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Introduction

Risk in agriculture, asin life, is everywhere. But deding with it sysemdticaly, whether for
farmers, researchers or anyone, is difficult. One reason for the difficulty is confuson and
differences of opinion about what risk is and how it can be measured. The first purpose of
this paper, therefore, is to offer some suggested answers to these questions. Then some
approaches to the andysis of risky choices are canvassed, particularly in the context of
agricultura production systems. Matters consdered include how to estimate risk averson
among target groups of farmers, how to derive and refine probabilities to describe relevant
uncertainty, and how to integrate these components into risk anayses.

Risk andysis has become increasingly popular in recent years. Unfortunately, some anaysts
have been rather cavdier in the way that they have applied the theory and methods of
decison andyss. Given the complexity of risk andysis it is hardly surprisng that some
mistakes have been made and that there is scope for disagreement on how to proceed.. A
second objective of this paper, therefore, is to identify some of the main aress of difficulty
and possible confusion and to suggest more theoreticaly sound concepts and practicable
methods.

Defining risk

Even supposed experts use the term ‘risk’ in severd different ways. These differences cause
congderable confusion especidly when systemétic efforts are made to measure risk and to
evauate it. Among the many usages of the word, three common interpretations are;

1. the chance of abad outcome:
2. thevariability of outcomes, i.e. the converse of stability; and



3. uncertainty of outcomes.

Although seemingly smilar, these three definitions imply quite different ways of measuring
risk. Moreover, when formdly defined they can be seen to be mutudly inconsstent. It will
be argued here that, while the first two meanings are in common usage, clarity is best served
by defining risk, at least for forma andyses, as the uncertainty of outcomes.

Measuring risk

Let's look at each of the above definitions in turn to see how risk might be measured for
each.

"The chance of a bad outcome implies the probability of some defined unsatisfactory
outcome happening. Assume for smplicity that there is a Sngle measure of outcome, X,
more of which is dways preferred to less. This definition of risk might be represented by the
probability P* = P(X < X*), where P is probability, X is the uncertain outcome, and X* is
some cut-off or minimally acceptable outcome level below which outcomes are regarded as
‘bad’. In some cases, the value of X* might reflect some disaster level such as ‘garvation’
or ‘bankruptcy’, but in most cases it may be a less clear-cut notion, so that gpplication of
this measure of risk requires specification of the two parameters P* and X*.

Risk as vaiability may be measured by some datigtic of disperson of the digtribution of
outcomes, such as the variance or standard deviation of X, V = V[X] or SD, equd to the
positive square root of V. Obvioudy, neither satistic done tells anything about the location
of the digtribution of outcomes on the X axis. So it is common for those who think of risk as
disperson of outcomes to link V or SD with the mean or expected vdue E = E[X]. Then
variance may be described as the risk around the specified mean. Building on this notion,
some authors, such as Newbery and Stiglitz (1981), have found it convenient to reflect risk
using the coefficient of variation of X, CV = SD/E.

Findly, adopting the definition of risk as the didribution of outcomes requires the whole
digribution of X to be specified. Complete specification requires the probability density
function, f(X), or equivdently and often more conveniently, the cumulative didribution
function F(X). However, summary datistics including moments are commonly used to
describe the probability digribution, implying some amilarity with the measurements based
on the definition of risk as disperson. For a few specid cases, such as the normd, the
digtribution of outcomes is fully defined by only the mean and variance. Other digtributions
might be gpproximated in terms of these first two moments, though higher order moments
may be needed to tell more about the shape of the digtribution. For some arbitrary
digtribution, however, description by moments will be an gpproximation the adequacy of
which is not eadily judged.

The weskness of the firgt two definitions of risk with their associated messuresis that neither
'tdlls the whole story' when a choice has to be faced amongst risky dternatives. In regard to
the firgt definition, it is clear from observing behaviour that not al risks with bad outcomes

! Note that some of the usual statistical tests of normality may be misleading in that small deviationsin,
say, the location of the lower tail of the distribution compared with the normal may be discounted in the
test, but may be very important to arisk-averse decision maker.
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are rgjected. For example, most people will travel by car for sghtseeing¥a an activity that
certainly increases the probability of desth or serious injury in a road accident. Evidently,
choices with chances of very bad outcomes (e.g. death or serious injury) are sometimes
accepted, presumably because the benefits of the up-Side consequences (eg. seeing
interesting dghts) are sufficiently appeding to offset the relatively low chances of the bad
outcome. It follows that to evaluate or assess a risk we need to be able to consider the
whole range of outcomes, good and bad, and their associated probabilities. Descriptions of
risk expressed in terms of only the probability in the lower tall of the distribution of outcomes
do not provide full information for proper risk assessment, and O may be serioudy
mideading.

A smilar algument shows the limitation of variance aone as a measure for risk evauation.
Consider two norma digtributions of outcomes of, say, net income, with identical variances
but different means. Everyone will prefer the one with the higher mean. Moreover, many
would describe the digtribution located further to the right as the less risky of the two since
the chance of getting less than any specified levd of X is lower for this distribution than for
the one with the lower mean.? On the other hand, using variance as the measure of risk
suggests that the two distributions are equdly risky. Clearly, we could avoid such confusion
by interpreting measures of disperson or stability smply as whet they are, and not regarding
them as 'stand alone’ measures of risk.

If risk is defined as variance but is dways interpreted in conjunction with the mean, this
definition might seem to be smilar to defining risk as the digtribution of outcomes but then
usng an E,V gpproximation of the distribution. But the problem inherent in defining risk as
variance dready noted till remains. Not dl shiftsin E,V space that reduce variance will lead
to more preferred E,V combinations for a risk-averse decison maker (DM); if both E and
V are reduced, the effect on preference is indeterminate unless the degree of risk aversonis
known. Hence, it seems unwise and potentialy confusing to describe every prospect with
lower variance as ‘lessrisky’.

Adopting the third option of defining risk asthe full digtribution of outcomes means that there
IS no one datigtic that can be used to measure risk, so that it becomes impossible to
compare digributions in terms of their ‘riskiness . While this might seem to make the notion
of risk dusive, in fact, the absence of such a angle measure proves to be no impediment to
the comparative assessment of aternative risky prospects, as discussed below. What this
third view of risk implies is that notions of ‘more or ‘less risk (‘more risky’ versus ‘less
risky’ progpects) are unsaisfactory, and careful andysts will confine themsdlves to
describing risky prospects as ‘preferred’ versus ‘not preferred’, or as ‘risk efficient’ versus
‘not risk efficient’.

2 Ppandey (personal communication) has shown that, for the normal distribution, the coefficient of
variation is equivalent to the measurement of risk as the probability of a ‘bad’ outcome, provided the
safety-first level of outcome is near to zero. For the two normal distributions mentioned, the one to the
right obviously has the lower CV and also the lower probability of an outcome less than zero (or any
other value).



Assessing risky alternatives

There is a good reason why none of the conventiona Statistical measures of a didtribution
can provide afull description of the entailed risk. As the example of car travd for Sghtseeing
shows, risk assessment requires both probabilities and preferences for outcomes. Chances
of bad versus good outcomes can only be evaluated and compared knowing the DM's
relaive preferences for such outcomes.

According to the subjective expected utility (SEU) hypothess (Anderson, Dillon and
Hardaker, 1977, pp. 66-69; Savage 1954)) the DM’s utility function for outcomes is
needed to assess risky prospects. The SEU hypothes's states that the utility, or index of
relative preference, of a risky prospect is the DM’s expected utility for that prospect,
meaning the weighted average of the utilities of outcomes. This index is computed using the
DM’ s subjective probakilities for outcomes as weights and using the DM’ s utility function to
encode preferences for outcomes. Faced with a choice amongst dternative risky prospects,
the hypothesisis that the prospect with the highest expected utility is preferred.

The expected utility of any risky prospect can be converted through the inverse utility
function into a certainty equivdent (CE). Ranking prospects by CE will be the same as
ranking them by expected tility, i.e. in the order preferred by the DM. Moreover, the
difference between the CE and the expected value of a risky prospect, known as the risk
premium (RP), isameasure of the cost of risk:

RP =E-CE. 1)

For risk-averse DMs, RP will be postive and its magnitude will depend on both the
digtribution of outcomes and the DM’ s attitude to risk.

For some uses it may be convenient to compute the proportiond risk premium, PRP,
defined as.

PRP = RP/E, 2

i.e. the proportion of the expected vaue of the risky project aosorbed by the risk premium
in computing the CE. The more risk averse is the DM or the more uncertain the risky
prospect, the higher will be the PRP.

In relation to the earlier discussion of the problems of defining and measuring risk, the CE
may be taken to be a measure of risk efficiency, meaning that arisky prospect with a higher
CE will be preferred to one with a lower CE. On the other hand, while RP and PRP
measure the actual and proportiona costs of risk, respectively, they should not be taken to
measure risk per se; snce CE depends on both E and RP, congdering only the latter term
can lead to Smilar confusion as can arisein tregting V aone as a measure of risk.

Moreover, as we shdl see later, risk aversion itsdf is an eusive concept that depends on the
context. In particular, we need to be very clear about what measure of outcome is being
used.

Risk aversion and the utility function

The above discusson shows that risk cannot be assessed without accounting for the risk
attitude of the DM. According to the SEU hypothess, risk preference is reflected in the



DM’s utility function for consequences. The shgpe of such a utility function specifies an
individud’s attitude to risk. Severa atempts have been made, therefore, to dicit such utility
functions from farmers in order to put the SEU hypothesis to work in the andysis of risky
prospects in agriculture. Usudly the results have been rather unconvincing. Thereis evidence
that the functions obtained are vulnerable to interviewer bias and to bias from the way
questions are framed.

Some of the difficulties in utility function dicitation may be reduced by wise choice of the
measure of outcome. It is clear, for example, that people assess losses and gains differently
from how they view, say, income or wedth. This seemingly irraiond behaviour is cdled
‘failure in asset integration’, or ‘the endowment effect’, and raises the question of what to do
about it. For normative decison andyds, it does not seem sensble to base
recommendations on such seemingly inconsistent preferences.

Paugble utility functions are mogt often obtained from dicitation of the utility of wedth, and
it seems likdly that utility functions for income will often be more convincing than those for
losses and gains. However, these sorts of suppositions need to be tested as part of the
further consideration of the practicdity of ‘full-blown’ implementation of the SEU hypothesis
in agriculturd decidon andyss.

The truth is, however, that few people are able to articulate their risk preferences
consgently. Some efforts have been made to circumvent the dicitation difficulties by
edimating risk averson from observed behaviour, usudly usng cross-sectiond data. While
these methods certainly cannot be dismissed, given the lack of success of more direct
methods, they al suffer from the fundamental weakness of being based on the assumption
that the farmer and the andyst share the same probabilities about the risky phenomena at
issue. In so far as this assumption is invalid, the results will be biased. Too, errors in mode
specification tend to be rolled into the estimated risk averdon coefficient, causng further
bias.

Measures of risk aversion

For smplicity, we start by assuming that we are assessing risk averson in respect of the
DM’s wedth, i.e. that there is an actud or implicit utility function U = U(W). Later we
congder the implications of utility expressed in terms of other measures such as income or
losses and gains.

Because of percaived difficulties in getting empirica measures of risk averson, it may be
necessary to make some strong assumptions about the degree of risk aversion of farmers if
any anadyss of risk is to be performed. However, measuring degree of risk averson is not
ample for a couple or reasons. Firgt, a utility function is defined only up to a positive linear
transformation. Any measure of risk aversion, which is essentidly a measure of curvature of
the utility function, must remain congtant for such a transformation. Second, as noted above,
we need to be clear about what is the argument of the utility function.

The smplest measure of risk averson that is congtant for a podtive linear transformation of
the utility function is the abosolute risk averson function:

ra(W) = - U"(W/U'(W) ©)



where U"(W) and U'(W) represent the second and first derivatives of the utility function,
respectively (Arrow 1965, p. 33; Pratt 1964). It is generaly accepted that r (W) will
decrease with increasesin W.

Absolute risk averson is a much used and abused concept. Fird, note that it is a function,
not a congtant, as is often implied. Moreover, athough robust enough to be unaffected by a
positive linear trandformation of the utility function, abosolute risk averson is sill measured in
the monetary units of W. Thus, risk averson coefficients derived in different currency units
are not comparable. It is invalid to trangport a coefficient estimated for US farmers in US
dalars to an andyss of an Audrdian farm management problem where outcomes are
expressed in Audtraian dollars or worse, thousands of dollars of Austraian dollars.

The currency units problem is overcome using the concept of relative risk averson, defined
as

re(W) = Wra(W) 4

This measure of risk averson is a pure number which can be usad in internationa
comparisons of risk aversgon, only remembering that, like ro(W), r.(W) is a function, not a
congtant. While there is generd agreement that r,(W) declines as wedlth increases, there is
less agreement on how r(W) islikely to be affected by increasesin wedth. Arrow (1965, p.
36) argues on theoretical and empirica grounds that it would generdly be an increasing
function of W. However, he noted that some flutuations are possible, but suggested that the
actud vaue should hover around 1, being, if anything, somewhat less for low wedths and
somewhat higher for high wedths Smilarly, Eeckhoudt and Gollier (1992, p. 46)
hypothesised that, if wealth increases, relative risk averson does not decrease. On the other
hand, Hama and Anderson (1982) found that, in extremely resource-poor farming
gtudions, relative risk averson could reach vaues as extreme as four or more — quite
contrary to what Arrow had hypothessed. Such disagreement might be taken to indicate
that r.(W) islikely to be more constant than r,(W) as W changes.

Obvioudy, the choice of any particular form of utility function hasimplications for r,(W) and
r.(W). For example, the widdly used negative exponentia function U =1 - exp(- cW) has
the property that r (W) is equd to the constant ¢ (constant absolute risk aversion - CARA)
and the seemingly unlikely property of increasing relative risk averson. On the other hand,
the power function U = WF, 0< ¢ < 1 has decreasing absolute risk aversion (DARA) and
congtant relative risk averson (CRRA). The power function reduces to U = In (W) when
r.(W) = 1. A specid form of the CRRA power function that has significant operationa
advantages is U = {1/(1 — n)}W! ™ where r is the constant reative risk aversion
coefficient.

Congtlant absolute risk averson means that preferences amongst risky prospects are
unchanged if a congtant amount is added to or subtracted from dl payoffs. Congtant relative
risk averson means that preferences are unchanged if dl payoffs are multiplied by a postive
constant.

Plausible assumptions about risk aversion

In the pad,, it has been common to assume, often implicitly, that dl farmers are indifferent to
risk. Such an assumption is necessary to judtify the many farm management budgets that are
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done with no accounting at al for risk. Such an assumption seems to be a second-best
option when we know that risk averson is widespread. A more sensible coursg, if there is
no other information at al, might be to assume ardative risk averson coefficient of 1.0. The
congant relative risk averse function for r = 1is U = In(W), the so-cdled ‘everyman’'s
utility function postulated by Danid Bernoulli aslong ago as 1738.

If this seems to be too strong an assumption, Anderson and Dillon (1992) have proposed a
rough and ready classfication of degree of risk averson, based on the magnitude of the
relative risk aversion coefficient, that some might find plausible. Their dlassficationis:

r(W)=05: hady rik averse a dl;

r.(W) = 1.0 : somewhat risk averse (norma);
r:(W) =2.0: rather risk averse,

r{(W) =3.0: very risk averse,

r«(W) =4.0: extremdy risk averse.

The edimates of risk averson might to vdidated to some extent by condructing a
representative risky progpect, computing its CE usng the CRRA function with r, equa to
the tentatively chosen vadue, and then asking the DM whether the implied indifference
between the risky prospect and the sure thing seems reasonable.

If ro(W) is needed, and if it is assumed that r,(W) is more or less constant for locd variation
in wedth, r,(W) may be derived using the formular (W) = r (W)/W.

Such gpproximations might be made for some target group of farmers in the work of
research stations and extenson agencies, leading to an estimate of the range of r, that might
be plausible. This range can be used in risk analysis for such specific contexts.

Utility of what? The effect of choice of payoff measure

So far, we have consdered utility and risk aversion only in terms of wedth. What happens
when we move to outcomes measured in other ways, such as in terms of income or losses
and gains? Consgder the latter fird. A loss or gain can be viewed as smply a change in
wedth of the person experiencing that loss or gain. We can write:

W =W, * X (5)
where W is wesdlth after the event, W, isinitid wedth and X is the loss or gain. If we assume
that ether W, is known for sure or that X and W are stochatically independent®, then we

should expect a rationd person to make the same choice whether the risky outcomes are
expressed in terms of wedlth or gains/losses,

Unfortunately, empirica evidence does not support this propogtion. Typicdly, we find that
people are much more risk averse when asked to contemplate gains and losses than they are
if the same risky prospect is presented to them in terms of wedth. The effect is know as
falure in asset integration because gains and losses are not intuitively integrated into awedth

® These assumptions may be too strong in some cases. We consider |ater the case where an additional
risky prospect is added to an existing risky portfolio with stochastic dependency between the two.
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assessment. Such behaviour can be argued to be irrational and in what follows we assume
that arational person who wants to make wise risky choices would be prepared to use logic
rather than intuition to derive implications for choices expressed in gainglosses from a
carefully chosen utility function for wedlth.

Recdl that congant absolute risk averson means that preferences are unchanged if a
congtant is added to or subtracted from al payoffs — the exact Stuation we have here.
Therefore, if we do not want preference to change whether we express outcomes in terms
of Wor X, we can specify that r,(W) = ry(X). Then, as before, r (W) = Wra(W) so r(W) =
r.(W)/W. Moreover, r.(X) = Xr,(X) by definition, but r,(X) = r,(W) so

r(X) = Xra(W) = (XW)r(W) (6)

In other words, in assessing risky choices expressed in terms of losses and gain, it is not
correct to apply the same rdative risk averson coefficient as for wedth. Moreover, the
andler is X rdaiveto W, the smdler is the goplicable rdative risk averson coefficient. The
relative risk averson function r(X) in equation (6) is dso sometimes cdled the partid risk
averson function since it refersto only part of the payoff as shown in equation (5).

Now let's consder risky choice where payoffs are expressed in terms of income. At least
two types of risky choices affecting farm income can be imagined. One is where the income
next year (or in some single year in the future) is uncertain. Thisis the typica Stuation when
doing annud farm planning. The uncertainty in the outcomes stems largely from the year to
year unpredictability yields, prices and codts that affect farmers incomes. This type of
uncertainty contrasts with longer term uncertainty as when a farmer may be contemplating a
magor investment perhaps associated with a dramatic change to the farming system. Here the
uncertainty is about the long-run level of income. The digtinction between the two is Smilar
to the digtinction Friedman (1957) drew between permanent income and transitory
incomein hiswork on the consumption function.

Drawing further on Friedman’s idess, it seems clear that trangtory income can be treated in
decison andysisrather like losses and gains. We could write:

W=W,*y-c, @

where y is trangtory income and ¢, is Friedman's permanent consumption, assumed
condant. Defining X =y - ¢, converts equation (7) into equation (5), so the matter will not
be pursued further since identical conclusions apply as for risk averson with payoffs as
losses and gains.

Now consider what hagppens when it is long-run or permanent income that is risky and the
focus of attention. It seems reasonable to assume that arationd person will view their wedlth
as equa to the capitalised value of future (permanent) income flows with the capitaisation
factor calculated over expected future lifetime In that case we can write

W=kY €)

* The income stream may also include a terminal value of assets, if an individual sees it asimportant to
leave assets for their descendants.
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where W is current wedth, Y is the annud permanent after-tax income and k is the
appropriate capitaisation factor, k > 1. Then, since wedth is viewed as a fixed multiple of
income (and vice versa), araiond individud will assgn the same proportiond risk premium
to a given risky prospect whether the payoffs are expressed in wedth or in terms of the
equivdent permanent income. Thisis equivaent to the proposition that

re(W) = ri(kY) =ri(Y) )
wherer,(.) isthe rdative risk aversgon function.
Since ra(W) = r(W)/W and r(Y) = r (Y)Y, then ra(Y) = r(W)/Y or

ra(Y) = (WFY) ra(W). (10)
Findly, snce k = WIY from equation (8), then ra(Y) = kra(W). In other words, ra(Y) is k

times as large as ry(W) where k is the rdevant capitdisation factor of approximeate
magnitude 10.

By way of postscript to the above discusson of the effect of choice of argument of a utility
function on risk aversion, it should have become apparent that there are likely to be very
subgtantid difficulties in inferring anything about the appropriate degree of risk averson if
payoffs are expressed in other ways than those canvassed above. It becomes very hard
indeed to see how the appropriate degree of risk aversion can be derived for such measures
as gross margin per hectare of crop, per kilogram of milk produced or per dollar invested.
Sill worse are atempts to derive the gppropriate degree of risk averson for compare
digtribution of, say, crop yield per hectare. Yet it is not unusua to come across examples of
results expressed and andysed in just such partid terms.

The importance of risk aversion

An indication of the implications for risky choice of different degrees of risk averson can be
obtained from the approximation (Freund 1956):

CE =E-0.5r,V (11)

where CE is certainty equivaent, E is expected payoff, r, is the gppropriate absolute risk
aversion coefficient (assumed constant) and V is variance of payoff.> Then the approximate
risk premium, RP, is given by

RP = E — CE = 0.51,V. (12)

Multiplying through by E/E? gives the proportiond risk premium PRP, representing the
proportion of the expected payoff of arisky prospect that a DM would be willing to pay to
trade away dl therisk for asure thing:

PRP = RP/E = 0.5r,E(V/E?) = 0.5r,C? (13)

® The relationship is exact for the negative exponential utility function with constant absolute risk
aversion if the returns are normally distributed (Freund). For other cases the approximation may be
derived as a truncated Taylor series expansion omitting terms after the second. The omitted terms
incorporate products of successive derivatives of the utility function and successively higher-order
moments of the utility function.
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where C is the coefficient of variation of the risky prospect, equd to the standard deviation
divided by the mean. For example, if r, =2 and C = 0.2, PRP = 0.04. Smilarly, if r, = 4
and C = 0.3, PRP = 0.18. Note, however, that, for reasons explored above, magnitudes of
r such as 2 or 4 are only likely to apply for risky prospects expressed in terms of
permanent income or total wedlth.

The impact of risk averson will be different to the above for DMs assessng a margina
additional risky prospect (Anderson 1989). If such amargind risky prospect is evaluated in
terms of gains and losses, X, rddive to initid wedth W, now treated as uncertain, the
relevant risk premium is

RP[X] = 0.5r,DV (149
where
DV = V[X] +V[Wg] +2CoV[X, W] — V[W]
= V[X] +2r §X]F W] (15)

where Cov is covariance, r is the rdevant corrdation coefficient and S is standard
deviation. (In equation (1) we assumethat r(X) = ra(Wo) =ro(W) =r,, i.e. acondant, asin
equation (11).) Thusthe risk deduction as a proportion of E[X] is

PRPy = 0.5r.E[X]{ V[XJ/E[X]? + 2r SX]We)/E[X]2

= 0.5r,(X)C[X]? + rp(X)r C[X]ISWo]/E[X] (16)
wherer, is partid risk averson for gains or losses defined as:
ro(X) = ra(Wo)X = E[X]/E[Wg) r:(Wo) = Zr (W) a7)

with Z = E[X]/E[Wo]. However, since E[X] = ZE[W], the proportiond risk deduction for
X can be written as.

PRPx = 0.5 ry(X)C[X]? + ro(X)r C[X]C[Wo)/Z
= 0. 5r,(Wo)ZC[X]? + r:(Wo)r C[X]C[W]
= 1:(Wo)C[X[{ 0.5ZC[X] + r C[W]}. (18)

By way of illugtration, Hardaker, Huirne and Anderson (1997) give the case for r,(Wp) =
10,C[X] =0.3,Z2=0.1, r =05 and C[Y] = 0.2, yidding avaue for PRPx of 0.035. In
other words, for the values indicated the DM would be willing to sacrifice only 3.5 per cent
of E[X] to avoid the associated additiond variance. The same authors show the vaue of
PRPy for a range of other plausble vaues of the varigbles, modly indicating that the
additiond risk averdon is rdaively smdl.

As shown by equation (18) and illustrated above, the cost of risk may be a small proportion
of the expected vaue for some trangently risky prospect that congtitutes only a part of the
risk faced by afarm household. While it is an empirical matter, many such margina risksin
diversfied agriculturd systems may have near-zero vaues of PRP, so that choices can be
based on expected vaues aone. Even when PRP vaues are somewhat larger, the ranking
of dternatives based on expected payoffs may be the same as that based on expected utility.
At leadt, this seems likely in such matters as the choice among dternative crop varieties to be
used on just part of the farm when the dternatives may have broadly smilar yied sability
characteridics but sgnificantly different mean yields. Moreover, even when the ranking of
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margina risky prospects based on expected vaues differs from that based on expected
utility or certainty equivaents, the cost of making the wrong choice using the expected vaue
rule may below in CE terms.

If empirica testing shows the codts of risk to be smdl for arange of actua farm Stuations, it
is good news for scientists who can focus more intently on developing technologies that
improve expected returns without worrying too much about stability.

More generaly, because in many practical choice Stuation the cost of risk may be rdatively
smal, it can be argued tha agriculturd economigts have paid too much attention to risk
averson, a least relative to efforts to get good specifications of the probability distributions
of outcomes. If these digtributions are mis-specified, the estimate of E will be biased, which
may matter more than the error in cdculating RP due to using the wrong risk averson
coefficient. Moreover, the focus on risk averson and the cost of risk may have been a
source of confusion in that attention has been directed to reducing the cost of risk rather than
on finding the mog risk-efficient option (erroneoudy minimising RP rather than maximising
CE).

Such migtaken emphasis on risk reduction may come from anayses of risk from a policy
perspective where risk can be viewed as a friction to resource dlocation by farmers. Risk
averson may lead farmers to use resources less intensvely than would be the case if they
were indifferent to risk, a least for decisons important to them. Yet, from a socid wdfare
perspective, most risks faced by individud farmers or groups of farmers are very
unimportant. Thisis evident from equation 8 gpplied to afarm-levd risk in a socid stting; in
that case Z will be smdl since nationd income from other sources will be large, and the
relevant corrdation will be small because of the diverdfied nature of the rest of the economy.
It therefore becomes a potentidly legitimate role of public policy to consder the scope to
reduce the cost of risk to farmers in order to reduce the socia welfare loss from farm-level
risk averson. It is, of course, quite another matter to decide whether interventions to reduce
such welfare losses are judtified. Given the high information needs and the likely difficulty and
high cost of devisng appropriate interventions, the chances are that, in most cases,
governments should leave well done. This view is reinforced by the point argued earlier in
this section that, for many farm-level decisons, the risk friction might well be less than seems
to be widdy believed.

Probabilities for decision analysis

Both the SEU hypothess and common sense lead to the conclusons that the right
probabilities to use for decison andys's are the DM’ s subjective probabilities. A subjective
probability may be defined as the degree of bdief that an individud has in a given
proposition. Many people have difficulty in coming to terms with such a ‘subjectivist’ view
of the world, especidly those who have been trained in the *objectivist’ schoal of thought in
which probability is defined as the limit of a relative frequency ratio. It is worth emphasising,
therefore, that Savage (1954) has degantly synthesised the strands of expected utility and
subjective probablility. However, this is not the place seek to convince the unconverted of
the merits of the subjectivist view. Moreover, fortunately, the gap between the two schools
of thought need not be as wide as these different definitions may seem to imply.
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Taking a subjectivist view of probability, it is clear that, if faced with some risky choice, a
rationa person will seek to make his or her probability assessments as reliable as possible.
This means he or she will want to gather evidence about the uncertain phenomena of interest
until, in some approximate sense, the margind cost of further information gethering rises to
equa margind benefit. Moreover, such a person will be particularly on the lookout for
relevant relaive frequency data to guide subjective probability judgment. If abundant and
relevant data exi<, the evidence will swamp any prior subjective bdiefs, and there will be no
practical difference between the probabilities used by a member of the objectivist school
and asubjectivigt.

Differences obvioudy come more into prominence when relevant data are few or absent—
an dl too common case. Here, according to the subjectivig, it is fill possble for the analyss
to proceed relying on the wholly or predominantly subjective probabilities of the DM.
Unfortunately, however, that presents some difficulties for research and extenson
organisation for whom it is seldom possible to tailor recommendations to match the beliefs of
individud farmers. Clearly, something more ‘objective would be desrable, especidly in
undertaking andysis intended to be of widespread relevance and acceptability.

Probabilities that have been derived based on thoughtful analyss of dl relevant information
can be described as *public’ probabilities, in the sense that many people might be willing to
accept them as reasonable. Such public probabilities are the ones that could sensbly be
used in analyses of, say, the risks of technology adoption in a given farming system. They
can form the basis of a least tentative recommendations to farmers about what technologies
appear to be risk efficient, athough, of course, the probabilities are likely to be revised as
more information comes available from accumulating experience with a technology.

Getting better probabilities

Getting ‘better’ probabilities when hard data are few or absent is no easy task, and
considerable ingenuity and judgment are needed to make the best of abad job. The topic is
a sadly neglected one in the literature of agriculturd economics. We suggest that there is a
need to work towards a ‘code of best practice’, meaning that the approach to deriving
probabilities should be based on careful thought and debate about what is reasonable in
various types of Stuations.

Some rules of such acode, if ever properly developed, might include the following:
Take pains to seek out and make good use of such relevant data as exist.

On the other hand, never thoughtlessly use historicd data that are not tempordly and
gpatidly relevant. For example, data from the past (where dl historica data come from)
may not be a good bas's for making decisions about the future if the world has changed.
Data of dubious relevance may need to be adjusted for any obvious bias, supplemented
with more subjective judgments, or even ignored entirely.

Where data are sparse, unrdiable or of limited relevance, examine the costs and benefits
of collecting more good-quality data for the assessment task at hand.

As new data are accumulated, incorporate them appropriately into the probability
judgments, Bayesian procedures will sometimes be hdpful here in ensuring consistency.

14



In the absence of hard data, make use of the views of people who should know best
about the uncertain processes of interest.

When consulting such experts, use more than one, and sdect people who will bring
different ingghts to the estimation. Then use a sound method (such as Delphi) to seek
convergence towards a consensus.

Take steps to avoid biases in probabilities, however obtained. Where bias is suspected,
congder and apply the best method you can devise to correct for the bias.

Use smoothing methods to minimise implausble irregularities in didributions. Most
digributions are smooth and unimoda. This observation suggests that best practice will
require extensve use of the fractile rule to estimate points on the CDF, and then use of
some procedure to smooth the curve through the obtained points (Anderson, Dillon and
Hardaker, 1977, pp. 42-44). Smoothing will usualy be vitd for sparse data Situations,
but also makes sense in many Stuations with rlatively abundant data. Not smoothing is
equivalent to asserting that you expect the underlying digtribution from which future
outcomes are drawn to have the same ‘bumps present as displayed in the historica
data, which is sddom likely.

Avoid forcing probabilities to fit some pre-determined functionad form unless there are
good reasons to presume that that form is redly gppropriate. Experience with the
software for fitting distributions to data points suggests that smoothing by eye is nearly
aways better than forcing the ditribution to fit some standard form, such as the normal.
Of course, that is not the case if there is some good reason to suppose that the process
generating the ditribution will lead to a particular form of digtribution.

Use ‘triangulation’” whenever practicable to compare probabilities for the same uncertain
quantity obtained from different sources or in different ways.

Take care to recognise and account for at least the main sources of risk affecting the
outcomes of some risky prospect. In paticular, avoid the trap of assuming tha
‘everything goes according to plan’ (EGAP) when Murphy’s Law and common
experience both teach that such persastent good fortune is rare. Predicting the expected
output of nonlinear ochastic systems by using the mean or moda vaues of sochagtic
input variables is awidespread EGPA error.

Take care not to overlook important stochastic dependencies in obtaining probabilities
for more than one uncertain quantity.

Make the assessment process transparent—away's tell what you did.

In Hardaker, Huirne and Anderson (1997) some of these ideas are developed a little
further. For example, a procedure to transform higtorica information on farm activity net
revenues into a representation of the relevant joint digtribution for use in planning is
described and illustrated. Sources of bias in human probability assessments are illustrated
and the use of proper scoring rulesto train experts to be less biased is described.

If the notion of a code of best practice applied to probability assessment seems far-fetched,
it is worth pointing out that probabilities are necessary only because knowledge about the
world is imperfect. All inquiry, including dl agricultura research, can be viewed as human
efforts amed at adding to knowledge, i.e. towards the refinement of prior probabilities that
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may have been based on anything from ‘the wisdom of the ages through unsubstantiated
supposition to pure superdtition. Therefore, dl the methods of systematic inquiry, including
the so-cdlled * scientific method’, can be seen as part of atacitly accepted code of practice
for upgrading probability judgments.

On methods of risk analysis

Modern computer software has revolutionised the scope for risk anadysis. Packages such as
DATA from TreeAge and Precison Tree from Pdisade have made the congtruction and
andyds of decison trees much easer. But probably of more generd applicability in
agricultura risk analyssisthe @Risk add-in to spreadsheets such as Excd. Recent versons
of @Risk for Excd seems more reliable than previous versons and are certainly easier to
use.

Using this software, quite refined stochastic budgets can readily be congtructed. Such
budgets can dso be viewed and used as stochastic smulation models. The software dlows
key variables in the mode to be specified as uncertain quantities with defined probability
digtributions. There is a wide choice of form for such distributions. Stochastic dependency
between variables can be gpproximated using rank correlation coefficients (or can be built in
to the modd by the andyst in other ways). Once completed, the modd is run for a sufficient
number of iterations using Monte Carlo sampling for the specified stochadtic input variables
in order to provide information about the distributions of selected output variables.

Such modds can readily be used in faming systems work to evauate dternative risky
prospects, such as improved technologies. Experiments can be designed and implemented

to compare dternative ‘trestments’, such as with versus without the prospective technology.

If the DM’ s utility function is known, treatments can be compared in terms of caculated CE

vaues. If the utility function is not known but something can be inferred about the relevant

range of risk atitudes, the treatments can be partitioned into dominated and efficient sub-

sets. In some cases, the efficient set may contain only one prospect, indicating the optimal

choice. When the set contains more than one risky prospect, the find choice must be a
metter for the DM, or for each individua DM where the analyss is being performed for

some target group.

Methods of performing such risk-efficiency analyss are particularly important for the work
of agricultura research and extenson organisations. They include mean-variance andyss,
dochedtic efficiency analyss, and particularly stochastic dominance with respect to a
function (SDRF), and are sufficiently well known not to require further discussion here.

Stochadtic budgeting can be extended to represent dynamic aspects of the risky systems
being studied. However, if sysem dynamics lie a the core of a paticular andyss, other
powerful software is available to hep. The package Stella Il (and some other smilar
packages) dlows the dynamics of any system to be represented as a smulation model thet is
developed first on screen in flow-chart format. Later, the underlying relationships can be
quantified and the system run in dynamic fashion to observe performance. It is possble to
include relevant stochagtic components in the modd, usng Monte Carlo methods, to
generate digtributions of output variables. Stdlall runswel on modern PCs.
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The computer and software revolution has aso brought the capacity to solve linear and
nonlinear programming modes to the risk analys’ s desktop. Using GAMS, farming systems
can be modelled in the congrained optimisation framework of mathematicd programming,
maximisng some representation of expected utility. Such formulations dso dlow the risk-
efficient set of solutions to be generated as part of a process of evauating dterndive
technologies or policy interventions for risk-averse farmers.

More information on methods of risk andyss, induding smple illugrations of most of the
software packages mentioned here, is given in Hardaker, Huirne and Anderson (1997).

Summing up

Accounting for risk in the andyds of faming sysems is much harder than pretending it
doesn't exi<. In the padt, the difficulties have been compounded by confusion over just what
risk is and how it can be measured. In the first part of this paper, an attempt has been made
to resolve that difficulty. It seems that risk is best formdised as the whole digribution of
outcomes.

Risk andysis in agriculture has sumbled in the past because of difficulties in assessng and
categorisng farmers' atitudes to risk. While no easy solutions to these problems are offered
in this paper, it is argued that risk averson may not be as important for some choices as
commonly believed. Moreover, as described above, there are some rough and ready ways
to estimate the relevant range of risk aversgon for some target group. Methods of stochastic
efficiency andyssthen dlow at least something to be said about better and worse solutions.

Some risk andyses that have been based on brave assumptions about the degree of risk
averson have overlooked some of the complexity in making the move from utility of wedth
to utility of gains and losses or the utility of income. Moreover, very few such andyses have
recognised that risk averson for permanent income is likely to be much more important than
isrisk averson for trangtory income.

Risk analysis has adso been avoided in the past because so many would-be andysts were
afrad to tackle the evauation of risky choices when too few hard data were available to
work out the required probability distributions *objectively’. Too many of those who braved
the waters of risk andyss left untold or under-emphasised the dubious relevance to the
problem a hand of the data they used to represent uncertainty. It seems that the task of
finding better ways to deduce the probability distributions that describe the risks that farmers
face has been reatively neglected by agriculturd economists. A part of this paper is
therefore devoted to discussng subjective probabilities and to developing the elements of a
code of practice for obtaining more refined probability estimates.

Findly, risk andyds has been limited till jus a few years ago because the ‘number
crunching’ task was too hard. Often, doing even quite Smple stochagtic analyses required
the development of specia-purpose computer programs. Those days are practicaly gone
with the evolution of powerful and in some cases user-friendly software for risk analys's that
can be implemented on PCs. In the last part of this paper, some information about the
computing options now available is given.

Risk andysis is, and will remain, the art of the possble. But successful artistry needs to be
founded on a good knowledge of principles and technique. At least a few of these matters
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are addressed above. The views and idess given are offered as a small contribution to the
eventual production of better pictures of the risky redlity that farmers face.
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