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Abstract

Most previous research on post-harvest grain storage by farmers has assumed risk-neutral behavior and/or
made restrictive assumptions about underlying price probability distributions.  In this study we solve the

optimal post-harvest storage problem for a risk averse farmer under more general assumptions about
underlying price distributions.  The resulting model is applied to Michigan corn farmers and results show
that, contrary to the sell all-or-nothing risk-neutral rule, risk averse farmers will spread sales out over the
storage season.  The optimal pattern for sales by Michigan corn farmers is to sell approximately 50% of

corn at harvest in November (a risk-reduction strategy) and approximately 40% in May (a return-
enhancing strategy).

(33 Total Pages)
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OPTIMAL POST-HARVEST GRAIN STORAGE BY RISK AVERSE FARMERS

Many farmers store all or part of their grain at harvest in an attempt to profit from expected price

increases over the storage season (Sartwelle et al.).  On-farm storage provides flexibility in choosing the

timing of sales and can provide increased returns to farmers selling at the right time (at a relatively high

price) versus the wrong time (at a relatively low price).  But while on-farm storage can increase expected

returns it also increases risk.  A farmer who sells at harvest has no remaining price risk but one who stores

grain for future sale faces the risk that prices will move lower over the storage season.  Some of this risk

could be managed by using futures or options but this entails transaction costs and might also eliminate

some of the potential reward if prices move higher.

Most studies of on-farm grain storage do not account for farmer risk aversion.  Early research

evaluated the performance of essentially arbitrary a priori, fixed marketing strategies to see how they might

influence the mean and variability of returns (see the review by Zulauf and Irwin).  This approach has the

advantage of not having to assume anything about farmer behavior or risk preferences.  The obvious

disadvantage, however, is that while an arbitrary storage strategy may generate positive expected returns,

there is no way to determine if such a strategy is optimal given a well-specified farmer objective function. 

On the other hand, studies of optimal on-farm storage have found it difficult to incorporate farmer risk

aversion.

In a recent study,  Fackler and Livingston (FL) develop a simple dynamic programming solution to

the optimal post-harvest grain storage problem in a useful framework that is relatively easy to implement. 

In particular, one advantage of FL is that they impose a non-negativity constraint (farmers cannot buy back

grain into storage once it has been sold) and a short selling constraint (farmers cannot sell more grain than

they have in storage).  These seem like reasonable restrictions to impose for on-farm storage because

transaction costs generally preclude such behaviors and, indeed, such behaviors are rarely observed in

practice.  However, FL also assume farmers are risk neutral which causes the solution to take the form of
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an optimal stopping rule—at each point in time it is optimal to either wait and sell nothing or to liquidate

all stocks and stop the process.  These features are at odds with observed on-farm storage behavior because

farmers appear to be risk averse and to spread grain sales out over the storage season (USDA).  Other

studies that have examined various aspects of optimal grain storage decisions assuming risk neutral storage

behavior include Tronstad and Taylor, and Lence, Kimle, and Hayenga.

A few researchers have incorporated risk aversion into optimal on-farm storage models.  For

example, Berg allows for farmer risk aversion in his dynamic programming study of on-farm wheat storage

in the EU.  Berg finds that partial sales (i.e. spreading sales out over the storage season) can be optimal for

risk averse farmers.  However, Berg assumed triangular probability distributions for prices, and that price

probability distributions in any one period are completely independent of price outcomes in past periods. 

These seem like very restrictive assumptions given what we now know about the probability structure of

most grain price movements (e.g. Yang and Brorsen; Baillie and Myers; Wang,  et al.).

The objective in this study is to develop optimal strategies for post-harvest grain storage assuming

risk averse farmers and more realistic assumptions about price probability distributions.  Stochastic

dynamic programming in a discrete-time framework is used to derive optimal post-harvest marketing

decisions under these conditions.  The results extend FL’s risk neutral model by incorporating farmer risk

aversion.  In our model an optimal partial selling rule is derived, as opposed to the sell-all-or-nothing rule

developed by FL.  This means it is optimal to spread sales out over the storage season, as is more

commonly observed in practice.  The resulting optimal storage rules are applied to the post-harvest storage

problem faced by Michigan corn producers.  Results provide empirical support for spreading sales out over

the storage season as a risk management strategy.  Sensitivity analysis is conducted to investigate how

various factors influence the optimal timing of sales.  Finally, the performance of the optimal storage rules

are evaluated and their economic value is measured using a willingness-to-pay concept.
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Theoretical Model

Consider a risk-averse farmer with on-farm storage facilities who intends to store harvested grain

to profit from an expected increase in cash price during the storage season.  The storage season begins at

the current harvest, ends before next year's harvest, and is divided into T equal-sized decision nodes.  At the

beginning of each decision node, the farmer has a current stock level st, observes the current market price

pt, and chooses an amount of the commodity qt to sell in the spot market.  We follow FL and impose the

restriction  to ensure that sales must be non-negative (no re-purchase of grain allowed) and0 � qt � st

less than or equal to the current storage level (no short selling allowed).  These assumptions are because

transaction costs would generally preclude such behaviors.  We also assume no storage hedging on futures

markets.  This simplifies the model and is consistent with the fact that few farmers make extensive direct

use of futures and options, with nearly two-thirds of all grain marketed directly through cash sales (Musser,

Patrick and Eckman; Sartwelle et al.).

Each period the producer pays a storage cost of  per unit of stock to carry storage into the� > 0

next period.  By definition, storage is subject to the transition equation:

We assume farmers are interested in the compounded cash flows from their storage operations which will

be called "wealth", wt.  At any period wealth satisfies the transition equation:

where r is the (assumed constant) interest rate and initial wealth, w0, is given.
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vt (xt) 
 max
qt

Et {vt�1 (xt�1)} for t 
 0, 1, á, T	 1(4.b)

The farmer is assumed to choose a sequence of sales  to maximize the expected utility of{qt}
T	1
t
0

terminal wealth:

subject to the transition equations (1) and (2), the constraint , and a Markov probability0 � qt � st

process for prices  where ft is the probability density function for the cash pricep̃t�1 � ft (pt�1 pt, zt)

at  conditional on the current cash price pt and a vector of current information variables zt.  The t�1 U (#)

function is an increasing and concave von Neumann-Morgenstern utility function representing farmer risk

preferences.

The problem can be solved using discrete time stochastic dynamic programming (Bertsekas;

Miranda and Fackler).  Defining  as the state vector and  as the value function,xt 
 (wt, st, pt, zt) vt (xt)

Bellman's equation for the problem is given by:

subject to the transition equations (1) and (2) and the constraint .  It is shown in the appendix0 � qt � st

that necessary conditions for a solution are:
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and  and  .  Here, �t is the shadow value of relaxing the short sellingqt � 0, �t � 0, st 	 qt � 0

constraint that requires .qt � st

At the last decision node  the optimal decision is clearly to set  (sell everythingT	 1 qT	1 
 sT	1

left in storage, if any) whenever .  This is because stocks have no value in the final period T butpT	1 > 0

wealth does.  This ensures that bins are emptied before the next harvest.  At all periods prior to  theT	1

farmer faces a trade-off—either sell all or part of total stocks now (if any is left) and receive pt, or sell

nothing and wait to see if prices rise.  There are four cases to consider.

First, suppose that st is zero (there is no storage left).  In this case the (trivial) optimal strategy is to

set  because this is the only choice in the opportunity set.qt 
 0

Second, suppose that current stocks are positive  and the optimal choice is still to sell(st > 0)

nothing and wait .  Then  and .  Furthermore, from (5b) and (5c) we have(qt 
 0) qt < st �t 
 0
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In this case the marginal value (in terms of expected utility of terminal wealth) of selling the first bushel of

grain out of storage must be less than or equal to the marginal value (in terms of expected utility of

terminal wealth) of keeping that bushel of grain in storage.  So the farmer chooses not to sell anything and

if (6) is satisfied with strict inequality would actually buy grain to store except for the constraint .qt � 0

Third, suppose that current stocks are positive  and the optimal choice is to sell(st > 0)

everything .  Then  and (5b) and (5c) imply(qt 
 st) �t � 0

In this case the marginal value (again in terms of expected utility of terminal wealth) of selling the last

bushel of grain is greater than or equal to the marginal value of keeping that bushel of grain in storage.  If

(7) is satisfied with strict inequality the farmer would like to sell more if he/she had it but is constrained

by .qt � st

Fourth, suppose the optimal strategy satisfies .  Then  and (5b) and (5c) imply0 < qt < st �t 
 0

that
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The farmer is indifferent between selling or keeping the marginal bushel of grain.  The concavity of U (#)

ensures that  is concave in qt which implies there may be a wide range of conditions (price, storagevt (xt)

costs, risk preferences, etc.) under which there are interior solutions satisfying .0 < qt < st

It is the existence of an interior solution (case four) that distinguishes this model from the one in

FL.  The linearity of the (risk neutral) FL model leads to a "sell all or nothing" rule whereas the (risk

averse) model here provides an incentive to spread sales out over the storage season.  Of course, if current

prices get high enough everything will be sold and if current prices get low enough nothing will be sold.  At

some intermediate range of current prices, however, the risk averse farmer will sell some grain and keep

some in storage.

An Application

In order to implement the theoretical model of the previous section and investigate the partial sales

phenomenon empirically we need to make a number of assumptions and solve the model numerically.  Here

we apply the model to the optimal post-harvest storage problem faced by corn farmers in Michigan.

Assume Michigan corn farmers make their first marketing decision at harvest (which we define as

the first week of November) when they decide how much to sell right away and how much to store and sell

later.  We then break the storage season up into five additional decision nodes (the first weeks of January,

March, May, July and September).  At each of these six decision nodes (harvest plus the five through the

storage season) the farmer can sell some or all of his/her corn.  Any storage left over at the first week of

September is automatically sold to make way for the coming new crop.

The control and state spaces for this problem might best be viewed as continuous but we use a

discrete approximation to facilitate a discrete state and control space solution technique.  The control space

is specified as a proportion of the total harvest, , sold in any period.  The proportion of the harvest solds0

at any decision node is assumed to take on one of eleven possible values qt   { 0, 0.1, 0.2, 0.3, 0.4, 0.5,�
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0.6, 0.7, 0.8, 0.9, 1.0} .  The state space for current stocks is also specified as a proportion of the total

harvest and so obviously consists of these same eleven possible proportions.  The state space for selling

prices was specified as 15 possible price states ranging from $1.60 to $4.40 per bushel in 20 cent

increments.  Each price in the state space is viewed as the mid-point of the underlying continuous price

interval.  The upper bound price state of $4.40 per bushel represents the price interval of $4.30 or above

while the lower bound price state of $1.60 per bushel represents the price interval of $1.50 or below.

Wealth is also expressed as a proportion of the total harvest.  We assumed an initial wealth state of

zero and computed the state space for wealth as all possible feasible combinations of wealth per unit of

total harvest that could come from any combination of feasible price and marketing (sales) strategies over

the entire time horizon of the storage season.  An initial wealth state of zero implicitly assumes the storage

operation is viewed as separable from other farm production and consumption decisions, and so the storage

decision only depends on wealth generated by that decision.  To compute the wealth states we need to make

assumptions about interest rates (the rate of return on accumulated wealth) and storage costs.  To examine

the solution's sensitivity to interest rate and storage cost assumptions we used annualized interest rates of r

= 5%, 10%, and 15% and monthly storage costs of � = 0, 1, and 2 cents per bushel.  Benefits of specifying

the wealth states to conform with all feasible price outcomes and sales decisions are that specification of

the value function does not require interpolation (a discrete value function value can be computed for every

current state in the state space), and it is efficient because infeasible wealth outcomes do not need to be

evaluated.

The final assumptions required to operationalize the model are a utility function and a set of

transition probabilities for transitioning from one price state to another.  We assumed a constant relative

risk aversion (CRRA) utility function  where   is the terminal wealthU (wT) 
 w 1	b
T / (1 	 b), b > 0 wT

per bushel of initial harvest .1  The parameter b denotes the coefficient of relative risk aversion and is set to

one of two possible values in order to compare results for near risk neutrality (b = 0.0001) with those from
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risk averse behavior (b = 5).2  Computation of the price transition probabilities required some detailed

empirical analysis.

Computation of Price Transition Probabilities

The probability density functions for corn prices faced by the farmer at each decision node, t, are

represented by a set of discrete-time transition probability matrices which map the stochastic price states

across the marketing periods.  The underlying stochastic structure is estimated using weekly cash corn

closing prices each Wednesday at Saginaw, Michigan starting the first week in October of 1975 and ending

the last week in September of 1996.  The estimated price process is represented by an autoregressive

seasonal model for the conditional mean of the logarithmic price changes, and a generalized autoregressive

conditional heteroskedastic t-distribution model (GARCH-t) with seasonality for the conditional variance of

the innovations (Fackler, Bollerslev).  These specifications have been found to do a good job of

representing the probability structure of weekly grain price movements (Yang and Brorsen).  After

investigating several alternative models for goodness of fit a preferred model was chosen and estimated

(table 1).  Weekly Saginaw corn prices were found to be nonstationary and the conditional mean and

variance of price changes appear to vary over time as a result of both stochastic and seasonal factors.  The

Ljung-Box Q-statistics show the model is well specified in terms of removing autocorrelation from both the

errors and squared standardized errors of the change in log prices.

The estimated price model can be used to generate transition probabilities that correspond to the

fifteen possible price states in the price state space.  These transition probabilities are then used to solve the

model and determine the optimal marketing rules.  We allow the transition probabilities to be different at

each decision node, t, and so we actually compute five different sets of transition probabilities.  The

transition probabilities are generated from the estimated weekly price model (table 1) using simulation

techniques.
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The simulation process begins by going to the first decision node (the harvest period specified as

the first week of November).  Then the first possible initial price state ($1.60) is selected.  Using this price

state as a starting point, the weekly econometric model is simulated eight to nine weeks ahead to get one

random draw for the price state in the first week of January (the next decision node).  The simulation of this

one random draw is obtained by making random draws on a sequence of eight to nine �i values and tracing

through the price and variance outcomes using the econometric model (see table 1).  In the absence of any

information about the initial value of the conditional variance of �i, an estimate of the unconditional

variance of �i  is used to initialize the simulation of .)
2
i

After this process is complete we now have one random draw on the price for the first week of

January given that the price during the first week of November is $1.60.  Now repeat this process 10,000

times using a random number generator for the �i and check the relative frequency with which the price

outcomes fall into each of the price intervals in the price space.  These relative frequencies are used as the

transition probabilities for transitioning from the initial price state $1.60 in the first week of November to

each of the alternative price states in the state space in the first week of January.

To generate the entire matrix of transition probabilities we repeated this process for every possible

initial price state at the harvest period in the first week of November, {$1.60, $1.80, $2.00, $2.20, $2.40,

$2.60, $2.80, $3.00, $3.20, $3.40, $3.60, $3.80, $4.00, $4.20, $4.40}.  This provides the entire matrix of

transition probabilities for transitioning from the first week of November to the first week of January.  To

generate a transition probability matrix for every decision node we repeated this whole procedure for

transitioning between all decision nodes (November-January, January-March, March-May, May-July, July-

September).  This gives us five different transition probability matrices that can be input into the dynamic

programming algorithm.

To validate these transition probabilities, and make sure they are a reasonable approximation to the

underlying probability distribution of prices, we conducted a number of experiments.  In one of these
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experiments we set the initial price in November equal to its historical data mean of $2.24 and simulated

this price forward over the entire storage season using 10,000 replications.  The resulting relative

frequencies for the price outcomes in each month are shown in figure 1.  As expected, the initial price has a

big impact on the mean of future price distributions.  That is, there is a high probability that prices will

remain around $2.24, especially in the early part of the storage season.  Notice, however, that the

probability distributions tend to shift to the right as the storage season progresses (higher probability of

prices increasing than decreasing), as well as becoming more spread out (prices at the end of the storage

season more uncertain than prices at the beginning).  Towards the end of the storage season in September,

however, there appears to be a higher probability that prices will be lower compared to immediately

preceding decision nodes.  This seasonal pattern of price movements can be seen more clearly by

comparing actual historical average prices for each week over the storage season with the associated

average simulated price (again using 10,000 replications and starting all of the simulations from the

historical average harvest price of $2.24 per bushel).  A graph of these historical and simulated weekly

averages is shown in figure 2.  Prices clearly have a tendency to rise throughout the storage season until

about June when prices begin to fall in anticipation of the coming harvest.  This is the kind of pattern we

would expect and the simulated average prices do a good job of tracking the actual historical average

weekly prices, though the path of simulated average prices is smoother (as expected).  This should provide

some confidence that the calculated transition probabilities are generating outcomes that are consistent with

the underlying probability structure of actual corn price movements over the storage season.

Dynamic Programming Algorithm

The algorithm used to solve the storage model is a discrete time, discrete state and control dynamic

programming algorithm based on the approach of Miranda and Fackler and programmed and solved in
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GAUSS.  The algorithm proceeds by evaluating the value function at every (discrete) point in the state and

control space and so can take a long time to solve (in this case several hours on a personal computer).

Results

We first solved the model for the case of a risk neutral farmer (b = 0.0001).  This leads to the same

"sell all or nothing" marketing strategy derived in FL (as expected).  Hence, in this case the optimal

marketing strategy is defined by a cutoff price for each decision node, such that if the current price is above

the cutoff price sell everything and if it is below then sell nothing.

The cutoff prices at each decision node for the risk neutral case (b = 0.0001) are presented in table

2.  Using the base case (the first column) as an example, for the month of November the cutoff price is

$4.10 per bushel.  Hence, if the cash price in the first week of November is $4.10 per bushel or higher it is

optimal to sell everything in storage; otherwise, the optimal marketing strategy is to retain the entire stock. 

The results show the optimal cutoff price starts with a relatively high value at the beginning of the

marketing season and decreases as the end of the marketing season approaches.  This is because at the

earlier stages of the marketing season there are more future time periods in which prices might rise.  The

cutoff prices for different assumptions about storage costs and interest rates are also presented in table 2. 

The results show the cutoff price declines as storage cost increases.  This is intuitive because storage cost

is a negative income incurred when holding the grain.  An increase in storage costs suggests a decrease in

the value of waiting to sell stocks in the future, which makes storage less desirable, and lowers the current

cash price needed to compensate for the foregone benefits of future sales.  Similarly, an increase in interest

rates triggers a lower cutoff price because the potential increase of interest income represents an increased

opportunity cost of holding the grain, which makes storage less attractive.

Moving to the case of risk aversion (b = 5) the optimal marketing strategy for the harvest period

(first week of November) is represented graphically in figure 3 for the base case of 10% interest rate and
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storage cost of $0.01 per bushel per month.  Because this is the first decision node the unique storage state

is 100% of the total harvest and the unique initial wealth state is zero.  Therefore, the optimal marketing

strategy depends only on the current price.  The results show that if prices are at or above $4.10 at harvest

the optimal strategy is to sell everything and if it is $1.70 or below the optimal strategy is to sell nothing

and wait.  At intermediate prices, however, there are partial sales.  If the current price is between $1.70 and

$1.90 the optimal strategy is to sell 50% of the crop at harvest; if it is between $1.90 and $3.70 the optimal

strategy is to sell 60% of the crop at harvest, and so on.  Risk aversion creates a clear incentive to sell at

least some of the harvest right away and not store it.

The optimal marketing strategy for this same risk averse (b = 5) farmer in January is more difficult

to represent because the state space has many more dimensions (the possible storage and wealth states are

no longer unique).  To demonstrate the rule using two-dimensional graphs we construct three separate

graphs for three different wealth states—high wealth (in which previous sales were made at relatively high

prices), middle wealth (in which previous sales were made at intermediate prices) and low wealth (in which

previous sales were made at relatively low prices).  For each of these wealth levels there can still be any

one of 11 possible storage states, s { 0, 0.1, ..., 1.0}, depending on how much corn was sold in�

November.  The optimal strategy for s = 0 is simply to sell nothing (because all of the corn has already

been sold).  The other 10 possible storage states are each represented by a different line in each panel of

figure 4, with each of the panels representing a different wealth (previous price) level.

Optimal strategies for January are more complex and less intuitive than for November.  Results for

January are consistent in the sense that very low prices lead to no sales while very high prices lead the

farmer to sell everything.  At intermediate prices there may be partial sales. Notice, however, that in some

cases, particularly when there is a lot of storage left (minimal sales in November) the optimal strategy is to

sell less at intermediate prices than at low prices (see the negative slope of some of the decision rules in

figure 4 over some regions of the price space).  The reason for this is that the current price state not only
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represents the benefits of immediate sale but is also a signal determining the probability of prices going

higher in the future.  Therefore, a higher current price encourages more sales because it allows risk-free

collection of a relatively high return, but it may also signal a higher probability of price increases in the

future which would discourage current sales.  If the latter effect dominates the former then a higher current

price may lead to less current sales.

The results in figure 4 also show that, for a given storage level and current price, the optimal

marketing strategy at high wealth states is to sell less in the current period than in low wealth states.  This

is consistent with the CRRA utility function because absolute risk aversion decreases with an increase in

wealth and so the farmer is more willing to take the gamble of waiting to see if prices rise the higher is

his/her wealth level (the more money he/she has already received from previous sales).

Optimal storage rules for the other decision nodes in March, May, and July were also computed

but results are not shown here to conserve space.  These results show that partial sales may be optimal at

each decision node (except the last) when farmers are risk averse, and that the price required to encourage

sales falls as we move through the storage season (as expected).  One way to summarize these results is to

use the estimated transition probabilities and optimal storage rules to compute the likelihood of sales

occurring in various months under both risk neutrality and risk aversion, using the base case of r = 10%

and storage costs of $0.01 per bushel per month.  These results are summarized in figure 5.  Under risk

neutrality optimal sales in any given year will always occur in one month only (sell all-or-nothing rule), but

the figure shows the expected distribution of those sales over repeated samples (years).  The resulting

distribution is unimodal with sales occurring in May 83% of the time and sales occasionally occurring in

March, July, and September as well.  Under risk aversion the expected distribution of optimal sales over

the storage season is bi-modal with 52% of sales occurring right at harvest, 39% of sales in May, and other

sales occasionally occurring in other months.  Clearly, the optimal strategy under risk aversion is to spread
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sales out over the storage season but most of the sales will occur either at harvest (a risk reduction strategy)

or in May (an expected profit generating strategy).

Performance of the Optimal Storage Rule 

One way to evaluate the performance of the optimal storage rules is to compare outcomes in these

cases to what would have happened if all corn was sold at harvest (no storage).  Using the transition

probability matrices and simulation results the mean and unconditional variance of final wealth was

computed under three scenarios—sell everything at harvest, apply the optimal risk neutral storage rule, and

apply the optimal risk averse storage rule.  Results are provided in the first two lines of table 3 using an

interest rate of 10% and a storage cost of $0.01 per bushel per month.  Selling everything at harvest

generates the lowest mean wealth and the highest unconditional wealth variance.  On average, prices rise

enough over the storage season so that selling at harvest generates the lowest mean return.   Nevertheless, if

all corn is sold at harvest there is no risk of future price declines so, from this perspective, selling

everything at harvest is a risk minimizing strategy.  The unconditional variance measure indicates the year-

to-year variability in final wealth and should not be misconstrued as a measure of short-term risk.  This

unconditional variance measure shows that, even though selling at harvest is a risk minimizing strategy

because it eliminates the risk of experiencing price declines during the storage season, from a long-run

perspective this strategy still generates considerable year-to-year variation in returns.

The optimal storage strategy for a risk neutral farmer generates the highest mean wealth but also

the highest risk because sales rarely occur at harvest under this strategy, and so farmers are usually fully

exposed to the risk of price declines over the storage season.  Nevertheless, the unconditional variance

estimate shows that long-run, year-to-year variability in returns under this storage rule is slightly lower

than for the case of selling everything at harvest.
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U [ŵT � WTP(1 � r)T] 
 E0 U (w �

T )(9)

The optimal storage strategy for a risk averse farmer generates a mean return that is higher than

selling at harvest but lower than applying the optimal risk-neutral strategy.  Risk is reduced because some

sales usually occur at harvest, but not completely eliminated because some corn is usually put into storage

for later resale as well.  Long-run, year-to-year variability in returns is reduced considerably by using this

“diversification” strategy.

Another way of looking at performance is to compute the farmer's willingness to pay (WTP) for

the optimal marketing strategy and use this as a quantitative estimate of the economic value of the

marketing decision rule.  We define WTP as the maximum certain monetary amount the farmer is willing to

pay for the right to apply the optimal marketing strategy rather than sell all production immediately at

harvest.  WTP values are calculated by solving the equation

using the bisection method.  In equation (9),  is the terminal wealth under the optimal storage rule, w �

T ŵT

is the terminal wealth under a sell everything at harvest rule, and the probabilities for computing the

expectation are calculated using the relative frequencies of the historical harvest period prices together with

the transition probability matrices computed earlier.

Results for WTP are reported in the last line of table 3, again using an interest rate of 10% and a

storage cost of $0.01 per bushel.  The economic value of the optimal marketing strategy for a risk neutral

farmer ($0.138 per bushel) is greater than the value for a risk averse farmer ($0.042 per bushel) because

the risk averse farmer sells some corn at harvest even when he/she is following the optimal (risk averse)

storage strategy, while the risk neutral farmer would generally not sell anything at harvest when he/she is

following the optimal (risk neutral) strategy.  Therefore the risk averse farmer does not get as much value

out of being able to apply his/her optimal strategy as the risk neutral farmer does (compared to the case of
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selling everything at harvest).  Of course, the WTP figure for the risk neutral case only estimates what a

risk neutral farmer would be willing to pay to use this storage rule.  If the farmer was actually risk averse

he/she would be willing to pay less to use the optimal risk neutral rule than he/she would be willing to pay

to be able to use the optimal risk averse rule.

These dollar per bushel WTP amounts for Michigan corn farmers translate to between 5% and

15% of net farm income, which might be considered economically significant, thus highlighting the

importance of a good marketing strategy. 

Conclusions

This study extends the risk neutral farm storage model of FL to the case of a risk averse farmer in

a discrete time, discrete state and control space framework.  Results provide both theoretical and empirical

support for the optimality of partial sales over the storage season, as opposed to the simple sell everything

or sell nothing strategy derived in FL.  This partial sales behavior is more consistent with what we actually

observe farmers doing when they make their storage decisions.  The optimal distribution of sales over the

storage season depends on the degree of farmer risk aversion, as well as storage costs, interest rates, and

the underlying probability distribution of prices.

An application of the model to farm storage of corn in Michigan shows that risk averse farmers

will sell a proportion of their corn crop early (generally right at harvest) unless harvest prices are extremely

low.  They do this even though it reduces their expected terminal wealth (since they cannot then gain from

the expected rise in prices over the storage season) because it also reduces risk.  This result shows that risk

aversion is capable of explaining the observed behavior of partial sales over the storage season without

assuming that farmers are somehow myopic or failing to optimize.

The economic value of optimal storage rules for corn in Michigan was estimated by computing the

farmer's WTP for the optimal marketing rule, as opposed to just selling all corn at harvest.  WTP estimates
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correspond to about 5%-15% of average net farm income to farmers in Michigan, depending on their

degree of risk aversion.  This might be considered an economically significant amount, thus highlighting the

importance of farmers implementing good post-harvest grain marketing strategies. 
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1. Because sales and current stock levels are expressed as a proportion of the total harvest, wealth

levels must be scaled by the total harvest as well.  Thus a "wealth" level of 1.351 would indicate

total wealth would really be $1.351 times the amount of the initial harvest in bushels.  It can be

shown that, in the case of a CRRA utility function this transformation has no affect on the optimal

decision rule because the CRRA is homogeneous of degree 1-b (Varian).  Hence, the use of this

transformation is innocuous and is only used to make the results easier to interpret.

2. The CRRA utility function is not defined under exact risk neutrality so we set b = 0.0001 (near

risk neutrality) to approximate the optimal risk-neutral strategy.  Henceforth, this case will be

simply described as “risk neutral.”

Footnotes
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Figure 1.   Future Price Distributions Conditional on a November Price of $2.24



2.2

2.3

2.4

2.5

2.6

2.7
pr

ic
e 

($
/b

u)

Historical Average Prices

Simulated Average Prices

November                 January                   March                       May                       July                      September

    

Figure 2.    Comparison of Simulated Average and Historical Average Price Movements



24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

price ($/bu)

sa
le

s 
vo

lu
m

e 
as

 a
 p

ro
po

rt
io

n 
of

 th
e 

in
iti

al
 s

to
ck

 Figure 3.  Optimal November Marketing Policy for Risk Averse Farmers



25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 price ($/bu)

sa
le

s 
vo

lu
m

e 
as

 a
 p

ro
po

rt
io

n 
of

 th
e 

in
iti

al
 s

to
ck

s = 1.0 

s = 0.9 w = 0.382

s = 0.8 w = 0.783

s = 0.7 w = 1.185

s = 0.6 w = 1.586

s = 0.5 w = 1.988

s = 0.4 w = 2.390

s = 0.3 w = 2.791

s = 0.2 w = 3.193

s = 0.1 w = 3.594

Panel a    High Wealth Level

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 price ($/bu)

sa
le

s 
vo

lu
m

e 
as

 a
 p

ro
po

rt
io

n 
of

 th
e 

in
iti

al
 s

to
ck

s = 1.0 

s = 0.9 w = 0.287

s = 0.8 w = 0.594

s = 0.7 w = 0.900

s = 0.6 w = 1.207

s = 0.5 w = 1.514

s = 0.4 w = 1.821

s = 0.3 w = 2.128

s = 0.2 w = 2.434

s = 0.1 w = 2.741

Panel b    Middle Wealth Level

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 price ($/bu)

sa
le

s 
vo

lu
m

e 
as

 a
 p

ro
po

rt
io

n 
of

 th
e 

in
iti

al
 s

to
ck

s = 1.0 

s = 0.9 w = 0.192

s = 0.8 w = 0.404

s = 0.7 w = 0.615

s = 0.6 w = 0.828

s = 0.5 w = 1.040

s = 0.4 w = 1.252

s = 0.3 w = 1.464

s = 0.2 w = 1.675

s = 0.1 w = 1.888

Panel c    Low Wealth Level

Figure 4.  Optimal January Marketing Policy for Risk Averse Farmers



26

52.0%

1.1% 3.1%

38.5%

3.1% 2.3%
0%

20%

40%

60%

80%

100%

NOV JAN MAR MAY JUL SEPO
pt

im
al

 M
ar

ke
tin

g 
V

ol
um

es
 a

s 
a

Pe
rc

en
ta

ge
 o

f 
In

iti
al

 S
to

ck
s

(a) Risk Aversion

0.0% 0.2% 1.3%

83.2%

8.2% 7.1%

0%

20%

40%

60%

80%

100%

NOV JAN MAR MAY JUL SEPO
pt

im
al

 M
ar

ke
tin

g 
V

ol
um

es
 a

s 
a

Pe
rc

en
ta

ge
 o

f 
In

iti
al

 S
to

ck
s

(b)  Risk Neutrality

Figure 5.  Expected Distribution of Sales Over the Storage Season
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Table 1.  Corn Price Model Estimates

 �pi 
 ��pi	2 � M
2

j
1

[d1jcos(2% k
52/j

) � d2jsin(2% k
52/j

)] � �i

 �i6i	1 � t (0, )2
i ,v)

 )2
i 
 7 � ��

2
i	1 � �)

2
i	1 � 51 cos(2%k /52) � 52 (sin(2%k /52)

Parameter Estimate p-Value Parameter Estimate p-Value

� 0.0506 0.0488 7 1.6255 0.0078

-0.5776 0.0000 � 0.0934 0.0013d11

-0.3893 0.0007 � 0.7658 0.0000d21

-0.0021 0.4929 0.6222 0.0614d12 51

0.3211 0.0029 -1.1059 0.0000d22 52

 0.1913 0.0000v 	1

Statistics

 LR   = 74.9968

Ljung-Box Q-statistics

 Q(5)  =  3.6719 (0.2991) Q2(5)    =   1.1303 (0.7698)

Q(15) = 13.1055 (0.4397) Q2(15)  = 12.8787 (0.4572)

Q(20) = 17.9130 (0.4614) Q2(20)  = 16.3879 (0.5655)

Notes: pi is the logarithm of cash price at Saginaw, Michigan in week i.  Likelihood ratio tests were
used to determine the order of the seasonal functions in mean and  variance, k is the observation
number in the season which corresponds to the current  i (k = 1,  2, ... 52), and LR is the
likelihood ratio test statistic for GARCH(1,1) with conditional normal errors (1/v = 0) against
conditional t-distributed errors (1/v > 0).  Q(l) is a test for l-th order serial correlation in the
residuals; and Q2(l) is a test for l-th order serial correlation in the squared standardized residuals. 
The values in parentheses following each Q test statistic are the corresponding p-values for that
test.
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Table 2.  Cutoff Prices for Different Storage Costs and Interest Rates for Nearly
Risk Neutral Producers

Month
Base Case Changes in

Storage Costs
Changes in

Interest Rates

r = 10%  = $0.01  = $0.02  = $0 r = 15% r = 5%�� �� ��

November $4.1 $3.9 $4.1 $3.9 $4.1

January $4.3 $4.1 $4.3 $4.1 $4.3

March $4.1 $4.1 $4.1 $4.1 $4.1

May $1.9 $1.7 $2.9 $1.9 $3.1

July $1.7 $1.7 $1.7 $1.7 $1.7

September 0 0 0 0 0
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Table 3.  Performance of Alternative Storage Rules

Performance
Measure

Sell Everything
at Harvest

Optimal Storage Under
Near Risk Neutrality

Optimal Storage
Under Risk Aversion

Expected Wealth/Bushel $2.237 $2.375 $2.301

Unconditional Variance of
Wealth/Bushel

0.494 0.454 0.101

Willingness to Pay/Bushel $0 $0.138 $0.042
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Appendix

Derivation of the Optimality Conditions

The state vector for our problem is defined as  and Bellman's equation can bext 
 (wt, st, pt, zt)

written:

(A.1a) vT (xT) 
 U (wT)

(A.1b) vt (xt) 
 max
qt

Et {vt�1 (xt�1)} ; t 
 0, 1, á, T	1

where the maximization is subject to the transition equations:

(A.2a) wt�1 
 (1 � r) [wt � pt qt 	 � (st 	 qt)] ; t 
 1, 2,á, T

(A.2b) st�1 
 st 	 qt ; t 
 0, 1, á, T	1

and the feasibility constraints:

(A.2c) qt � 0 ; t 
 0, 1, á, T	1

(A.2d) qt � st ; t 
 0, 1, á, T	1

We solve the problem by iterating on Bellman's equation.

At the final decision period  the constraint (A.2d) is clearly binding because, from (A.1a) andt 
 T	1

(A.2a), stocks have no value in the terminal period T but wealth does.  Hence, the solution at  ist 
 T	1
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.  In all prior periods the necessary conditions for solving Bellman's equation subject to theqT	1 
 sT	1

transition equations and feasibility constraints are given by:

(A.3a) Et

0vt�1 (xt�1)

0wt�1

(1 � r) (pt � �) 	
0vt�1 (xt�1)

0st�1

	 �t � 0

(A.3b) qt Et

0vt�1 (xt�1)

0wt�1

(1 � r) (pt � �) 	
0vt�1 (xt�1)

0st�1

	 �t 
 0

(A.3c) �t (qt 	 st) 
 0

and  and  .  Here, �t is the shadow value of relaxing the short sellingqt � 0, �t � 0, st 	 qt � 0

constraint.  It will also be useful to note that from the envelope theorem:

(A.4)
0vt (xt)

0st


 	� (1 � r) Et

0vt�1 (xt�1)

0wt�1

� Et

0vt�1 (xt�1)

0st�1

, and

(A.5)  
0vt (xt)

0wt


 (1 � r) Et

0vt�1 (xt�1)

0wt�1

Now using (A.4) and (A.5), (A.3) can be expressed

(A.6a)
0vt (xt)

0wt

pt 	
0vt (xt)

0st

	 �t � 0
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(A.6b) qt

0vt (xt)

0wt

	

0vt (xt)

0st

	 �t 
 0

(A.6c)  �t (qt 	 st) 
 0.

These are the conditions given in the text. 


