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Abstract  
 
This paper proposes a methodology to study what ordering strategy will be chosen by companies in a supply 
chain when risk is taken into account. Here, risks are measured as the standard deviation of the customer service 
and on-hand inventory levels induced by the three considered strategies. We apply this methodology to 
investigate the conditions under which optimisation-based and stream management-based strategies are 
preferred. We find that the considered traditional optimisation-based strategy appears more often in Nash 
equilibria than any of our two stream management-based strategies. To our knowledge, the methodology itself is 
one of the first to demonstrate how to take several constraints (market demand, and preferences of companies 
over customer service and inventory levels) into account when choosing an ordering strategy. 
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1 Introduction  

Ordering policies describe decisions at operational level about when and how much to order, while the choice of 
what ordering policy to use is a tactical or, even, strategical, decision. This operational decision on ordering 
usually assumes the company alone, while every company is embedded in (at least) one supply chain. 
Consequently, every placed order not only depends on the state (i.e., inventory level, products currently shipped 
from suppliers, etc.) and ordering policy of the considered company, but also on the ordering policy and state of 
the other companies in the supply chain. Therefore, the tactical/strategical decision on what ordering strategy to 
use must take account of both the internal constraints of the considered company and the constraints imposed by 
the rest of the supply chain in which this company is embedded. Game theory allows taking such various 
constraints into account while making such tactical/strategical decisions. 

This paper proposes a methodology based on game theory in order to address this tactical/strategical decision of 
what ordering strategy to choose. Application of game theory to supply chains is far from new – see, for 
instance, [2] – but, to our knowledge, the study of what ordering strategy is better suited to some context has 
never been addressed in the literature. Actually, we do not even know of any work comparing the efficiency of 
several ordering strategies, in particular if risks about decisions are taken into account. For this, we use a simple 
linear Markowitz's formulation [7] in order to describe the utility function of companies. 
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Next, the contribution of this paper is a methodology taking the demand of end customers, and the preferences 
and ordering strategies of all companies in the supply chain into account. We call preferences both the behaviour 
toward risk λ, and the service level μ (measured in this paper as backorders) delivered by companies. The goal 
of the proposed methodology is to find the conditions under which the strategies used by all companies in a 
supply chain are a Nash equilibrium. This methodology is developed in this paper on a supply chain with a 
retailer r and its wholesaler w. Technically, we determine the conditions on σm (standard deviation of market 
demand), λr and λw (attitude toward risk), and μr and μw (attitude toward service level) under which every 
configuration of ordering strategies is a Nash equilibrium. 

The rest of this paper is organised as follows. Section 2 presents our model of supply chains and the ordering 
strategies available to the companies. Section 3 summarises the data obtained by numerical experimentations, 
then Section 4 introduces how these data are used in the utility function of the companies. Next, Section 5 is the 
core of the paper since it applies game theory to analyse the behaviour of the companies. Finally, Section 6 
discusses our methodology, and Section 7 concludes. 

2 Model 

We shall present our methodology on an example of supply chains modelled as Sterman’s Beer Game [8]. We 
use this model because it is one of the simplest while it has very complex dynamics and our research question 
has links with the impact of supply chain dynamics (e.g., bullwhip effect) on the choice of an ordering strategy. 
Beer Game is played by turns, where each turn represents a day, and is played in six steps. These six steps are 
played in parallel by the two company-players w and r (see Figure 1): (1) advance the shipping delay, (2) fulfil 
the incoming order, (3) advance the order delay, (4) place an order, (5) add the incoming shipping to inventory, 
and (6) record inventory.  
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Fig. 1. The short version of the Beer Game considered in this paper 

Our model differs from the original one as follows. First, instead of four companies, we only consider a retailer r 
and its wholesaler w, as shown in Figure 1. We aim to study different topologies of supply chains, but start with 
the simplest one in order to set up our methodology and the associated tools. The second modification deals with 
the sharing of demand information which is forbidden to the players in the original Beer Game. Specifically, the 
players in Sterman’s game can see the number of items (represented as tokens) in the other players’ inventory, 
but can see neither the demand addressed by the market to the retailer, nor the demand (orders) placed by every 
player to their supplier. On the contrary, we will see that two of the three strategies considered in this paper 
(namely, β and γ) allow the sharing of information on market demand. 

Eventually, the market m has a demand represented by a normal distribution of integers with average μm=50 and 
standard deviation σm. σm is an integer between 1 and 20. Each simulation is run over 365 days. The initial 
inventory level of both companies is set to zero, which corresponds to the optimal level of Strategy α, as now 
presented. 

We now detail each of the three strategies considered to illustrate our methodology. 

2.1 Strategy α: No information sharing 
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Ordering policy α is locally optimal for the company which uses it when (i) the inventory system of this 
company incurs the classic cyclical behaviour shown by the thin continue line in Figure 2a. Hax and Candea [6] 
add other assumptions about the typical behaviour of such a cyclical system: (ii) demand is continuous at a 
constant rate; (iii) the process continues infinitely; (iv) no constraints are imposed (on quantities ordered, storage 
capacity, available capital, etc.); (v) replenishment is instantaneous (the entire order quantity is received all at 
once as soon as the order is released); (vi) all costs are time-invariant; (vii) no shortages are allowed; (viii) 
quantity discounts are not available, and (ix) no ordering costs are considered. The notations in this figure are s 
for the inventory level at which a new order is placed, Q for the quantity ordered by the considered company, 
and D for the demand rate, i.e., the number of products demanded by the client per time unit Td. (We call d the 
day such as Td is Day d.) 

   

(a) General behaviour of the inventory system.  (b) Figure 2a for optimal (c) Figure 2c when 
Q*=D and s*=0. demand D is stochastic. 

Fig. 2. Cycles for an inventory system when the supplier has no backorder and thus ships ordered quantity Q 

Besides the thin continuous line, Figure 2a also shows a thick dotted line representing the behaviour of the same 
inventory system when time is discrete. The difference between these two lines reflects the fact that the 
inventory level in discrete time corresponds to the inventory level at the end of a period in continuous time. For 
instance, the company considered in Figure 2a receives s+Q products at the beginning of T4 but pays for holding 
only s+Q-D products in inventory (cf. the level indicated by the thick line during T4) because D products are 
shipped to the client in this period. Precisely, s+Q products are in inventory during a part of T4, but this is 
ignored because time is discrete, and we only consider the inventory level at the end of T4. Next, cycle {T1, T2, 
T3} is identical to cycle {T4, T5, T6} – cf. assumption (i). The duration of each cycle is Q/D and a 365-day 
simulation thus has 365*D/Q cycles. The inventory level charged on the dth day of a cycle is (s+Q-dD): see s+Q-
D in T4, s+Q-2D in T5, and s=s+Q-3D in T6 in Figure 2a. Then, the inventory on the dth day of a cycle costs 
h(s+Q-dD), where h is the inventory carrying cost per item per day. Finally, the annual total cost TC of the 
inventory system is: 
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There are two decision variables in Equation 1, viz., s and Q. Clearly, TC=0 when Q*=D (the company orders 
what is ordered by its client) and s*=0 (no safety stocks). An order is placed whenever the inventory level 
becomes negative. Such behaviour of the inventory level is shown in Figure 2(b). In this figure, the inventory in 
continuous time has backorders all the time (thin continuous line) except when a shipping is received, but this is 
ignored by discrete time (thick dotted line). To be precise, only the inventory level at the end of a period is taken 
into account, and this level is equal to zero because the inventory receives the quantity Q=D corresponding to 
backorders just before recording the inventory level. 

Since we cannot obtain a lower annual cost than TC=0, we do not try to relax assumption (vii) by checking if 
companies should sometimes incur backorders in order to save money. Of course, we may also try to relax other 
assumptions. For instance, relaxing assumption (ii) would allow taking the stochastic demand in our simulation 
into account, as presented in Figure 2(c). In this figure, assumption (v) still applies, i.e., replenishment is 
instantaneous. Relaxing assumption (v) as well would slightly increase the safety stock by setting s>0 in 
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Figure 2c. However, we think that taking the (ordering and shipping) lead times into account in order to 
calculate precisely the value of s depending on μm is not as effective as relaxing assumption (i). In fact, the main 
reason for which the theoretical α presented in this subsection does not follow the simulated α is due to the fact 
that assumption (i) does not hold. We mean that the inefficiency of retailer’s α is due to the backorders of the 
wholesaler, but these backorders are not modelled in Figures 2. For instance, the wholesaler may not ship Q 
items as expected in these three figures, but, for instance, only Q/2 now, then Q/2 later on. As a consequence, 
the inventory system of the retailer does not always behaves cyclically as assumes by hypothesis (i). 

Finally, if we call O the order O placed by client i-1 two days earlier and arriving by the considered company 

i on day d, InvPos i the inventory position (defined as the sum of on-hand inventory plus on-order products 

minus backordered orders), then we can formally describe the order O i placed by the considered company i 
using Strategy α as: 
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As we can see, Strategy α is based on the optimisation of the operation of the inventory system. We now present 
Strategies β and γ which are based on another paradigm, i.e., stream management. [3, 5] 

2.2 Strategy β: Point-to-point information sharing 

Figure 3 describes how (O, θ) orders were designed in (blinded for review) [9] as a way to manage the flows of 
products and orders, conversely to α which only uses O (i.e., θ=0 in α). For that purpose, Strategy β replaces the 
single number of traditional orders by a vector (O, θ) in order to share demand information. Technically, orders 
are vectors of the two components O and θ in order to carry out information sharing. This sharing of information 
is obtained by having companies apply the lot-for-lot ordering policy to choose the part O of an order, so that 
retailers transmit the market demand to their wholesalers in O, then, these wholesalers also transmit the demand 
information to their suppliers in O, etc. Shortly, O (in β and γ, not in α) contains the demand information at the 
point of sale. 

Applying the lot-for-lot policy for O not only performs information sharing in β (and γ), but also prevents the 
bullwhip effect, as illustrated by Figure 3a: incoming orders are as variable as placed orders. Unfortunately, this 
does not manage inventories well, since the inventory level in Figure 3a decreases as demand increases because 
outgoing transport is larger than incoming transport during a period of time corresponding to (ordering and 
shipping) lead times. This is the reason for the part θ of orders in Figure 4b. θ is used by companies to order 
more or less products than the quantity ordered in O. In other words, both O and θ are orders of equal 
importance, and a company receiving an order (O, θ) has to ship the quantity O+θ to its client. Next, the method 
to choose θ was designed in order to avoid the bullwhip effect to appear in θ by following the principle that non-

zero θs are possible only when market demand changes, i.e., 00 ≠⇒= θ
dt
dO and 00 =⇒≠ θ

dt
dO . 

If we use the notations in Equation 2, call λ=4 a constant defined as the sum of the durations of ordering and 
shipping delays, and add θ i as the order θ arriving on the current day d and placed two days earlier by client i-
1, then β can be described as: 
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In real life, all companies are not always connected by the same information system, and it may therefore be 
necessary for companies to carry out some action in order to transmit information from their client to their 
supplier. This is the slow information sharing just presented in β. On the contrary, information may travel 
instantaneously, which is implemented by γ, as now described. 
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(a) The transmission of end customer demand  (b) The management of inventory level by the 
by the O part of (O, θ) orders.    θ part of (O, θ) orders. 

Fig. 3. Information shared with (O, θ) orders in Strategy β (blinded for review) 

2.3 Strategy γ: Information centralisation 

Shortly, we may say that “γ = β + information centralisation.” More precisely, γ is very similar to β, except that 
information centralisation (defined as the sharing in real-time of market consumption by the retailer to the rest of 
the supply chain) is added. The difference between sharing demand information with β and γ is the celerity of 
this transmission, which is as slow as orders with β, or instantaneous with γ. Besides, γ uses (O, θ) orders as β, 
but introduces a decoupling between the quantity to ship to the client and the quantity to consider to place orders 
to the supplier. Specifically, the quantity to ship corresponds to the quantity O+θ previously ordered in an (O, θ) 
order by the client, while the quantity to order corresponds to the market demand on the current day d. 

It is worth noticing that information centralisation is only carried out when both companies use γ, that is, when 
the retailer agrees to transmit its sales in real-time (rather than delayed in time by two days, as done with β) and 
the wholesaler uses this information by also using γ. Otherwise γ operates with the same delay as β. 

With the notations in Equations 2 and 3, except λ=2 because information centralisation removes the ordering 
lead time, and calling O   the demand arriving at the retailer from market m on day d, γ may be written as: m
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for retailer i=r, as well as for the wholesaler i=w when the retailer also uses γ, otherwise w uses Equation 2. 

3 Simulation outcomes 

After that, we run the 32=9 combinations of these 3 strategies among our 2 companies. We may also call “joint 
strategy” or “configurations” each of these 9 combinations, e.g., (α, γ). Every joint strategy is run 15,000 times 
in order to measure the average μ and the standard deviation σ of the inventory i and of the backorder b. For 
instance, μi,r(α, γ) is the average over 15,000 simulations of the inventory level of the retailer when this company 
uses Strategy α while the wholesaler uses γ. Then, each of the 9*15,000 simulations is repeated under 20 
different values of the standard deviation σm of market demand, so that μi,r(α, γ) is also a function of σm. Two 
weeks (precisely, 21,133 minutes) were necessary to compute all the 20*9*15,000 simulations analysed in this 
paper on a 3 GHz Pentium 4. Finally, each of the four measures (i.e., μi, σi, μb,, σb,) per company and per joint 
strategy is approximated by a polynomial function dependent on σm. The rest of this paper only considers these 
approximations. Please notice that R² denotes the determination coefficient, which should be as close to 1 as 
possible in order to have a good approximation of the simulation outputs in the following functions: 

µi,r(α, α, σm) = -0.0016σm
3 + 0.0629σm² - 0.1395σm + 32.903 (R² = 0.9939) (5) 

σi,r(α, α, σm) = -0.0023σm
3 + 0.1136σm² - 0.6157σm + 23.565 (R² = 0.9999) (6) 

µi,w(α, α, σm) = -8*10-5σm
3 + 0.0586σm² - 0.0885σm + 61.915 (R² = 0.9987) (7) 

σi,w(α, α, σm) = -0.0017σm
3 + 0.1192σm ² - 0.5127σm + 43.833 (R² = 0.9996) (8) 
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µb,r(α, α, σm) = 0.0003σm
3 + 0.0017σm ² + 0.1488σm - 0.0052 (R² = 0.9999) (9) 

σb,r(α, α, σm) = 0.0003σm
3 + 0.0058σm ² + 0.597σm - 0.0081 (R² = 1) (10) 

µb,w(α, α, σm) = 0.0004σm
3 - 0.0064σm ² + 0.218σm + 1.2723 (R² = 0.9986) (11) 

σb,w(α, α, σm) = -0.0002σm
3 + 0.0244σm ² + 0.2082σm + 7.1487 (R² = 0.9999) (12) 

 

µi,r(α, ß, σm) = -0.0007σm
3 + 0.0377σm ² + 0.1975σm + 32.97 (R² = 0.9982) (13) 

σi,r(α, ß, σm) = -0.0021σm
3 + 0.1081σm ² - 0.5088σm + 23.503 (R² = 0.9999) (14) 

µi,w(α, ß, σm) = -0.0052σm
3 + 0.5133σm ² - 4.5834σm + 152.81 (R² = 0.9969) (15) 

σi,w(α, ß, σm) = -0.0021σm
3 + 0.1674σm ² + 0.0289σm + 81.699 (R² = 0.9993) (16) 

µb,r(α, ß, σm) = 0.0002σm
3 + 0.0004σm ² + 0.1192σm + 1.0895 (R² = 0.9997) (17) 

σb,r(α, ß, σm) = 0.0002σm
3 + 0.0107σm ² - 0.0175 σm + 11.446 (R² = 0.9999) (18) 

µb,w(α, ß, σm) = -5*10-6σm
5 + 0.0003σm

4 - 0.0071σm
3 + 0.0819σm² - 0.4096σm + 2.9774 (R² = 0.9751) (19) 

σb,w(α, ß, σm) = -0.0006σm
3 + 0.0203σm ² - 0.1692σm + 18.441 (R² = 0.9785) (20) 

 

µi,r(ß, α, σm) = 0.0008σm
3 + 0.0327σm ² + 1.0089σm + 0.891 (R² = 0.9999) (21) 

σi,r(ß, α, σm) = 0.0004σm
3 + 0.0042σm ² + 2.0883σm + 0.6849 (R² = 1) (22) 

µi,w(ß, α, σm) = -0.0017σm
3 + 0.0406σm ² + 4.9204σm + 33.093 (R² = 0.9999) (23) 

σi,w(ß, α, σm) = -0.0033σm
3 + 0.0807σm ² + 4.6594σm + 21.93 (R² = 0.9998) (24) 

µb,r(ß, α, σm) = 0.0033σm
3 - 0.168σm ² + 2.7501σm + 1.3075 (R² = 0.9993) (25) 

σb,r(ß, α, σm) = -0.0009σm
3 + 0.0076σm ² + 1.0138σm + 14.041 (R² = 0.999) (26) 

µb,w(ß, α, σm) = -0.0001σm
3 - 0.0007σm ² + 0.7753σm + 0.3243 (R² = 0.9998) (27) 

σb,w(ß, α, σm) = -0.0024σm
3 + 0.0914σm ² + 0.589σm + 9.4998 (R² = 0.9997) (28) 

 

µi,r(ß, ß, σm) = 0.0002σm
3 + 0.0726σm ² + 0.2618σm + 0.4934 (R² = 1) (29) 

σi,r(ß, ß, σm) = -0.001σm
3 + 0.0699σm ² + 1.2319σm + 0.4362 (R² = 1) (30) 

µi,w(ß, ß, σm) = -0.0005σm
3 + 0.0678σm ² + 3.9635σm + 0.5934 (R² = 1) (31) 

σi,w(ß, ß, σm) = -0.001σm
3 + 0.0117σm ² + 5.2792σm + 0.4969 (R² = 1) (32) 

µb,r(ß, ß, σm) = 0.0089σm
3 - 0.3878σm ² + 5.0044σm + 1.3853 (R² = 0.9894) (33) 

σb,r(ß, ß, σm) = 0.0056σm
3 - 0.2649σm ² + 4.5621σm + 2.1428 (R² = 0.9982) (34) 

µb,w(ß, ß, σm) = 0.006 σm
3 - 0.2585σm ² + 3.7752σm + 1.9329 (R² = 0.9923) (35) 

σb,w(ß, ß, σm) = 0.0051σm
3 - 0.2399σm ² + 5.082σm + 1.9993 (R² = 0.9994) (36) 

 

µi,r(γ, γ, σm) = 0.0011σm
3 + 0.039σm ² + 0.2332σm + 0.463 (R² = 0,9999) (37) 

σi,r(γ, γ, σm) = -3*10-5σm
3 + 0.049σm ² + 0.9621σm + 0.5393 (R² = 0.9999) (38) 

µi,w(γ, γ, σm) = 0.0065σm
3 - 0.308σm ² + 4.5468σm - 0.3971 (R² = 0.9984) (39) 

σi,w(γ, γ, σm) = 0.003σm
3 - 0.1664σm ² + 3.6395σm + 0.6878 (R² = 0.9995) (40) 

µb,r(γ, γ, σm) = 0.0017σm
3 - 0.0668σm ² + 3.0595σm + 0.3759 (R² = 0.9999) (41) 

σb,r(γ, γ, σm) = 0.0015σm
3 - 0.0982σm ² + 4.2008σm + 0.0615 (R² = 1) (42) 

µb,w(γ, γ, σm) = 0.0027σm
3 - 0.1436σm ² + 3.3396σm + 0.1745 (R² = 0.9997) (43) 

σb,w(γ, γ, σm) = 0.0019σm
3 - 0.1127σm ² + 4.1305σm + 0.3828 (R² = 0.9999) (44) 

Notice that the 5 joint strategies covered by these 40 equations are enough to describe all 9 joint strategies, 
because some configurations induce the same behaviour of the supply chain due to the similarity of Strategies β 
and γ. In fact, we saw above that information centralisation is achieved only when both r and w use γ at the same 
time, otherwise γ operates as β. As a consequence, configurations (β, α) and (γ, α) induce the same behaviour of 
the supply chain because r’s γ operates as β: the (O, θ) orders sent by r in both (β, α) and (γ, α) are processed in 
the same way by w (i.e., the demand information broadcast by r in (β, α) is ignored by w’s α). Similarly, (α, β) 
and (α, γ) also induce the same behaviour of the supply chain because w’s γ operates as β: this is the opposite to 
the previous situation, that is, w’s β or γ listens to the information broadcast by information sharing, but r’s α 
does not transmit this information. Finally, (β, β), (β, γ) and (γ, β) make up a third set of similar joint strategies 
in which γ operates as β, because γ implements information centralisation only when both companies use this 
same strategy. This explains why, for example, no results about joint strategies (β, γ) and (γ, β) are shown in 
Equations 5-44; they are the same as for (β, γ), e.g., µi,r(ß, ß, σm)=µi,r(ß, γ, σm)=µi,r(γ, ß, σm). 

4 Utility function and game 

We next apply Markowitz’s mean-variance model [7] to build utility functions ur and uw from the simulation 
data summarised in Equations 5-44. Shortly, Equation 45 shows our definition of the utility function uc of 
Company c (c∈{r, w}) when retailer r plays sr, wholesaler w plays sw and the standard deviation of market 
demand is σm: 
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uc(sr, sw, σm) = -[µi,c(sr, sw, σm) + εc.µb,c(sr, sw, σm)] + λc.[σi,c(sr, sw, σm) + εk.σb,c(sr, sw, σm)] (45) 
with εc≥0 and λc∈ [-2; 2] 

In this definition, µc(sr, sw, σm), µb,c(sr, sw, σm), σi,c(sr, sw, σm) and σb,c(sr, sw, σm) represent the simulation outputs 
summarised in Equations 5-44. Equation 45 contains two additional parameters, viz., εc and λc: 

• εc models the importance given by Company c to backorders: εc=0 means that c ignores its backorders 
while a more or less large positive value of εc models a company c which takes more or less customer 
service into account. Specifically, some markets or industries do not pay much attention in serving 
clients as soon as possible (small εc), while others force company c to prefer high inventory levels 
rather than backorders, thus the high price given to backorders when εc is high. Indeed, Equation 45 
implies uc≤0 when λc=0 because µi,c≥0 and µb,c≥0, which means that uc only contains costs without 
profits (i.e., µi,c is the inventory holding cost and µi,c the backorder cost). 

• λc represents the importance given to risk by Company c according to a simple linear Markowitz’s 
formulation [7]. In fact, λc=0 means that agent c is risk neutral, that is, c assumes its payoff to be the 
average level of inventory (µi,c) and backorder levels (µb,c). Nevertheless, the simulation does not 
always obtain these averages, as shown by σi,c≠0 and σb,c≠0 in Equations 5-44. A risk loving company c 
may think it will get a payoff higher than the average value obtained by simulations (thus, λc>0), while 
a risk averse company c’ may fear to get a payoff lower than this average value (thus, λc’<0). Finally, 
|λc|≤2 because the probability to get an actual payoff greater than μ+2σ or lower than μ-2σ is quite low.  

Figure 4 shows how these two functions ur and uw may be used to build a game in the normal form. In this 
figure, we can read that joint strategy (α, β) corresponds to a situation in which retailer r plays α and wholesaler 
w chooses β, and r incurs payoff ur(α, β, σm) while w gets uw(α, β, σm) in this configuration. We may notice that 
these two payoffs also depend on the standard deviation of market demand σm. It is also important to note that 
the relationship between β and γ gives the particular structure of the game in Figure 4. In fact, we have just seen 
that, for instance, (β, β), (β, γ) and (γ, β) are simulated in the same way, which explains why entries (β, β), (β, γ) 
and (γ, β) in Figure 4 all contain payoffs ur(β, β, σm) and uw(β, β, σm), that is, ur(β, β, σm) = ur(β, γ, σm) = ur(γ, β, 
σm) and ur(β, β, σm) = uw(β, γ, σm) = uw(γ, β, σm). 

  Wholesaler w 
  α β γ 

α 
uw(α, α, σm) 

ur(α, α, σm) 

uw(α, β, σm) 

ur(α, β, σm) 

uw(α, β, σm) 

ur(α, β, σm) 

β 
uw(β, α, σm) 

ur(β, α, σm) 

uw(β, β, σm) 

ur(β, β, σm) 

uw(β, β, σm) 

ur(β, β, σm) R
et

ai
le

r r
 

γ 
uw(β, α, σm) 

ur(β, α, σm) 

uw(β, β, σm) 

ur(β, β, σm) 

uw(γ, γ, σm) 

ur(γ, γ, σm) 

f1w

f1w 

f1r 

f1r 

f2w

f2r

f4w 

f2w 

f3w 
f3r 

f2w

f2r f2r

f4r

Fig. 4. The game analysed in this paper with the eight functions characterising all its Nash equilibriums 
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5 Analysis of the simulation outcomes 

Figure 4 also contains arrows named by a function as f1r, f1w or f2r. These functions describe the comparisons to 
carry out in order to find the Nash equilibria in Figure 4. To be precise, every entry in Figure 4 may be an 
equilibrium depending on the value of εr, εw, λr, λw and σm. The idea to find the Nash equilibria is to assume that 
Company c plays its best response strategy sc, then to calculate the conditions under which sĉ∈{α, β,γ} is a best 
response of the other company ĉ to sc. Let us illustrate this method by assuming that the wholesaler (thus, c=w in 
the previous sentence) plays its best response sc=α. Then, we may define function f1r=ur(α, α, σm)-ur(β, α, σm), so 
that α is the best response of the retailer when f1r≥0, and β and γ are the best responses of the retailer when 
f1r≤0. In fact, according to Figure 4, if the wholesaler uses α, then the retailer gets a higher payoff by also using 
α when f1r≥0, and the retailer gets the same payoff by playing β or γ. We now solve f1r≥0 by putting εr on the 
left hand side of the equation. For that purpose, we first rewrite f1r: 

f1r = -[µi,r(α, α, σm) + εr.µb,r(α, α, σm)] + λr.[σi,r(α, α, σm) + εr.σb,r(α, α, σm)] 
  + [µi,r(β, α, σm) + εr.µb,r(β, α, σm)] - λr.[σi,r(β, α, σm) + εr.σb,r(β, α, σm)] 

Summarising Equations 5-44 by µi,r(sr, sw, σm)=∑j µj,i,r(sr, sw, σm).σm
j and σi,r(sr, sw, σm)=∑j σj,i,r(sr, sw, σm).σm

j, we 
obtain: 

f1r = ∑j [-µj,i,r(α, α, σm) - εr.µb,r(α, α, σm) + λr.σi,r(α, α, σm) + λr.εr.σb,r(α, α, σm) 
  + µj,i,r(β, α, σm) + εr.µj,b,r(β, α, σm) - λr.σj,i,r(β, α, σm) - λr.εr.σj,b,r(β, α, σm)].σm

j 
Therefore: 
f1r≥0 <=> ∑j [-εr.µj,b,r(α, α, σm) + λr.εr.σj,b,r(α, α, σm) + εr.µj,b,r(β, α, σm) - λr.εr.σj,b,r(β, α, σm)].σm

j ≥ ∑j [µj,i,r(α, α, 
σm) - λr.σj,i,r(α, α, σm) - µj,i,r(β, α, σm) + λr.σj,i,r(β, α, σm)].σm

j 

 ( ) ( ) ( ) ( )[ ]
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ε
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Next, replacing polynomial coefficients μj and σj by their value in equations 5-44, e.g., µ2,i,r(β, α, σm)=0.0327 in 
Equation 21, we find: 

 
)3127.10329.14()6013.26108.1()1697.00134.0()003.00006.0(

)012.328801.22()1484.1704.2()0302.01094.0()0024.00027.0(
23

23

++++−++−

+−+−−++−+−
≥<=>

rmrmrmr

rmrmrmr
r λσλσλσλ

λσλσλσλ
ε

 (46) 

Inequality 46 states the conditions on εr, λr, and σm for which α is a best response of the retailer when α is the 
best response of the wholesaler. In other words, if Inequality 46 holds while playing α is also a best response of 
the wholesaler (i.e., f1w≥0), then (α, α) is a Nash equilibrium, otherwise (β, α) and (γ, α) are equilibria. 

Similarly, we may repeat this reasoning for every entry in Figure 4 in order to find when each corresponding 
configuration is a Nash equilibrium. As previously said, the arrows in Figure 4 show all the comparisons to 
carry out. In particular, (γ, γ) is an equilibrium when f3r=ur(α, β, σm)-ur(γ, γ, σm)≤0, f4r=ur(β, β, σm)-uw(γ, γ, 
σm)≤0, f3w=uw(β, α, σm)-uw(γ, γ, σm)≤0 and f4w=uw(β, β, σm)-uw(γ, γ, σm)≤0. This process provides us with sets of 
inequalities similar to Inequality 46. 

These sets of inequalities are relations between three variables, viz., either εr, λr and σm (e.g., in Inequality 46) or 
εw, λw and σm. Figure 5 shows the areas described by these sets of inequalities for σm=5. Since each set of 
inequalities describes the conditions under which a joint strategy is a best response, the areas in Figure 5 
enumerates the Nash equilibria when every company is in its coloured area. Let us take an example to explain 
how to read Figure 5. In this example, retailer r has preferences λr=-1 (moderately risk averse) and εr=4 
(moderately dislike backorders), while the preferences of wholesaler w are represented by λw=1 (moderately risk 
lover) and εw=1 (slightly dislike backorders). These two instances of companies are represented by letters “r” 
and “w” in each of the 9 graphs in Figure 5. 
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This representation makes Nash equilibria obvious, that is, a configuration is an equilibrium if and only if both 
players are in their area of best reply at the same time: 

• both (α, β) and (α, γ) are equilibria because r and w are in their respective area of best reply; 

• (α, α ) is not an equilibrium because r is in its area of best reply, but not w; 

• (β, β), (β, γ) and (γ, β) are not equilibria because r is not in its area of best reply (conversely to w); 

• (β, α), (γ, α) and (γ, γ) are not equilibria because neither r nor w is in its area of best reply. 

 
   Wholesaler w  
  α β γ 
 

α 

R
et

ai
le

r r
 

β 

 

γ 

Area of best response of the retailer   Area of best response of the wholesaler 

Fig. 5. Areas of best response of both companies in every joint strategy for σm=5. In each of the 9 
configurations, 

“r” denotes an example of retailer with preferences λr=-1 and εr=4, and “w” a wholesaler with λw=1 and εw=1 

More generally, the observation of Figure 5 seems to indicate that the use of (α, α) – thus, no sharing of demand 
information – may occur the more often because the areas of best reply of r and w both have an area larger in 
this configuration than in any of the other 8 configurations in Figure 5. This result about α, β and γ does not 
imply that optimisation-based strategies such as α are always better than stream management-based strategies 
such as β and γ. The first reason for such an assertion is that Nash equilibria are not supposed to be efficient in 
any way, but only to be stable. This is what the famous Prisoner’s Dilemma demonstrates – the best 
configuration for both players is not equilibrium. The other reason for the previous assertion is that we only 
compared the three instances of ordering strategies α, β and γ. Specifically, our methodology allows covering a 
large space of preferences (λ and ε) of the companies very easily, but enlarging the space of ordering strategies 
quickly increases the complexity of computing Nash equilibria with our method (graphically, the number of 
comparisons – represented by arrows in Figure 4 – increases as the square of the number of strategies). 
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6 Discussion 

The goal of this paper is to propose a methodology to compare several replenishment strategies, such as α, β and 
γ. Our methodology should improve the understanding about ordering strategies in supply chains, e.g., regarding 
customer service levels, behaviour against market demand, risk about on-hand inventory levels, etc. In fact, most 
studies focus on the efficiency of an ordering strategy for the entire supply chain – see textbooks as [1] and [6]. 
On the contrary, our methodology focuses on the benefits for individual companies by relying on game theory. 

 Our methodology aims to be as generic as possible. For instance, Figure 5 may easily be obtained for other 
values of the standard deviation of market demand σm, since this figure is obtained by evaluating inequalities 
similar to Inequality 46 at a specific value of σm. Next, the average value of market demand μm=50 is less 
important than σm, since the results in this paper would linearly scale as μm, while Inequality 46 shows that 
qualitative changes would occur for other values of σm. Consequently, the results presented in the previous 
section may easily be extended to any other kind of normal distribution of market demand. 

The main difficulty we see with our methodology is the use of Nash equilibrium. In fact, increasing the number 
of companies and/or strategies quickly makes our methodology intractable. Actually, computing Nash equilibria, 
and even the complexity of this task, is still an issue under investigation. [4] 

Beside, we expected to obtain continuous areas of best response in Figure 5 while some are not at all, e.g., for 
the wholesaler in configuration (γ, γ) – its area is made up of three separated areas. This implies that the 
sensitivity of some equilibria may be difficult to assess, since a little change in λ or ε may suddenly change the 
equilibria. In fact, a company in the middle of the area representing its best response is less likely to “hesitate” 
about the strategy to use than a company on the edge of this area. 

7 Conclusion 

This paper proposes a methodology based on game theory to explore the conditions under which an ordering 
strategy can be used in a supply chain. These conditions include market demand, and attitudes toward service 
level (here, backorders) and risk about the level of on-hand inventory. This methodology is applied to a supply 
chain with two members who may use one of three strategies, one strategy based on traditional concepts from 
optimisation [1, 6], and two strategies implementing recent concepts from stream management [3, 5]. 

Some similarities between the two considered stream management-based strategies lead to a game with a 
particular structure, i.e., several joint strategies with the same payoffs. Nevertheless, this particular structure is 
not reflected by the Nash equilibria of this game. In addition, our experimental results imply that our 
optimisation-based strategy is used more often than our stream management-based ones. These latter strategies 
are not only based on stream management, but also imply the sharing of demand information. Our experimental 
results also show that quick information sharing (with information centralisation) is preferred less often than 
slow information sharing (with point-to-point transmission). 

As future work, we plan to apply our methodology to models of supply chains including transportation and 
ordering costs to our Beer Game, then to adapt decision making accordingly. We also would like to investigate 
how the results obtained with Markowitz’s analysis would evolve with another criterion. 
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