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Abstract 

This paper considers environments in which several agents (countries, farmers, cities) share 
water from a river. Each agent enjoys a concave benefit function from consuming water up to a 
satiation level. Noncooperative extraction is typically inefficient and any group of agents can 
gain if they agree on how to allocate water with monetary compensations. The paper describes 
which allocations of water and money are acceptable to riparian agents according to core 
stability and several criteria of fairness. It reviews some theoretical results. It then discusses the 
implementation of the proposed allocation with negotiation rules and in water markets. Lastly, it 
provides some policy insights. 
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1   Introduction 
Water is essential to life. It is consumed for a variety of purposes, from domestic to agricultural 
and industrial uses. Due to population growth, the development of irrigated agriculture, and 
industrialization, demand has tremendously increased, and water has become a locally scarce 
resource in many regions on earth. The so-called tragedy of the commons has considerable 
relevance to water resources: free-access (or decentralized) extraction leads to inefficiencies, and 
increasing benefits to all users requires centralized planning and cooperation of the economic 
agents (farmers, firms, cities, countries) who share a water resource. In practice, concretization 
of such coordination may take many forms, from international agreements signed by sovereign 
countries to allocation rules or water markets established by communities of farmers. The 
process is often facilitated by local authorities, in many cases with the involvement of users.  

This paper deals with the issue of coordinating water management along rivers. It investigates 
the incentives of riparian agents to agree to share water efficiently. It examines what kind of 
agreement is acceptable. The definition of “acceptability” is twofold. First, the river sharing 
agreement (or allocation) should be stable in the sense that no users or group of users are better 
off designing another river sharing agreement. Furthermore, it should be perceived as fair 
according to certain justice principles.  

This issue is tackled using cooperative game theory and the axiomatic theory of justice. The 
paper describes the cooperative game induced by a river sharing problem, and analyzes the stable 
river sharing agreements in this cooperative game. Next, it considers standard axiomatic 
principles of fair division and adapts them to the river sharing problem.1 It posits fair sharing 
rules for total welfare.  

The paper reviews several important theoretical papers on the river sharing problem in an 
informal and simple way, without formal proofs. The goal is to provide the intuition of these 
results and their policy implications.  

Note that the focus here is on the direct benefits of water consumption. The model ignores other 
benefits for which water is not directly consumed, such as flood control, navigation, recreation 
activities, biodiversity, and hydropower production.2  

Rivers are common water resources that possess several interesting features. First, each agent 
can only consume water entering the river upstream of its location. Therefore, agents have 
unequal access to the resource, depending on their location on the river. Upstream agents have a 
first mover advantage in water extraction. Yet, as river flow increases downstream, this 
advantage is offset by the lower amount of water available upstream. Second, the welfare 
achieved by cooperation depends on the locations of the cooperating agents. In order to increase 
welfare, a group of agents exchanges water. This can only be done from upstream agents to 
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downstream agents and, preferably, by neighbors: water exchange among distant agents is 
subject to extraction or free riding by those located in between.  

International river sharing agreements are numerous worldwide. For instance, the Nile Treaty, 
signed in 1929, specifies a sharing rule for the Nile River water flow between Egypt and Sudan. 
The Columbia River Treaty specifies a sharing rule for the costs and benefits from flood control 
and hydropower production between Canada and the United States (Barrett 1994). In the case of 
the Syr Darya River, the upstream country, Kyrgyzstan, agreed to increase summer discharges to 
supply the downstream country, Uzbekistan, in exchange for fossil fuel transfers (Abbink, 
Moller, and O’Hara 2005). Similarly, Laos and Thailand signed an agreement on developing 
hydropower production on one of the tributaries of the Mekong River tributaries inside the 
former country. It specifies a payment in hard currency from Thailand to Laos in exchange for 
electricity supply (Barrett 1994). In the United States, states sign interstate river compacts that 
prescribe a fixed or a percentage allocation of water (Bennett, Howe, and Shope 2000).  

Governments or farmers themselves set up rules to encourage efficient exploitation of water for 
irrigation, including water pricing, subsidies, and water markets (Ostrom 1990; Dinar, Rosegrant, 
and Meinzen-Dick 1997). Such rules lead to an allocation of water and can result in a 
redistribution of the benefits arising from water extraction. Because different users (for example 
farmers, urban dwellers) use water for different purposes and thus derive different values from 
an additional unit of water, there is an impetus for moving water from lower-value to higher-
value uses. During this process, the seller of a certain volume of water obtains monetary 
compensation from those who buy it. In general, farmers have to pay for water consumption. The 
money collected is then spent on maintenance or transferred to some users through subsidies. For 
instance, Thomas, Feres, and Nauges (2004) provide evidence that French farmers receive on 
average four times more subsidy than the amount they pay to the water agencies.  

These monetary transfers, whether they are direct (peer-to-peer in a water market) or not 
(through centralized water pricing, taxes, or subsidies), and the allocation of water comprise the 
total benefit from consuming water, defining a particular distribution of the total welfare. When 
water is exclusively consumed to irrigate crops, the farmer’s total welfare is simply the value of 
total production, though it could include the monetary equivalent of the utility consumers derive 
from consuming water. 

The paper proceeds as follows. Section 2 introduces a general model to address the issue of 
cooperation and equity in river sharing. Section 3 examines the optimal allocation of water in 
this model. As shown in section 4, noncooperative free-access extraction leads to an inefficient 
allocation of water. Therefore, any movement towards Pareto optimality requires cooperation 
and monetary compensation mechanisms that are acceptable to all agents. The transfers are only 
acceptable if the allocation of water and money belongs to the core of the cooperative game 
(section 5) or is perceived as fair (section 6). Section 7 presents a negotiation game that lead to 
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an efficient allocation of water and fair and stable transfer schemes in the subgame perfect 
equilibrium. Section 8 posits property rights that lead to efficient water allocation and fair 
transfers in competitive water markets. The concluding section discusses the policy implications 
of the analysis of the river sharing problem. 

 
2    General framework 
The river sharing problem is represented by the following stylized model. Agents are ranked 
according to their location along the river and numbered from upstream to downstream: i < j 
means that i is upstream of j and j is downstream of i. There are n agents. The set of agents is 
denoted by N = {1,…,n}. Agent i’s benefit or production function from consuming a level xi of 
water is . Benefits are measured in monetary terms. The function bi is strictly concave and 

differentiable for every xi and iœN. It is increasing up to a satiation level yi. Above this level, the 
agent infers a loss from overconsumption. Indeed, above satiation, the cost of extraction and 
sanitation exceeds the benefit from consumption; or, even worse, the agent suffers from flooding. 
Marginal benefits are strictly decreasing and positive up to the satiation level. Above that, they 
are strictly decreasing and negative. It is also assumed that the marginal benefit at 0 (no water) is 
high enough to avoid corner-type solutions (no water consumption by some agents) in the 
efficient water allocation program. This means that water is indispensable for a user, as it is very 
costly (or deadly) to be deprived of water. Examples of such benefit functions are quadratic 

forms such as 
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y =  providing that the marginal benefit at zero ai 

is high enough so that everybody should be supplied with water. Our assumptions on the benefit 
functions are broadly consistent with the production function for irrigated crops, as represented, 
for example, by Griffin (2006, p.19), except for the marginal benefit at 0. 

The amount of water entering the river at the location of the most upstream agent 1 is e1>0. In 
addition, several tributaries might enter the river after the location of agent 1. Denote by ei¥0 the 
amount of water flowing from tributaries located between agents i-1 and i for i=2,…,n. The 
highest total amount of water available at location i (without extraction upstream) is thus 
Ei=e1+e2+…+ei-1+ei>0. A river sharing problem is formally defined by a set of agents N, a 
vector of (strictly concave and single-peaked) benefit functions (b1,…,bn), and a vector of water 
inflows along the river (e1,…,en). 

 

3    Noncooperative extraction 

Under noncooperative extraction, the river sharing problem defines the following sequential 
game. Player 1 chooses how much to consume x1 under the constraint that this level does not 
exceed the amount available e1. Then player 2 selects x2 from the remaining water e1-x1+e2, that 
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is the water left by the upstream agent 1 added to the water flowing between 1 and 2. And so 
forth until agent n. Of course, guided by selfishness, each player i maximizes its benefit function 
bi when choosing xi subject to the constraint xi § e1-x1+…+ei-1-xi-1+ei.  

In the subgame perfect equilibrium of this game, each player i extracts the maximum between its 
satiation level yi and the amount of water available at its location e1-x1+…+ei-1-xi-1+ei. The 
remaining water is left in the river to be consumed by the downstream agents. 

The noncooperative equilibrium is in general inefficient in the sense that the payoff of players 
can be increased with another allocation of water through monetary compensations. In other 
words, there is often room for Pareto improvement by allowing transfers between agents.  

To understand that, consider simply a river shared by two agents (n=2) with no tributaries (e2=0). 
The upstream agent 1 consumes the minimum of y1 and e1, enjoying a benefit { }( )1 1min , 1e yb . If 

e1§y1 then the downstream agent 2 gets nothing. If e1>y1 and e1-y1<y2, agent 2 consumes e1-y1 
and enjoys . This case is represented in Figure 1. )( 112 yeb −

Water

Benefit 

y1 

b1(y1) 

e1-y1 

- e + e 

b1 

b2 
b2(e1-y1) 

 Figure 1 Example of inefficient noncooperative extraction 

 

Now reduce the upstream agent’s extraction by e, as in Figure 1, to increase the downstream 
agent’s consumption by the same amount, thus benefiting the latter. Due to the strict concavity of 
the benefit functions (or due to diminishing marginal benefits), the increase in benefit to the 
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downstream agent is larger than the loss of benefit to the upstream agent. Formally, for e>0 
small enough )()()()( 1111112112 εε −−>−−+− ybybyebyeb . In Figure 1, the vertical 
downward arrow is shorter than the vertical upward arrow. Of course, the same argument applies 
if the upstream agent consumes e1 so there is no water left downstream (and also for other 
assumptions on the number of agents and water inflows). This change of water allocation is 
Pareto improving if the upstream agent is somehow compensated by the downstream agent for its 
loss of benefit. It therefore requires some sort of transfer from agent 2 to agent 1. But which 
transfer?  

With two agents, the problem is easy. Let us denote  the efficient allocation of water 

(where  stands for the water consumed by agent i), which, by definition, maximizes the sum 

of the two agent’s benefits , subject to the resource constraint x1+x2≤e1. The two 

parties will agree to change their water consumption to , providing that 2 pays a transfer t 

to 1, if they are both better off doing so. The upstream agent 1 accepts if while 

downstream agent 2 agrees if . The transfer must therefore satisfy the two 

acceptability constraints . With more than two agents, the 

transfers need to be acceptable not only to individual agents but also to any group (or coalition) 
of agents. Otherwise, a group of agents is better off by refusing the agreement and signing its 
own agreement on the part of the river it controls. Technically speaking, the transfer scheme 
defines a distribution of welfare. To be acceptable, this distribution of welfare should be in the 
core of the cooperative game in the sense that no coalition of agents is better off by forming its 
own river sharing agreement.  
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Furthermore, the transfer should be perceived as fair by riparian agents. Indeed fairness is often 
invoked as the main principle for sharing life-essential natural resources such as water. Several 
fair ways to share the benefit of river water extraction will be considered. 

This paper focuses on transfer schemes that implement efficient allocations of water while being 
acceptable to n riparian agents (in ways to be defined) for any n>1 (for example more than two 
agents). It then discusses how to implement them. First, the optimal allocation of water in the 
river sharing problem is analyzed. 

 

4    Efficient extraction 
To simplify the analysis without loss of generality, assume ei§yi for every i. Indeed, if ei>yi for 
one i, then since agent i will never choose to consume more than yi, the next downstream agent 
i+1 can rely on e’i+1=ei+1+ei-yi. So the river sharing problem can always be redefined with 
water supplies e’i=yi and e’i+1=ei+1+ei-yi and so forth.  
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The efficient allocation of water is the allocation that maximizes the total benefit from water 
extraction. Formally, it is the vector x=(x1,…,xn) that maximizes the sum of all bi, that is, 
b1(x1)+…+bn(xn). Such an allocation should be feasible in the sense that what is extracted up to 
any location i should not exceed what is available up to that point, that is, x1+…+xi 
§Ei=e1+…+ei for i=1,…,n. 

The above feasibility conditions define n resource constraints. The solution to this problem is 
formally described in Ambec and Sprumont 2002 and Kilgour and Dinar 2001. An informal 
description is provided here.  

Basically, the efficient allocation divides the set of agents N into K subsets of consecutive agents 
N1={1,…,i}, N2={i+1,…,j},…,NK={h+1,…,n}. In a given subset Nk, the allocation of water 
equalizes marginal benefits among all members. Across subsets, the marginal benefits decrease. 
Agents consuming their satiation level have marginal benefit 0 and they must belong to NK. The 
intuition is as follows. Since the marginal benefits are decreasing, the efficient way to share the 
total amount of water flowing down the river En=e1+…+en is to equalize marginal benefits 
across agents when possible. This marginal benefit is positive as soon as water becomes scarce 
(that is, if not everybody can consume its satiated level yi) and is equal to the shadow cost of the 
water.  

In the special case of all water inflows coming from the source e1 (i.e., e2=e3=…=en=0 or e1=En) 
and with the same benefit functions, the total amount of water e1 is optimally shared equally 

among all users, each of them getting 1e
n

. But, in general, agents are heterogeneous. Then those 

with higher marginal benefits (for example the more-productive farmers) obtain more than the 
others. Still, with only one source of water e1, the water is shared such that the marginal benefits 
of all agents in the river are equal to the shadow cost of the unique resource constraint 
x1+…+xn=e1.  

Now, if the water picks up volume along its course, there is more water downstream than 
upstream. The total amount of water available at the downstream end En is efficiently shared 
among riparian agents if marginal benefits are equalized. The condition might not be feasible due 
to the lack of water at some location along the river. At say location j, there might not be enough 
water to achieve this goal. For instance, if agents are endowed with identical benefits, it might 

not be possible to assign nE
n

 to agent j and, therefore, to those upstream of j. This means that 

water is more scarce at j than downstream. Therefore the shadow value is higher. Then it is 
efficient to make the agents upstream of j, including j, share the total inflow up to j Ej=e1+…+ej, 
those downstream of j relying on the water flowing from tributaries j+1,..,n. This defines the 
subset NK in which agents’ marginal benefits are equal. Again, efficiency prescribes that Ej is 
shared so as to equalize marginal benefit among agents 1,…,j. But this might not be feasible at 
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say i<j, in which case marginal benefits are equalized among agents i and j and all others in 
between. This defines the subset NK-1. And so on until the source of the river is reached.  

To sum up, the efficient allocation defines the subset of consecutive agents or portions of the 
river Nk in which the total water inflow is shared so as to equalize marginal benefits among 
agents and to the shadow value of water. This shadow value decreases strictly moving 
downstream from one portion of river Nk to the next one Nk+1. 

For instance, suppose that n=3, , and 2
1 3( ) 20 ( )b x x x b x= − = 2

2 ( ) 8b x x x= − . The satiated 

consumption levels are y1=y3=10 and y2=4. Suppose first that . Then 

efficiency is achieved when the total amount of water e1+e2+e3=18 is divided such as to equalize 
marginal benefits among agents. Formally, 

1 2 3( , , ) (9,3,6)e e e =

* * *
1 2 3( , , )x x x  satisfies * *

1 220 2 8 2 20 2 *
3x x x− = − = −  and 

the binding resource constraint at the end of the river * * *
1 2 3 18x x x+ + = . This leads to * *

1 3 8x x= =  

and x2
*=2. The shadow cost of the resource is then 4 at any location on the river. Now suppose 

that , that is, most water flow comes from a downstream tributary and not the 

source, but still the total amount of water to be shared is e1+e2+e3=18. Then agent 1 cannot 
consume 8 units of water so as to equalize all marginal benefits. The resource constraint at that 
agent’s location, formally x1≤e1, is binding and therefore 

1 2 3( , , ) (6,4,8)e e e =

*
1 1 6x e= = . The next two agents share 

the rest of the water flow  so as to equalize marginal benefits, that is, *
2 3 24 8 12e e x x+ = + = = + *

3

*
3

*
28 2 20 2x x− = − , which leads to *

2 3x =  and *
3 9x = . Therefore the set of agents N is divided 

into two subsets N1={1} and N2={2,3} whose agents share the water they control. The marginal 
benefit of agent 1 in N1 is 8. This is the shadow value of water at its location, and is higher than 
the marginal benefits of agents 2 and 3 in N2, or the shadow value of water downstream, which is 
2. 

 
5   Cooperation 
The efficient allocation of water x*= *

1( ,..., )n
*x x  described above generally requires that upstream 

users refrain from extracting water from the river. If nobody (for example a regulator) can oblige 
them to act thus, they will accept only if they receive (monetary) compensation, which should at 
least cover the loss from consuming less water than available. But, since such compensation 
would be financed by downstream agents, it should not exceed the gain in benefit of the 
downstream agents. In the two-agent example in Figure 1, the upstream agent would accept a 
reduction in consumption of e if compensated by at least the amount represented by the vertical 
downward arrow. On the other hand, the maximum compensation of the upstream agent 
acceptable to the downstream agent is represented by the vertical upward arrow. With more than 
two agents, the arguments should apply not only to individuals, but also to groups. Any group of 
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agents should be compensated at least for the total of the amounts that the agents could obtain if 
operating individually. These acceptability conditions of transfers, which implement the efficient 
allocation x*, are based on the notion of the core in cooperative game theory. They require 
defining formally what a group of agents can achieve by itself in the river sharing problem – the 
value or characteristic function, in the jargon of cooperative game theory.  

Consider a group of agents or coalition S. The total benefit or welfare that a coalition can achieve 
alone is called the “value” of that coalition. In the river sharing problem, it is the total benefit of 
the best way to share the water the coalition can rely on. In other words, it is the group’s benefit 
from the efficient allocation of water available. Yet what is available to a coalition still has to be 
defined. A coalition can, of course, rely on the flow from tributaries they control, or ei for every 
i∈S. But they might also receive inflow of water from outside the coalition. The amount of 
external water flow depends on how the agents outside the coalition behave, in particular 
whether they cooperate (by forming a coalition) or not (by playing noncooperatively). To 
understand that, consider a river shared by three agents. Consider the middle agent 2, located 
between 1 and 3. How much water can 2 expect to rely on at its location? It will depend on 
whether the other two agents 1 and 3 cooperate or not. If they do not, 1 consumes the maximum 
of the water inflows e1 in the river at its location, with a satiation consumption y1. This maximum 
is equal to e1 (recall that by assumption ei§yi for every i). Thus the amount of water available at 
2’s location is just the inflow from the tributary it controls e2. The maximal benefit that 2 
achieves is therefore b2(e2) when agents 1 and 3 act noncooperatively, that is, when they belong 
to different coalitions. Now, if 1 and 3 group together, then it might be in their interest to pass 
some water from 1 to 3 through 2 (even if 2 consumes part of this water flow). This is 
particularly likely if there are no tributaries between 2 and 3 (e3=0), when the most downstream 
agent 3 can rely on is water left in the river by upstream agents 1 and 2. Agent 3 thus consumes 0 
if agent 1 does not leave any water running down the river (which is very costly or deadly). But 
if agent 1 leaves a sufficient amount of water, at least more than y2-e2, then even if 2 consumes 
up to its satiation level y2 (which it would do), 3 enjoys a positive consumption level of water. 
The marginal benefit of these first units of water being high, 3 might overcome the loss of 
benefit by 1 even if there is some water lost to agent 2. Therefore, passing some water between 1 
and 3 sometimes increases the total benefit of {1,3} even if it is at the cost of supplying 2, an 
outsider of {1,3}. Then 2 consumes its satiation level y2 and obtains its highest benefit b2(y2), 
while the coalition {1,3} loses y2-e2 from e1 in this transfer. 

The above argument can easily be illustrated with the example introduced in section 6.4. 
Suppose n=3, , 2

1 3( ) 20 ( )b x x x b x= − = 2
2 ( ) 8b x x x= −  and (e1,e2,e3)=(9,3,6). Consider agent 2. 

How much water can it expect to rely on at its location? What benefit can it achieve on its own? 
If agents 1 and 3 do not cooperate, then agent 1 consumes e1=9 units of water flow coming from 
the source and, therefore, agent 2 relies only on e2=3 units, enjoying a benefit of b2(e2)=b2(3)=15. 
If agents 1 and 3 do cooperate, in other words if 1 and 3 are in the same coalition, then agent 1 
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might supply agent 3 with some of its 9 units of water. In this case, agent 2 would extract the 
water flowing down at its location up to its satiated level y2=4. Since e2=3, it would consume up 
to 1 unit of the water transferred by agent 1 to agent 3. To reach agent 3, the water flow left by 
agent 1 should therefore exceed 1 unit. By transferring water downstream, the coalition {1,3} 
loses y2-e2=1 unit of water and, therefore, can rely on e1+e3-1=9+6-1=14 units of water. Since 
they have the same benefit function, the efficient way to share these 14 units is to divide the 
amount equally x1=x3=7 (which is feasible because 7≤e1). In doing so, the coalition {1,3} enjoys 
a benefit of b1(7)+b3(7)=196, which is higher than its benefit without transferring water, which is 
b1(e1)+b3(e3)=b1(9)+b3(6)=99+84=183<196. Therefore, despite the loss of 1 unit of water, if 
agents 1 and 3 cooperate, agent 1 leaves 3 units of water flowing down the river but only 2 units 
reach agent 3. Agent 2 consumes its satiated level y2=4, enjoying a benefit of b2(4)=16, which is 
strictly more than the 15 units it gets if 1 and 3 do not cooperate.  

As shown above, the maximal benefit or value of a coalition S depends on the coalition structure 
of the other agents N\S.3 At one extreme, all members outside S can act cooperatively by forming 
a single coalition N\S. Similarly, as above, they might pass some water through some agents that 
belong to S. At the other extreme, all members outside S form singletons. They act 
noncooperatively and thus pass no water through subsets of S. Between those two extremes, one 
can think of other more or less coarse coalition structures or partitions of N\S. In general, a 
partition of N defines a sequential game in which agents cooperate within coalitions but not 
between coalitions. Broadly speaking, such a game is similar to that described in the 
noncooperative extraction section (6.3) except that the players are consecutive subcoalitions.4,5 
Moreover, those who belong to the same coalition cooperate while the others do not. This game 
is formally described and analyzed in Ambec and Ehlers 2006. 

As suggested by the above example and proved in Ambec and Ehlers 2006, the value of a 
coalition is higher if outside members cooperate than if they do not. The basic idea is that if 
people outside S cooperate they might pass some water through members of S, while they are 
unlikely to do so if they act noncooperatively. When computing how much welfare they can 
achieve by their own, the members of a coalition must have expectations about how the others 
will behave. They might thus expect to get some water from outside the part of the river they 
control. The pessimistic view is that outsiders do not cooperate at all. They form singletons in the 
partition of the sequential game. They thus never leave any water from their inflows to 
downstream agents, including members of S (recall that we have normalized to ei§yi but they 
might leave what exceeds their peak consumption yi if the amount of water coming from the 
upstream agents is sufficiently large). Call the value function the “cooperative value” when 
members outside cooperate; and the “noncooperative value” when they do not cooperate.6

Going back to the problem of searching for acceptable contributions and compensations, denote 
by t=(t1,…,tn) the allocation of “money” or transfer scheme, where ti denotes the compensation 
assigned to agent i (which is negative in the case of a contribution). The allocation should be 
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budget balanced: it must sum up to 0 or less. The transfer scheme t and the water allocation x* 
yield a payoff or utility  to any agent i for every ieN. A transfer scheme defines a 

distribution of the maximal total welfare. The transfer scheme t or the allocation (x*,t) is 
acceptable in the sense of the core if every group of agents S obtains at least what it can achieve 
on its own, that is, its value. Formally, the sum of the payoffs 

*( )i i ib x t+

*( )i i ib x t+  of the agents belonging 

to S is at least v(S) for any SÕN. The core defines the lower bounds on agents’ payoffs or, 
equivalently, on transfers ti (given the optimal allocation of water x*). They depend on the value 
function v under consideration. The cooperative (or noncooperative) core lower bounds are the 
ones defined using the cooperative (or noncooperative) values of coalitions.  

Since the cooperative value characteristic function is greater than or equal to the noncooperative 
function, the noncooperative lower bounds are easier to satisfy. Ambec and Ehlers (2006) show 
that, in any river sharing problem, the transfer scheme that assigns to every agent its marginal 
contribution to its predecessors satisfies the noncooperative core lower bounds, yielding a so-
called downstream incremental distribution. Formally, denoting Pi={1,…,i} the set of 
predecessors of i (including i) and P°i={1,…,i-1} the set of strict predecessors of i, the 
downstream incremental distribution assigns to any agent i the payoff . 

It thus prescribes a transfer scheme td with 

*( ) ( ) ( )i i ib x t v Pi v P i+ = − °
*( ) ( ) ( )d

i i it b x v Pi v P i= − + − °  for every ieN. 

Furthermore, other transfer schemes might also satisfy the noncooperative core lower bounds. In 
the particular case where benefit functions are always increasing (so yi goes to infinity), Ambec 
and Sprumont (2000) show that then the cooperative game is convex. This implies that the 
noncooperative core lower bounds might be satisfied by many transfer schemes, including the 
one that assigns to any agent its marginal contribution to the coalition composed of its followers 
v(Fi)-v(F°i), where Fi={i,…,n} and F°i={i+1,…,n}, namely the upstream incremental 
distribution; and also including the well-known Shapley value, which is the barycenter of the 
core in convex games.  

The cooperative core lower bounds are less easy to satisfy. If the river is shared among two or 
three agents, then there is always a distribution satisfying them. With four agents or more, the 
cooperative core lower bounds might not be satisfied in some river sharing problems. Ambec and 
Ehlers (2006) provide an example in which this is indeed the case with four agents. The logic is 
the following. If one of the two middle agents 2 and 3 is alone, it obtains its satiation benefit 
bi(yi) because the remaining agents pass some water through its location. As a consequence, 
agent 2’s and 3’s payoff should be higher than v({2})=b2(y2) and v({3})=b3(y3), respectively. 
Moreover, each of the agents at the extremes of the river, 1 and 4, should get at least their stand-
alone benefits, v({1})=b1(e1) and v({4})=b4(e4), respectively. However, the total benefit of the 
efficient water allocation  is strictly lower than * * * *

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ({1,2,3,4})b x b x b x b x v+ + + =
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1 1 2 2 3 3 4 4( ) ( ) ( ) ( )b e b y b y b e+ + + . Therefore, here it is impossible to distribute the benefit from x* 

while giving every agent more than its stand-alone cooperative core lower bound v({i}).7

To sum up, the set of transfers that are acceptable in the sense of the core (in that the members of 
any group obtain at least what they would get on their own) depends on the cooperative behavior 
of members outside the group. If they cooperate then this set might be empty, meaning that no 
(budget-balanced) transfer is acceptable. As a consequence, the agents might fail to implement 
the efficient allocation of water x*. If they do not cooperate, then existence is guaranteed, and the 
set of transfers might be quite large. The next section reviews some fairness principles that may 
be used to select transfer schemes in this set. 

 
6   Equity 
While efficiency is defined by the application of the Pareto principle, there are many ways to 
define fairness or equity, depending on how people determine judgments that can be translated 
formally into axioms. The section starts by defining three axioms inspired by different judgments 
on what is fair. It then posits transfer schemes that satisfy the defined axioms while 
implementing the efficient allocation of water x*. Yet some fairness axioms or criteria might not 
be compatible, thereby implying that no transfers satisfy all of them. The first two axioms, equal 
sharing individual rationality and envy-free, are standard in fair division problems. The third, the 
aspiration upper bounds, is a solidarity axiom that particularly suits the river sharing problem. 

Note that the noncooperative core (or the noncooperative core lower bounds) can be seen as a 
fairness principle by itself. Without well-defined property rights for water, an agent or group of 
agents may claim property rights on the water it controls. For instance, in international river 
disputes, the principle of absolute territorial sovereignty grants to a country the right to water 
originating in its territory. It is then fair that the agent or group of agents obtains at least the 
benefit from consuming the water that it claims to own (Ambec and Sprumont 2002).  

The first fairness principle is equal sharing individual rationality. It is based on the oldest axiom 
of the literature, on fair division, often taken as the definition of fairness (Steinhaus 1948; 
Moulin 1991). It stipulates that any agent should get at least the benefit of an equal division of 
the resources. Like the core lower bounds, it thus defines a lower bound on agents’ payoffs. 

The equal sharing individual rationality axiom can be easily adapted to the river sharing problem 
when all water originates from one source, that is, if 0=e2=e3=…=en and, therefore, e1=En), for 
instance when agents are farmers located along a canal devoted to irrigation and linked to a 
single water pool. In this case, an equal sharing of water means that everybody is entitled to 

claim at least 1e
n

. In term of benefits or payoffs, it means that every agent ieN should obtain at 
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least 1
1min ,i

eb
n

⎛ ⎧ ⎫
⎨ ⎬⎜
⎩ ⎭⎝ ⎠

y ⎞
⎟ , assuming free disposal. The transfer scheme t is thus equal sharing 

individual rational if: 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧≥+ 1

1* ,min y
n
e

btxb iiii  for every agent ieN.  (6.1) 

With more than one tributary, one way to adapt the axiom is to assume that any agent i can claim 
an equal share of all tributaries located upstream (including ei). Formally, agent i has the right to 

a consumption level 1 2 ...
1 1

i
i

ee eC
n n n i

= + + +
− + −

. The transfer scheme t is equal sharing 

individual rational if for every agent ieN. *( ) (min{ , })i i i i i ib x t b C y+ ≥

A second fairness principle also central to the axiomatic theory of justice is no envy (or envy-
freeness), also called superfairness (Baumol 1986). According to the standard definition, an 
agent does not envy another agent if its payoff is higher with its assigned consumption bundle 
(here water and money) than it would be with the other agent’s bundle. An allocation satisfies no 
envy if no agent envies the bundle assigned to another agent (Varian 1974).  

The no envy principle can easily be defined in the river sharing problem when, again, all water 
inflow comes from one point, that is, 0=e2=e3=…=en. In this case, all agents can claim to 
consume the water level assigned elsewhere in the river to another agent. Under free disposal, an 
allocation (x*,t) satisfies no envy (or is superfair) if  

{ }(* *( ) min ,i i i i j i jb x t b x y t+ ≥ +) for every i,j eN.  (6.2) 

Similarly, a transfer scheme t implements x* without envy if condition (6.2) is satisfied.  

With tributaries (eh>0 for h>1), the problem is that an agent located upstream might not be able 
to consume the level of water assigned to a downstream agent it envies because of lack of water 
at its location. One way to deal with this problem is to restrain envy-freeness to feasible water 
allocations; or, more precisely, to consider the feasible level of water the closest to the one the 
agents might envy. Formally, to consider Ei=e1+…+ei as the alternative allocation for i if the 
bundle (xj,tj) it might envy is such that xj<Ei. So, in the general case, an allocation (x*, t) satisfies 
feasible no envy (or a transfer scheme t implements x* without feasible envy) if  

{ }(* *( ) min , ,i i i i j i i jb x t b x y E t+ ≥ +) for every i,j eN.  (6.3) 

Obviously if condition (6.2) holds, then so does condition (6.3). Therefore, if an allocation (or a 
transfer scheme) satisfies no envy according to the original definition, it also satisfies feasible no 
envy.8  
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 Concerning the two above fairness axioms, Ambec (2006) provides a general result in the case 
of only one source e1, assuming that the benefit functions are single crossing. Denote l the 
shadow value of water with the efficient allocation, which is also the marginal benefit of agents 
at x*:  

*( )i ib x
x

λ∂
=

∂
 for every ieN.  (6.4) 

The transfers *1e
i

et
n

λ ⎛= −⎜
⎝ ⎠

ix ⎞
⎟  for i=1,..,n implement the efficient allocation of water x* while 

satisfying both equal sharing individual rationality and no envy. Furthermore, when the number 
of agents is large and agents are sufficiently heterogeneous, these transfers are unique.  

One way to achieve the transfer scheme te is to price water or tax extraction at l and to distribute 
the money collected equally. Then every agent i will extract water up to an equalized marginal 
benefit l, thus selecting *

ix . The total amount of money collected is thus * *
1 1( ... )nx x eλ λ+ + = , 

where the last equality is due to the binding resource constraint. Each agent obtains a share 1e
n

 of 

the money collected e1. Therefore, each agent i obtains in the end * * *1( ) ( ) e
i i i i i i

eb x x b x t
n

λ λ− + = + . 

It will be clear later that another way to allocate money as in te is to define property rights for 
water in a competitive water market. 

Although the result in Ambec 2006 relies on the one water source case, it can be adapted to the 
general river sharing problem as follows. Consider the subsets N1,…,NK of N defined by the 
efficient allocation of water (see section 6.4). Denote lk the shadow value of water in the subset k 
for k=1,…,K. It is equal to the marginal benefit of agents in Nk and decreases strictly moving 
downstream from Nk to Nk+1. Denote also E(Nk)=ei+…+ej for any Nk={i,…,j} for k=1,..,K the 
total flow of water controlled by members of Nk. Notice that efficiency requires that the agents in 
Nk share E(Nk) for k=1,…,K. Thus in a river sharing problem with one source E(Nk) shared by the 

agents in Nk, following Ambec (2006), *( )f k
i

k

E Nt
N

λ
⎛ ⎞

= −⎜⎜
⎝ ⎠

ix ⎟⎟  for every ieNk (where kN  denotes 

the number of agents in Nk) satisfies equal sharing individual rationality and no envy in the 
subset Nk for k=1,..,K. Since the no envy conditions are more stringent than the feasible no envy 
ones, tf= 1( ,..., )f f

nt t defined above satisfies equal sharing (of E(Nk)) individual rationality and 

feasible no envy among agents in Nk for k=1,..,K. 

The third fairness principle is a solidarity axiom. It relies on the idea that, since water is scarce, 
everybody should make an effort. It starts by considering the welfare that an agent could achieve 
if it were alone on the river. In the absence of others, an agent i could consume up to the full 
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water stream originating from upstream of its location Ei=e1+…+ei. Call the benefit from 
consuming up to Ei the agent’s aspiration welfare. Formally, i’s aspiration welfare is 
bi(min{Ei,yi}). Of course, it is not possible to assign to every agent its aspiration welfare because 
the sum of the individuals’ aspiration welfares exceeds the total welfare, that is, 

{ }( ) *min , ( )i i i i
i N i N

b E y b
∈ ∈

>∑ ix∑ . Therefore, by solidarity, no agent should end up with a welfare or 

payoff higher than its aspiration welfare, that is, ( )*( ) min{ , }i i i i i ib x t b E y+ ≤  for every ieN. In 

Moulin’s (1991) terms, since the river sharing problem exhibits negative group externalities, it is 
natural to ask that everyone takes up a share of these externalities. In addition, as argued in 
Ambec and Sprumont 2002, the aspiration uppers bounds can be seen as an interpretation of the 
unlimited territorial integrity principle often invoked in international river conflicts (see Godona 
1985; Sadoff, Whittington, and Grey 2003).  

The above argument applies not only for individuals but also for coalitions. The aspiration 
welfare of a coalition SÕN is the highest welfare it could achieve in the absence of N\S. It is 
denoted by w(S) and formally defined in Ambec and Sprumont 2002. The aspiration welfare of a 
coalition S is the total benefit achieved by the members of coalition S if they share efficiently the 
full stream of water in the river. A transfer scheme that implements x* satisfies the aspiration 
welfare upper bounds if any coalition welfare is lower that its aspiration welfare, formally,  

*( ) ( )i i i
i S

b x t w S
∈

+ ≤∑  for every SÕN.  (6.5) 

Ambec and Ehlers (2006) show that the unique transfer scheme that satisfies both the 
noncooperative core lower bounds and the aspiration welfare upper bounds is td: the one that 
implements the downstream incremental distribution. It yields to every agent i its marginal 
contribution to its predecessors, that is, *( ) ( ) ( )d

i i ib x t v Pi v P i+ = − °  for every ieN. The next 

section addresses the issue of implementing the downstream welfare distribution with 
negotiation rules. 

 

7  Implementation with negotiation rules 
In practice, agents often negotiate to decide how much water each of them is entitled to consume. 
They may also bargain over compensation, as in the case of the Columbia River (Barrett 1994) 
or the Syr Darya River (Abbink, Moller, and O’Hara 2005).9  

To coordinate international river management, countries often join institutions or sign treaties 
with specific negotiation rules. For instance, the “principe d’approbation des Etats” (principle of 
approval by the States) included in the treaty founding the Organisation pour la Mise en Valeur 
du Fleuve Sénégal (OMVS), an international institution that manages the Senegal River, forbids 
any member from changing the water flow without the consent of all others. Another example of 

 15



negotiation rules is the process leading to interstate river (or water) compacts to solve interstate 
river conflicts in the United States. These agreements are subject to congressional consent. In the 
case of disagreement, an allocation can be forced by the U.S. Supreme Court (Bennett and Howe 
1998; Bennett, Howe, and Shope 2000). International treaties or negotiation rules sometimes 
come close to explicit game forms. This section describes a game, proposed in Ambec and 
Sprumont 2000, that implements the downstream incremental distribution as a subgame perfect 
equilibrium of this game.10

The game gives priority lexicographically to the most downstream user n, n-1,…,2, 1. At the first 
stage, agent n proposes an allocation of water and money (x,t) to the other agents in the river. Of 
course (x,t) should be feasible: x must satisfy the resource constraints at every location in the 
river and t must be budget balanced. If all accept, the allocation is enforced. If at least one 
refuses, agent n leaves the negotiation table, obtaining the bundle (xn,tn)=(en,0). Then the next 
upstream agent n-1 proposes a (feasible) allocation of water (x1,…,xn-1) and money (t1,..,tn-1) for 
the river sharing problem upstream. It is enforced if unanimously accepted. Otherwise, agent n-1 
gets (en-1,0) and leaves the negotiation table. And the game proceeds this way until the last stage 
(if reached), in which agent 2 proposes a feasible water allocation (x1,x2) and budget-balanced 
transfer scheme (t1,t2) to 1, who accepts or refuses. It is enforced if 1 agrees. Otherwise, 2 gets 
(e2,0) and 1 gets (e1,0). Straightforward backward induction shows that every subgame perfect 
equilibrium of this game implements the efficient allocation x* and the transfer scheme td that 
yields the incremental welfare distribution. 

 
8   Decentralization in water markets  
For centuries markets for water have existed worldwide in irrigation communities (see Ostrom 
1990 for case studies). Application of a market system is often recommended by economists to 
achieve efficiency because the inefficiency of free-access extraction is due to the lack of well-
defined property rights for water. It thus seems natural to define property rights, leading to an 
efficient allocation of water on the premise that traders are price takers. But which rights? How 
should water be divided? Obviously, the assignment of property rights affects the payoffs of 
agents in the market through an allocation of money, leading to a transfer scheme in the river 
sharing problem. As for transfers, an allocation of property rights is acceptable by agents if it is 
perceived as fair.  

In the case of a one-source river (e2=…=en=0), it is easy to show that equal division (of the water 
e1) leads to the equal sharing individual rational and envy-free transfer scheme te. At the 
(competitive) market equilibrium, the agent’s marginal benefits are all equal to the equilibrium 
price, which is then the shadow value of water l. This equilibrium therefore implements x*. At 
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this price, any agent i buys or sells the difference between its endowment 1e
n

 and its efficient 

water consumption *
ix . Agent i thus obtains *1 e

i i
e x t
n

λ ⎛ ⎞− =⎜ ⎟
⎝ ⎠

. 

More generally, in any river sharing problem, equally dividing the water controlled by the agents 
in the subsets Nk of N (described in section 6.4) for k=1,..,K leads to a transfer scheme that 
satisfies no envy and equal sharing individual rationality among the members of Nk for k=1,..,K. 

Notice that, in the one-source river sharing problem, equally splitting water might violate 
aspiration welfare upper bounds. Indeed, Ambec (2006) shows that the three fairness axioms 
outlined in section 6.6 might not be compatible, and posits a transfer scheme that implements x* 
while satisfying no envy, the aspiration welfare upper bounds, and the weaker requirement of 
individual rationality (agents’ payoffs are nonnegative) in a one-source river sharing problem. 
The scheme can be implemented by pricing water or taxing extraction at l but without 
redistributing the money collected. 

 
9   Conclusion and policy implications 
This synthetic review of the river sharing problem is now concluded by proposing some insights 
for public policies.  

First, the analysis of the cooperative game helps to assess the potential gains from cooperation in 
the management of international or interstate rivers. There is no doubt that some form of transfer 
from downstream countries to upstream ones is needed to achieve efficiency. Such a transfer 
may take several forms, including of course direct monetary compensation, through a water 
market or fiscal transfers among states in a federal State, or compensatory payments through 
international treaties. But it could also take the form of a sharing rule of joint costs and benefits 
of utilities such as dams, canals, or hydropower plants, as for the Columbia River (Barrett 1994) 
and the Senegal River. Water can also be traded in exchange for other commodities, for example 
fuel supply on the Syr Darya River (Abbink, Moller, and O’Hara 2005) or electricity supply on 
the Mekong River between Thailand and Laos. 

The likelihood of reaching an international river sharing agreement depends on the country’s 
expectations about the status quo in the case of disagreement. If a country expects that the others 
will cooperate by reaching an agreement among them, it might be tempted to free ride on the 
agreement. Otherwise, an agreement is feasible. Nevertheless, for rivers shared by two or three 
countries, which is the case for many of them, an agreement is possible for any expectations. 
With more than three countries, it might not be manageable. These results might therefore 
provide some support for partial agreements with only the few main countries (for example 
Thailand and Laos on the Mekong).  
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To illustrate the main argument of the paper, let us consider as an example the section of the Nile 
River shared by Egypt, Sudan, and Ethiopia. The largest consumer, Egypt, is located 
downstream, whereas most of the flow (80%) originates from the most upstream country, 
Ethiopia. Egypt might be tempted to deal with Ethiopia to secure the water inflow exiting 
Ethiopian territory in exchange for some compensation. But then Sudan can free ride on the deal 
by extracting this increased supply of water entering in own territory without paying its cost (in 
the form of a compensation to Ethiopia). An inclusive agreement among the three countries must 
take into account this temptation to free ride by Sudan. With three countries or less, it is always 
possible to find such an inclusive agreement. But if one more country, for example Uganda, is 
included, no agreement might be acceptable by all. In this case, a partial agreement, for example 
between Egypt, Sudan, and Ethiopia, might be recommended.  

Second, there are at least three reasons to expect or recommend the implementation of the 
downstream incremental distribution (or the transfer scheme td) in international river agreements: 
(a) it assigns to every coalition of sovereign countries at least its noncooperative value (that is the 
welfare that this coalition can achieve by its own); (b) it is a compromise between two 
conflicting fairness principles invoked during international river disputes, the absolute territorial 
sovereignty and the unlimited territorial integrity; (c) it is the outcome of a game defined by 
simple   negotiation rules. Basically, those rules assign more negotiation power to downstream 
countries than to upstream countries. If they adhere to the absolute territorial sovereignty and 
unlimited territorial integrity principles, countries might include these negotiation rules in 
international river sharing agreements.  

In practice, river sharing treaties include international negotiation rules. For instance, the Indus 
Water Treaty establishes that a permanent Indus Commission is required to meet regularly to 
discuss potential disputes and to plan cooperative arrangements for the development of the basin. 
In the case of disagreement, the matter may be taken up by intergovernmental negotiations or, 
failing these, arbitration (Barrett 1994). In the United States, states must follow specific 
negotiation procedures to sign an interstate river water compact. The disagreement outcome is a 
solution imposed by the federal government (Bennett and Howe 1998). 

Third, our axiomatic analysis of equitable transfer schemes might shed light on how to divide 
water among farmers producing irrigated crops. The analysis deals with heterogeneous farmers 
(differing land size, crops) sharing the same pool of water. The only way to sustain no envy and 
equal sharing individual rationality is to split this pool equally, providing that the water market is 
competitive and production functions satisfy some regularity property. If not, or if farmers are 
reluctant to market, one way to implement an efficient allocation of water complying with no 
envy and equal sharing individual rationality is to price or tax water at its shadow cost (which 
nevertheless has to be estimated) and to redistribute equally the money collected.  
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Endnotes 

                                                 
1 Complementary to this approach is that of Tsur and Dinar (1995), who examine the equity properties of real-world 
pricing methods for irrigation water.  
2 For a model of hydropower production with several agents, see Ambec and Doucet 2002. 
3 The notation N\S refers to the set of agents in N outside S. 
4 A coalition is connected or consecutive if for all i,jeS and all keN, i<k<j implies keS. 
5 The analysis of noncooperative games between coalitions goes back to Aumann and Dreze 1974 and leads to the 
literature on stable coalition structures (for example Bloch 1996; Ray and Vohra 1997). 
6 This feature is common to cooperative games with externalities, such as the international pollution reduction game 
(Tulkens 1997). 
7 For extensions of the Shapley value for a cooperative game with externalities, see Maskin 2003 and Macho-
Stadler, Pérez-Castrillo, and Wettstein, forthcoming. 
8 Sadoff, Whittington, and Grey (2003) also mention no envy or superfairness as a fairness principle that can be 
applied to the river sharing problem. 
9 See Carraro, Marchiori, and Sgobbi 2005 for a review of negotiation on water issues. 
10 See Moore 1992 for an introduction to the theory of implementation through game forms in complete information 
environments. 
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