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A Risk-Programming Approach to Designing Contracts to Reduce Nitrate Leaching

Abstract

As contractual agriculture expands, contract design offers a non-regulatory opportunity to

reduce non-point source pollution.  A risk programming analysis of seed corn contract designs

illustrates a tractable empirical  principal-agent model, and shows that grower risk preferences

affect contract acceptability and efficiency at reducing nitrate leaching.

15 pages.
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A Risk-Programming Approach to Designing Contracts to Reduce Nitrate Leaching

The spread of contractual production in U.S. agriculture (Drabenstott, 1994) offers new

opportunities to address public concerns over agricultural non-point source pollution (NPSP). 

Both processor concerns about brand reputation and the opportunity to market “identity-

preserved” goods (Urban, 1991) give processors reason to care about how their customers

perceive their environmental reputations.  The greater vertical coordination offered by

agricultural production contracts, in turn, allows processors to influence the environmental

stewardship exercised in production of commodities they process and market.  Hence, contracts

present an opportunity to achieve public environmental goals without government regulation and

its associated transactions costs.

The economic theory of contract design examines how a “principal” who cannot fully

observe what an “agent” is doing can, nonetheless, influence the agent to behave in a desirable

fashion.  In our case, the question is how a an agricultural processor can design a “green”

contract to induce grower contractors to meet both production goals and environmental ones.  

Principal-agent theory suggests that risk to the agent plays an important role in the design of

suitable incentives (Holmstrom and Milgrom, 1987).  This research will develop an empirical

principal-agent framework to examine how agent risk attitudes affect the acceptability and

environmental cost efficiency of “green” agricultural production contracts.

Our specific application is to seed corn production contracts designed to reduce nitrate

leaching under different levels of grower risk aversion.   In a typical seed corn production

contract, the processing firm offers price premiums to encourage contractual growers to achieve
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high yields.  One way to accomplish this goal is to fertilize heavily with nitrogen, which can lead

to excessive nitrate leaching.   The objectives of the paper are to examine 1) how the risk

attitudes of representative seed corn growers affect their preferred crop mixes and practices; 2)

how these cropping practices affect predicted nitrate leaching; 3) how seed corn production

contracts can be redesigned to induce seed corn growers with various risk attitudes to reduce

nitrate leaching; and 4) how costs are shared between processor and grower under alternative

contracts.

Chu et al. (1995) have shown that a principal-agent model can be adopted to design a

“green” agricultural production contract and that risk attitudes are important.  The general

structure of a principal-agent model adapted to the seed corn processor-grower context can be

outlined as follows (Candler and Townley, 1982):

Max E{G[y-s(y)]},
   s
subject to

E{H[s(y),n]} �U0 (1)
n � argmax E{H[s(y), n’]} (2)

n, n’ � N

where n and n’  are alternative nitrogen use.  The processor chooses an incentive payment, s(y),

based on observable seed corn yield, y, which induces the grower to choose a nitrogen

application rate, n, conditioned on two constraints: participation (equation 1) and incentive

compatibility (equation 2).  The participation constraint ensures the contractor-grower will earn

at least enough to reach his or her reservation utility level, U0.  The incentive compatibility

constraint guarantees that the grower’s choice will maximize the processor’s objective function

G(.).
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Consider an example seed corn contract which has a linear payment (Shaw et al., 1989):

s(y) = a + b y (3)

where s is total payment from the seed processor to the contractor-grower; y is grower yield of

seed corn; a and b are fixed and variable payments, conditioned on the observable outcome, y. 

The seed processor chooses a and b to design an incentive payment. 

In theory, a principal-agent model can be solved empirically using two-level

mathematical programming (Bard and Moore, 1990; Candler et al., 1981; Candler and Townley,

1982; Kornai and Liptak, 1965).  However, two practical barriers impede all but the simplest

attempts.  First, due to the model’s inherent non-convexity, convergence to the global optimum is

not guaranteed (Candler, et al., 1981; Bard and Moore, 1990).  Second, due to the complexity of

stating interdependent objective functions, applications must be limited to small matrices.

To overcome these barriers, we decompose the general principal-agent model into two

stages.  Because any constrained optimization must first satisfy its constraints, we begin by

modeling the behavior of the representative seed corn contractor-grower.  A representative

whole-farm model verifies whether the principal’s incentive-compatibility and participation

constraints are met when the grower’s objective function is maximized.  In the second step, we

evaluate the impacts of different contract specifications for both processor-principal and grower-

agent.   We then identify the preferred contract designs for each party and which of these are

potentially acceptable to both parties.
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A Representative Whole-Farm Model

A representative southwestern Michigan seed corn farm is chosen to model the first stage

of the principal-agent model.  Mean-variance (EV) analysis is employed to model the grower’s

behavior under risk (Freund, 1956).  The EV model has been shown to be consistent with the

expected utility function under certain circumstances (Meyer, 1987; Robison, 1994), and it has

been used extensively in analyzing farm-level decisions (Musser and Stamoulis, 1981;

McSweeney and Kramer, 1986; Feinerman, Herriges and Holtkamp, 1992).  In our EV model, we

use coefficients of absolute risk aversion (CARA) equal to 0, 10-5, 5*10-5, and 10-4.  Nitrate

leaching and yield data are simulated from a crop growth simulation model and then are

incorporated as “states of nature” into a whole-farm quadratic programming (QP) model.   The

QP model is adapted from a whole-farm risk programming model (Dobbins et al., 1996)

developed from the Purdue Crop/Livestock Linear Programming model (Dobbins et al., 1994).

The representative seed corn grower is assumed to own 1,200 acres of cultivable land,

and may rent up to 500 additional acres.  All the land is irrigated. A contract is available for up to

500 acres of seed corn production.  The farm is operated by one adult with a typical machinery

complement and the option to hire supplementary labor.   In addition to seed corn, the crop

enterprises include commercial corn and soybean, plus the option to take a cash rental contract

for potato production.

Crop rotations with associated nitrogen carryover and yield are modeled using DSSAT

v3.0 (Tsuji et al., 1994), adjusted for organic matter decay rate (Gabrielle and Kengni, 1996;

Vigil, Kissel, and Smith, 1991).  Three nitrogen fertilization rates on seed corn are examined
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(low, medium, high).  The rates vary by rotation crop, ranging 89.3 - 107.1 lb/ac in rotation with

soybean, 107.1 -125 lb/ac in rotation with potato, and 98.2 - 116.1 lb/ac in continuous seed corn.

Ten states of nature were constructed to represent the distribution of crop yields and

nitrate leaching.  First, 42 years of yield and nitrate leaching were simulated using 1951-1992

rainfall, temperature and precipitation data from the case study area (Three Rivers, Michigan)

and solar radiation data from nearby Ft. Wayne, Indiana.  Second, after truncating the data from

the first two years (to remove starting point carryover bias), the remaining 40 years of data were

sorted according to the yield of continuous seed corn with “medium” nitrogen fertilization. 

Third, the sorted data were divided into ten sets of four ranked years.  Finally, each set of four

data-years was averaged to construct ten “states of nature” for use in the risk programming

model.

Costs of machinery (Fuller et al., 1996), variable inputs, labor and land (Nott et al., 1995;

King, 1996) were used to set up enterprise budget data for this representative farm.  Corn,

soybean, and nitrogen fertilizer prices were assumed to be $2.70/bu, $6.75/bu, and $0.25/lb,

respectively.  The land rental rate for a potato contract was assumed to be $245/ac.

Whole farm QP analysis to compare alternative contract designs

The analysis examines seven alternative contract specifications in three general

categories: 1) Restrictions on a) nitrogen application, b) permissible nitrate leaching, and c)

rotation with potatoes (which results in heavy nitrate leaching); 2) charging a fee on a) nitrogen

use, or b) nitrate leaching; and, 3) varying the incentive payment by lowering the variable



6

3  Other contracts designs include providing information to the grower, and providing
insurance (Feinerman et al., 1992).

payment in the contract to reduce the marginal value of nitrogen use3 (Chu et al. 1995, 1996). 

The restriction on nitrogen use on seed corn fields is set at a mean 98.2 lb/ac, the lowest rate

allowed for continuous seed corn. The nitrate leaching restriction set at 40 lb/ac, the lowest level

is achievable at every risk preference level.  The processor-imposed fees considered include

20¢/lb on nitrogen applications over 89 lb/acre, the lowest rate in the model, and 75¢/lb for

projected nitrate leaching over 40 lb/ac.  The base scenario incentive payment includes a fixed

payment of $168.93/ac plus a variable payment of $5.94/bu seed corn yield.  The first alternative

scenario lowers the variable payment to $3.27/bu which induces a risk-neutral or mildly risk-

averse grower to lower the nitrogen rate.  The second alternative scenario is a lump-sum contract

payout of $428.60/acre, the lowest payment to keep a risk-neutral grower growing 500 acres of

seed corn.

Before examining how alternative contract designs performed, a word is needed about the

nitrate leaching data, simulated from DSSAT v3.0.  The seed corn crop -- which is susceptible to

contract design manipulation -- is not the crop responsible for the most nitrate leaching.  Average

nitrate leaching is 63 lb/ac for seed corn in rotation with potatoes versus 39 lb/ac in continuous

seed corn, 118.5 lb/ac for potatoes, 23 lb/ac for corn or 53 lb/ac for soybeans.

The results show that risk attitudes affect the amount of nitrate leaching from the whole

farm as well as from seed corn production.  Columns 2 and 3 of the Table 1 lists the average

nitrate leaching from the whole-farm (ANL) and from the seed corn field (ASNL).  For the risk-

neutral grower, the average nitrate leaching is 36 lb/ac from the whole farm and 45 lb/ac from
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seed corn land.  By contrast, the two most risk-averse growers (i.e., CARA � 5*10-5) had 84-89

lb/ac whole-farm leaching and 61-62 lb/ac leaching on seed corn land.  This differences arises

from seed corn - soybean rotation in the risk-neutral case versus seed corn - potato rental in the

more risk averse cases, since potato land rental provides more the reliable income, but potato

production uses more nitrogen fertilizer and causes more nitrate leaching.

Grower risk attitudes also affect the shadow prices of land and contracts.  The shadow

price of land declines with increasing grower risk aversion, from $224/ac for a risk-neutral

grower to $120/ac for the highly risk-averse grower (CARA = 10-4).  The shadow price of the

seed corn contract remains fairly stable, ranging only from $200/ac for the risk-neutral grower to

$227/ac for the risk-averse grower (CARA = 5*10-5).

Which contract designs are able to reduce nitrate leaching for growers with different risk

attitudes?  Contracts which directly charge a fee on or directly restrict nitrate leaching above a

specified level reduce leaching for all risk preferences.  When growers are risk-neutral,

restrictions on nitrogen use or rotation are not binding since these targets are already met. 

However, charging for nitrogen use or nitrate leaching, restricting nitrate leaching, or varying

incentive payments can further reduce the amount of nitrate leaching.  For the most risk-averse

grower, charging a fee on nitrogen use, or varying the variable payment are not effective in

controlling nitrate leaching.  Only direct restrictions or a fee on nitrate leaching are effective.

The opportunity cost to the grower of reduced nitrate leaching varies by contract design

and grower risk preference.  Varying the incentive payment by increasing fixed part to $376/ac

and decreasing the variable part to $3.27/bu gives the highest expected utility for each risk

preference examined.  Although imposing a restriction or charging a fee on nitrate leaching are
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effective approaches to control nitrate leaching, they are more costly to risk-averse growers than

restricting rotation with potato land rental.

In the second stage of our analysis, we evaluate 1) the acceptability of the contract design

to both processor and grower, and 2) the cost efficiency of each contract at achieving nitrate

leaching reduction.  We construct the processor’s gross margin over specified production and

marketing costs by subtracting the grower payment from marginal revenue, 

(4)Processor Gross Margin
 (1 	
SCMC

TR
) � Pw 	 s(y)

where Pw is the wholesale price of corn seed per 80,000-kernels bag (@$71.50);  SCMC
TR

(assumed to be 0.40) is the proportion of seed conditioning plus marketing costs (SCMC) to total

seed corn operating income (TR); and s(y) is the payment to the grower (as in Equation (3)).

Expected seed corn yield, expected utility of the grower (EU(G)), and gross margin of the

processor (GM(P)), are listed in Table 1 under varying levels of grower risk aversion. The last

two columns of Table 1 list the costs for one unit of nitrate leaching reduction for processor and

grower, calculated by the reduction in expected utility or gross margin per pound reduction in

nitrate leaching, MU(G)= �EU(G)/�TSNL and MGM(P)=�GM(P)/�TSNL, where �TSNL is the

change in total nitrate leaching from seed corn production.

In order to evaluate these contract designs from both grower and processor perspectives,

we will introduce two definitions of dominance.  Contract acceptability dominance for the

processor is based on gross margin and nitrate leaching.  It is defined such that a strategy A

dominates strategy B iff. [ GM(P)A > GM(P)B and ASNLA � ASNLB ] or [GM(P)A � GM(P)B

and ASNLA < ASNLB ].  The contract is assumed to be acceptable to the grower if it will reduce

EU(G) by less than 1 percent.  To identify the dominant contracts, we first eliminate contracts
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that are unacceptable to the grower across all risk preferences, specifically the one paying a fixed

$428.60/ac.  Next, we identify contracts which are undominated from the processor’s viewpoint

(Table 2).  These contracts vary by grower’s risk attitude: charging 75¢/lb for nitrate leaching

above 40 lb/ac is undominated for CARA �5*10-5; imposing a restriction on rotation with

potatoes or nitrate leaching level are undominated options when the grower is risk-averse.

In order to evaluate the efficiency of these contracts at reducing nitrate leaching, cost

efficiency dominance is defined as follows: strategy A dominates strategy B if it reduces marginal

nitrate leaching at lower cost for the grower without increasing costs for the processor or vice-

versa.  Algebraically, strategy A dominates strategy B iff. [MGM(P)A  � MGM(P)B and MU(G)A

> MU(G)B ] or  [MGM(P)A> MGM(P)B and MU(G)A �MU(G)B ].  The strategies that are not

dominated under this definition are listed in Table 3.   Again, the undominated contracts vary

across different levels of grower risk attitudes. Shifting to a fixed incentive payment is

undominated for CARA �5*10-5. Charging 75¢/lb for nitrate leaching above 40 lb/ac is

undominated in every case but the mildly risk-averse (CARA = 10-5).  Restricting nitrate leaching

is undominated only when the growers are risk neutral or mildly risk-averse, while restricting

rotation with potatoes is undominated for more risk-averse growers (CARA �5*10-5).

The magnitude and incidence of costs imposed by these contract designs also depends on

grower risk preferences.  For the risk-neutral grower, the 75¢/lb fee on nitrate leaching over 40

lb/ac was highly cost-effective.  However, for the mildly risk-averse grower, the nitrate leaching

restriction was more cost efficient. For the two most risk-averse cases, restricting rotation with

potato rental achieved less nitrate leaching at lowest cost for the grower and net gains for the

processor.  Both alternative incentive payment approaches involved large income transfers with
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little cost efficiency.  These “win-lose” outcomes are likely to be unacceptable to either processor

or grower.  However, certain cases (e.g., the risk-averse grower), suggest that further research

may reveal other incentive payments that could accomplish cost-effective leaching reduction.

Conclusions

This study shows that agent risk attitudes play an important role in the design of

agricultural production contracts intended to reduce nitrate leaching.  The designs with a fee or a

restriction on nitrate leaching appeared to be cost-efficient (for risk-neutral and mildly risk-

averse growers), but they assume costless leaching information when in fact leaching data costly

and impractical to obtain.  The restriction on rotation with potato was cost effective for the two

more risk averse growers and it has very low information cost.  But the analysis reveals that no

one contract design is dominant across all grower risk attitudes, so a processor should have some

knowledge of risk attitudes among prospective growers in order to design an effective contract. 

Extensions of this work will examine whether alternative incentive payment schemes might be

suitable to growers with this range of risk attitudes.

The two-stage empirical principal-agent model implemented here is the only one of its

kind of which we are aware.  It focused first on modeling agent behavior in order to capture the

principal’s participation and incentive-compatibility constraints.  The principal’s preferences

among feasible agent outcomes are interpreted and optimized in a second stage.

The potential impact of contracts for reducing NPSP is becoming more important as

production contracts spread.  Many researchable issues remain that warrant attention.  First, this

case study neglected the dynamics involved with contract premiums designed to incite growers to
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strive for increasing yields.  If contract redesign for NPSP control interferes with this incentive,

then the contracts may no longer meet with the processors’ approval.  Second, risk management

approaches outside the contract deserve attention.  Third, our model’s results are doubtless

sensitive to the assumption that the grower has no preference for reduced leaching, yet evidence

exists that growers do care to reduce nitrate levels in groundwater (Poe and Bishop).   Finally, the

EV risk model used here assumed symmetric risk preferences, but if grower yields result in

asymmetric income distributions (Babcock) this model may be unsuitable. 
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Table 1: Nitrate leaching, yield, expected utility and marginal impacts from leaching reduction
Coefficient of 
absolute risk-aversion (��)

ANL 
(lb/ac)

  ASNL 
(lb/ac)

Yield
(bu/ac)

EU(G)
($)

GM(P)
($)

MU(G
)

($/lb)

MGM(P)
 ($/lb)

�� = 0           
Base model 35.62 45.10 77.58 458700 1663412 NA NA

Restrict N�98.2 lb/ac 35.62 45.10 77.58 458700 1663412 - -

Restrict NL�40 lb/ac 35.12 40.00 77.38 457660 1658906 0.41 1.77

Restrict rotation with potato 35.62 45.10 77.58 458700 1663412 - -

Charge 20¢/lb for N>89 lb/ac 35.32 44.07 76.90 457820 1648092 1.70 29.63

Charge 75¢ for NL>40 lb/ac 35.83 39.24 77.71 457040 1666341 0.57 -1.00

Fix: $376/ac; Var: $3.27/bu 35.32 44.07 76.90 458930 1647219 -0.44 31.32

Fix: $428.60/ac; No Var 35.32 44.07 76.90 359270 1746950 192.32 -161.58

�� = 10-5    
Base model 46.02 46.47 77.92 439150 1671073 NA NA
Restrict N�98.2 lb/ac 45.62 45.10 77.58 438810 1663412 0.50 11.18
Restrict NL�40 lb/ac 42.60 40.00 77.02 433800 1650796 1.65 6.27
Restrict rotation with potato 46.02 46.47 77.92 439150 1671073 - -
Charge 20¢/lb for N>89 lb/ac 45.32 44.07 76.90 438090 1648092 0.88 19.12

Charge 75¢ for NL>40 lb/ac 45.62 45.10 77.58 436890 1665325 3.30 8.39

Fix: $376/ac; Var: $3.27/bu 45.32 44.07 76.90 445940 1647219 -5.65 19.85

Fix: $428.60/ac; No Var 45.32 44.07 76.90 352211 1746950 72.33 -63.13

�� = 5* 10-5    

Base model 83.60 60.86 77.20 374740 1654851 NA NA

Restrict N�98.2 lb/ac 57.84 45.10 77.58 370580 1663412 0.53 -1.09

Restrict NL�40 lb/ac 62.90 40.00 77.02 354290 1650796 1.96 0.39

Restrict rotation with potato 58.25 46.47 77.92 372680 1671073 0.29 -2.25

Charge 20¢/lb for N>89 lb/ac 81.78 59.07 76.48 372860 1640409 2.11 16.17

Charge 75¢ for NL>40 lb/ac 58.44 46.57 77.90 370250 1673086 0.63 -2.55

Fix: $376/ac; Var: $3.27/bu 80.72 58.03 76.30 405040 1632900 -21.38 15.49

Fix: $428.60/ac; No Var 60.19 45.66 76.83 331630 1745165 5.67 -11.89

�� = 10-4      

Base model 89.21 62.37 76.11 322510 1630293 NA NA

Restrict N�98.2 lb/ac 46.34 44.07 76.90 312190 1648092 1.13 -1.95

Restrict NL�40 lb/ac 45.63 40.00 77.02 290880 1650796 2.83 -1.83

Restrict rotation with potato 47.35 46.47 77.92 315070 1671073 0.94 -5.13

Charge 20¢/lb for N>89 lb/ac 89.21 62.37 76.11 320730 1632073 - -

Charge 75¢ for NL>40 lb/ac 73.97 56.54 76.77 314460 1651366 2.76 -7.23

Fix: $376/ac; Var: $3.27/bu 88.20 62.37 76.11 369030 1628365 - -

Fix: $428.60/ac; No Var 87.93 62.37 76.11 315900 1726805 - -
Note: ANL and ASNL are average nitrate leaching from the whole-farm and from seed corn field; EU(G)
is expected utility of the grower, and GM(P) is gross margin of the processor; MU(G) is marginal utility
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to the grower and MGM(P) is marginal gross margin to the processor for one unit nitrate leaching
reduction. 
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Table 2: Contracts that are not dominated under contract acceptability dominance1 for seed corn processor to achieve lower
nitrate leaching from seed corn production under varying levels of grower risk aversion

Coefficient of Absolute Risk-Aversion (�)

� = 0 (risk neutral)                  �  = 10-5 (mildly risk averse)   � = 5 * 10-5 (risk averse)        � = 10-4 highly risk averse)  

Charge 75 ¢/lb for NL>40 lb/ac Base model*

Restrict rotation with potato*
Restrict NL�40 lb/ac
Charge 75 ¢/lb for NL>40 lb/ac

Restrict N�98.2 lb/ac
Restrict NL�40 lb/ac
Restrict rotation with potato
Charge 75 ¢/lb for NL>40 lb/ac

Restrict NL�40 lb/ac
Restrict rotation with potato

Note: 1 These contracts are undominated in the sense that a shift to a different contract cannot be made without either increasing
nitrate leaching or reducing processor gross margin.
* Contracts equivalent to base case for both processor and growers.
  

Table 3: Contracts that are not dominated under environmental cost dominance per unit of leaching reduction under varying
levels of grower risk aversion

Coefficient of Absolute Risk-Aversion (�)

� = 0 (risk neutral)                    � =  10-5  (mildly risk averse) �= 5 * 10-5  (risk averse)           � = 10-4 (highly risk averse)       

Fix:$376/ac; Var:$3.27/bu
Fix:$428.60/ac; No Var
Restrict NL�40 lb/ac
Charge 75¢ for NL>40 lb/ac

Fix:$376/ac; Var:$3.27/bu
Fix:$428.60/ac; No Var
Restrict NL�40 lb/ac
Restrict N�98.2 lb/ac

Fix:$376/ac; Var:$3.27/bu
Fix:$428.60/ac; No Var
Restrict rotation with potato
Charge 75 ¢/lb for NL>40 lb/ac

Restrict rotation with potato
Charge 75¢/lb for NL>40 lb/ac
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