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Student Numbers and Sustaining Courses
and Fields in Ph.D. Programs

George C. Davis and Ernesto Perusquia

Many agricultural economics departments are concerned about the vitality of their
Ph.D. programs. A particular problem is insufficient student numbers to justify teaching
certain courses or fields. As a consequence, much faculty time can be spent debating
alternative program structures without any real idea of the likelihood that a proposed
program structure will succeed. This article presents a framework for deriving some
analytical and empirical results for alternative Ph.D. program structures. A download-
able program is used to generate some representative results that will hopetully help
others minimize speculations and time spent in committee or departmental meetings.
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In the Department of Agricultural Econom-
ics at Lake Wobegon University, everything
good about the Ph.D. program is above av-
erage: the number of students, the assistant-
ships, the graduate faculty, the salaries, even
the support staff. The students can choose
any JEL code number as a specialty area, all
classes have ample students, and the student
to faculty ratio is high. In fact, the depart-
ment head, Professor Twain. thinks the ru-
mors about dying Ph.D. programs ‘‘are
greatly exaggerated.”

As a fantasy, the vibrant Ph.D. program
at Lake Wobegon University is something
many departments would like to experience.
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In reality, there are many agricultural eco-
nomics departments around the country that
are concerned about the vitality of their
Ph.D. programs. To document this concern
only requires a sympathetic ear at profes-
sional meetings or a cursory review of the
literature (e.g., Huffman and Orazem; Nor-
ton et al.; Schrimper 1985, 1999). A partic-
ular problem for many departments is low
student numbers.

Low student numbers are especially prob-
lematic for departments in the teaching area,
where it would seem there are economies of
class size, at least over a large range of student
numbers. For the instructor, much of the total
cost associated with teaching a class is fixed:
for the same type of instruction, out-of-class
preparation and in-class instruction time are
basically the same tor 5, 10, or 20 students.
Although the variable cost is increasing, it is
likely increasing at a decreasing rate. In gen-
eral, it is more time efficient to teach a full
class than an almost empty class. This argu-
ment is even more relevant when the oppor-
tunity cost of time is considered, given that
every hour devoted to teaching takes away
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from time that could be spent doing research
or extension activities. These cost economies
are probably the reason that most universities
have some type of policy on the minimum
class size required for a course.

Many variables influence whether or not a
course or a field will be successful: the num-
ber of students, which depends on assistant-
ship levels and the number of assistantships
available; the number of courses oftered; the
number of courses required; the number of
field course credit hours required; the number
of credits per course: etc. With so many var-
iables, departmental debates about the small
class problem can bog down as different fac-
tions argue for different instruments (vari-
ables). One faction claims, “the problem is not
courses: we need more students, and to get
more students we need more assistantship re-
sources.” Another faction says, ““‘we are un-
likely to get more resources, so we need to cut
the number of offerings.”” Still another faction
argues, “we don’t have to cut course offer-
ings—we can teach the same number of cours-
es but just require the students to take more
course hours.” Each of these statements is true
to some degree, but there is also a great deal
of uncertainty as to the effectiveness ot each
of these alternatives. What is required is some
evidence as to the efficacy of these alterna-
tives.

There are two ways to obtain evidence as
to the efficacy of alternative Ph.D. program
structures: experimentally or analytically. Al-
though an experimental approach of turning a
Ph.D. program into a laboratory will provide
observational evidence, this evidence comes at
an extremely high price—excessive adminis-
trative duties for faculty members, program
discontinuity, and varying program quality, to
name a few. Alternatively, although an ana-
lytical approach will not provide observational
evidence, it can provide likely outcome evi-
dence. More important, it does not come with
such a high price tag in terms of faculty time
and program continuity. As a consequence, an
analytical approach is attractive.

The purpose of this article is to present an
analytical framework for determining the
number of expected students in a field and in
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a course in some alternative Ph.D. program
structures. We have found in our own depart-
ment that these results helped minimize the
amount of time spent debating and deciding
the likely success of alternative program struc-
tures. We suspect others struggling with these
issues may also find the results useful. Be-
cause there are many factors that can affect
the number of students. and therefore the num-
ber of courses that are viable and vital. the
next section gives a literature review of the
main factors that have becen identified as 1m-
portant on a national level. The following sec-
tion then provides the analytical framework
and the results. The article closes with a sum-
mary and some concluding remarks.

Some Important Characteristics of
Ph.D. Programs

To understand the concerns about Ph.D. pro-
grams, it is informative to first look at what
has happened to the quantity of Ph.D. students
over time. Schrimper (1999) provided perhaps
the most recent data available over time on
Ph.D. degrees granted.! Those data were an
update of the data given in Schrimper (1985)
and were compiled mainly from the May is-
sues of the American Journal of Agricultural
Economics. The data were compiled from 36
institutions, and the national and regional av-
erages over time are shown in Figure 1. As
can be seen, the average number of Ph.D.s per
department for the entire United States per
year has varied between four and six from
1985 to 1997. In general, the North Central
and Western regions averaged granting more
Ph.D.s than the national average, whereas the
Northeast and Southern regions averaged
granting fewer Ph.D.s than the national aver-
age.

Table | gives the summary statistics for
each department and overall departments
within each region between 1985 and 1997.

' Schrimper’s data is for Ph.D. degrees granted. Al-
though the emphasis here is on Ph.D. students. it seems
reasonable to expect the number of Ph.D.s granted to
be some relatively constant proportion of the number
of students.
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Figure 1. Average Number of Ph.D. Degrees Per Year 1985—-1997

Of the 36 departments listed, |15 had aver-
ages above the national average, leaving 21
with averages below the national average. Of
the 15 departments with averages above the
national average, all had coefficients of var-
iation less than .5. In fact, the correlation
between the means and the coefficients of
variation is —.79, which suggests that size
and stability are positively correlated. This
distribution of students is likely due to many
factors. which can be partitioned into supply
and demand factors.

In the only published empirical analysis
of the market for Ph.D. graduate students
that we are aware of, Huffman and Orazem
developed a theoretical model ot the demand
and supply for graduate students. Overall,
the empirical results were in agreement with
their theory and intuition. On the demand
side, they found that the wage rate for grad-
uate assistantships, total state farm income,
and experiment station expenditures were
negatively related with quantity demanded.
They also found that total state personal in-
come, the average wage rate for assistant
professors, total state agricultural extension
expenditures, and the number of undergrad-

uates were all positively associated with
quantity demanded. The only coefficient
having a sign in conflict with theory was that
on the agricultural extension expenditures.
On the supply side, they found that available
graduate student assistantships, the wage
rate for graduate assistantships, the wage
rate for assistant professors, and the size of
the faculty were all positively associated
with the quantity supplied. They found that
both measures of opportunity cost were neg-
atively associated with the quantity supplied.
Of particular interest, they found that the
supply elasticity, with respect to the assis-
tant’s wage rate net of tuition, was .57. Thus,
for every 10% increase in the assistantship
wage rate net of tuition, the number of stu-
dents is expected to increase by 5.7%. Al-
though one could quibble over some of the
specific variables in the model, the major de-
terminants seem to be captured, mainly the
price (available assistantships, assistantship
wage rate, and tuition), opportunity cost. ex-
pected return, and institutional effects.

In looking at these major determinants, the
individual departments have the greatest con-
trol over the two price determinants: available
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Table 1. Summary Statistics on Number of
Ph.D.s Granted Per Year by Department,
1985-1997

Cocfti-

Average Standard cient of

Number Devia- Varia-

of tion of tion of

Ph.D.s  Ph.D.s Ph.Ds

University Granted Granted Granted
South 4.2 3.2 0.8
Texas A&M 9 3.3 0.4
Oklahoma State 7.3 2.7 0.4
NCSU 7.2 2.5 0.3
Florida 4.9 2.5 0.5
VPI 4 1.7 0.4
Kentucky 37 2.2 0.6
Mississippi State 34 2.8 0.8
Georgia 2.6 2.0 0.8
Clemson 2.3 1.6 0.7
Tennessec 2.2 1.5 0.7
Auburn 2.1 1.6 0.8
Texas Tech 1.4 1.0 0.7
Northeast 3.1 2.9 0.9
Cornell 8.1 2.8 0.3
Rhode Island 2.8 1.5 0.5
Maryland 2.5 1.8 0.7
Penn State 2.3 24 1.0
Connecticut 1.6 1.4 0.9
Massachusctts 1.1 0.8 0.7
North Central 6.6 4.2 0.6
lowa State 12.1 3.3 0.3
Minnesota 10.1 3 0.3
Michigan State 8.4 3.4 0.4
[llinois 7.8 1.6 0.2
Purdue 7.5 3.5 0.5
Ohio State 7.1 3.9 0.5
Wisconsin 5.5 1.5 0.3
Missouri 3.4 2.3 0.7
Kansas State 2.3 22 0.9
Nebraska 2.1 1.8 0.8
West 5.3 3.2 0.6
Berkeley 9.8 3.6 0.4
Davis 6.4 3.1 0.5
Stantord 5.5 1.7 0.3
Washington State 4.8 1.9 0.4
Oregon State 4.2 2.7 0.6
Hawaii 3.7 2.4 0.6
Colorado State 3.7 1.9 0.5
Utah State 3.9 2.9 0.7
National 4.9 3.6 0.7
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assistantships and the assistantship wage rates.
Yet the control over these determinants has
likely declined over the past 20 years as the
source of funding has changed (sec Alston and
Pardey: Huffman and Just 1994, 1999; Just
and Huftman: Norton et al.;: Perry; Rubenstein
et al.).

Much of the funding discussion in the lit-
erature has focused on the difference between
formula funds and competitive funds. There is
no competition for formula funds between uni-
versities; formula funds are allocated based on
a specific formula.? Huffman and Just (1994,
1999) have documented empirically the ben-
efits of formula funds over competitive funds
for agricultural productivity, but there would
seem (o also be some advantages associated
with formula funds in controlling assistant-
ships.

As Huffman and Just (1994, 1999) pointed
out. formula funds have less risk and uncer-
tainty than competitive funds. In addition, the
rescarch projects associated with formula
funds are continuing with no real deadline or
deliverable product. Competitive funds usually
have a short timeline with a specific deliver-
able product. For these reasons, it is much eas-
ier to make budgeting plans in recruiting grad-
uate students and offering assistantships with
tormula tunds. Furthermore, first- and sccond-
year students are more difficult to fund with
competitive funds than with formula funds.
because these students usually do not possess
the necessary skills to be very productive on
a short-term competitive fund project. Alter-
natively, because of the longer timeline and no
specific deliverable product associated with
formula funds, first- and second-year students
can be *‘subsidized” with formula funds until
they are at a more productive stage.

That said, creative administrators can make

2 Alston and Pardey (chapter 2) provided a nice his-
torical account of the changing formula. As Huffman
and Just (1999) stated in their footnote two. “In the
Amended Hatch Act (1995). ..., la] new formula was
established: 20% is divided equally among states, 26%
is allocated according to a state’s share of farm popu-
lation, 26% is allocated on a state’s share of national
rural population. 25% is allocated to regional research,
and 3% is allocated to administrative cost.™
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formula funds and competitive funds highly
substitutable, but only if the competitive funds
have been captured. The relevant follow-up
questions then are: what has happened to the
amount of formula funds versus competitive
funds over time? what has happened to the
distribution of these funds across departments
over time?

Perry showed that roral research and exten-
sion expenditures actually have been on the
rise since 1982. Norton et al. found similar
results between 1974 and 1993, Norton et al.
and Perry both showed that, in real terms, the
level of formula funds has been decreasing
since the early 1980s, whereas the level of
competitive funds have been increasing. What
is perhaps most interesting about this fact is
the distribution of the competitive funds
across states.

Norton et al. found that competitive funds
are highly skewed toward a few states. Using
the data reported in Norton et al. (their Table
3) and from Schrimper, our Table 2 shows the
rank of the 36 departments by states in terms
of funding for 1986 and 1992, along with the
number of Ph.D. degrees granted 4 years later.
The states are sorted in descending order by
the average number of Ph.D.s granted, and the
underline indicates the cutoff for being above
the national average of 4.91 degrees. It should
be kept in mind that the Perry and Norton et
al. data are with respect to roral agricultural
research and extension monies, not just those
devoted to agricultural economics.® With this
caveat in mind, in 1990 there were 16 depart-
ments (associated with 13 states) whose av-
erage number ot Ph.D.s granted was above the
national average. Four years earlier, these 13
states accounted for about 54% of the com-
petitive funds, implying that the other 39

' Norton ct al. indicated (p. 1344) that economics
projects were not eligible for competitive grants during
the first decade of funding. In addition, most of the
rate of change between 1974 and 1993 scems to be
due to changes between 1986 and 1990. The relation-
ship therefore between agricultural economics funding
and total agricultural research funding is by no means
clear, but it would be expected to be positive.
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states accounted for 46%.* In 1996, there were
once again 16 departments (associated with 14
states) whose average number of Ph.D.s grant-
ed was above the national average. Four years
earlier, these 14 states accounted for about
56% of the competitive funds, implying that
the other 38 states accounted for 44%.

This casual empiricism is only suggestive
of the possible relationship between the size
of Ph.D. programs and the changing distribu-
tion of funds between formula and competitive
funds. The data are too imprecise and the sta-
tistics too crude to draw any strong conclu-
sions. However, the results do seem to be con-
sistent with intuition and anecdotal evidence.
Although the number of Ph.D.s granted has
remained relatively stable, the real decline in
formula funds and the increasing reliance on
competitive funds has likely placed more
stress on the majority of departments, given
that a majority of the competitive funds go to
a minority of the departments.

Analytical Approach

Certainly, there are many factors that will af-
fect the number of students in a class, and
these will vary over time and by department.
Estimating an appropriate multivariate model,
such as a count data system, could be done if
sufficient data existed and there was enough
program structure variation. However, for
most departments, these data are either not
readily available or there is not enough vari-
ation in the program structure to draw reliable
econometric inferences about alternative struc-
tures. For these reasons, an alternative ap-
proach is pursued, to shed some light on the
question at hand.

The Analytical Approach

Many Ph.D. programs are structured such that
a core set of courses are required to be taken
by all students, followed by a set of elective
courses from which the students can choose.

*+ As Norton ¢t al. indicated, there are 52 “‘states™
because the data include the District of Columbia and
Puerto Rico.
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Table 2. Average Ph.D.s Grated Per State and Competitive Fund Rank 1986 and 1992#

1986 1992
Competi- Competi-
1990 1986 Com- tive 1996 1992 Com- tive
Student  petitive  Funds Student  petitive  Funds
State Average Funds %  Rank State Average Funds %  Rank
Minnesota 12.3 2.75 15 [owa 10.5 2.66 13
lowa 11.7 2.06 17 Minnesota 10.5 2.19 19
New York 1.3 7.90 2 [llinois 8.5 3.96 5
California 10.3 12.35 ! Indiana 8.5 2.35 16
Indiana 8.7 2.80 14 Nortth Carolina 8 3.95 6
Ohio 8.3 3.55 9 Ohio 8 2.49 15
Michigan 8.0 4.69 5 California 7.5 11.52 1
[llinois 7.0 5.08 4 Michigan 7.5 3.32 7
Oklahoma 6.3 0.64 33 New York 7 8.05 2
Texas 5.8 3.69 7 Florida 7 311 9
North Carolina 5.7 3.09 11 Wisconsin 6.5 5.88 4
Washington 5.3 4.30 6 Colorado 5.5 1.79 21
Utah 5.3 0.95 29 Pennsylvania 5 2.81 10
Wisconsin 4.0 6.73 3 Maryland 5 2.21 18
Virginia 4.0 1.82 20 Texas 4.8 5.93 3
Florida 3.3 3.66 8 Missouri 4.5 2.68 12
Oregon 3.3 3.37 10 Kansas 4.5 1.42 23
Missouri 3.3 2.90 12 Tennessee 3.5 1.43 22
Hawaii 33 0.25 45 Virginia 3.5 1.08 28
Georgia 3.0 1.96 19 Rhode Island 3.5 0.35 49
Kentucky 3.0 1.52 23 Washington 3 3.17 8
Colorado 3.0 0.99 28 Nebraska 3 1.15 25
Rhode Island 3.0 0.37 42 Oklahoma 3 (0.98 30
Tennessee 2.7 0.58 34 Utah 3 0.83 34
Mississippi 2.7 0.54 35 Hawaii 3 0.48 44
Pennsylvania 2.3 2.32 16 Alabama 2.5 1.11 26
Nebraska 2.3 1.21 25 South Carolina 2 0.84 32
South Carolina 2.3 0.51 36 Kentucky 1.5 1.11 27
Alabama 2.0 0.79 31 Connecticut 1.5 0.94 31
Massachusetts 1.0 2.90 13 Georgia 1 2.71 11
Maryland 1.0 2.02 18 Oregon | 2.05 20
Connecticut 1.0 1.14 26 Mississippi 1 0.70 38
Kansas 0.7 1.58 22 Massachusetts 0.5 2.22 17

a1t was assumed that it takes 4 years to complete 4 Ph.D. The competitive grant numbers are from Norton et al. and
are 3-year centered moving averages. The 1990 student numbers are the averages for 1989, 1990, and 1991, a centered
moving average. The 1996 student numbers are the 2-year average between 1996 and 1997, becausc the Schrimper

data stop in 1997.

Often a field or specialty area is defined as a
set of designated courses, or, as an alternative
interpretation, a student may define his own
field with the only requirement being that a
set number of courses within a group of cours-
es must be taken. Because of the cost econo-
mies alluded to above, most universities have

a minimum student number requirement for a
course to be taught. In an informal survey of
about 10 universities, we found that the most
common minimum requirement is about five
students, although some universities leave that
decision to the department. Regardless of
whether or not there is a formal required class
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size minimum, at some point the economics of
the class size becomes a pertinent departmen-
tal issue.

Core courses are often taken in other de-
partments (e.g., economics), with additional
students from those departments helping to
easily surpass the required student minimum.
The required student minimum is more of a
problem in field courses taken only by agri-
cultural economics students. As a conse-
quence, the intended focus of the following
analysis is on field courses.

The ultimate question of interest is how
many students will take a given course under
different program structures, different student
numbers, and different probabilities of taking
a field? Before presenting the general ap-
proach to the problem, consider a simple ex-
ample. Suppose a department has three cours-
es from which fields can be defined: ¢,, an
advanced econometrics course; ¢,, a demand
theory course; and ¢, an industrial organiza-
tion theory course. Let the set of courses be
defined as ¢ = {¢, ¢, ¢;}. Assume the struc-
ture of the program is such that two courses
are required for a field. so there are three pos-
sible fields: 7 = {{c¢,, c-}.{c), ¢y} {esn 3} ) =
{1, f2. f3}, where each field represents a unique
setor fy = {c. o} fy = {en it and f3 = {o,,
c;}. The first field, f,. could be defined as the
empirical demand analysis field; the second
field, f;. as the empirical industrial organiza-
tion field; and the third field, f;, as the theo-
retical microeconomics field. Now suppose
that the department has a strong reputation in
the area of econometrics and industrial orga-
nization and the graduate coordinator believes
that probabilities associated with each field be-
ing taken are P(f)) = .40, P(f;) = .50, and
P(fy) = .10. With 10 students each taking a
field, the expected numbers of students in each
field are f,. E(N)) = 10 X 40 = 4; f,, E(N-)
= 10 X .50 = 5; and f;, E(N;) = 10 X .10 =
1. Because the courses appear in more than
one field, the expected numbers of students in
acourse are ¢, E(n) =4 + 5 = 9; ¢,, E(ny)
=44+ 1 =5 and ¢;, E(ny)) =5+ 1 = 6.

Of course, the above results depend on sev-
eral key parameters and the results will vary

as these parameters change® As a conse-
quence, it is important to understand the more
general structure. Suppose there are N students
in a cohort and a department has C courses
from which fields can be defined. Now a field
will be defined as a set of courses (k) to be
taken out of the C available courses. Placing
no restrictions on the number of fields then the
number of possible fields is the combination
F = (), or from C courses choose k.¢ The
total number of fields defines the event space.
For each field in the event space. a subjective
probability of the field being taken by a stu-
dent P; is assigned. This then defines a mul-
tinomial distribution

X PYIPY o P

which gives the probability that out of N stu-
dents, N; choose field 1, N, choose field 2,
etc., and the subscript F indicates the number
of fields.” Let I = {1. 2. 3. ..., C} be the
indexing set for the courses and J = {1,2 ...,
F} be the indexing set for the tields. Note that
these indexing sets imply that subsets of the /
indexing set define an element in the J index-
ing set (e.g., f; = {c¢}, ¢}, s0 1 = {1,2}). For
a multinomial distribution, the expected num-
ber of students taking a field j € J is then

(@) BNy = NP,

* These parameters are taken as being exogenously
determined. For example, as was discussed in the ear-
lier section, the number of students will depend on
many factors, such as recruiting efforts, assistantship
levels. and departmental reputation. However, by tak-
ing the number of students as exogenous, the analysis
herein does not consider those factors that may affect
student numbers but states only what 1s expected to
happen with a given number of students.

® The conclusions discuss how the approach can be
easily generalized to allow the student to choose more
than one field from all possible fields and also how to
restrict the number of fields to less than all possible
fields.

7 The multinomial distribution and its properties
can be found in just about any mathematical statistics
book. See. tor example, Mendenhall, Scheaffer, and
Wackerly, page 214.
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The expected number of students in a course is
then just the sum of the expected number of
students in each field requiring that course or

.
(3) E(m.)= > EWN).

Vic j.j—1

But simple substitution of Equation (2) into
Equation (3) gives

F F
4y E(n.,) = > NP;=N > P, =Np,

viej,j—1 Viej.j-1

where p, = 3%,_.. | P; is the probability that a
student takes a specific course. Thus, the prob-
ability of a specific course being taken can be
recovered from the about the
structure of the program and the probability of
a specific field being taken. However, note that
although the rules of probability require that
LF | P; = 1, there is no such requirement that
3¢, p. = 1. This result is due to the layering
or overlapping structure of the sets involved
in that a course will appear in more than ficld.
In addition, although Equations (3) and (4) can
be used to estimate the expected number of
students for a specific field or course, there
may also be interest in the average number of
expected students in a field N and the average
number of expected students in a course /.
Given the formulas above, these averages have
rather simple forms

information

S N=LSEW) LS e =Y
¢ TP U Fs T F
1 & N &

&) A=—>Np=—
©) A=z Np = E 2

Comparative Statistics

What can be said analytically about the gen-
eral procedure summarized in Equations (2)—
(6)? Some limited analytical insights can be
obtained by considering the partial derivative
of these equations with respect to some of the
parameters. Equation (2) indicates that for
each additional student. the expected number
of students in a field will increase by P;. Equa-
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tion (2) also indicates that for each additional
unit increase in P,, the expected number of stu-
dents in a field increases by N. Because P; €
[0, 1] and N = 1, then a one-unit change in the
probability of a field being taken has a larger
impact on student numbers in a field than in-
creasing the total number of students by one
student. Similar results apply for Equation (4).
Equations (5) and (6) indicate that increasing
the number of students (V) by one will increase
the average number of students in the fields and
courses by F-! and 1/C X, p, respectively.
Equation (5) indicates that increasing the num-
ber of fields (F) by one will decrease the av-
erage number of students in a field by —N/F-.
However, a similar result does not necessarily
hold for Equation (6) because as the number of
classes (C) increases, the denominator and the
summation term in the numerator in (6) will
increase.

With respect to courses, stating that the re-
sults will change as p, changes is not very en-
lightening and just begs the question, what
causes p; to increase within the present frame-
work? By definition, p, = X{,;;_, P; and any-
thing that causes this sum to increase will
cause p, to increase. It is true that for a fixed
number of fields (F) with fixed probabilities
(P}), increasing the number of required courses
in a field (k) will increase the number of terms
in the summation— is an element of more j—
therefore, p, will increase. But beyond this,
there are no clear signable analytical results.
This is mainly because several of these param-
eters are jointly determined and also affect the
summation term in a nonlinear manner. For
example. if there are at least four courses, the
number of course combinations (i.e., number
of possible fields F) will increase, reach a
maximum, and then decline as the number of
required courses in a field (k) increases. In ad-
dition, as the number of fields (F) change, this
will change the probability of a particular field
(P;), but all do not have to decrease—only
some more than others. Because of results
such as these, we turn to a simulation analysis
of some possible scenarios.

Parameter Settings

The analytical structure given above depends
on several key parameters: the number of
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students (N), the number of courses from
which fields will be defined (C), the number
of courses required for a field (k), and the
probability that a field will be taken by a
student (P;). Obviously, different depart-
ments will have different values for these pa-
rameters, and as these parameters change, so
too will the expected number of students in
a course. Here some examples will be pre-
sented that are representative of some rea-
sonable structures, but there is no claim that
these results are exhaustive. Other parameter
settings will lead to different results, and for
those interested in other parameter settings,
the program used to calculate the results is
available at http://agecon.tamu.edu/faculty/
gdavis/gdavis.htm.* The program is a simple
spreadsheet program that is very user friend-
ly and allows all the parameters of the gen-
eral framework to be altered to any specifi-
cation that is desirable.

For the representative or demonstration
cases presented herein, the following param-
eter settings are considered. The number of
students are allowed to range from 3 to 15
(N = 3,4, ..., 15). The number of courses
from which fields can be constructed are 3,
4, and 5 (C = 3, 4, 5). The number of re-
quired courses are 2, 3, and 4 (k = 2, 3, 4).
By the combinatorics, the parameters C and
k then define the number of possible fields
(F):(C=3,k=2,F =3),(C=4,k =3,
F=4,C=4 k=2 F =6),(C=5,k
=4, F =5),(C=5k=3,F =10), and
(C = 5,k =2, F = 10). Subjective proba-
bilities are then assigned to each field (FP)),
such that the probabilities of the fields with-
in a specific program structure are somewhat
normally distributed. Again, someone inter-
ested in other parameter settings is encour-
aged to download the spreadsheet and tailor
the parameter settings to their preferences.

8 Once at this web page, be sure to rcad the “‘read-
me” file first.

Y Having 6 or 10 fields may seem high, but an
cquivalent way to interpret this structure is that the
student defines his own field and then the only re-
striction is that the student must choose k courses out
of C.

9]
98]
Nel

Results

Tables 3-8 give the results. The courses de-
fining the fields are reported in the top part
of each table, along with the assigned prob-
abilities for each field and then the implied
probabilities for each course. The lower part
of the tables show the number of students,
the corresponding number of expected stu-
dents in each field, the average number of
students in a field, the expected number of
students in a course, and the average number
of students in a course.'?

Some Representative Results and
“What if”’ Questions

Table 3 shows the results for a program in
which there are three courses, with two
courses required per field, or equivalently in-
terpreted, from three courses the student
must take two. Because of the higher prob-
ability associated with field two (f;), natu-
rally field two will have more students than
field one (f;) or field three (f;). Also, note
that for each additional student, the average
number of students in a field increases by
F ' = 1/3 = .33, as implied by Equation (5).
In terms of courses, course one (¢,) and
course three (c¢;) constitute field two, and
given that field two has a higher probability
than the other fields, then courses one and
three have more expected students than
course two (c¢,). Also, and as implied by
Equation (6), for each additional student the
average number of expected students in a
course is 1/C ¢, p, = 2/3 = .67. The other
tables can be interpreted in a similar manner.

As has been argued, redesigning Ph.D. pro-
grams is administratively very costly, espe-
cially in terms of removing or adding new
fields or courses, and one would like an idea
of how successful a new program structure
will be before it is implemented. The frame-

0 Obviously, the mathematics can lead to nonin-
teger values for the number of students. Given that we
arc measuring physical presence and not mental pres-
ence, noninteger values technically are inappropriate,
so to be conservative, one may want to round the num-
bers down to the closest integer.



540 Journal of Agricultural and Applied Economics, December 2002

Table 3. Three Courses—Choose Two Model

Ficld Content Field Probability Course Course Probability

' {c), o) 0.25 ¢ 75

1 {c, i) 0.50 I .50

1 {ca i} 0.25 Cy 75
Sum 1.00 2.00

Student . . .

Numbers Expected Numbers in a Field Expected Numbers in a Course

N 1 t 15 Average ¢ I I Average
3 0.75 1.50 0.75 1.00 2.25 1.50 2.25 2.00
4 1.00 2.00 .00 1.33 3.00 2.00 3.00 2.67
5 1.25 2.50 1.25 1.67 3.75 2.50 3.75 3.33
6 1.50 3.00 1.50 2.00 4.50 3.00 4.50 4.00
7 1.75 3.50 1.75 2.33 5.25 3.50 5.25 4.67
8 2.00 4.00 2.00 2.67 6.00 4.00 6.00 5.33
9 2.25 4.50 2.25 3.00 6.75 4.50) 6.75 6.00

10 2.50 5.00 2.50 3.33 7.50 5.00 7.50 6.67

11 275 5.50 2.75 3.67 8.25 5.50 8.25 7.33

12 3.00 6.00 3.00 4.00 9.00 6.00 9.00 8.00

13 3.25 6.50 3.25 4.33 9.75 6.50 9.75 8.67

14 3.50 7.00 3.50 4.67 10.50 7.00 10.50 9.33

15 3.75 7.50 3.75 5.00 11.25 7.50 11.25 10.00

Note: Numbers in table may differ trom those implied by formulas due to rounding.

work presented herein can be used to shed
some informative light on several “what if”’—
type questions. For example, suppose a de-
partment has five courses. students must take
two courses out of the five, and the present
parameter settings apply-—remember that you
can select your own parameter settings in the
downloadable program. Without any more re-
strictions on the program structure, this im-
plies 10 possible fields. Suppose that the de-
partment wants to keep the existing program
structure but wants to know how many stu-
dents are needed for the average expected
number of students in a course to be greater
than five? Looking at the five—choose two pro-
gram, Table 6 indicates that it would take at
least 12 students on average in this rather flex-
ible program to reach that average. In this pro-
gram structure, course two (¢,) meets the min-
imum class size with about seven or eight
students, but the other courses are in much
worse shape.

Now suppose, because of resources, or oth-
er constraints, that the department realizes that
it is simply not viable to attract more than

eight Ph.D. students in a cohort. The question
is now what program structure is best suited
for eight students in order for the class size on
average to meet the minimum of five? Rather
than working with a fixed program structure
and a variable number of students. this ques-
tion just fixes the number of students and al-
lows the program structure to vary. With the
present parameter settings. Tables 3-8 indicate
that there are three structures that may support
this criterion: 5.33 students with a three cours-
es—choose two program (Table 3), 6.00 stu-
dents with a four courses—choose three pro-
gram (Table 5), and 6.40 students with a five
courses—choose four program (Table 8). If the
administrator is willing to go down to four stu-
dents on average per course, then the four
courses—choose two option also becomes via-
ble (Table 4). This provides a sample of the
types of questions that can be addressed within
this framework.

Conclusions and Extensions

Although funding for Ph.D. programs has
likely increased over the past two decades,
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Table 4. Four Courses—Choose Two Model

Field Content Field Probability Course Course Probability

1 {c), ¢} 0.05 ¢ .50

fs {c), ¢} 0.10 I .50

fa {en, o0} 0.35 oy .50

fa {ca, oy} 0.35 I .50

f (e ca) 0.10

fo {ey ) 0.05
Sum 1.00 2.00

Student . . .

Num- Expected Numbers in a Field Expected Numbers in a Course

bers Aver- Aver-

N i I e S fs Je age ¢ ¢! €3 Cy age
3 0.15  0.30 1.05 .05 030 0.15 0.50 .50 150  1.50 150 1.50
4 0.20 040 1.40 1.40 040 020 0.67 200 200 200 200 2.00
5 0.25 050 175 1.75 050 025  0.83 250 250 250 250 250
6 030 060 210 210 060 030 1.00 3.00 3.00 300 3.00 3.00
7 035 070 245 245 070 035 117 350 350 350 350 3.50
8 040 080 280 280 080 040 133 4.00 4.00 400 400 4.00
9 045 090 3.5 315 090 045 1.50 450 450 450 450  4.50

10 0.50 1.OO 350 350 1.00 050 1.67 5.00 500 500 500 5.00

11 0.55 1.10 385 3.85 1.10 055 183 550 550 550 550 5.50

12 0.60 120 420 420 1.20 0.60 2.00 6.00 600 600 6.00 6.00

13 0.65 1.30 455 455 1.30 0.65 2.17 6.50 650 650 650 6.50

14 0.70 140 490 490 140 070 2.33 7.00  7.00 7.00 7.00 7.00

15 0.75 1.50 525 525 1.50  0.75  2.50 7.50 750 750 750 7.50

Note: Numbers in table may ditfer from those implied by formulas due to rounding.

the source of the funds has shifted from non-
competitive to more competitive funds,
which has apparently affected the distribu-
tion of funds across states and therefore de-
partments. The shifting distribution of funds
has likely increased the amount of stress
many departments face concerning the num-
ber of Ph.D. students and number of field
offerings and requirements. The purpose of
this article was to provide an analytical ap-
proach and program that may be useful for
departmental debates and decisions about
Ph.D. programs.

The problem was cast in a simple but flex-
ible combinatorial framework consisting of a
few key parameters: the number of students in
the cohort (N), the number of courses (C), the
number of required courses to make a field (k),
and the subjective probabilities associated
with a field being taken by students (P;). From
this information, the expected number of stu-

dents within each field and course can be cal-
culated, along with the average number of ex-
pected students in a field and course. A few
analytical generalizations do emerge from the
analysis, some of which are obvious, some of
which are not.

Increasing the number of required courses
will increase the average number of stu-
dents in a course, ceteris paribus.
Increasing the number of fields by one de-
creases the average number of students in
a field by the number of students in the
cohort divided by the number of fields
squared, regardless of the probabilities as-
signed to the fields, ceteris paribus.
Increasing the number of students in the
cohort by one increases the average num-
ber of students in a field by the fraction
one over the number of fields, regurdless
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Table 5. Four Courses—Choose Three Model

Journal of Agricultural and Applied Economics, December 2002

Field Content Field Probability Course Course Probability

1 {c), €5 ¢y} 0.10 ¢ .90

fs {e ey o)) 0.40 I .60

1 {e). ¢ ey (.45 Cy .60

fa {ca ¢y} 0.10 Cy .90
Sum 1.00 3.00

Stu-

dent

Nuin- . .

bers Expected Numbers in a Field Expected Numbers in a Course

N 1 1> s fa Average - ¢y I cy Average
3 0.30 1.20 1.20 0.30 0.75 2.70 1.80 1.80 2.70 2.25
4 0.40 1.60 1.60 0.40 1.00 3.60 2.40 2.40 3.60 3.00
5 0.50 2.00 2.00 0.50 1.25 4.50 3.00 3.00 4.50 3.75
6 0.60 2.40 2.40 0.60 1.50 5.40 3.60 3.60 5.40 4.50
7 0.70 2.80 2.80 0.70 1.75 6.30 4.20 4.20 6.30 5.25
8 0.80 3.20 3.20 0.80 2.00 7.20 4.80 4.80 7.20 6.00
9 0.90 3.60 3.60 0.90 2.25 8.10 5.40 5.40 8.10 6.75

10 1.00 4.00 4.00 1.00 2.50 9.00 6.00 6.00 9.00 7.50

11 1.10 4.40 4.40 1.10 2.75 9.90 6.60 6.60 9.90 8.25

12 1.20 4.80 4.80) 1.20 3.00 10.80 7.20 7.20 10.80 9.00

13 1.30 5.20 5.20 1.30 3.25 11.70 7.80 7.80 11.70 9.75

14 1.40 5.60 5.60 1.40 3.50 12.60 8.40 8.40 12.60 10.50

15 1.50 6.00 6.00 1.50 3.75 13.50 9.00 9.00 13.50 11.25

Note: Numbers in table may differ from those implied by formulas due to rounding.

of the probabilities assigned to the fields,
ceteris paribus.

+ Increasing the number of students in the
cohort by one increases the average num-
ber of students in a course by the sum of
the probabilities over all classes—which is
not required to be one—divided by the
number of classes, ceteris paribus.

* Increasing the probability that a field or
course is taken by one unit has a larger
impact on increasing the number of stu-
dents in a field or course than increasing
the number of students in the cohort by
one unit, ceteris paribus.

Other comparative static results are ambiguous
and will depend on the specific parameter set-
tings.

The analysis presented herein is much
more flexible than it may first appear and can
be easily extended if so desired. For exam-
ple, there may be concern that the procedure

is limited in that only one field is chosen or
the number of possible fields is unrestricted.
Adding the requirement of more than one
field would just add another layer to the
problem, but the procedure would be the
same. More specifically, one would start as
before and determine the number of possible
fields from the number of classes and the
specific structure of the combinatorial prob-
lem. Once the number of fields deter-
mined, then a second-level combinatorial
problem would be defined wherein the stu-
dent would choose a specific number of
fields from the total number of fields avail-
able. and this second combinatorial problem
would define the new event space. Subjec-
tive probabilities would then be assigned to
the field combinations, and one would then
work backward to determine the probabili-
ties of specific fields and classes making and
the number of students in specific fields and
classes. With respect to the number of pos-

18



Table 6. Five Courses—Choose Two Model

Field Content Field Probability Course Course Probability

f {c), ¢} 0.00125 c, 23

S {c), ¢} 0.025 s 70

I {c), ¢4} 0.05 q .37

£ {cy, ¢5} 0.15 o, .38

fs {con i) 0.27375 Cs 33

fo {cy. ¢4} 0.27375

f4 {cs. €5} 0.15

fy {cy, ¢y} 0.05

fq {cy, o5} 0.025

Fio {cy, ¢s) 0.00125
Sum 1.00 2.00

Student

Num- . . .

bers Expected Numbers in a Field Expected Numbers in a Course

N [ e I I fs So iE: Ss o S Average C (& [ Cy Cs Average
3 0.00 0.08 0.15 0.45 0.82 0.82 0.45 0.15 0.08 0.00 0.30 0.68 2.10 1.12 1.13 0.98 1.20
4 0.01 0.10 0.20 0.60 1.10 1.10 0.60 0.20 0.10 0.01 0.40 0.91 2.80 1.50 1.50 1.31 1.60
5 0.01 0.13 0.25 0.75 1.37 1.37 0.75 0.25 0.13 0.01 0.50 1.13 3.49 1.87 1.88 1.63 2.00
6 0.01 0.15 0.30 0.90 1.64 .64 0.90 0.30 0.15 0.01 0.60 1.36 4.19 2.24 2.25 1.96 2.40
7 0.01 0.18 0.35 1.05 1.92 1.92 1.05 0.35 0.18 0.01 0.70 1.58 4.89 2.62 2.63 2.28 2.80
8 0.01 0.20 0.40 1.20 2.19 2.19 1.20 0.40 0.20 0.01 0.80 1.81 5.59 2.99 3.00 2.61 3.20
9 0.01 0.23 0.45 1.35 2.46 2.46 1.35 0.45 0.23 0.01 0.90 2.04 6.29 3.36 3.38 2.94 3.60

10 0.01 0.25 0.50 1.50 2.74 2.74 1.50 0.50 0.25 0.01 1.00 2.26 6.99 3.74 3.75 3.26 4.00

11 0.01 0.28 0.55 1.65 3.01 3.01 1.65 0.55 0.28 0.01 1.10 2.49 7.69 4.1 4.13 3.59 4.40

12 0.02 0.30 0.60 1.80 3.29 3.29 1.80 0.60 0.30 0.02 1.20 2.72 8.39 4.49 4.50 3.92 4.80

13 0.02 0.33 0.65 1.95 3.56 3.56 1.95 0.65 0.33 0.02 1.30 2.94 9.08 4.86 4.88 4.24 5.20

14 0.02 0.35 0.70 2.10 3.83 3.83 2.10 0.70 0.35 0.02 1.40 3.17 9.78 5.23 5.25 4.57 5.60

15 0.02 0.38 0.75 2.25 4.11 4.11 2.25 0.75 0.38 0.02 1.50 3.39 10.48 5.61 5.63 4.89 6.00

Note: Numbers in table may ditter from those implied by formulas due to rounding.
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Table 7. Five Courses—Choose Three Model

Field Content Field Probability Course Course Probuability

1 {e), ¢ 3} 0.00125 I 0.77

fs (e, ¢ ¢y} 0.025 ¢y 0.30

1 {c. ¢ c5) 0.05 I 0.63

i {5 ¢y} 0.15 ¢y 0.63

fs {cr. ¢ o) 0.27375 Cs 0.67

i {en g cs) 0.27375

/s {cs, €5 ¢y 0.15

£y {ca ¢a 5) 0.05

fs {cs ¢y 5} 0.025

fio {cvn C4e 5 0.00125
Sum 1.00 3.00

Student

Num- . . .

bers Expected Numbers in a Field Expected Numbers in a Course

N 5 > s s S S Vi s o S Average e [ (&) Cy Cs Average
3 0.00 0.08 0.15 0.45 0.82 0.82 0.45 0.15 0.08 0.00 0.30 2.32 0.90 1.88 1.88 2.02 1.80
4 0.01 0.10 0.20 0.60 1.10 110 0.60 0.20 0.10 0.01 0.40 3.10 1.21 2.51 2.50 2.70 2.40
5 0.01 0.13 0.25 0.75 1.37 1.37 0.75 0.25 0.13 0.01 0.50 3.87 1.51 3.13 3.13 3.37 3.00
6 0.01 0.15 0.30 0.90 1.64 1.64 0.90 0.30 0.15 0.01 0.60 4.64 1.81 3.76 3.75 4.04 3.60
7 0.01 0.18 0.35 1.05 1.92 1.92 1.05 0.35 0.18 0.01 0.70 5.42 2.11 4.38 4.38 4.72 4.20
8 0.01 0.20 0.40 1.20 2.19 2.19 1.20 0.40 0.20 0.01 0.80 6.19 2.41 5.01 5.00 5.39 4.80
9 0.01 0.23 0.45 1.35 2.46 2.46 1.35 0.45 0.23 0.01 0.90 6.96 2.71 5.64 5.63 6.06 5.40
10 0.01 0.25 0.50 1.50 2.74 274 1.50 0.50 0.25 0.01 1.00 7.74 3.01 6.26 6.25 6.74 6.00
11 0.01 0.28 0.55 1.65 3.01 3.01 1.65 0.55 0.28 0.01 1.10 8.51 3.31 6.89 6.88 7.41 6.66
12 0.02 0.30 0.60 1.80 3.29 3.29 1.80 0.60 0.30 0.02 1.20 9.29 3.62 7.52 7.50 3.09 7.20
13 0.02 0.33 0.65 1.95 3.56 3.56 1.95 0.65 0.33 0.02 1.30 10.06 3.92 &5.14 8.13 8.76 7.80
14 0.02 0.35 0.70 2.10 3.83 3.83 2.10 0.70 0.35 0.02 1.40 10.83 4.22 8.77 8.75 943 8.40
{5 0.02 0.38 0.75 2.25 4.11 4.11 2.25 0.75 0.38 0.02 1.50 11.61 4.52 9.39 9.38 10.11 9.00

Note: Numbers in table may ditfer trom those implied by formulas due to rounding.
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Table 8. Five Courses—Choose Four Model

545

Field Content Field Probability Course Course Probability

i {1 o a4} 0.025 ¢ 0.35

f> {c, ¢o 5, 05} 0.15 « 0.85

s {¢an €3, Cus 5} 0.65 ¢y 0.98

1 {1 ¢35 cpn 05} 0.15 c, 0.85

fs {c1, €2 Cy 05} 0.025 s 0.98
Sum 1.00 4.01

Student Expected Numbers in a Field Expected Numbers in a Course

Numbers Aver- Aver-

N S S 1 i Ss age ¢ [ Cs Cy Cs age
3 0.08 045 195 045 008 0.60 1.05 255 293 255 2.93 2.40
4 0.10  0.60 260 060 0.10 080 1.40 340 390 340 3.90 3.20
5 0.13  0.75 325 0.75  0.13 1.00 1.75 425 488 4.25 4.88 4.00
6 0.15 090 390 090 0.15 L20 2.10 510 585 510 5.85 4.80
7 0.18 1.05 455 1.05 0.18 140 245 595 6.83 5095 6.83 5.60
8 020 120 520 120 020 1.60 2.80 6.80 7.80 6.80 7.80  6.40
9 023 135 585 135 023 180 3.15 7.65 878 7.65 8.78 7.20

10 025 150 650 1[50 025 2.00 3.50 850 9.75 8.50 9.75 8.00

11 028 1.65 7.15 1.65 028 220 3.85 9.35 1073 9.35 10.73 8.80

12 030 1.80 7.80 1.80 030 2.40 420 1020 11.70 1020 11.70  9.60

13 0.33 195 845 .95  0.33  2.60 455 11.05 1268 11.05 1268 1040

14 035 210 9.10 2.10 035 2.80 490 1190 [3.65 1190 1365 11.20

15 038 225 975 225 038 3.00 525 1275 14.63 1275 1463 12.00

Note: Numbers in table may differ trom those implied by (ormulas due to rounding.

sible fields being unrestricted and deter-
mined by the combinatorial solution, this is
also easily handled. For example, the five
courses—choose two structure generates 10
possible fields, but one may feel that this is
too many fields for the number of courses,
given that many fields only differ by one
course. This is easily handled by just prun-
ing out of the field set the fields one thinks
are illegitimate and then assign subjective
probabilities to the remaining fields. This
simply the number of available
fields in the event space, but the event space
would still have a multinomial distribution
and one could proceed as described above.
The possible program structures are really
only limited by the imagination, and the
above procedures will hopefully prove use-
ful in exploring the likely outcomes of some
of the alternative program structures imag-
ined.

[Received October 2001; Accepted May

2002.]
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