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Abstract 
 
There is a growing interest on models able to anticipate farmers’ response to agricultural and 
environmental policy changes. The Positive Mathematical Programming (PMP) method is being 
extensively used for evaluating the likely impacts of policy interventions. This paper evaluates the 
capability of three different PMP approaches to forecast changes in cropping patterns due to the 2003 
CAP reform: the standard approach (Howitt 1995, Arfini and Paris 1995), the maximum entropy 
approach (Paris and Howitt 1998) and the Röhm and Dabbert approach (2003). However, neither of 
those approaches enables to model activities non-observed in the base situation. An additional 
approach is therefore suggested to consider new activities already introduced in the post-reform 
situation. 
 
These approaches have been tested in an irrigated area of Central Italy. All models have been 
calibrated to the pre-reform situation and then the 2003 CAP reform has been simulated and model 
results have been compared with observed cropping patterns. Even if all models calibrate perfectly, 
response behaviour depends on the selected approach. Compared to the standard approach, the Röhm 
and Dabbert approach shows a too wide substitution between crops belonging to the same group; and 
the maximum entropy approach performs better only when prior information is considered. The 
extended PMP version proposed in this paper depicts a more realistic picture of post reform cropping 
patterns. 
 
Key words: ex-post policy evaluation, positive mathematical programming, CAP reform 
 
 
1. Introduction 
 
There is a growing interest on models able to anticipate farmers’ response to agricultural and 
environmental policy changes. Positive Mathematical Programming (PMP) is one of the 
methodological approaches that have been receiving much attention in recent years. Starting with the 
standard PMP approach (Howitt 1995a and 1995b), different PMP versions have been developed, 
including the maximum entropy calibration criterion (Paris and Howitt 1998; Heckelei and Britz 2000) 
and the Röhm and Dabbert approach (2003). Regional models based on PMP have been extensively 
used for evaluating the likely impacts of policy interventions (Bauer and Kasnakoglu 1990; Arfini and 
Paris 1995). 
 
Several authors have pointed out the arbitrary response behaviour of PMP based models and have 
suggested ways to overcome some of the drawbacks of the PMP methodology (Gohin and Chantreuil 
1999; Heckelei and Britz 2000) or proposed alternative methods (Heckelei and Wolff  2003). Gocht 
(2005) tested the response behaviour of several PMP versions illustrating the potentiality of the 
Maximum Entropy approach to incorporate extra information, which could result in improved 
simulation behaviour.  
 
The scope of activities modelled is another relevant issue in agricultural supply modelling. The 
successive reforms of the Common Agricultural Policy (CAP) have led to significant changes in 
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cropping patterns and farming practices throughout the European Union. However, agricultural supply 
models traditionally only consider activities observed in the pre-reform situation, that is, they do not 
take into consideration new crop or technology options, even when these might become plausible 
strategies under certain policy changes. Even if there have been some attempts to allow for more 
flexibility in model response (Paris and Arfini 2000; Blanco and Iglesias 2005), models based on 
traditional PMP approaches fail to model activities non-observed in the calibration period. 
 
The aim of this paper is to evaluate the predictive capacity of several PMP approaches while 
modelling new activities non-observed in the base year. Three particular PMP approaches have been 
retained: the standard PMP approach, the Röhm and Dabbert approach and the maximum entropy 
procedure. 
 
The performance of these PMP versions to anticipate the impacts of the 2003 CAP reform has been 
tested in an irrigated area of Central Italy. The focus has been mainly on winter cereals because the 
high level of policy support accorded to durum wheat in the pre-reform situation has radically changed 
with the introduction of decoupling. As a result, other winter cereals such as common wheat and 
barley have become relatively more profitable than before. However, these last two crops were almost 
not represented in the pre-reform conditions at least in some of the areas of the irrigation district. This 
represents a problem from the modelling point of view, because traditional PMP approaches do not 
consider the possibility of modelling new activities. To overcome this difficulty, here it is proposed a 
wide-scope PMP version allowing us to consider new activities that have been chosen by farmers in 
the post-reform situation even if these were not observed in the pre-reform situation in all sub-areas of 
the study area. 
 
The remainder of the paper is organised as follows. In the second section, we address the main strong 
and weak points of selected PMP approaches. The suggested wide-scope PMP version is explained in 
section third and results of the simulation exercise are discussed in section fourth. Some concluding 
remarks are drawn in the last section. 
 
 

2. The PMP methodology  
 
The PMP methodology has first been developed to calibrate agricultural supply models (Howitt 
1995a; Arfini and Paris 1995). This approach assumes a profit-maximising equilibrium in the base 
year situation and it recovers additional information from observed activity levels in the base year in 
order to specify a non-linear objective function such that the resulting non-linear model closely 
reproduces the observed farmers’ behaviour. Most authors interpret PMP as the estimation of a non-
linear cost function, partly because cost data is site-specific and official data sources are often lacking. 
Hence, we will focus on this particular formulation.  
 
Conventional PMP approaches usually involve three steps: 1) Specification of a linear programming 
model – taking into account all available information – bounded to the observed activity levels by 
calibration constraints, in order to derive the differential marginal cost vector (µ); 2) Estimation of 
non-linear variable cost functions, assumed to capture all farming conditions non modelled in a 
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explicit way; 3) Formulation of a non-linear programming model that exactly reproduces the observed 
behaviour in the base year. 
 
Using a simplified notation, the constrained linear problem can be written in the following way: 
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where Z denotes the objective function value; x is a (n x 1) vector or production activity levels; r and c 
are (n x 1) vectors of revenue and variable cost per unit of activity, respectively; A denotes a (m x n) 
matrix of coefficients in resource constraints; b and λ are (m x 1) vectors of resource availability and 
associated dual values, respectively; x0 is a (n x 1) vector of observed activity levels; ε denotes a (n x 
1) vector of small positive perturbations, entered to prevent linear dependency between resource 
constraints and calibration constraints; and µ is a (n x 1) vector of dual values associated with the 
calibration constraints. 
 
Once the bounded linear program has been solved, dual values µ are used in the second step to specify 
a set of non-linear cost functions such that the implied marginal costs equal the respective revenues in 
the base year situation. A quadratic variable cost function is commonly used, whose general 
formulation can be stated as follows: 

xQxxVC ′+′=
2
1α         (2) 

where α is a (n x 1) vector of parameters associated with the linear term, and Q is a (n x n) symmetric 
positive definite matrix of parameters associated with the quadratic term. The quadratic formulation 
implies increasing marginal costs with the level of the activity. Parameters α and Q are specified such 
that the solution of the non-linear program equals the solution of the constrained linear program. That 
is, the following condition on marginal costs holds: 

µα +=+= cxQMC 0         (3) 

Several approaches have been developed to derive the parameters of the variable cost functions. We 
will focus in the three PMP approaches that will be tested later in this paper: the standard PMP 
approach (ST), the Röhm and Dabbert approach (R&D), and the Maximum Entropy criterion (ME). 
 
 
2.1. Standard PMP approach 
 
In the standard approach (Howitt 1995a, Arfini and Paris 1995) all off-diagonal elements of matrix Q 
are assumed null and then, the variable cost functions are independent from each other. Being j the 
index for the production activities, the function of average variable cost can be written:  
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jjjj xAC βα
2
1

+=         (4) 

And the problem consists on determining the parameters α and β that satisfy the following marginal 
conditions: 

jjjjjj cxMC µβα +=+= 0         (5) 

Given that multiple sets of parameters satisfy these conditions, in the standard PMP approach the 
value of α is fixed to the accounting cost c: 

0;
j

j
jjj x

c
µ

βα ==          (6) 

This formulation implies that there will be some preferable activities with non-zero β values and some 
marginal activities with zero β values and, therefore, with associated linear cost functions. 
Furthermore, implied average cost will be higher than the observed one for preferable activities and 
marginal value for resources will be linked to marginal profit for marginal activities. Several options 
have been proposed to overcome these problems, including Paris’s suggestion to fix a zero α value, 
addition of exogenous data on supply elasticities and incorporation of exogenous marginal values for 
land (Gohin and Chantreuil 1999). In this paper, the last option has been selected and exogenous land 
opportunity costs have been considered in all tested approaches.  
 
 
2.2. Röhm and Dabbert approach 
 
In the standard PMP approach, the parameters of the cost function for each activity are recovered 
separately from each other. In this way, different production technologies of the same crop (variants) 
are considered as separate activities and, consequently, in the simulation phase substitution among 
these variants is lower than expected. Röhm and Dabbert (2003) propose a different modelling 
approach to take into account the higher elasticity of substitution between crop variants than between 
different crops. 
 
Denoting by j the crop and by v the variant, the non-linear programming model can be compactly 
written: 
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where Z denotes the objective function value; xjv represents production activity levels (hectares 
allocated to crop j with variant v); rjv and ACjv denote average revenue and average variable cost per 
unit of activity, respectively; aij represents the matrix of coefficients in resource/policy constraints; 
and bi is the vector of available resource quantities. 
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The R&D approach introduces a second slope parameter, which is common to all variants of the same 
crop. There will therefore be two sets of slope parameters, one for single crops and other for variants, 
so that the average cost functions take the following form: 

∑++=
v

vjjvjvjvjvj xxAC ,,,,, 2
1

2
1 γβα       (8) 

Cost function parameters can be recovered solving the original linear problem with two additional 
calibration constraints: 
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where ε1 and ε2 are small positive numbers (ε1 < ε2); µj are dual values associated with single crops; 
and µjv are dual values associated with crop variants. As for the standard PMP approach, multiple sets 
of cost function parameters satisfy the marginality conditions and one of the options to recover these 
parameters would be the following: 

 
∑

===

v
vj

j
j

vj

vj
vjvjvj xx

c 0
,

0
,

,
,,, ;;

µ
γ

µ
βα       (10) 

The R&D approach considered in this paper does not distinguish crop variants because of lack of 
specific data. Instead, we have defined groups of similar crops in order to allow for a higher elasticity 
of substitution between closer activities. Specifically, a group of crops has been identified for winter 
cereals (durum wheat, common wheat and barley).  Being g the subscript for crop groups, the model 
can be written in the following way:  
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and the average variable cost functions take the following form: 

∑++=
j

jggjgjgjgjg xxAC ,,,,, 2
1

2
1 γβα       (12) 

Therefore, the slope of the average cost function is divided in two parts, one relative to the group and 
other relative to the crop. Cost function parameters are recovered in a similar way as in the original 
R&D approach.  
 
 
2.3. PMP with Maximum Entropy 
 
In order to recover the parameters of the cost function and to also capture the possible interactions 
among the various activities, Paris and Howitt (1998) suggested using the Maximum Entropy 
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criterion1. In fact, the ME approach allows to recover a full Q matrix for the variable cost function, 
taking into account the possible cross effects among activities. The ME approach has proven useful for 
ill-posed problems, i.e. when the number of parameters to estimate is greater than the number of 
observations and there are a number of works combining PMP and ME (Paris and Howitt 1998; Paris 
and Arfini 2000; Heckelei and Britz 2000). 
 
Paris and Howitt (1998) reparameterize the Q matrix based on LDL’ (Cholesky) decomposition to 
ensure appropriate curvature properties of the estimated cost functions and they use only one 
observation on marginal costs. The work by Paris and Arfini (2000) is particularly interesting because 
it recovers the cost function of single farms relying on the cost function of the homogeneous farm 
group obtained by FADN data. Heckelei and Britz (2000) define priors directly on Q (not on the 
elements of a LDL’ decomposition of Q as in Paris and Howitt 1998) and propose a method 
facilitating to use cross-sectional data and to incorporate prior information such as elasticity of 
substitution between crops. 
 
In this analysis we refer to the method of Paris and Howitt (1998) with the definition of priors directly 
on Q as suggested in Heckelei and Britz (2000). Let us consider the general quadratic cost function 
with two unknown sets of parameters:  

xQxxVC ′+′=
2
1α                    (13) 

Denote by αj and βjj’ the elements of vector α and matrix Q, respectively. These parameters need to be 
specified in such a way that the following conditions are respected: 
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,        (14) 

Estimation of the cost parameters using the maximum entropy criterion implies solving the following 
ME problem:  
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1 The definition of entropy as information measure is due to Shannon (1948) and after Janes (1957) introduces the maximum 
entropy principle in order to obtain probability distribution that are consistent with the available information (Golan et al. 
1996). 
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When the estimation is based in a single observation and no prior information is available, the ME 
optimal solution will imply a uniform distribution of probabilities and then the ME approach will 
respond in a similar way as the standard PMP approach. 
  
In this approach, the choice of the support intervals is the only subjective aspect of the analysis. It is 
important to consider that the recovered parameters and the simulation results can be greatly 
influenced by support values when only one marginal cost vector is available (Heckelei and Britz 
2000). The approach with only one observation on marginal costs could be applied in order to obtain a 
cost function based on prior information (for example a matrix of elasticities or exogenous production 
functions). 
  
 
3. The proposed wide-scope PMP approach 
 
Let us assume that we want to calibrate a regional model embracing several sub-areas. Even if these 
sub-areas are relatively homogeneous, not all production activities are found in all sub-areas in the 
reference period. However, if policy or market conditions change, some activities not present in the 
base year in a particular sub-area could be introduced. Therefore, we are interested in estimating non-
linear cost functions for each potential activity in each sub-area; that is, including those activities not 
found in the reference period. 
 
We suggest a method that owes much to the approach developed by Paris and Arfini (2000) to cope 
with the self-selection problem and we implement this method for each of the PMP approaches 
assessed in this paper (ST, R&D and ME). 
 
The basic assumption is that, because of the relatively homogeneity of the different sub-areas, 
differences in cropland allocation across sub-areas can be explained by differences in farmers' 
preferences and local conditions. We could then hypothesize that, for each activity in the model, there 
will be a least-cost function characteristic of the region under study. Assuming a quadratic functional 
form, the average cost function for the sub-region producing with lower costs (ACL) can be expressed:  

xQAC L

2
1

+=α          (20) 

The average cost function for the S-th sub-area (VCS) can then be interpreted as a positive deviation 
from this one: 

sss xQAC δα ++=
2
1

        (21) 

The cost parameter δ is supposed to capture site-specific characteristics (farmers' preferences and local 
conditions). For simplicity, it is assumed that accounting costs (vector c) are the same for all sub-
areas. 
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This wide-scope version has been implemented for each of the modelling scenarios (standard PMP 
approach, Röhm and Dabbert approach and PMP with maximum entropy). 
 
Considering first the standard PMP approach (ST), in the wide-scope version the average least-cost 
function for the j-th activity will have the following linear expression: 

jjj
L
j xAC βα

2
1

+=          (22) 

For each sub-area, the average cost function can then be formulated: 

jsjsjjjs xAC ,,, 2
1 δβα ++=         (23) 

Cost function parameters can be recovered by solving the original linear problem with two additional 
calibration constraints, one for the total land allocated to the activity and another one for the land 
allocated to the activity in each sub-area: 
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where ε1 and ε2 are small positive numbers (ε1 < ε2); µj depict the dual values associated with total 
activity level; and µs,j are dual values associated with sub-area activity levels. 
 
Parameters αj, βj and δs,j should satisfy the optimality conditions in the reference period: 

jsjjjsjsjjjs cxMC ,,
0
,, µµδβα ++=++=       (25) 

Multiple sets of cost function parameters satisfy the marginality conditions. Assuming that δs,j will be 
zero for the sub-area producing at the lowest cost, one of the options to recover these parameters 
would be the following: 
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where xj
0L  depict the observed activity level for the least-cost sub-area. 

 
Actually, this specification implies that the recovered MC is the lowest among those satisfying the 
optimality conditions2. In this way, even marginal costs for crops not grown in a particular sub-area in 
the reference period will be increasing in x because βj is positive. 
 
Considering now the R&D approach, a similar formulation can be used. For the least-cost sub-region, 
the two slopes β and γ are calculated by using the total area allocated to each group and each single 
crop. The resulting AC for each sub-area would be: 

                                                      
2 This assumption is not necessary when using the ME approach. 
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Cost function parameters can be recovered solving first the original LP model with tree calibration 
constraints, one for the total land allocated to the activity, another one for the land allocated to each 
group in each sub-area and another one for the land allocated to the activity in each sub-area: 
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Assuming jgjg c ,, =α , one of the set of parameters satisfying the optimality would be: 
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Also in this case, this assumption implies that the recovered MC is the lowest among those satisfying 
the condition and that β are positive. 

To use this approach in the ME model, it is just needed to set the “central values” around the values 
shown above for the ST approach and to consider the optimality conditions that should apply. For the 
S-th model, the average cost function is given by the following expression: 

sss xQAC δα ++=
2
1

        (30) 

The value of δ will be specified depending on whether the j-th crop is grown or not in the reference 
period in the S-th sub-area. Cost parameters will be specified so as to respect the following conditions: 

sss cxQ µµδα ++=++ 0    when    00 >sx                                     (31) 

sss cxQ µµδα ++≥++ 0    when     00 =sx                                                       (32) 

The ME procedure generates parameters α, Q and δ. These coefficients, when off-diagonal elements 
are zero, are the same as those derived by using the ST approach. 
 
 
4. Results of the empirical analysis 
 
The analysis has been conducted in an irrigation district of central Italy, where three sub-areas are 
distinguished (L1, L2 and L3). These sub-areas are similar in terms of soil quality, farm size and 
production technologies. Water is delivered by the irrigation board by means of three non-fully 
connected irrigation systems. For each area, data on production activity levels, input use per activity, 
water charges, variable costs per activity, expected crop prices and yields, irrigated area, water 
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availability and agricultural policy subsidies and constraints have been collected in previous research 
(Cortignani and Severini, 2004). Each area is represented as a separate entity given by the sum of all 
farms located in that portion of the irrigation district. 
 
Table 1 shows the cropping patterns in the three sub-areas in 2004 (pre-reform situation) and 2005 
(first year after the implementation of the Single Farm Payment3). In 2004, most of the land was 
allocated to durum wheat; horticultural crops were also relevant, especially tomatoes for industry. 
Other winter cereals such as common wheat and barley were grown in a very limited zone and just in 
one of the three considered sub-areas. After the Fischler reform, the area allocated to durum wheat has 
fallen about 60% whereas this crop has been substituted by other winter cereals (such as common 
wheat and barley) and fodder crops. 
 
Table 1. Observed activity levels (ha) for the three sub-areas and the total area. 

Pre-reform situation (2004) Post-reform situation (2005) 
Cropping activity 

L1 L2 L3 Total L1 L2 L3 Total 
Durum Wheat 1421 1351 1934 4706    1880 
Soft Wheat 39 0 0 39    350 
Barley 0 35 0 35    290 
Maize 38 37 99 174 76 18 74 168 
Asparagus 4 8 8 20 28 42 21 91 
Artichoke 21 30 57 108 19 49 76 144 
Cabbage 6 1 1 8 20 41 24 84 
Sugar Beet 9 26 11 46 13 52 4 69 
Tomato 193 384 437 1014 153 407 313 873 
Melon 69 60 76 205 41 46 53 140 
Watermelon 113 117 100 330 104 146 105 355 
Fennel 89 150 186 425 24 62 169 255 
Other Crops 319 171 397 887    3096 
Source: Irrigation board. 
 
We have assessed the capability of PMP based models for forecasting changes in cropping patterns 
due to the 2003 CAP reform. The three selected PMP approaches (ST, R&D and ME) have been tested 
in two different versions: 

- Narrow-scope version: only activities observed in the base year are allowed in the post-reform 
simulation. 

- Wide-scope version: new activities non-observed in the base year are allowed in the post-
reform simulation. 

 
The analysis has been carried out calibrating all models to the pre-reform situation (2004 data on 
cropland allocation) and then simulating the 2003 CAP reform. The post-reform scenario has been 
developed and used to simulate the response behaviour of the different PMP methods. The only 
changes considered in this scenario are agricultural policy changes, in particular decoupling of direct 

                                                      
3 Unfortunately, for some crops data are available only for the whole study area and not for the three sub-areas. 
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payments for COP crops (including the special aid for durum wheat), the introduction of the partially 
coupled aid for the quality durum wheat, and modulation measures. 
 
Model results have been compared to cropping patterns observed in the post-reform situation (2005 
data on cropland allocation) by means of the Finger–Kreinin index. This index compares the simulated 
shares of each activity j (sj

m) with the observed ones (sj
0) and reaches its maximum value (100%) when 

model results math observed cropping patterns. 
 

 ∑=
j

m
jj

ssFK };{min 0  

 
Model response behaviour has proved dependent on the selected PMP approach. This is particularly 
true for some horticultural crops that have not been directly affected by the CAP reform. Also, 
significant differences are found on the level of COP crops and, in particular, on winter cereals. Table 
2 compares observed cropping patterns in the post-reform situation with model results for the narrow-
scope PMP version. 
 
Table 2. Simulation results for each approach without new activities. Cropland allocation (ha) and 
Finger–Kreinin similarity index 

Simulated values (narrow-scope version) 
 

ST R&D ME I ME II ME III 
Observed 

values 
Durum Wheat 2613 1604 2614 2603 2657 1880 
Soft Wheat 87 706 87 87 85 350 
Barley 69 607 69 149 92 290 
Maize 118 109 118 119 119 168 
Asparagus 21 21 21 23 23 91 
Artichoke 109 109 109 75 109 144 
Cabbage 8 8 8 8 8 84 
Sugar Beet 55 52 55 54 54 69 
Tomato 1025 1025 1025 1028 1021 873 
Melon 206 206 206 206 206 140 
Watermelon 332 332 332 332 331 355 
Fennel 425 425 425 425 424 255 
Other Crops 2732 2593 2731 2661 2666 3096 
Similarity index  85.6 86.4 85.6 85.5 85.1  
 
As the choice of the support interval values may influence model behaviour in the ME approach, three 
different sets of support values have been used in order to illustrate this influence (Table 3).                                    
 
Table 3. Support interval values considered in the ME models 

  ME I ME II ME III 

 α -100 -10 0 10 100 -4 -2 0 2 4 -4 -2 0 2 4
 Qjj 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
 Qjj’ -2 -1 0 1 2 -2 -1 0 1 2 -3 -1 0 1 3
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The spread of the support value for the parameter α is a very wide interval around the observed costs 
for model ME I and a more restricted interval for ME II and ME III. When no prior information on 
cost function is available, the ME problem will reach its optimum with a uniform distribution of the 
probability (ME I). As a result, parameter values equal those obtained with the standard approach and, 
therefore, model ME I responds in a similar way to model ST. When we reduce the interval for cost 
parameters (models ME II and ME III), response behaviour changes compared to the ST model. 
Nevertheless, we cannot state that the ME approach performs better than the ST approach. 
 
Another factor that strongly influences model behaviour is the choice of crop groups in the R&D 
approach. In the considered case, there is a too wide substitution between durum wheat and common 
wheat, given that these crops belong to the same group. Under this approach, it is assumed that crop 
substitution effects will be stronger between similar activities than between different activities. In this 
case common and durum wheat are similar crops but cannot be considered as variants. Therefore, it 
seems important to create groups only with variant activities such as when the same crop is grown 
under two different production technologies.  
 
Evaluation of model response behaviour for the wide-scope PMP version is presented in Table 4. The 
method suggested to model new activities depicts a more realistic picture of post reform cropping 
patterns. Compared to the narrow-scope version, the similarity index is greater in this case for all PMP 
approaches except for the R&D approach.  
 
Table 4. Simulation results for each approach with new activities. Cropland allocation (ha) and 
Finger–Kreinin similarity index 

Simulated values (wide-scope version) 
 

ST R&D ME I ME II ME III 
Observed 

values 
Durum Wheat 2272 401 2276 2168 2187 1880 
Soft Wheat 168 2074 169 195 173 350 
Barley 144 470 144 127 146 290 
Maize 81 55 80 63 63 168 
Asparagus 21 21 21 21 21 91 
Artichoke 110 109 109 110 111 144 
Cabbage 8 8 8 8 8 84 
Sugar Beet 62 55 62 56 57 69 
Tomato 1029 1028 1026 959 1019 873 
Melon 206 206 206 207 207 140 
Watermelon 332 332 332 327 324 355 
Fennel 425 425 425 430 430 255 
Other Crops 2946 2617 2943 3064 3048 3096 
Similarity index  90.0 70.6 90.0 91.7 91.1  
 
 



5. Conclusions 
 
Ex-post analysis of regional models behaviour, such as the one presented here, can prove useful to 
gain better insight into how mathematical models behave and which new developments are needed to 
improve the forecasting capacity of agricultural supply models. In fact, results show that, even if all 
models calibrate perfectly, model response depends on the selected approach. Therefore, the choice of 
the modelling approach can critically influence the outcome of the simulation exercise and should be 
considered carefully. Two of the most critical decisions regard the choice of the support interval 
values in the ME approach and the crop grouping in the R&D approach.  
 
When no prior information about the cost function is considered, the ST and the ME approaches 
respond in a similar way. However, the ME approach could provide better results than those obtained 
by using the ST approach if prior information were available. 
 
The choice of groups in the R&D approach strongly influences model results. The R&D approach 
shows a too wide substitution between durum wheat and common wheat (these activities make part of 
the same group). The performed simulation exercise suggests creating groups with variant activities 
(e.g. the same crop grown under different management practices) but avoiding to create groups 
involving different crops.  
 
The extended PMP version proposed in this paper depicts a more realistic picture of post reform 
cropping patterns. This approach can be applied when areas or farms are relatively homogenous in 
terms of structural variables, land quality, production orientation and production technologies. Under 
these circumstances, this approach has been useful in getting better simulation results. Nevertheless, 
further research is still needed to investigate the theoretical soundness of the suggested approach. 
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