontier models are routinely confronted to this problem. In this paper, we propose three

different estimators allowing for multiple thresholds to address the heterogeneity issue. Inference

is problematic in threshold models because of nuisance parameters not identified under the null

hypothesis. We built on procedures developed by Hansen (1999) in developing a likelihood ratio

test enabling us to test for m − 1 regimes under the null against m regimes. We also develop a

bootstrap procedure to conduct statistical inference about the threshold parameters.

Our empirical application features the estimation of a fixed effects stochastic frontier model on

a panel of Quebec dairy farms. We found evidence of threshold effects, but the latter depend on the

presence or absence of a trend and the choice of functional form. The efficiency scores are highly

concentrated at the top for models with and without thresholds. We conclude that productivity

differences across farm sizes are most likely due to technological heterogeneity.

Future version of this paper will showcase applications of the other proposed estimators and

analyse the distributions of efficiency scores within and between regimes.
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