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ABSTRACT

This manuscript analyzes the e¤ect of binary ecolabeling on the strategic compe-
tition of Cournot duopolists in environmental technology and the output market.
Under binary labeling, �rms�abatement technologies are not directly observable
by consumers but are certi�ed if they satisfy preset ecological standards. Given
this asymmetry, I set up the regulator�s problem as one of choosing a technology
standard, or "cuto¤," in emissions per unit of output, below which all abatement
e¢ ciency levels are certi�ed. The regulatory authority faces a trade-o¤ in choos-
ing the socially optimal cuto¤: The regulator would like to raise the standard to
reduce emissions but needs to lower it in order to induce technology adoption.
There are three important �ndings: (1) ecolabeling is the second-best instrument
in that choosing the optimal cuto¤ per se can never achieve the �rst-best out-
come; (2) e¢ ciency loss in terms of the di¤erence between the �rst-best and the
second-best total surpluses may or may not be large, depending on the extent
of the certi�cation barriers; and (3) setting too high or too low a standard is
not only ine¢ cient, but can also lead to an increase in total emissions relative
to the status quo. Thus, setting the technology cuto¤ optimally is of crucial
importance.

Keywords: ecolabeling, emissions, product di¤erentiation, technology adoption
JEL codes: D43, L13, Q53, Q58
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I. Introduction

This paper has a dual goal. It is to investigate the e¤ects of binary environmental labeling

(or "ecolabeling") on the interaction of �rms and consumers and to examine optimal rules

for setting a technology standard for ecolabeling given this interaction.

A binary label simply indicates that the labeled brand is produced in an environmen-

tally friendly manner. Thus, under binary labeling, the �rms�abatement technologies are

not directly observable by consumers, but can be certi�ed if they satisfy preset ecological

standards. In fact, many ecolabeling initiatives worldwide are binary. Canada�s Eco-logo,

Germany�s Blue Angel, Japan�s Eco-Mark, the Nordic Council�s Nordic Swan, and the US�s

Green Seal are well-known examples of binary ecolabeling.2 Because information on envi-

ronmental attributes is often complex and is hard to communicate, binary labeling has been

promoted as a preferred labeling mode.

Under binary labeling, �rms�supply-side responses are often sensitive to technology stan-

dards set force by certi�cation programs. For example, a series of surveys by Japan�s Eco-

Mark O¢ ce (JEO) indicate that there is a large variation in the ecolabeled brands�market

shares even within a similar product category (e.g. toilet paper and tissue paper) (Table

1). The JEO�s labeling standard for tissue papers and toilet papers are essentially the same

� the percentage content of secondary or recycled papers. However, tissue papers require

2"The ISO de�nes three types of ecolabels. Type I labels compare products with others in the same
category, awarding labels to those that are environmentally preferable throughout their whole life cycle. The
criteria are set by an independent body and monitored through a certi�cation or auditing process... Type
II labels are environmental claims made about goods by their manufacturers, importers or distributors.
They are not independently veri�ed, do not use predetermined and accepted criteria for reference, and are
arguably the least informative of the three types of environmental labels. A label claiming that a product is
�biodegradable�without de�ning this term is a Type II label. Type III labels provide a menu of a product�s
environmental impacts throughout its life cycle. These labels are similar to nutrition labels on food products
that detail fat, sugar or vitamin content. Unlike Type I labels, these labels do not judge products. That
task is left to consumers. Critics question whether the average consumer has the time and knowledge to
determine whether, for example, emissions of sulphur are more hazardous than those of cadmium" (UNEP,
2006, p.3). Up to date, many ecolabeling programs worldwide use either Type I or Type II. Germany�s Blue
Angel, Canada�s Eco-logo, the US�s Green Seal and Japan�s Ecomark are well-known examples of Type I
ecolabeling programs. This manuscript�s analyses apply to these Type I programs. Type II ecolabels are also
ubiquitous. Type III ecolabels exist, but are rare. For example, the U.S. Scienti�c Certi�cation Systems has
prepared an eco-pro�le that can be applied to any product category.
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more subtle and softer textures than toilet papers do. Thus, it is more costly to produce

tissue papers than toilet papers that satisfy the same standard while maintaining the other

quality attributes discernible to consumers. Thus, if consumer preferences for environmental

attributes are the same with tissue papers and toilet papers, then the di¤erence in produc-

tion and investment costs to meet the standard can explain the observed di¤erence in market

shares.3

Table 1.

Market Shares of Eco-Marked Products in Sales to Consumers

(Japan Eco-Mark O¢ ce Surveys, 2001-2004)

Product category (%)

Ball-point pens 1.8
Mechanical pencils 2.7
Markers/highlighters 3.1
White-outs 19.8
Laser printers 26.6
Inkjet printers 25.3
Multi-copying papers 10.2
Inkjet papers 4.0
Toilet papers 39.4
Tissue papers 1.5

With these factors in mind, I construct a model of Cournot duopolists in which con-

sumer demand is generated by binary labeling and heterogenous altruistic preferences. The

duopolists play a two-stage simultaneous-move game: In stage 1, �rms simultaneously choose

abatement technology levels and whether to certify in the �rst stage; and in stage 2, they play

a Cournot game of quantity competition with the corresponding demand system. Given this

3It is certainly plausible that consumers have slightly di¤erent motivations for purchasing durables and
non-durables, which may in turn a¤ect their preferences for ecolabeled durables and non-durables. For
example, O�Brien and Teisl (2001) �nd that consumers are more inclined to purchase environmentally labeled
brands if the product was a frequently purchased item, because this would allow them to make a greater
environmental impact. However, there seems to be no apparent reason why consumers would have di¤erent
preferences for ecolabeled toilet papers and ecolabeled tissue papers.
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game structure, I set up the regulator�s problem (in stage 0) as one of choosing a voluntary

technology standard, or"cuto¤," in emissions per unit of output, below which all abatement

e¢ ciency levels are certi�ed for environmental labeling. Set up this way, it is immediate to

observe a trade-o¤ in setting the socially optimal cuto¤: The regulator would like to raise

the standard to reduce total emissions from the industry but need to lower it in order to

induce �rms�technology adoption. Moreover, because the duopolists�supply responses are

determined in part by their cost functions as well as consumer demand, total emissions from

the industry is not necessarily decreasing in the equilibrium number of certifying �rms.

This regulator�s instrument is imperfect in a number of important regards, however.

First, because labeling is only binary, it can only o¤er an incomplete signal to consumers.

Second, because consumers are heterogeneous in altruistic interests, consumers can interact

with one another in an important way in the product market. Labeling can cause altruistic

consumers to purchase ecolabeled goods, which increases (decreases) the price of ecolabeled

(non-labeled) goods. However, sel�sh or environmentally unaware consumers do not mind

buying non-labeled goods and bene�t from the low price of non-labeled goods. The equilib-

rium prices are, therefore, likely to depend on the distribution of altruism among consumers.

Third, �rms compete strategically both in the output market and in environmental tech-

nology adoption given the consumer demand and the cuto¤ chosen by the regulator. Thus,

imperfect competition among the �rms erodes away the e¤ectiveness of environmental label-

ing. Because of these market distortions, the regulator cannot, in choosing the optimal level

of ecolabeling standard, maximize social net bene�t in the �rst-best manner. Thus, binary

ecolabeling is second-best in nature.

The magnitude of e¢ ciency loss in terms of the di¤erence between the �rst-best and the

second-best total surpluses depends crucially on the primitive parameters of the economy

such as the dispersion of altruism and the �xed cost of technology adoption. Since no

clear-cut analytical results are feasible, I construct a numerical example to demonstrate how

changing these parameters a¤ects e¢ ciency loss. For example, the regulator can attain the
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total surplus su¢ ciently close to the �rst-best level when the �xed-cost parameter is small

whereas when it is high, the regulator can set the standard only at the level that is too loose

compared to the �rst-best level. The result is robust to perturbations of the other model

parameters.

Although my analyses primarily deal with the case of identical technology endowments, I

also brie�y analyze the heterogenous case. When �rms are endowed with di¤erent abatement

e¢ ciency levels, the regulatory authority may opt for a discriminatory standard in favor

of �rms with more environmentally friendly technology. This case is important, because

proponents of ecolabeling initiatives often appear to presume that such a discriminatory

labeling can automatically reduce emissions from the industry. In contrast to the popular

view, I show formally that choosing a discriminatory ecolabeling standard at an inappropriate

level can lead to an increase in total emissions relative to the status quo. Intuitively, this

happens because the consumers may respond to ecolabeling in such a way that the demand

for the labeled good increases too much to the extent that outweighs the bene�t of the

demand shift (from the non-labeled good to the labeled good). Thus, the paper calls upon a

question into the current ecolabeling practice, which often relies on an engineering approach

to determine the technology standards with no or little economic consideration.

This paper complements two large strands of literature. First, my model is related

to, but is signi�cantly di¤erent from, previous theoretical studies on ecolabeling, many of

which typically use a vertical product di¤erentiation model (Cremer & Thisse, 1994; Arora

and Gangopadhyay, 1995; Bansal & Gangopadhyay, 2003; Amacher et al., 2004; Engel,

2004; Conrad, 2005; Lombardini-Piipinen, 2005). Vertical di¤erentiation o¤ers an obvious

advantage because it captures the underlying trade-o¤ �rms face: competition among �rms

may be less intense if they o¤er products that are less substitutable, but they may reap more

pro�ts by selecting an undi¤erentiated product for which demand is strong (Hotelling, 1929;

Mazzeo, 2002). However, a vertical di¤erentiation model assumes perfect information, and

therefore, its applicability may be limited in the context of binary labeling and on the ground
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that detailed information on environmental attributes is much harder to communicate than

other product qualities that are readily observable by consumers.4 My analysis is appropriate

for many ecolabeled products of interest, such as o¢ ce papers, construction woods, sanitary

goods, stationary goods, staple agricultural commodities, and electricity, which have a thin

margin for quality competition. Thus, the paper complements a growing literature on �rms�

environmental quality competition.

Second, earlier research e¤orts have focused on showing whether or not ecolabeling has

a positive in�uence on consumer behavior. Along this line, a number of empirical studies

based on stated preferences or experiments have concluded that many consumers would

select ecolabeled products over standard ones both at equal and at di¤erent prices (Blend

and Ravenswaay, 1999; Teisl et al., 1999; Wessells et al., 1999; Loureiro et al., 2001; Moon

et al., 2002; Conner, 2002; Sergienko and Nemudrova, 2002; Wechel and Wachenheim, 2002;

Johnson et al., 2002). Studies on actual in-store demand followed and found the positive

demand as well as the large willingness to pay (WTP) for ecolabeled products (Teisl et

al., 2002; Bjorner et al., 2004; Hiscox and Smyth, 2005). However, this paper suggests

that the positive consumer demand for ecolabeled goods does not necessarily translate into

the positive e¤ects of ecolabeling and the failure to account for the (potential) interactions

between �rms and consumers could result in biased policy implications.

Though this paper focused on emissions, its main contention can readily generalize to

environmental externalities from unsustainable use of renewable resources such as forest and

marine resources. For example, sustainability concept adopted by the Forest Stewardship

Council or the Marine Stewardship Council may be used as a measure of negative externality

per unit of output. The trade-o¤s the labeling authority faces are essentially the same as

4In recent years, information on environmental performace has been publicized via various public disclo-
sure programs such as the U.S. Toxics Release Inventory and EPA�s 33/50 program. Firms are increasingly
cautious about their reputation as environmentally friendly entities. However, prior empirical studies indi-
cate that it is questionable to claim that consumers can and do relate such detailed information to the exact
environmental impact of each product and take it into purchasing considerations. A �eld-experiment study
by Hiscox and Smyth (2005), for example, seems to suggest that it is the power of labeling rather than the
detailed information that derives consumers�purchasing decisions.
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those in the case of emissions. If the standard is set too loose, the increased consumption of

the labeled products may outweigh the bene�t of the sustainable harvesting practice. If the

standard is too high, however, producers may withdraw from certi�cation and no signi�cant

impacts may result. Thus, an optimal standard must strike an appropriate balance.

II. The Model

A. Firms

Consider a market for a homogenous (i.e. physically identical) good with two identical

producers. The good can be produced using di¤erent production processes or inputs. The

abatement e¢ ciency ! of each production technology is measured in terms of emissions per

unit of output, so that the total emissions are given by E = !1X1+!2X2, where Xj denotes

the quantity produced by �rm j. Two identical �rms, endowed with initial abatement e¢ -

ciency �!, play a two-stage game. In the �rst stage ("Stage 1"), �rms simultaneously decide

to certify or not certify their products for environmental labeling, and choose a new abate-

ment e¢ ciency !. Because ! is measured in emissions per unit of output, a higher ! implies

lower abatement e¢ ciency. If they decide to certify, they must pay the investment cost k

and face the new marginal cost c, both of which depend on the new abatement e¢ ciency !.5

In the second stage ("Stage 2"), �rms play a Cournot game of quantity competition with the

corresponding demand system depending on the number of certifying �rms.6 The investment

cost depends on the distance between the initial and the new abatement e¢ ciency levels. I

assume throughout that the capital and other costs required to attain ! > �! (i.e. the costs

5Investment cost here includes all tangible and intangible �xed costs of entry, such as certi�cation fees,
legal lisencing fees, documentation costs as well as investments in physical or human capitals.

6We could employ Bertrand competition instead. However, with Bertrand competition, when both �rms
certify or do not certify, x1 and x2 become literally identical under binary labeling. Thus, equilibrium prices
will be p = c (!1) = c (!2). When only one �rm certi�es, two products become incomplete substitutes, so that
we can solve for demand functions: xj = Dj(p1; p2). In this case, it is well known that Cournot competition
is dual to Bertrand competition in that the Cournot reaction functions, equilibrium strategies, and pro�ts
can be derived from the Bertrand ones, though Cournot competition is typically more monopolistic than
Betrand competition in that Cournot quantities (prices) are lower (higher) than in Bertrand competition
(Singh and Vives, 1984).
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of �divesting�) is su¢ ciently high relative to the cost-saving gains from it, so that no �rm

would ever �nd it optimal to choose ! > �!. I take �! to be the �xed primitive parameters

of the model. Therefore, under these conditions, we only need to deal with the compact set

of possible abatement technologies, 
 = [0; �!], so we write k (!; �!) = k (!). Furthermore, I

impose the following regularity assumptions:

A1. c (!) is twice-continuously di¤erentiable with c0 < 0; c00 � 0 and c (0) = �.

A2. k (!) is twice-continuously di¤erentiable with k0 < 0; k00 � 0, k (�!) = 0 and k (0) =

K > 0.

As will be explained below, � > 0 is a preference (and demand) parameter and, therefore,A1

implies that it is economically not viable for �rms to produce the good with zero emissions.

B. Consumers

The economy consists of a continuum of identical consumers indexed with i. Under bi-

nary labeling, consumers do not observe �rms�abatement e¢ ciencies !�s directly, but their

products can be certi�ed by a third-party program if ! satis�es a predetermined technol-

ogy standard. Each consumer has quasi-linear preferences Ui (xi; E) = �xi � x2i =2 � E2=2,

which are separable in the numeraire good. If !�s and everybody�s actions were perfectly

observable, consumers could calculate environmental damages from their own consumption

E =
R
!1x1i + !2x2i di. However, in a large economy like ours, consumers know their con-

tribution to environmental damages is non-measurable, and therefore, will completely free

ride on others and will not buy ecolabeled products.

To allow for a purchasing incentive for the ecolabeled good, I assume that consumers have

genuine altruistic interests (Kennett, 1988; Johansson, 1997).7 By genuine altruism, we mean

7Johansson (1997) classi�es altruism into four broad categories: (a) pure altruism, (b) paternalistic altru-
ism, (c) impure altruism, and (d) genuine or semi-Kantian altruism.
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that individuals "care for other individuals, through their behavior, without deriving any util-

ity from it" (Johansson, 1997). Moreover, in our context, consumers do not know the precise

impacts of their behavior on others. Thus, I assume that each consumer acts as if collective

action, given everyone acts the same as hers, will a¤ect everyone�s utility. Therefore, the con-

sumer acts as if she maximizes the adjusted net bene�t U (x1i + x2i; E)�v (�i)�p1x1i�p2x2i,

where v (�i) = �i(
P

j �jxji)
2=2 and �i 2 (0; 1) is an altruistic parameter.8 �j is an indicator

function, which equals one if j is non-labeled and zero otherwise. Thus, a higher �i means

that i is more altruistic. Furthermore, I assume there is a known distribution of altruism

with its cumulative distribution function �, so that
R
�i di =

R
� d� (�) = E�i.

The assumption of genuine altruism is partly made for analytical tractability as well as

for consistency with binary labeling. As shown in Johansson (1997), in a large economy, pure

altruism in the sense of Becker (e.g. 1974) imposes restrictive assumptions on the (relative)

size of an indirect utility e¤ect through others�utilities: As the population size grows, the

indirect e¤ect must decrease proportionally. On the other hand, impure altruism in the sense

of Andreoni (e.g. 1989, 1990) could be used in our context. However, a demerit of impure

altruism is that the total surplus depends not only on the consumption and environmental

damages, but also on the utility gains by each consumer through impure altruism. This

makes calculation of the total surplus intractable.9

Given this setup and assuming an interior economy, we obtain an individual demand

given by the following system: If both �rms certify, x�1 (�) + x
�
2 (�) = � � p; If only �rm

1 certi�es,10 x�1 (�) = � � p1 � (p1 � p2) =� and x�2 (�) = (p1 � p2) =�; If none certi�es,
8Except the altruism term v, this is a standard treatment in the literature (see, for example, Qiu (1997),

Singh and Vives (1984), Spence (1976) and Vives (1985)). Note that the usual utility maximization problem,
maxfu(x1; x2; z) j p1x1 + p2x2 + z � mg, is equivalent to maximizing the net bene�t function, U(x1; x2) �
p1x1 � p2x2, if u is quasilinear in z, i.e., u(x1; x2; z) = U(x1; x2) + z.

9In this manuscript, I use the terms "sel�sh" and "altruistic" to describe an individual, respectively with
a low and a high �. These words, however, need not be interpreted literally. Readers may interpret, for
example, "sel�sh" to mean individuals who are not environmentally aware. The wording choice was made
so it is consistent with the notion of genuine altruism. All that is required for the results in this manuscript
is that when we calculate total surplus, we do not need to deal with the intractable integration over the
distribution of allocations and preferences.
10If � is su¢ ciently close to zero, x�2 will be bounded by the budget constraint: m=p2. By interiority

assumption, however, I will ignore this case, as the relative price p1 � p2 will adjust and become su¢ ciently
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x�1 (�) + x
�
2 (�) = (�� p) = (1 + �). This system yields sensible comparative statics. When

both �rms certify, � plays no role and two goods are identical. When only one �rm certi�es

(i.e. both labeled and non-labeled goods are available), @x�1=@� > 0; @x�1=@p1 < 0; and

@x�1=@p2 > 0 and @x�2=@� < 0; @x�2=@p1 > 0; and @x�2=@p2 < 0 as long as p1 > p2. If

p1 = p2 = p, then x�1 = � � p and x�2 = 0 for all � 2 (0; 1). When no labeled good is

available, consumers know that the goods available are not produced in an environmentally

friendly manner, so that an increase in � decreases the demand for these goods.

The average (inverse) demand, corresponding to each case, is given by the following: if

both �rms certify,

P1 = P2 = �� (X1 +X2) ; (1)

if only �rm 1 certi�es,

P1 = �� (X1 +X2) ; P2 = ��X1 � (1 + 1=�)X2; (2)

where � = E [1=�] 2 (1;1); if none certi�es,

P1 = P2 = �� (1=�) (X1 +X2) ; (3)

where � = E [1= (1 + �)] 2 (1=2; 1).

The parameters � and � have an intuitive appeal. � may be considered a measure of

�dispersion�of altruism in that a mean-preserving spread (MPS) of the distribution increases

the value of � (Rothschild and Stiglitz, 1970), and therefore, it increases, via (2), the average

demand for non-certi�ed goods. When both labeled and non-labeled goods are produced,

each �rm needs to consider not only the e¤ects of its production decisions on its own price

but also on its competitor�s, because the demand for the labeled good is determined in part

by the price of the non-labeled good and vice versa. Furthermore, this interaction between

close to zero if a su¢ ciently large number of consumers have such �.
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two market segments is intermediated by the distribution of altruism in such a way that

an increase in dispersion increases (decreases) the non-certifying (certifying) �rm�s ability

to raise its own price. Intuitively, this happens because MPS moves the population mass

of both the sel�sh and the altruistic in such a way that preserves the expected value of the

distribution. However, sel�sh consumers with � close to zero take advantage of the lower

price of x2 and consume more of x2. Thus, its overall impacts favor the non-labeled product.

On the other hand, � is a measure of the �market size�. Because 1= (1 + �) is a convex

function, MPS again raises the value of � . The increase in � increases the demand at a given

price p. Thus, the di¤erence (1 � �) in the average demand between (1) and (3) may be

viewed as the size of the positive labeling impact on consumer demand: It becomes large

when consumers are largely altruistic while it becomes smaller as the mass of the sel�sh

population increases.

C. Regulator

At the beginning of this two-stage game, a third-party ecolabeling program sets a tech-

nology cuto¤point, denoted �, on [0; �!]. I assume away measurement errors occurring during

the certi�cation process or the stochastic nature of investment outcomes. Hence, all ! � �

will be labeled as environmentally friendly. Because the labeling is only binary, consumers

cannot identify �rms�abatement technologies !. Under these assumptions, it is immediate

that pro�t-maximizing �rms will choose ! = �, if they decide to certify given the cuto¤ �.

In this paper, I only solve for pure strategies. As will be made clear in the later analysis,

the Subgame Perfect Nash Equilibria of the two-stage game above depend crucially on �.

Thus, it is natural to think of the regulator�s problem in setting a standard for �. However,

in setting the standard, the regulator faces a natural tension between its own and the �rms�

objectives. Ideally, the regulator would like to lower the cuto¤, so that the certi�ed �rms

would attain the higher level of environmental technology. However, if the cuto¤ is too

tight, the �rms may refrain from investing in environmental technology. Moreover, because
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the duopolists�supply responses are determined in part by their cost functions as well as

consumer demand, it is not necessarily true that the total emissions from the industry is

lower when two �rms certify than when one �rm or none certi�es. The regulator, therefore,

chooses an optimal cuto¤ �s, which maximizes the (average) net surplus:11

NS = U (x� (�) ; E (x� (�)))�
X

j=1;2
Cj
�
x�j (�)

�
� TS (�!)� F; (4)

where x� (�) = (x�1 (�) ; x
�
2 (�)) is a vector of equilibrium quantities given �, Cj j�s total

production cost, TS (�!) the status-quo total surplus when no �rm certi�es, and F the �xed

cost of establishing a coherent labeling program. A few things must be clari�ed. First,

the altruistic term v is ignored, because by de�nition of genuine altruism it does not a¤ect

consumer surplus. Second, I ignore the �xed cost k in the calculation of net surplus, because

I treat k to be a variable part of the model primitives and examine the impacts of the changes

in k on the maximal surplus and because the inclusion of k in (4) does not meaningfully a¤ect

our main results. Lastly, I assume the following regularity condition to hold throughout the

paper:

A3. Model primitives � = (�; �!; c; k; �) are such that the maximum possible level of net total

surplus is increasing in the number of certifying �rms.

The condition essentially says that the underlying structure of the economy favors ecola-

beling: Higher welfare levels can be potentially achieved if more �rms certify. This condition

e¤ectively precludes the possibility of a trivial boundary solution �s = �!. I emphasize, how-

ever, that the condition does not necessarily imply the social optimum always attains when

both �rms certify. In fact, as will be discussed later, it is sometimes optimal to induce only

one certifying �rm even under A3.
11We are concerned only with the �average�net surplus, because in the model, all quantities are expressed

in averages only.

13



III. The First-Best Outcome

As a benchmark, let us �rst examine the �rst-best outcome of the economy. Because

�rms have identical technologies and consumers have identical preferences, we can impose a

symmetric solution to the social planner�s problem. Imposing X1 = X2 = X, !1 = !2 = !

and xji = xj = x for all i 2 (0; 1), we obtain Xj =
R
x di = x, E =

R
!1x1i+!2x2i di = 2!x,

and
R
U(x1i + x2i; E) di =

R
U(2x; 2!x) di = U(2x; 2!x). Given these relationships, we can

derive the following:

Lemma 1. The �rst-best interior emissions standard !FB (in per unit of output) maximizes

the reduced-form net bene�t function W , de�ned as

W (!) � 1

2

(�� c (!))2

1 + !2
: (5)

Proof : The �rst-best outcome of the economy must maximize the total surplus given by

TS =

Z
U(x1i + x2i; E) di�

X
j=1;2

c (!j)xj

= U(2x; 2!x)� 2c (!)x

= 2 (�� c (!))x� 2x2 � 2 (!x)2 ;

where the second line follows from the symmetry and the last line follows by substituting

the explicit expression for U . The social planner would choose x and ! that maximize this

expression. Note that this function is concave in each of the arguments ! and x, but is not

globally concave in (!; x). Thus, I will require the �rst-best output x to trace out an interior

optimal path given !. Given this assumption, the �rst-order condition with respect to x

gives

x� =
�� c (!)
2(1 + !2)

: (6)

Substituting this back to the original total surplus function above, we obtain the desired
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expression.12 Q:E:D:

Equation (6) says that the competitive output level, (�� c (!)) =2, must be decreased

to re�ect the negative externality by the factor of 1=(1 + !2). This �rst-best outcome can

be achieved, for example, by directly controlling x and ! or by combining an ad valorem

subsidy on output price and an emissions tax equal to the marginal environmental damage.

Note that the regulator (or ecolabeling authority) in our setup does not have direct access

to this net bene�t function, because he can only choose the ecolabeling standard to a¤ect

consumers�and �rms�behaviors. As will be shown later, the regulator can set the socially

optimal technology standard �s only at the second-best level. In this paper, therefore, I

reserve the term "�rst-best" for the fully e¢ cient outcome that maximizes (5).

III. Characterization of Two-Stage Game

A. The Second Stage Quantity Competition

Given the technology choice !j, each �rm chooses production quantity xj, which solves:

max Pj (x1; x2)xj � c (!j)xj � k (!j) :

As discussed earlier, the inverse demand Pj changes according to the number of eco-certi�ed

�rms. In each of the three generic cases, there exists a unique Cournot-Nash equilibrium.

Substituting (1), (2) or (3) for each case, taking the �rst-order condition, and manipulating,

we obtain the equilibrium quantities (~x1; ~x2) and pro�ts (�1;�2) (Table 2). Note that in the

table, I use the fact that certifying �rms must choose ! = � and non-certifying �rms ! = �!

with k (�!) = 0. Furthermore, note that A (�) = �� c(�) � 0 and B (�) = c(�)� c(�!) � 0 for

all � 2 [0; �!] by A1. However, there is no a priori reason why the pro�ts net of investment
12Note that W becomes a downward-sloping convex function of ! if c is not su¢ ciently convex, in which

case the solution becomes trivial � !FB = 0. That is, it is optimal to require �rms to produce output with
zero emissions. If, on the other hand, c is su¢ ciently convex, W will be concave in ! on a relevant section,
so that at least one of the roots satisfying the �rst-order condition will be the solution.
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costs are nonnegative in Case (1) or (2). Thus, I assume that the �rm ceases to produce at �,

at which the equilibrium net pro�t becomes nonpositive.13 The �rm�s equilibrium quantity

and pro�t are constant only when both �rm 1 and �rm 2 do not eco-certify. Even when

�rm 1 does not certify, its equilibrium quantity and pro�t are functions of � as long as its

opponent certi�es, because the equilibrium quantities depend on the marginal production

costs of both �rms.

Table 2.

Equilibrium Levels of Quantities and Pro�ts for Firm 1

Quantities Pro�ts

I. Both certify A(�)
3

max

�
0;
�
A(�)
3

�2
�k (�)

�

II. Firm 2 certi�es A(�)+2B(�)
3+4=�

�
1+ 1

�

� h
A(�)+2B(�)
3+4=�

i2
III. Firm 1 certi�es (1+2=�)A(�)�B(�)

3+4=�
max

�
0;
h
(1+2=�)A(�)�B(�)

3+4=�

i2
�k (�)

�
IV. None certi�es � D

3
�
�
D
3

�2
Note: A(�) = �� c(�); B(�) = c(�)� c(�!); and D = �� c(�!).

B. The First Stage Certi�cation Decisions

Because any entering �rm chooses !j = �, the duopolists simply engage in a two-by-

two simultaneous-move game, with fcertify (ec), not certify (nc)g being the set of possible

actions. Let us de�ne �I1 (�) � �1(ec; ec), �II1 (�) � �1(nc; ec), �III1 (�) � �1(ec; nc), and

�IV1 (�) � �1(nc; nc). With �!1 = �!1 = �!, the game reduces to a symmetric one with the

following payo¤ matrix for �rm 1 at the �rst stage:

13To be more precise, �rm 1�s equilibrium quantity in III may not be positive under some region. We can
ignore this region, because on such a region, no �rm would ever �nd it pro�table to certify.
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Firm 2

Firm 1

Certify Not certify

Certify �I1 (�) �III1 (�)

Not certify �II1 (�) �IV1 (�!)

Fact 1. Let n� be the equilibrium number of �rms in the ecolabeled segment. Then we have

the following relationships: n� = 0 if �I1 < �
II
1 and �III1 < �IV1 , n

� = 1 if �I1 < �
II
1 and

�III1 > �IV1 , n
� = 2 if �I1 > �II1 and �III1 > �IV1 , and n

� = 0 or 2 if �I1 > �II1 and

�III1 < �IV1 .

Multiple equilibria arise when the last case occurs. Moreover, if one of the inequality

in each case holds with equality, then multiple equilibria occur. For example, if �I1 = �
II
1

and �III1 > �IV1 , the corresponding equilibria will be n
� = 1 and n� = 2. The structure

of the game depends on the cuto¤ �, because the set of SPNE outcomes depends only on

combinations of ordered pairs: �I1 (�) Q �II1 (�) and �
III
1 (�) Q �IV1 (�!). Therefore, the

characterization of the two-stage game is equivalent to characterizing how these ordered

pairs change as a function of �.

Let us de�ne

Lnm (�) = �n1 (�)� �m1 (�) ;

�nm 2 f�jLnm (�) = 0g :

for n;m = 1; ::; 4, which correspond to cases I; :::; IV . As will become apparent, though only

the signs of L12 and L34 determine the SPNE of this game, we need information on the signs

of L13, L14, and L24 to describe how L12 and L34 change signs as a function of �.

FromTable 2, it is immediate that �I1 is increasing in � with its �rst derivative d�
I
1=d� =
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�(2=9)A (�) c0 � k0 > 0 for � with �I1 (�) > 0; �II1 strictly decreasing with d�II1 =d� =

2a (�) [A (�) + 2B (�)] c0 < 0; �III1 increasing with d�III1 =d� = �4a (�) [(1 + 2=�)A (�) �

B (�)]c0 � k0 for � with �III1 (�) > 0; and d�IV1 =d� = 0, where a (�) = (1+1=�) = (3 + 4=�)
2.

This is intuitively trivial: The advantage of certi�cation decreases as its technology stan-

dard becomes more stringent, which requires higher investment and production costs; The

tightening of the standard is advantageous to the non-certifying �rm because it increases the

�rm�s ability to exploit its lower production costs. In general, these pro�t functions need

not be concave in �.14 By the monotonicity of the second-stage pro�t functions, we also see

that �I1 (�) � �II1 (�) for all � � �12 and �III1 (�) � �IV1 (�) for all � � �34. In Lemma 2 in

Appendix, I show that these two important �thresholds��34 and �12 exist and are in deed

unique. These relationships, combined with Fact 1, establish the following:

Fact 2. The equilibrium number n� of certifying �rms is monotonically increasing in � in

the following sense:

(i) If �34 < �12, n� = 0 for � � �34, n� = 1 for �34 � � � �12, and n� = 2 for � � �12.

(ii) If �12 � �34, n� = 0 or 2 for � � �12 and n� = 2 for � � �34.

A corollary to this fact is that a unique Subgame Perfect Nash Equilibrium wherein only

one �rm certi�es attains if and only if �34 < �12 and � 2 (�34; �12). Figure 1 illustrates

graphically how the structure of the �rst-stage game is determined as a function of � for the

case in which �34 < �12.

[Figure 1]

From a regulator�s point of view, the case with �34 < �12 is more important. As will

be discussed in detail, neither total output nor total emissions from an equilibrium with

n� = 1 is necessarily higher than those from an equilibrium with n� = 2. As a result, net

total surplus, calculated as in (4), will not necessarily be lower when n� = 1 than when

14Under A1 and A2, �II1 is surely convex whereas �I1 and �
III
1 are concave if c is su¢ ciently convex.
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n� = 2. If �12 < �34 and, therefore, n� is either 0 or 2, then the regulator�s problem simpli�es

signi�cantly. Because the net total surplus is negative (i.e. �F ) when n� = 0, assuming

that the total surplus is su¢ ciently large when n� = 2 at least in some non-empty segment

on 
, it is su¢ cient to pick �s that maximizes the total surplus given n� = 2. Moreover, my

numerical simulations appear to show that the set of primitives that support the case with

�12 � �34 is limited. For these reasons, I focus on the case with �34 < �12 in the subsequent

analyses.15

One interesting characteristic of our model setup is that it can generate a continuum of

cuto¤ values that support the Prisoner�s Dilemma (PD) outcome. In previous theoretical

studies, it is often presumed, implicitly or explicitly, that �rms invest in environmental

technologies and enter green markets if such markets o¤er pro�table investment opportunities

(e.g. Cremer & Thisse, 1994; Arora and Gangopadhyay, 1995; Swallow & Sedjo, 2000; Sedjo

& Swallow, 2002; Bansal & Gangopadhyay, 2003; Amacher et al., 2004; Engel, 2004; Conrad,

2005; Lombardini-Piipinen, 2005). However, it appears equally plausible that cases exist

where �rms must invest and enter the green markets because such strategy is a strictly

dominant strategy even though they know that such a strategy will strictly decrease their

pro�ts. Figure 2 exhibits two numerical examples, one in which the PD outcome attains

and the other in which it does not. Using Lemmas 3 and 4 in Appendix, we can establish

su¢ cient conditions for the existence of the PD outcome.

Lemma 5. For a given set of primitives � = (�; �!; c; �) with L24 (�!; �) < 0, there exists an

investment cost function k that yields a range
�
�12; �14

�
, each � on which supports a SPNE

wherein both �rms certify even though such an outcome is strictly Pareto-dominated by the

status-quo outcome.

[Figure 2]

15A su¢ cient condition for �34 < �12 and it proof are available from the author upon request.
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Of course, the net welfare e¤ects may be still positive even when the PD outcome arises.

Thus, the regulator need not to avoid such an outcome necessarily. Nonetheless, there are at

least three reasons why the regulator may need to care about this outcome. First, ecolabeling

has been promoted as a voluntary mechanism. However, the existence of the PD outcome

implies that �rms may be forced to adopt environmental technologies that strictly reduce

their pro�ts. This may interfere with the spirit of the voluntary labeling scheme.16 Second,

the PD outcome may not be sustainable if the duopolists have an opportunity to collude

(say, play an in�nitely repeated version of this game). Finally, the net social surplus as

calculated in (4) does not include investment costs, and thus, may overestimate the welfare

e¤ects when this outcome attains.

IV. Socially Optimal Technology Standard

The regulatory authority�s objective is to set a technology standard �s that maximizes

the net surplus (4) given the primitives �. However, in so doing, the authority faces two

dilemmas. First, as shown in the previous section, n� is an increasing function of �: i.e. if

the technology standard is tight, less �rms would �nd it pro�table to enter the ecolabeled

segment. Second, because � a¤ects marginal production costs, total output and total emis-

sions are (non-linear) functions of � for each �xed n�. Because the net total surplus depends

on the equilibrium output X� (�) as well as n� (�), it will be a discontinuous function of �:

Assuming �34 < �12,

NS (�) = NS (X� (�) ; n� (�)) �

8>>>><>>>>:
�F if � � �34

TS (�; 1)� TS (�!; 0)� F if �34 � � � �12

TS (�; 2)� TS (�!; 0)� F if �12 � �

: (7)

where TS (�; n) is the total surplus net of environmental damages as a function of � when

16In the mechanism design literature, some authors de�ne "voluntary participation" constraints as no
decrease in participants�private pro�ts relative to their status-quo or no-participation pro�ts (e.g. Smith
and Shogren, 2002).
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the number of certifying �rms is n. Moreover, as mentioned earlier, multiple equilibria can

arise at � = �12 or �34. For analytical tractability, I simply assume that the regulator can

choose the equilibrium that attains the largest net surplus.17

Let us �rst show the main result of this section that binary ecolabeling per se can never

achieve the �rst-best e¢ cient outcome. The result obtains because binary labeling is an

imperfect policy instrument on a number of important accounts. First, binary labeling gives

an incomplete signal to consumers. Second, ecolabeling gives rise to a number of economic

interactions between and across �rms. The interaction among consumers via equilibrium

pricing distorts (average) consumer demand for the labeled and non-labeled goods. Fur-

thermore, �rms interact strategically both in the output market and in technology adoption.

These factors jointly limit the regulator�s ability to achieve the �rst-best outcome. As a

result, the "socially optimal" standard is second-best from the outset.

Proposition 1. Under binary ecolabeling, the �rst-best e¢ cient outcome can never be

achieved, with the following inequality:

W
�
!FB

�
> max

�
TS (X� (�) ; n� (�)) :

Therefore, the socially optimal standard is second-best in nature.

Proof : First, the maximal �s of (7) maximizes the RHS of the above inequality. Second,

�s must maximize TS (�; n) for some n 2 f0; 1; 2g. Furthermore, by A3, we have max�

TS (�; 2) � max� TS (�; 1) � TS (�!; 0). Thus, I only need to show W
�
!FB

�
= max�

W (�) > max� TS (�; 2). This holds trivially if W (�) > TS (�; 2) for all �.

By (5), we have

W (�) =
1

2

(�� c (�))2

1 + �2
;

where ! is simply replaced by � because both ! and � are in the same unit. To compare

17Of course, we can eliminate multiple equilibria by imposing additional equilibrium-selection criteria such
as the elimination of weakly dominated equilibria. However, I decide not to do so because it will only
complicate our discussion without providing real policy implications.

21



W (�) and TS (�; 2), we can simply compare the two multiplicative factors on (�� c (�))2.

Suppose by contradiction that

1

2
�
1 + �2

� � 2

3
� 2
9

�
1 + �2

�
.

Manipulating both sides yields

1 � �2(1� �2):

But �2(1� �2) 2 [0; 1) for �2 2 [0; 1) and �2(1� �2) � 0 for all �2 � 1, a contradiction.

Q:E:D:

As the proof of the proposition suggests, the �rst-best outcome cannot be achieved even

without the �xed-cost barriers to certi�cation. In practice, the magnitude of e¢ ciency loss

depends crucially on the structure of the economy, particularly the distribution of altruism

� and the �xed-cost function k. Since no clear-cut analytical results are feasible as to the

magnitude of ine¢ ciency, I will use a concrete numerical example to "demonstrate" the

following facts:

Fact 3. Non-trivial cases exist in which the regulator can only set the optimal technology

standard for ecolabeling at a level much looser than the �rst-best level and, therefore, e¢ -

ciency loss, de�ned as the di¤erence between the �rst-best total surplus and the maximum

attainable level of total surplus via ecolabeling, is quite large.

In the numerical example, I assume identical consumers with �i = �, c (!) = � exp (�d!),

and k (!) = K(! � �!)2, where � = 10; � = 0:5; d = 3:5, �! = 1 and K = 10 or 70. We can

verify that these parametric assumptions satisfy A1-A3, and the relative size k=c is in a

reasonable range. Figure 3-(a) and 3-(b) illustrate how the �rst-best and the second-best

(ecolabeling) outcomes di¤er, respectively, with K = 10 and K = 70. First, note that there

are e¢ ciency losses in both cases. More importantly, e¢ ciency loss is small in Figure 3-(a)

whereas it is quite large in Figure 3-(b). This contrast pins down the dilemma that the
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ecolabeling authority faces.

[Figure 3]

The increase in investment costs decreases the �rms�pro�t margins and undermines the

regulator�s ability to set a tight technology standard. As a result, the economically viable

region for certi�cation (i.e. [�34; �12) [ [�12; �!]) is smaller in Figure 3-(b) than in Figure

3-(a). When K = 70, the authority would wish to choose �̂, which attains the maximum

of TS (�; 2) on 
. This is the maximum level of (net) total surplus that could have been

attained if both �rms had participated in certi�cation. However, at such a cuto¤ level, no

�rm would actually certify because �rms act strategically. If the authority indeed chooses �̂,

it obtains a negative social cost �F (because TS (�!; 0) could have been attained without the

labeling e¤ort). This point must be taken seriously, as many ecolabeling initiatives worldwide

often set technology standards based on engineering or scienti�c criteria, with no or little

consideration of economic incentives. Similar results hold for changes in the distribution of

altruism. An increase in the mass of the sel�sh would decrease an average demand for the

labeled good, and therefore, it will prevent the regulator from raising the standard.

More formally, we can establish the following, the proof of which can be found in Ap-

pendix.

Proposition 2. (i) For a given set of primitives � = (�; �!; c; �), let k0 and k1 be investment

cost functions, which satisfy A2 and k0 (!) < k1 (!) for all ! 2 
. Then we have �12 (�; k0) �

�12 (�; k1) and �
34 (�; k0) � �34 (�; k1). (ii) For a given set of primitives � = (�; �!; c; k), let

�0 and �1 be two cumulative distribution functions on (0; 1) such that � (�0) < � (�1) and

� (�0) < � (�1). Then we have �
12 (�; �0) < �

12 (�; �1) and �
34 (�; �0) < �

34 (�; �1).

This result has a real policy implication. If the labeling authority wishes to induce high

levels of �rms�abatement technology adoption, the authority may opt for policies to lower

entry costs associated with certi�cation such as subsidies on certi�cation fees or abatement
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investments. Furthermore, if the authority observes either the consumer demand is highly

heterogeneous or the �xed costs of meeting the standard are too high, it needs to compromise

on the loose standard. For example, Fischer et al. (2005) cites the estimates of the costs of

forest certi�cation in the U.S., which vary but can be as low as $0.55 per acre for preparation.

For those engaged in illegal or unsustainable logging in developing countries, however, the

costs of meeting the certi�cation standard will be prohibitively high. This may explain why

developing countries currently account for only 8% of the total certi�ed area (Fischer et al.,

2005), although, ironically, many forest certi�cation programs were originally established to

tackle deforestation in these countries.

There is a caveat to the analyses presented above. There can be a "jump" in �s in that,

as � or k changes, the optimum �s may jump from [�12; �!] to [�34; �12]. This means that it

can be optimal to induce only one �rm into the ecolabeled market rather than two �rms.

This case happens even under A3, because the total surplus on the range of � that supports

n� = 1 can be still higher than that on the range that supports n� = 2, for the following

three reasons. First, total output can be higher when n� = 1 than when n� = 2 because the

decrease in demand for a non-labeled good could be well o¤set by the increase in demand for

a labeled good. Second, total emissions can be lower when n� = 1 than when n� = 2 because

the emission per unit of output (= the cuto¤) that supports n� = 1 may be signi�cantly

lower than that supports n� = 2. Third, the total production costs can be lower when n� = 1

than when n� = 2.18

V. Heterogeneous Technology Endowments

All analyses in the preceding sections can extend easily to the case with heterogenous

technology endowments. In general, there will be threshold cuto¤s �0 and �00 such that n� = 0

on [0; �0], = 1 on [�0; �00], and = 2 on [�00; �!] where �! = max f�!1; �!2g. An optimal standard

�s needs to be chosen so as to maximize the net total surplus, and thus, the regulatory

18I have con�rmed this "jump" result with numerical examples similar to the one above.
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authority must consider how setting �s will a¤ect n�. However, there are subtle di¤erences

in the analysis when �rms are endowed with di¤erent technology endowments.

A key di¤erence is that the regulator can now choose a discriminatory standard such

that �!1 � � � �!2. Such a discriminatory policy may be often popular in political de-

bates, for several reasons. First, large corporations with advanced abatement technolo-

gies may lobby for the policy that favors their technologies. Second, �rms are generally

against the �technology-inducing� standard, which requires technologies that are not cur-

rently available or economically viable.19 Thus, the regulator may be constrained to choose

� � min f�!1; �!2g. An important question then is, how di¤erent such a discriminatory policy

is from the technology-inducing standard. In this section, I focus on the impact of labeling

standard � on total emissions rather than on (net) total surplus. This is because we know

from the outset that a constrained maximum subject to � 2 [�!1; �!2] is no greater than an

unconstrained maximum and that if the constraint is binding, such a discriminatory policy

will be ine¢ cient. I expect, therefore, that the policy evaluation is done in terms of second-

best criteria such as emissions reductions relative to the status quo. Moreover, there appears

to be a presumption among ecolabeling practitioners that discriminatory labeling would au-

tomatically decrease emissions. On the contrary, the analysis in this section suggests that

discriminatory labeling could increase emissions relative to the status quo.

Without loss of generality, I assume �!1 < �!2. Assume further that the cost of certi�cation

except for technology investments is negligible. Under these assumptions, any � 2 [�!1; �!2]

would favor �rm 1 (advantageous �rm) because it can certify its product without additional

costs. Note, however, that even when �!1 � �, �rm 1 can also choose not to certify, in which

case consumers treat goods produced by �rm 1 as non-environmentally friendly because they

cannot directly observe �!1. It is easy to show that when �!1 � �, it is a dominant strategy
19EPA often locks in technologies at the best available control technologies.
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for �rm 1 to certify. Furthermore, provided that �rm 1 certi�es, �rm 2 certi�es if and only if

�
�+ c (�!1)� 2c (�)

3 + 4=�

�2
� k(�!2 � �) �

�
1+
1

�

��
�+ c (�!1)� 2c (�!2)

3 + 4=�

�2
: (8)

The left-hand side of this inequality monotonically decreases as � decreases whereas the

right-hand side is constant given the model primitives. Let 
 be such that (8) holds with

equality. If 
 > �!1, there will be regions [�!1; 
] where n� = 1 and [
; �!2] where n� = 2.

Clearly, the number of �rms with e¤ective technology adoption is n� � 1. If �rm 2 does not

certify, for example, there will be no e¤ective technology adoption because �rm 1�s technology

will be unchanged. To see that ecolabeling may increase emissions, let us consider two cases:

(a) 
 > �!1 and � 2 [�!1; 
] and (b) 
 � �!1 and � 2 [�!1; �!2].

Case (a): 
 > �!1 and � 2 [�!1; 
]

Note that this corresponds to the case of no e¤ective technology adoption. Without a

labeling program, consumers treat two goods identical and equally ecologically unfriendly.20

By the argument above, with labeling �rm 1 certi�es whereas �rm 2 does not. Total equi-

librium emissions in these cases are given by

E�no label = �!1

�
�
A

3

�
+ �!2

�
�
B

3

�
;

E�label, n�=1 = �!1

�
A+ 2=�[�� c (�!1)]

3 + 4=�

�
+ �!2

�
B

3 + 4=�

�
;

whereA = �+c (�!2)�2c (�!1), B = �+c (�!1)�2c (�!2). To see the maximal impact of labeling,

assume that all consumers are altruistic, so we have � ' 1=2 and � ' 1. Manipulating these
20The main result of this section may not hold if I assume that, in the absence of the labeling program,

consumers consider both �rms�products are neutral, so that the distributional parameter � = E[1=(1 + �)]
does not enter the demand function. Under the alternative assumption, we would have E�no label = �!1 (A=3)+
�!2 (B=3), instead. In this case, we can prove that binary environmental labeling always reduces total emission
relative to the status quo without labeling.
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expressions with � = 1=2, we obtain E�no label > E
�
label if and only if

�!1

�
3A� 4

�
C

�
> �!2

�
3B � 4

�
B

�
; (9)

where C = 2� � c (�!1) � c (�!2). Note that A < B because �A=3 (�B=3) is the equilibrium

quantity for �rm 1 (�rm 2), which has a higher (lower) production cost. Moreover, because

� > c (�!1) > c (�!2), we have C > B. Thus, the bracketed term in LHS is always smaller than

that in RHS. Moreover, because � ' 1, the bracketed terms on both sides of the inequality

are negative. This can be interpreted to mean that the equilibrium quantity for the certifying

�rm (i.e. �rm 1) is higher with labeling than without labeling. The relationship reverses

for the non-certifying �rm. Thus, when the majority of consumers are altruistic, ecolabeling

yields an expected impact. However, given 0 < �!1 < �!2, we can certainly have a combination

of (�!1; �!2) such that LHS is less than RHS.

Remark: This result is intuitive. When two products di¤er by abatement technology and

one with low emissions is certi�ed while the other with high emissions is not certi�ed, the

consumer demand for the labeled good increases whereas that for the non-labeled good de-

creases. Duopolists choose quantities in response to this demand change. However, the

demand for the certi�ed product may increase too much to the extent it outweighs the pos-

itive impact from the shift in demand. In general, we would expect that the total emissions

from the industry will be lower with the labeling program than without if and only if this

quantity impact (i.e. LHS of (9)) is smaller in magnitude than the relative abatement

e¢ ciency (i.e. �!2=�!1). The above result says that such a condition is not always satis�ed.

Remark: Note that this result obtains because in our model, the distribution of consumers

can give rise to the asymmetric impacts of labeling on demand for labeled and non-labeled

goods. In the vertical di¤erentiation model, in contrast, each consumer buys a �xed number

of units from exactly one of the �rms. Thus, if the demand shifts from a dirtier �rm to a

cleaner �rm, the overall impact must always result in a net reduction in emissions. To see
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this, suppose that the duopolists�abatement technologies are �!1 < �!2 (prior to the third-

party labeling) and that the labeling makes the �rms� technologies perfectly observable.

Assuming that �divesting�from the current technologies is costly, the new technology levels

after introduction of labeling must be such that !j � �!j; j = 1; 2. If the demand shift

occurs, it happens simply as the changes in the market share that must sum to zero. Let

x1 and x2 be the pre-labeling equilibrium quantities and d � 0 the demand shift. Then, it

must follow that E�no label = �!1x1 + �!2x2 > !1(x1 � d) + !2(x2 � d) = E�label provided that

!j � �!j; j = 1; 2. Thus, in the vertical di¤erentiation model, emissions cannot increase with

the introduction of ecolabeling.

Case (b): 
 � �!1 and � 2 [�!1; �!2]

In this case, e¤ective technology adoption occurs because �rm 2 adopts a technology

that meets the standard. It is easy to see that total emissions will be minimized at � = �!1,

because n� = 2 for all � � �!1 and total emissions when n� = 2 will be given by

E�label, n�=2 = �!1

�
�+ c (�)� 2c (�!1)

3

�
+ �

�
�+ c (�!1)� 2c (�)

3

�
;

which has a positive �rst derivative with respect to � provided that c0 < 0 and 0 � �!1 � �.

Now, let � = �!1 and compare E�no label with E
�
label, n�=2. In this case, we can see that an

increase in the mass of the altruistic population (i.e. a decrease in �) negatively impact this

comparison. When � ' 1=2, we obtain E�no label > E�label, n�=2 if and only if

�!2 (�+ c (�!1)� 2c (�!2)) > �!1 (3�� 2c (�!1)� c (�!2)) :

However, it is immediate to see that a set of primitives (�; c; �!1; �!2) exists such that this

inequality does not hold. We thus "proved" by cases (a) and (b) the following:

Proposition 3. Suppose abatement technology endowments are heterogenous (i.e. �!1 < �!2).

With a discriminatory standard, �!1 � � � �!2, binary environmental labeling may not always
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reduce total emissions relative to the status quo. This is true even if a Subgame Perfect Nash

Equilibrium of the game is for both �rms to certify for all � 2 [�!1; �!2] and the standard is

chosen to lock in the best available abatement technology (i.e. to set � = �!1).

VI. Discussion

Ecolabeling has the potential to achieve signi�cant emissions reductions and improve the

social welfare. This paper investigates the e¤ects of binary ecolabeling on the strategic com-

petition of �rms in environmental technology and in the output market. Because consumers

can not directly observe the actual abatement e¢ ciency of the products under binary label-

ing, setting an appropriate technology standard for certi�cation can have signi�cant welfare

impacts.

The paper o¤ers a set of negative results on binary ecolabeling along with important

policy implications. One should not, however, interpret these negative results to mean that

regulatory authorities must disregard the idea of binary labeling to help solve environmental

problems. On the contrary, these results are meant to guide ecolabeling policies on a large

class of environmental and resource problems. As demonstrated with a numerical example,

there are cases in which setting an appropriate standard per se can potentially achieve the

welfare level su¢ ciently close to the �rst-best level. Binary ecolabeling should be directed to

this class of environmental and resource problems, provided that no �rst-best policies (e.g.

taxes or permit markets) are readily available to tackle them due to, say, political inertia.

The paper also shows that arbitrary discriminatory labeling to favor environmentally

more advanced �rms may not only result in an ine¢ cient outcome but can also increase total

emissions relative to the status quo. This calls upon a question into the current ecolabeling

practice, which often uses an engineering approach to set technology standards. The paper

does not argue either for or against binary labels. Rather, it argues that, provided that the

binary scheme continues to be a popular mode for many ecolabeling initiatives worldwide,

attending to the economic impacts of setting particular technology standards for certi�cation
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is critical.

The model presented in this paper can be extended in a number of important ways.

Previous studies have discussed the impact of taxes and subsidies when consumers are en-

vironmentally aware and �rms�abatement technologies are perfectly observable. Unlike in

the previous studies (e.g. Arora and Gangopadhyay, 1995; Bansal & Gangopadhyay, 2003;

Lombardini-Riipinen, 2005), neither a uniform ad valorem tax nor subsidy necessarily a¤ects

�rms�technology adoption. Under binary labeling, �rms�abatement technologies are unob-

servable to consumers and �rms have no incentive to invest more in abatement technologies

than required by the standard even when they have a larger pro�t margin in the output

market. Because the uniform ad valorem tax (subsidy) decreases (increases) the equilibrium

quantities (and thereby the equilibrium pro�ts) almost equally across all three cases in the

second stage (i.e. in the quantity competition), the Nash outcomes of the �rst-stage game

are essentially intact.

On the contrary, a discriminatory ad valorem tax/subsidy or an emission tax likely af-

fects �rms�technology adoption because such a policy will change the relative pro�tability

of certi�cation. Via a slightly di¤erent mechanism, a subsidy on abatement technology in-

vestments also facilitates technology adoption, and thereby, it may help achieve an outcome

su¢ ciently close to the �rst-best. When adopting an emission tax, however, one needs to

account for three disturbing factors: (1) partial internalization of pollution externality due

to consumer�s altruistic behavior; (2) the negative externality from oligopolistic competition

in the output market; and (3) the negative externality from �xed costs and oligopolistic com-

petition in technology adoption (Spence, 1976). All these factors jointly a¤ect the e¢ cient

emission tax rate, and therefore, the tax rate that achieves the �rst best outcome may be

lower or higher than the marginal social cost of emissions. The paper did not consider these

issues in order to maintain its focus on the trade-o¤ in setting the standard, leaving them

for future research.

This paper analyzed a static three-stage game describing the competing interests be-
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tween �rms and the labeling authority. Given the results presented, an interesting extension

of the model would be to investigate dynamic updating rules for technology standards in the

presence of endogenous technology innovation. The authority would like to update technol-

ogy standards as �rms�technologies advance. On the one hand, the prospect for the future

update of the technological standards gives �rms incentives to slow down investments in

abatement technologies. On the other hand, �rms may be better o¤ investing all at once

rather than in a chunky manner, in which case they may invest more than required in the

current period in expectation of the future update. Furthermore, �rms may prefer to invest

(and certify) to quickly reap the bene�ts of higher demand for certi�ed products before they

face tighter technology standards in the following periods. In the presence of stochastic

investment outcomes, �rms are also likely to engage in a �patent race.� Firms� incentives

to in�uence the standard-making process as well as heterogeneity of �rms� e¢ ciencies in

technology innovation are also important in this context. Because these competing inter-

ests a¤ect the speed of investments as well as the equilibrium number of certifying �rms in

each period, the labeling authority must face a more di¢ cult decision to set an appropriate

standard in each period as the industry technology advances over time. The analyses of this

type are also left for future research.
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Appendix

Lemma 2. Suppose A1 and A2 hold. Then there exist �12 and �34 in the interior of [0; �!]

such that (i) �12 � � =) L12 (�) � 0 and (ii) �34 � � =) L34 (�) � 0. These thresholds are

unique in [0; �!].

Proof : We �rst establish that L12 (�!) > 0 and L34 (�!) > 0. Substituting k(�!) = 0 (by A2)

and B (�!) = 0 into the expressions in Table 2, we readily see that

L12 (�!) = f1=9� (1+1=�) = (3 + 4=�)2gA (�!)2 > 0;

L34 (�!) = f(1 + 2=�)2 = (3 + 4=�)2 � �=9gA (�!)2 > 0;

for all combinations of � 2 (1;1) and � 2 (1=2; 1). Now, from the expressions in Table 2

and using c (0) = � and k (0) = K > 0, we have

L12 (0) = �
�
1+
1

�

��
2B (�)

3 + 4=�

�2
< 0;

L34 (0) = ��
�
A (�!)

3

�2
< 0:

Moreover, L12 (�) is continuous and increasing with the �rst derivative dL12=d� = d�I1=d��

d�II1 =d� > 0, for all � at which �I1 (�) > 0 and = 0 for � with �I1 (�) = 0. Thus, by the

intermediate value theorem, there exists �12 2 (0; �!) such that L12
�
�12
�
= 0. Moreover,

we must have dL12=d� > 0 at �12. Suppose not. Then it must follow that �I1 = �II1 = 0,

which contradicts that �II1 > 0 for all � 2 [0; �!]. Therefore, strict monotonicity at �12

implies that �12 is unique and that �12 � � () L12 (�) � 0. Similarly, L34 (�) is continuous,

di¤erentiable, and strictly increasing with the �rst derivative dL34=d� = d�III1 =d� > 0, for

all � at which �III1 (�) > 0 and = 0 for � with �III1 (�) = 0. Thus, analogous arguments

establish the existence and uniqueness of �34 with �34 � � () L34 (�) � 0.

Q:E:D:
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Lemma 3. Suppose A1 holds. There exists unique �24 in the interior of [0; �!] such that

�24 � � () L24 (�) � 0 if and only if L24 (�!) < 0.

Proof : Again, using the expressions in Table 2 and c (0) = �, we have

L24 (0) =

�
1+
1

�

��
2A (�!)

3 + 4=�

�2
� �

�
A (�!)

3

�2
> 0:

We know that �II1 is strictly increasing in �. Thus, if L24 (�!) > 0, there should be no �24

with L24
�
�24
�
= 0. If L24 (�!) = 0, �24 = �!. This establishes necessity. To show su¢ ciency,

suppose L24 (�!) < 0. Again by the intermediate value theorem, there exists �24 2 (0; �!)

such that L24
�
�24
�
= 0. Moreover, strict monotonicity of �II1 implies that �24 is unique and

�24 � � () L24 (�) � 0. Q:E:D:

Lemma 4. Let � = (�; �!; c; �) be a given set of primitives (except k). Suppose that A1

holds and L24 (�!; �) < 0. Then there exists an investment cost function k such that there is

a range
�
�12; �14

�
� [0; �!].

Proof : The proof proceeds in two steps. In the �rst step, I show that provided that (�; k)

satis�es A1 and A2 with L24 (�!; �) < 0, a necessary and su¢ cient condition for �12 < �14

is that L14
�
�24
�
< 0. In the second step, we shall see that given �, which satis�es A1 and

L24 (�!; �) < 0, there is always a function k that satis�es A2 and L14
�
�24
�
< 0.

Because �I1 is increasing, �
II
1 decreasing, and �IV1 constant under A1 and A2, the

uniqueness of �12, combined with L24 (�!) < 0, implies that �12 < �14 if and only if �24 < �14.

Thus, we only need to show that under A1 and A2, �24 < �14 if and only if L14
�
�24
�
< 0.

To show su¢ ciency, suppose L14
�
�24
�
< 0. Because L14 (�!) < 0, by the intermediate

value theorem, there exists �14 2 (�24; �!), so that we obtain �24 < �14. For necessity,

suppose �24 < �14 and suppose by contradiction L14
�
�24
�
� 0. It then follows that by strict

monotonicity of �I1, L
14 (�) � 0 for all � � �24. We have two cases: if L14

�
�24
�
= 0, �24 = �14;

and if L14
�
�24
�
> 0, we have �14 < �24. Thus, we obtain �14 � �24, a contradiction.

33



Now it remains to show the existence of an investment function that satis�es A2 and

yields the property L14
�
�24
�
< 0. In Lemma 3, we have seen that �24 exists and unique

given L24 (�!) < 0. Recall that we did not need A2 for this result. For a given set of

primitives � = (�; �!; c; �) (without an investment cost function k), we can de�ne �24 (�).

If L14
�
�24 (�)

�
< 0, we are done and any k satisfying A2 would yield L14

�
�24 (�; k)

�
< 0.

Suppose L14
�
�24 (�)

�
� 0. Find " > 0 such that L14

�
�24 (�)

�
� " < 0. Then de�ne k (�) =

K � "�=(�! � �24 (�)) where K = "�!=(�! � �24 (�)) > 0. This function trivially satis�es A2

and L14
�
�24 (�; k)

�
< 0. Q:E:D:

Proof of Lemma 5.

By Lemma 4, we can always �nd k such that �12 < �14 given � with L24 (�!; �) < 0. It

remains to show that each � 2
�
�12; �14

�
supports SPNE in which both enter. There are two

generic cases: (i) �34 � �12 and (ii) �12 < �34. If �34 � �12, for all � 2
�
�12; �14

�
�
�
�34; �!

�
,

an associated SPNE is (ec; ec) with �IV1 > �I1. If �
12 < �34, then it may be �12 < �14 � �34

or �12 < �34 < �14. In the former case, each � 2
�
�12; �14

�
supports two distinct SPNEs: one

in which both enter and the other in which none enters. Thus, it still supports (ec; ec) with

�IV1 > �I1. In the latter case, by the property of real numbers, there exists a real number �
0

with �34 < �0 < �14. For such �0, there is a unique SPNE with (ec; ec) and �IV1 > �I1.

Q:E:D:

Proof of Proposition 2.

(i) Let us �rst show that �12 (�; k0) � �12 (�; k1) and �
34 (�; k0) � �34 (�; k1). Suppose

by contradiction that �12 (�; k0) > �12 (�; k1). Let ~�I1 (�) � �I1 (�) + k (�). We know that

d~�I1=d��d�II1 =d� > 0. Thus, �12 (�; k0) > �12 (�; k1) implies ~�I1
�
�12 (�; k0)

�
��II1

�
�12 (�; k0)

�
>

~�I1
�
�12 (�; k1)

�
��II1

�
�12 (�; k1)

�
. By de�nition, �I1

�
�12
�
��II1

�
�12
�
= ~�I1

�
�12
�
� ki

�
�12
�
�

�II1
�
�12
�
= 0 for i = 0; 1. We thus have k0

�
�12 (�; k0)

�
> k1

�
�12 (�; k1)

�
. It then follows

that k0
�
�12 (�; k0)

�
> k1

�
�12 (�; k1)

�
> k0

�
�12 (�; k1)

�
. However, because k00 < 0 by A2
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and �12 (�; k0) > �
12 (�; k1), we must have k0

�
�12 (�; k0)

�
< k0

�
�12 (�; k1)

�
, a contradiction.

Analogous arguments establish �34 (�; k0) � �34 (�; k1).

(ii) To show �12 (�; �0) < �
12 (�; �1), note that

@L12

@�
= �(�

�2) (5 + 4=�) [A (�) + 2B (�)]

(3 + 4=�)3
< 0:

It follows then that for each �, we have L12 (�;�0) > L12 (�;�1). Therefore, L12
�
�12 (�; �0) ;�0

�
=

L12
�
�12 (�; �1) ;�1

�
= 0, combined with @L12=@� > 0, must imply �12 (�; �0) < �12 (�; �1).

Moreover, note that

@L34

@�
= �(4�

�2)XIII (�) [A (�) + 2B (�)]

(3 + 4=�)3
� 0 and

@L34

@�
= �1

9
< 0:

Hence, we have L34 (�;�0) > L34 (�;�1) for each �, which implies �
34 (�; �0) < �

34 (�; �1).

Q:E:D:
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