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Introductions of nonindigenous organisms into the United States have been linked to

international trade. The individual contributions of imports, immigration, and international

travel, however, are poorly understood because introduction dates are unavailable. We

examine relationships between economic trends and discoveries of nonindegenous insects

and use these relationships to infer the timing and determinants of introductions. We find

that a few variables can explain much variation in species introductions and identifications.

The most significant contributor to the introduction appears to be agricultural imports.

Currently available proxies for academic effort are weak determinants of the probability

that introduced species are identified.
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The majority of introductions of nonindegen-

ous organisms into the United States are

believed to have been facilitated by human

beings (National Research Council).1 The

cumulative number of identified insect species

has increased steadily since 1820, a pattern

that has been attributed to growth in interna-

tional trade (Dehnen-Schmutz et al.; Elton;

Frey; Levine and D’Antonio; Maki and

Galatowitsch; Niemela and Mattson; Perrings

et al.; Sailer 1978, 1983; Stanaway et al.;

Weigle et al.) and travel (Johnson, Ricciardi,

and Carlton; Liebhold et al.; Office of

Technology Assessment) and natural habitat

destruction (Pimentel, 1993; Taylor and Irwin;

Vilà and Pujadas). Early introductions have

been associated with European migration

(Smith; Wheeler and Hoebeke), the surge in

animal and plant imports following the

founding of the U.S. Department of Agricul-

ture (USDA) (Sailer, 1983), and large-scale

commercial production of homogeneous crops

and livestock (Capinera). Advances in trans-

portation, storage, and shipping technologies

(Dobbs and Brodel; Dowell and Gill; Myers;
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Ivanič, Artem Prokhorov, two anonymous reviewers,

and Henry W. Kinnucan for providing comments that

led to significant improvements of earlier versions of

the manuscript. The views contained in this article are

those of the authors and do not necessarily reflect

those of the U.S. Department of Agriculture.
1 In 1983 1,683 species were counted in the United

States, which was 298 more than in 1978 and over

1,220 more than in 1860 (Sailer 1978, 1983). As of

today, 4,600 nonindegenous insect species are estab-

lished in the United States, including Hawaii and

other territories. In 1940, damages were $1.6 billion,

excluding expenditures on prevention, and $3 billion,

including prevention costs (Sasscer). Nonindegenous

insect pests destroy approximately 9%, or $19 billion,

of U.S. crops annually (Pimentel et al., 2000, 2001).

The total damages by all insect species are estimated at

$40 billion (Pimentel, Zuniga, and Morrison). Since

different types of costs are included in different

studies, these damage estimates are not directly

comparable. The true damages—including all expen-

ditures on prevention and mitigation—are likely to be

even greater.
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Pratt et al.; Rainwater) have also been

implicated, as has the dumping of overseas

soil ballast (Lindroth; Locke et al.; Pierce et

al.) and the widespread use of wood packaging

materials (Haack and Cavey).

Although there is a great deal of circum-

stantial evidence suggesting a causal relation-

ship between the previously mentioned factors

and introductions of nonindegenous organ-

isms, there are few studies that have estimated

such relationships empirically. Work et al. use

Agricultural Quarantine Inspection Monitor-

ing data to examine the contributions of four

distinct cargo pathways. Taylor and Irwin use

a nationwide database of exotic plants to

examine the effects of population and land use

variables on the dispersion of plants. Similar-

ly, Dalmazzone and Vilà and Pujadas use

regression analysis to study the relationship

between macroeconomic factors (national

wealth, trade flow, tourism, immigration,

population density, and land use) and the

concentration of nonindegenous plants in

various countries. The three latter studies find

that economic variables contribute significant-

ly to the prevalence of nonindegenous plants.

However, the existing studies are limited to

short time series of data and to methods that

implicitly equate species identifications to

species introductions. In effect, all introduced

species are assumed to be known, and the

identifications occur at the time of arrival;

therefore, it is unclear how general and robust

the findings are. Additionally, the majority of

the existing studies focus on the dispersion of

plants, so it is unclear whether the findings are

relevant to insect species. As a result, there is

very little in the way of available scientific

guidance to characterize the historic impor-

tance of various pathways to insect invasion.

Our objective is to examine the influence of

pathways on observed identifications of non-

indegenous insects and unobserved introduc-

tions using data for a large number of years.

We find that agricultural imports and the

volume of sea trade may explain a great

amount of variation in insect identification

and introduction rates; however, the impacts

of immigration and travel are unclear, and

currently available proxies for identification

effort are weak determinants of the probabil-

ity that new species are identified after they are

introduced.

The Model

The objectives of the analysis are to measure

the impacts of international trade and travel

on the number of nonindegenous insect species

introduced into the United States and the

success of academic and governmental efforts

to identify introduced species. The model,

therefore, has two parts that are estimated

jointly: the process of species introductions

and the likelihood of identifying introduced

species. This model makes it possible to infer

the introduction rate of nonindegenous species

using the record of actual identifications, even

if the events of introduction and identification

are separated by years. In effect, this model

eschews the bias from assuming simultaneous

introductions and identifications.

Following Costello and Solow, the process-

es of introduction and identification of invasive

species are modeled as Poisson random vari-

ables, the distributions of which include

economic factors. ms denotes the number of

introductions in year s and is modeled as an

exponential function of trade–related factors:

ð1Þ ms ~ exp b:Xsð Þ:

Xs is a vector of explanatory variables, and b is

a vector of parameters. ms is assumed to depend

only on economic factors in year s. Let pst

denote the probability that a species is observed

in year t given that it was introduced in year s, s

# t, modeled as a logistic function of the

amount of identification effort and resources,

ð2Þ pst ~
exp c:Wstð Þ

1 z exp c:Wstð Þ :

Wst is a vector of explanatory variables, and c is

a vector of parameters. Wst may be specific to

an identification in year t or to a pair of

introduction and identification years s and t, so

in general it has two time subscripts. The

probability that a species is observed in a year

is assumed independent but not necessarily the

same across different years.

38 Journal of Agricultural and Applied Economics, April 2008



In period t, the probability of identifying a

species that was introduced in period s (pst)

equals the product of the probability of

observing the species in period t and the

probability of not observing the species in all

periods s through (t 2 1):

ð3Þ pst ~ pst

Yt{1

j~s

1 { psj

� �
:

The number of species introductions (ms) may

depend on the volume of imported goods

(goods arrival), the number of arriving people

(passenger arrival), and the migration of species

unrelated to trade (wildlife migration), as in

ð4Þ

ms ~ exp (b0zb1
:goods arrivals

zb2
:passenger arrivals

zb3
:wildlife migrations):

Unfortunately, there is no single index for all

goods arriving into the United States. Different

goods are susceptible to infestation to a

different degree because of their type (produce

versus durables), origin (forest versus factory),

or packaging (wood versus metal containers).

Passenger arrivals also vary in their propensity

for introducing insect species because different

types of passengers bring different types of

luggage (visitors versus immigrants), on differ-

ent means of conveyance (air versus water), and

from different climates (tropics versus arctics).

Trade data disaggregated by these pathways

are often missing. But even if they were

available, it would be difficult to use them

because the number of records that we are

examining, the annual counts of species iden-

tifications, is small. It is also expected that

individual trade series are collinear with each

other. Including them all would lead to

problems with the identification of individual

parameters and yield parameters of unstable

magnitudes and signs.

All the previously mentioned variables are

individually expected to contribute positively to

species introductions. However, if two factors

are collinear with each other and an increase in

one occurs with a decrease in another (such as

arrivals by air replacing arrivals by sea), their

parameters may have unexpected signs. If a

pathway that is strongly associated with insect

introductions is replaced by another pathway

that is only weakly associated, the parameter on

the second pathway could be negative even if we

exclude the first factor from the regression.

The probability of identification of a

species during years s to t depends on

identification effort and resources and the

observability of the species:

ð5Þ

pst ~ exp (c0zc1
:effortt

z c2
:resourcest

z c3
:observabilityt)

7½1 z exp (c0 z c1
:effortt

z c2
:resourcest

z c3
:observabilityt)�:

Unfortunately, consistent measures of aca-

demic, governmental, and private efforts to

identify new species are unavailable. There is

substantial overlap between the effort to

identify new species and those to mitigate or

control already identified pests. Local, region-

al, and national identification efforts have

different goals. Efforts exerted by different

agencies are, furthermore, likely to be highly

correlated. Finally, effort, as the intensity of

intellectual and manual labor, is difficult to

measure. These shortcomings also exist for

proxies for the available identification resourc-

es. Even with information on man-hours or

spending, it is unclear how efficiently those

resources are used. Various agencies, public

institutes, and private entities report their

statistics inconsistently and with insufficient

detail. Their funding decisions may, further-

more, be highly correlated.

Observability of a species changes as it

migrates to a more populated area, disperses to

a wider area, attacks commercial crops,

mutates, or becomes extinct. Because there

are no data to characterize such trends, we

assume that time t and the length of the period

separating introduction and the current period

t–s are sufficient proxies for these trends

(Costello and Solow). As a result, exponential

survival and dispersion rates are assumed

identical for all identified insect species. Species

identifications may also occur as a by-product
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of unrelated scientific or economic activities

that are not monitored or measured (Myers).

Species identified in these ways are not

explicitly estimated in our model and therefore

become part of the estimation residual.

In general, the lag between species intro-

duction and identification (t–s) can be of any

length. Unfortunately, for estimation purpos-

es, we cannot allow unlimited lags between

species introductions and identifications be-

cause we would need to observe all past values

of variables explaining those identifications.

With a limited time lag (t–s), we need data only

on years s through t. In the current analysis it is

assumed that the events of introduction and

identification are separated by at most

10 years. This restriction allows us to use all

of our annual observations of species identifi-

cations, without removing more than 10 years

of data. In all model runs in the following, the

initial year refers to the period when we start

fitting species identifications. Therefore, as-

suming a maximum 10-year lag between

species introduction and identification, the

explanatory variables date back 10 years.

To estimate the parameters in Equa-

tions (1) to (3) (or specifically in Equations (3)

to (5)), a maximum likelihood procedure is

used to fit the estimated number of annual

identifications to the actual identification

record. The Poisson log-likelihood function

over parameters in ms and pst is

ð6Þ log L ~
X

t
yt log E ytð Þð Þ{ E ytð Þ½ �,

where yt denotes the number of identifications

in year t and the expected number of

identifications, using the Poisson distribution

of yt, is

ð7Þ E ytð Þ~
Xt

s~1
mspst

Yt{1

j~s

1 { psj

� �" #
:

Data

Information on initial identifications of non-

indegenous insect species represents the core

of our data. The North American Noninde-

genous Arthropod Database (NANIAD) in-

cludes 2,419 species.2 For 1,233 species, the

database lists some information on identifica-

tion dates, either exact years or year ranges.

Mattson et al. with a database updated in

2003, Beardsley (1962, 1979), Capinera, Frank

and Thomas, Sailer (1978, 1983), and Thomas

provide further information on species and

identification dates used to obtain more exact

dates and to verify records.3 Data from these

sources are merged. For example, when

identification dates differ across databases,

the earliest date is used, and observations with

reliable and exact identification dates are used.

Ten species identified during 1550–1820 are

omitted because data on explanatory variables

are unavailable. For the same reason, two

species identified during 2001–2002 are omit-

ted, for a final data set having 1,097 identifi-

cations during 1820–2000.

Explanatory variables are often unavail-

able for the entire time span of the identifica-

tion record, particularly data on detailed

subcategories of trade. For variables that are

unavailable or not easily measurable, close

proxies are used. Table 1 lists the available

dependent and explanatory variables with

their sources and parameters to be estimated.

To control for the arrival of infested goods

into the United States, we use agricultural

imports and the volume of sea trade as

alternative proxies. We expect agricultural

imports to be an important determinant of

insect introductions because of their close

association with crops and livestock, historical

detections at U.S. ports (Haack and Cavey),

2 For a description of the NANIAD, refer to Kim

and Wheeler and Knutson et al. The NANIAD has

the same origins as the North America and Western

Hemisphere Invasive Arthropod Databases (NAIAD

and WHIAD). The differences come from nonsystem-

atic updating of the databases and changes in

nomenclature over time.
3 The problem with many surveys of nonindegen-

ous insects is that their nomenclature is different from

those in prior studies. It is often unclear whether the

reported identification in a region is the same as

identification in the United States overall. Additional

sources that are not incorporated in our data include

the Bishop Museum’s Hawaiian Arthropod Checklist

Database and data compiled by Dowell and Gill for

California, Frank and McCoy for Florida, and

Nishida and Beardsley for the Midway Atolls.
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and widespread references in the literature.

Imports by sea are also thought to contribute

to insect introductions because a large portion

of horticultural commodities and raw materi-

als are imported by sea and because environ-

mental conditions associated with dock and

cargo areas often promote insect survival.

To examine the effects of international

travel, we use data on all passenger arrivals,

passenger arrivals by air, and immigration.4

Without information on luggage and circum-

stances, it is difficult to rank these pathways a

priori. Passenger arrivals by air may be less

important at explaining species introductions

Table 1. Endogenous and Explanatory Variables, Data Sources, and Estimable Parameters

Variable Description (Units) Years Available

Endogenous variables

ms Introductions in year s (species) 1780–1993

ps,t Probability of observing species in t, given its arrival in s 1790–2003

ps,t Probability of identifying species in t, given its arrival in s 1790–2003

yt, E(yt) Actual and estimated species identifications in year t 1790–2003

Explanatory variables

t Year of identification (100 years) 1790–2003

t–s Years between arrival and identification (100 years) 1790–2003

agric imps Agricultural imports ($trillion/year)a 1851–2003

importss All imports ($1,000/year)b 1870–2003

all arrivs All passenger arrivals (billion persons/year)c 1870–2003

immigrs Immigration (million persons/year)d 1820–2003

air arrivs Passenger arrivals by air (billion persons/year)e 1931–2003

sea trades Volume of merchandise trade by sea (kilotons/year)f 1947–1996

ARS outlayt Agricultural Research Service outlays ($billion/year)g 1953–2003

Parameters to be estimated

b Parameters on Xs in the species-introduction equation (Equation [4])

c Parameters on Wst in the species-observation equation (Equation [5])

Note: All monetary variables are deflated to 2003 dollars using Sahr.
a U.S. Census Bureau, Statistical Abstracts (1851–1908); U.S. Department of Agriculture, Economic Research Service,

FATUS CY1970 Supplemental Table 2 (1935–1967); CY1981 Supplemental Table 1 (1968–1975); DARRS FATUS (1976–

1988); and ARTS, FATUS, and HS (1989–2003), interpolated using constant growth rate (1909–1934).
b Estevadeordal, Frantz, and Taylor (1870–1890) and International Trade Commission (1891–2003).
c U.S. Department of Justice, Immigration and Naturalization Service, International Oversees Travel Monthly Review and

Special Tabulations (1870–1893, 1931–1965); U.S. Census Bureau, Statistical Abstracts (1870–1893); and Bureau of

Transportation Statistics and International Trade Administration, Office of Travel and Tourism Industries (1984–2003),

includes all passenger arrivals by sea and air, interpolated using constant growth rate (1894–1930, 1966–1983).
d U.S. Census Bureau, Citizenship and Immigration Services
e U.S. Department of Justice, Immigration and Naturalization Service, International Oversees Travel Monthly Review and

Special Tabulations (1931–1965), and Bureau of Transportation Statistics and International Trade Administration, Office of

Travel and Tourism Industries (1984–2003), interpolated using constant growth rate (1966–1983).
f U.S. Department of Commerce, Annual Report of the Maritime Administration.
g USDA Budget Estimates, interpolated using constant growth rate (1983).

4 The majority of aviation-related data are collected

by the International Air Transport Association, which

does not make pre-1980 data available to the public.

Available aviation data series include major airlines’

passenger-miles (for years 1960–1992) and airborne

freight ton-miles (1971–1982) from Standard & Poor’s

Aerospace and Air Transport Industry Surveys. These

data do not distinguish international and domestic

travel. The distance of travel may have an opposite

impact on introductions relative to flight volume

because fewer organisms survive long travel. Data on

the number of aircraft often include only major carriers

or omit the size of aircraft, hence potentially biasing our

results. Our data on passenger arrivals by air are unique

because they include arrivals by both U.S. and foreign

nationals and count each passenger once regardless of

the number of flight legs, the size and utilization of the

aircraft, or the identity of the carrier.
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because of airport and aircraft storage area

conditions. To the extent that arrivals by air

may have over time replaced arrivals by other

means, coefficient estimates may not represent

ceteris paribus impacts on species introductions.

To explain the species identification trend,

we use one proxy for the level of public effort

and resources available for the identification of

new insect species: annual outlays of USDA’s

Agricultural Research Service (ARS), which

has historically conducted invasive species

research and management. Unfortunately,

sufficient data on more detailed federal budget

items are unavailable or have not been

reported consistently over time.5 Information

on other public, academic, and private efforts

are generally unavailable. To the extent that

ARS funds are at least in part used for new

species identifications, we expect a positive

impact of funds on identifications. Generally,

the species identification Equation (5) could

include even lags of this variable, but without

information on the timing of the use of the

funds, it is unclear what lags should be

included. Because of the limited availability

of these data, the inclusion of lags would

shorten the time period over which the model

can be estimated. It is therefore assumed that

federal funds affect species identifications only

in the period when they are spent.

The variables and data series described

previously are often unavailable in complete

form. Some span fewer years than from the

first year of the invasive species record to the

present time. In that case the model is run on a

shorter range of years. Some variables have

missing values surrounded by known values.

In a few cases, competing data series are

available, and it is unclear which series should

be used.6 To generate a complete data set, we

use the following procedures. When data series

have missing values, we interpolate the num-

bers using surrounding values and a constant

annual growth rate. In the absence of better

information, the interpolated numbers can be

viewed as the expected values given the known

values in surrounding years. When multiple

data series are available for the same or

different time periods, the series that is most

compatible with other time periods is used.

To piece together data on all passenger

arrivals into the United States, we use data on all

arrivals for 1870–1893 (Statistical Abstracts),

the sum of arrivals by sea and by air for 1931–

1965 (Immigration and Naturalization Service),

and arrivals by air for 1984–2003 (Bureau of

Transportation Statistics and International

Trade Administration). Data on passenger

arrivals after 1931 include only passenger

arrivals by air and sea, notably excluding

terrestrial arrivals. Putting these data series

together is justified on the grounds that travel by

ship made up the vast majority of international

travel prior to the 1930s, and air travel replaced

it and virtually eliminated it by the 1950s. U.S.

import series are compiled from International

Trade Commission data for 1891–2003 and

from data used by Estevadeordal, Frantz, and

Taylor for 1870–1890. Models reported in the

following section use combinations of variables

that do not suffer from multicollinearity, based

on correlation matrices and variance inflation

factors, with the exception of one case (model 3),

where high correlation coefficients and high

5 Other proxies that were collected are the annual

appropriations and outlays of the U.S. Department of

Agriculture (USDA) (for years 1839–2003) and the

USDA’s Animal and Plant Health Inspection Service

(APHIS) (1972–2003) and the Bureau of Entomology

and Plant Quarantine (BEPQ) (1932–1956). A search

was also run on the Agricola server of the National

Agricultural Library (NAL) for publications that dealt

with invasive insect species and were registered with

the NAL (1960–2003). The search included phrases

with adjectives—‘‘alien,’’ ‘‘exotic,’’ ‘‘nonnative,’’

‘‘nonnative,’’ ‘‘nonindigenous,’’ ‘‘nonindigenous,’’

‘‘invasive,’’ ‘‘emigrant,’’ ‘‘immigrant,’’ and ‘‘adven-

tive’’—combined with nouns—‘‘species,’’ ‘‘insects,’’

‘‘arthropods,’’ ‘‘plants,’’ ‘‘organisms,’’ and ‘‘pests’’

(Reichard and White). USDA, APHIS, and BEPQ

outlays and the NAL publications were not helpful in

explaining the species identification trend, likely

because these outlays and publications had functions

other than invasive species identification. Outlays by

USDA and APHIS were estimated to have a small,

negative effect on species identifications. The number

of NAL publications had a negligible, positive effect.

6 For instance, U.S. passenger arrivals are tallied

with a different measure of precision by the Bureau of

Transportation Statistics and the International Trade

Administration and were historically measured by the

U.S. Census Bureau.
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variance inflation factors among two variables

are noted.

Results

The Naive Model

We start with ‘‘naive,’’ noneconomic model 1

proposed by Costello and Solow where

introduction and observation rates (Equa-

tions [4] and [5]) are only functions of time

and a time lag between introductions and

identifications for 1866–1990. We discard

earlier observations because the recording of

identifications of new species was intrinsically

different before 1866 and discard more recent

observations because some new identifications

may not have shown up in our data.

ð8Þ mt ~ exp b0 z b1
:tð Þ

ð9Þ pst ~
exp c0 z c1

:t z c2
: exp t { sð Þð Þ

1 z exp c0 z c1
:t z c2

: exp t { sð Þð Þ

Coefficient estimates on the time variables are

significantly different from zero and imply that

rates of species introduction and identification

have grown over time (Table 2). The log-

likelihood ratio for model 1, compared to a

model with all coefficients except the intercept

restricted to zero, is 380.45; therefore, the

Table 2. Estimation Results

Model

1 2 3 4 5

Introduction rate constant (b0) 1.011* 0.997* 21.562** 22.737* 0.733*

(109.482) (100.692) (19.612) (65.868) (161.590)

Introduction rate t (b1) 1.330*

(20.159)

agric impt (b1) 52.584* 109.723* 165.233* 64.515*

(228.806) (60.058) (175.610) (135.944)

all arrivt (b2) 214.202

(5.594)

immigrt (b2) 20.102 0.372 1.219

(0.594) (0.488) (6.360)

air arrivt (b3) 274.571* 261.492*

(45.094) (36.280)

air mailt (b3)

sea tradet (b4) 2.085**

(18.242)

Identification rate constant (c0) 20.906 2524.198* 2446.753* 2394.797* 2628.398*

(0.002) (63.808) (243.220) (77.050) (101.286)

Identification rate t (c1) 39.423* 30.410* 109.957* 42.522*

(19.847) (37.448) (85.562) (62.908)

ARS outlayt (c1) 23.829

(0.500)

Identification rate 23.373 473.894* 407.059* 385.331* 567.973*

(t–s) (c2) (0.036) (63.004) (243.336) (73.916) (101.562)

Log likelihood 1,241.42 1,278.29 869.35 763.73 1,263.63

Log-likelihood ratio 380.45* 304.06* 525.48* 256.95* 290.25*

Degrees of freedom 3 4 6 5 4

Years 1866–1990 1866–1990 1958–1996 1964–1998 1882–1990

Note: x2 statistics are in parentheses. The dependent variables are the annual number of species introductions (for regressors

with coefficients bx) and the likelihood of observing a species t–s years after introduction (for regressors with coefficients cx).

All monetary variables are deflated to 2003 dollars using Sahr.

* Coefficient is significant at the 0.1% level.

** Coefficient is significant at the 1% level.
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hypothesis that our regressors jointly explain

none of the variation in annual species

identifications can be rejected at the 0.1% level.

The Live-Organism Pathway Model

In model 2, we replace time t as a regressor in

the expression for mt (Equation [8]) with the

volume of agricultural imports and immigra-

tion; therefore, this model implicitly assumes

that trade and travel are the most important

determinants of live organism introductions:

ð10Þ mt ~ exp b0 z b1
:agric impt z b2

:immigrtð Þ:

The process of species identification is assumed

to follow Equation (9). Model 2 is examined

for 1866–1990, allowing a direct comparison of

fit to model 1. The coefficient on agricultural

imports is positive, as expected, and significant

at the 0.1% level, while the coefficient on

immigration is negative and insignificant. c2

characterizes the effect of the length of time

between species introduction and identifica-

tion and is positive and significant at the 0.1%

level. In all the models that follow, c2 is

positive implying that, in all but the naive

model, species are generally observed in later

years, after their arrival, presumably because

of their dispersion. The log-likelihood function

value is higher for model 2, indicating an

improvement in fit relative to model 1, and the

log-likelihood ratio statistics indicates that the

hypothesis that our regressors jointly explain

none of the variation in species identifications

can be rejected at the 0.1% level.

The Air And Sea Pathway Model

In model 3 we add airline passenger arrivals

and sea trade tonnage to the list of explana-

tory variables examined because both path-

ways have been described as important. In

particular, air travel may allow insects to

survive longer journeys:

ð11Þ

mt ~ exp (b0 z b1
:agric impt

z b2
:immigrt z b3

:air arrivt

z b4
:sea tradet):

The process of identification is assumed to

follow Equation (9). The model is run for

1958–1996 at the expense of almost a century’s

worth of identification data because the volume

of sea trade is unavailable before 1947. Years

1991–1996 are added to compensate for this

loss, at a risk of using incomplete data on

species identifications for those years. Model 3

excludes World War II; therefore, the period

examined may be less subject to a structural

change than the previous periods examined.

Air arrivals are used instead of all arrivals

because they have made up the vast majority of

all U.S. arrivals since the early 1950s. Concep-

tually, because all arrivals comprise passengers

arriving by air and sea, they could be collinear

with sea trade. Including both variables could

cause problems in identifying parameters on

these two factors. To test for collinearity

between all arrivals and sea trade, the variance

inflation factor was computed, and a factor of

8.4 was obtained. Given that variance inflation

factors over 8.0 are taken to indicate collin-

earity, all arrivals should not be used jointly

with sea trade in a regression. The variance

inflation factor between sea trade and air

arrivals is 7.9, indicating a potential problem

but not a prohibiting result. Passenger arrivals,

or arrivals by air, could also be collinear with

immigration. The variance inflation factor

between either measure of passenger arrivals

and immigration is, however, only 3.7.

Coefficient estimates on all variables except

immigration are highly statistically significant.

Agricultural imports, immigration, and the

volume of sea trade have the expected positive

effect on species introductions. Air arrivals

have an unexpected large negative effect,

possibly because of their partial collinearity

with sea trade, omitted variables, or perhaps

measurement errors (Vining). The coefficient

estimates and their significance suggest the

joint importance of the included factors in

explaining species introductions and identifi-

cations, but the small time dimension intro-

duces the possibility of overidentification.

Model 3 uses eight explanatory variables to

explain 38 identification records; nevertheless,

the hypothesis that our regressors jointly

explain none of the variation in species
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identifications is again rejected at the 0.1%

level.

The Species Identification Effort Model

Model 4 uses data on ARS outlays to proxy

for federal efforts to identify new species

Equation (5). Because of the short data series

available on ARS outlays, this model is

limited to the years 1964–1998. The species

introduction Equation (4) is assumed to de-

pend on the volume of agricultural imports,

immigration, and passenger arrivals by air:

ð12Þ
mt ~ exp (b0 z b1

:agric impt

zb2
:immigrt z b3

:air arrivt)

ð13Þ

pst ~ exp (c0 z c1
:ARS outlayt

z c2
: exp (t { s))

7½1 z exp (c0 z c1
:ARS outlayt

z c2
: exp (t { s))�

Compared to model 3, sea trade is excluded

here as a factor to preserve degrees of

freedom; it is assumed that agricultural

imports proxy well for the arrival of high-risk

commodities.

The coefficient on ARSt is negative, small in

magnitude, and insignificant, suggesting that

ARS outlays are not good predictors of new

insect species identification success. In the

species introduction equation, the coefficient

estimate on agricultural imports is positive,

large, and significant, but the coefficient

estimate on immigration is positive and insig-

nificant. The coefficient estimate on passenger

arrivals by air has an unexpected sign and is

statistically significant. The comparison of

these results with those for model 3 reveals that

adding ARSt in the species identification

Equation (5) and that excluding sea trade from

the species introduction Equation (4) yields

small changes to the estimated coefficients.

During 1983–1998, several significant efforts at

identifying new species and combining all

known insect databases were undertaken

(Frank and McCoy; Knutson et al.; Mattson

et al.; Sailer 1983), plausibly resulting in

inconsistency of the data with the rest of the

record. Better proxies for scientific effort are

clearly needed for this analysis, particularly for

the most recent years. The log-likelihood value

for this model falls to 763.73. Because of the

shorter time dimension and the fact that our

data on effort and resources are limited to ARS

outlays, less variation in the identification rate

is explained than previously. (For comparison,

model 3 benefited from the significant contri-

bution of sea trade to the species introduction

Equation [4].) Despite these data issues, this

model is again significant at the 0.1% level.

A Model Using Lessons Learned

Lessons learned are used to construct model 5.

It controls for agricultural imports and pas-

senger arrivals during 1882–1990 and incorpo-

rates the full extent of the available passenger

arrival data. All passenger arrivals are used

because models 2 to 4 indicated that air arrivals

are more strongly associated with species

arrivals (albeit negatively) than immigration.

To the extent that air arrivals have accounted

for the vast majority of all arrivals since the

1950s, a similar result is expected here:

ð14Þ
mt ~ exp (b0 zb1

:agric impt

zb2
:all arrivt):

Species identification Equation (9) is used. As

in the previous specifications, agricultural

imports has a large, positive, and statistically

significant effect on species introductions,

while passenger arrivals have a negative but

statistically insignificant effect. Model 59s log-

likelihood function value (1,263.63) is larger

than the log-likelihood values for model 2

(1,258.93) and model 1 (1,204.88) when the

latter models are estimated for the 1882–1900

period, indicating that model 5 explains the

most variation in the endogenous variables.

Therefore, passenger arrivals appear to be

more strongly associated with species intro-

ductions than immigration.

Discussion

The results indicate that the explanatory vari-

ables selected in our regressions are helpful in

explaining species introduction and identifica-
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tion rates. With the exception of one coefficient

in model 2, all coefficients on economic

variables carry the same sign across specifica-

tions. This is a nice result suggesting that the

model behaves consistently across specifications

and does not have multiple solutions. However,

some coefficients are not significant in the

regressions, or their signs disagreed with our

prior expectations. Low degrees of freedom

coupled with multicollinearity may be partially

responsible. Variance inflation factors indicated

the presence of borderline collinearity for model

3. Another explanation for the unexpected signs

is that we use only proxies for trade-related

variables and have surely omitted a number of

relevant variables that would help identify

individual coefficients more precisely. The

influence of heterogeneous growth rates across

insect species and climatic and environmental

conditions over time could not be examined, nor

could such determinants as invasive species

border controls and technological improve-

ments in the transportation industry related to

the volume of international travel.

Table 3 summarizes all the coefficients from

the previous analysis, as well as the computed

effects of marginal changes in each explanatory

variable on the annual number of species

introductions, on the likelihood of observing a

species in a year and, through these two effects,

on the annual number of species identifications.

Marginal effects in the species introduction

Equation (4) are averaged over the 10 most

recent years for which we have fully estimated

species identifications, that is, introduction

years for which we have 10 years with estimated

species identification. By averaging, we offset

variation in the marginal effects across years due

to variation in the explanatory variables, and we

obtain a single marginal effect estimate for each

variable. We use the most recent years because

this provides estimates of present-day effects. In

the species identification Equation (5), we

evaluate the marginal effect on the probability

of identification only in the year of the species

introduction (and average them over the 10

most recent years of species introductions)

because the probability of observing a species

varies across years after its introduction, and it

makes little sense to combine years in this case.

The bottom half of Table 3 synthesizes these

two sets of results to show the marginal effects of

all regressors on the predicted number of species

identifications.7

The third column in Table 3 summarizes

the range of coefficients for each variable,

along with their level of statistical significance.

Columns 4 and 5 report the range of marginal

effects—and their median values—that the

coefficients imply, and units of the explanato-

ry variables are reported in the fifth column.

Note that coefficient estimate ranges do not

translate directly into marginal effects ranges,

so the lowest and highest coefficient estimates

may not correspond to the lowest and the

highest marginal effects. This is because

individual models use a different set of

explanatory variables and different years.

The values of included explanatory variables

and their coefficients have an impact on the

marginal effects of all other variables.

The results indicate that the annual rate of

new species introductions increases 1.1 species

every 10 years. The probability of observing

an introduced species in the first year after

introduction increases 17% every 10 years.

Because our data cover only 1,097 insect

species of the approximately 4,600 insect

species thought to exist in the United States

(Pimentel et al. 2000, 2001), or 24%, it is likely

that 1.1 species underestimates the true

introduction rate per 10 years. Assuming that

nonindegenous insect species, which are not in

our database, had the same propensity to

arrive and were introduced under the same

conditions and subject to the same factors as

the included species, linear extrapolation

suggests a growth rate of 4.7 species every

10 years. A $1 billion (1.7%) increase in

agricultural imports increases the annual rate

of new species introductions 0.78 species (3.25

species when extrapolated to all known non-

indegenous insect species). A 100-kiloton

(9.1%) increase in sea trade increases the

7 In this case we allow species observation in all

10 years after species introduction. We average the

marginal effects over the 10 most recent years of

species introductions for which we have fully estimat-

ed species identifications.
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annual rate of new introductions 0.87 species

(3.65 species extrapolated). A 100,000 (7.7%)

increase in immigrants per year increases the

annual introduction rate 0.14 species (0.60

species extrapolated). However, a 1 million

(1.7%) increase in arrivals of all passengers per

year reduces the annual introduction rate 0.17

species (0.69 species extrapolated). Air pas-

sengers, which starting in the 1950s took over

the vast majority of international travel, are

predicted to lower annual introductions by

0.31 insect species (1.28 species extrapolated)

for a 1 million (1.7%) increase in arriving

passengers. A $100 million (9.1%) increase in

Table 3. Marginal Effects Implied by the Coefficients in All Models on the Number of Annual

Introductions, on the Probability of Observation in the Year of Arrival, and on the Number of

Annual Identifications

Coefficient Variable

Coefficient

Range

Marginal Effect

Range

Median Marginal Effect

per Unit Change in

Variable

Marginal effects on the number of annually introduced species

b0 Introduction rate

constant

22.737*–1.011* — —

b1 Introduction rate t 1.330* 0.000–2.218 1.109 per 10 years

b1 agric impt 52.584*–165.233* 0.436–1.022 0.776 per $billion

b2 all arrivt 214.202 20.165 20.165 per million persons

b2 immigrt 20.102–1.219 20.113–0.738 0.142 per 100,000 persons

b3 air arrivt 274.571* to 20.339 to 20.270 20.305 per million persons

261.492*

b4 sea tradet 2.085** 0.871 0.871 per 100 kilotons

Marginal effects on the probability of species observation in the year of arrival

c0 Identification rate

constant

2628.398*to 20.906 — —

c1 Identification rate t 30.410*–109.957* 0.000–0.342 0.171 per 10 years

c1 ARS outlayt 23.829 0.000 0.000 per $100 million

c2 Identification rate

(t–s)

23.373–567.973* — —

Marginal effects on the number of annually identified species

b0 Introduction rate

constant

22.737*–1.011* — —

b1 Introduction rate t 1.330* 21.618–2.218 20.791 per 10 years

b1 agric impt 52.584*–165.233* 0.627–1.160 0.991 per $billion

b2 all arrivt 214.202 20.245 20.245 per million persons

b2 immigrt 20.102–1.219 20.146–0.711 0.205 per 100,000 persons

b3 air arrivt 274.571* to 20.388 to 20.327 20.358 per million persons

261.492*

b4 sea tradet 2.085** 1.253 1.253 per 100 kilotons

c0 Identification rate

constant

2628.398* to

20.906

— —

c1 Identification rate t 30.410*–109.957* 21.618–2.218 20.791 per 10 years

c1 ARS outlayt 23.829 0.036 0.036 per $100 million

c2 Identification rate

(t–s)

23.373–567.973* — —

Note: The dependent variables are the annual number of species introductions, the likelihood of observing a species in the year

of introduction, and the number of species identifications. All monetary variables are deflated to 2003 dollars using Sahr.

* Coefficient is significant at the 0.1% level.

** Coefficient is significant at the 1% level.
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ARS outlays is predicted to increase the

annual rate of new insect species identifica-

tions by 0.04 species (0.15 extrapolated). The

small impact of ARS outlays is likely due to

the broadness of ARS’s functions.

The combined impacts of the marginal

effects in the species introduction Equation (4)

and species identification Equation (5) are

reported at the bottom of Table 3. These

effects are for the most part slightly larger in

magnitude than the marginal effects on the

species introductions because the number of

identifications exceeds the number of estimat-

ed introductions in three out of our five

models. The majority of the estimates in

Table 3 are statistically significant, but their

impacts on the introduction and observation

rates are smaller and sometimes indistinguish-

able from zero. These estimates imply that an

enormous change would have to occur in the

explanatory variable to affect the species

introduction and observation rates noticeably.

For each model, Figure 1 plots estimated

introduction and identification rates against

Figure 1. Estimated Annual Introductions and Actual and Estimated Annual Identifications

across All Models

48 Journal of Agricultural and Applied Economics, April 2008



actual identifications, and Figure 2 compares

estimated numbers of introductions to actual

numbers of identifications. Percentages of

estimated introductions that are identified

are also reported. Generally, estimated intro-

ductions are similar to actual identifications.

Models 1 and 5 predict the number of

introductions within 1% of the number of

identifications. Model 2 predicts that the

number of identifications falls short of the

introductions by only 1.5%. Models 3 and 4

estimate that species identifications exceed

introductions by 6.5% to 19.1%, implying

that in the last four decades of the twentieth

century, scientists identified 26 to 76 more

species than the number of species introduced

during that period.

Using Figure 2, we may predict that the

number of unidentified insect species in the

United States accounts for up to 1.6% (as in

model 2, 1,039/1,023 – 1) of the currently

known stock. Compared to the 4,600 noninde-

genous insect species identified in the United

States, this would imply 72 unidentified species.

Williamson and Fitter and Mooney and Cle-

land estimate that 10% of imported species

appear in the wild, 10% of introduced species

become established, and 10% of established

species become invasive. Following this rule of

thumb and assuming that 72 unidentified insect

species have appeared in the wild, we may infer

that 720 species were introduced into the

United States undetected, that seven may

become established, and that one of these

insect species may become invasive.

Table 4 shows the estimated mean time

lags between species introductions and identi-

fications across our model specifications along

with the standard deviation of the mean

drawn from a geometric distribution.8 Note

that the mean time lag until identification is

computed for all insect species taken together;

individual species may have longer or shorter

identification time lags depending on charac-

teristics and conditions (Carey; Reichard and

White). The reported times until identification

may also vary over time, as can be seen from

the varying distances between the peaks in

introductions and identifications in the sub-

figures of Figure 1.

Conclusions

In this study we attempt to examine the

determinants of introductions of insect species

into the United States. Because introduction

Figure 2. Estimated and Actual Numbers of Identifications, Cumulative over the Time Period

of Estimation, across All Models

8 The mean and variance of the waiting time until

identification of a species that was introduced in

period s are computed as

E wsð Þ~
Xt

i~s
i { s z 1ð Þ:pis

:
Yi

j~s

1 { p j{1ð Þs
� �" #

V wsð Þ~
Xt

i~s
i { s z 1ð Þ2:pi s

:
Yi

j~s

1 { p j{1ð Þ s
� �" #

,

where t are species-observation years, in this case up

to t 5 10. To get the mean waiting time for species

introduced in all years, we average E(ws) over all

species-introduction years s for which we have the full

10 years of identification data.

Hlasny and Livingston: Economic Determinants of Invasion 49



and identification rates differ, we use a

maximum likelihood estimation method to

control for time lags and the probabilistic

relationship between these events. We show

that a limited number of variables can explain

a great amount of variation in introduction

and identification rates. The most significant

contributor to the introduction of noninde-

genous insect species appears to be imports of

agricultural goods. A $1 billion increase in

agricultural imports is estimated to increase

introductions as much as one new species per

year. The volume of sea trade also has a

significant positive effect, at 0.9 new species

per year per 100-kiloton increase. Immigration

appears to cause a modest, statistically insig-

nificant number of new species arrivals.

There is counterintuitive evidence regard-

ing the impact of passenger arrivals, especially

airborne passengers, on species introductions.

This may be due to the difficulty of distin-

guishing their impact from those of other

trade-related variables, omitted correlated

variables (such as arrivals by sea and by land,

which were to a large degree replaced by air

arrivals), and, to some extent, measurement

errors. Air transport may also be less suscep-

tible to insect contamination than other means

of transport omitted in this analysis. We also

find that currently available proxies for public

effort are weak predictors of the probability

that new species will be observed after their

introduction. Further research would focus on

better proxies for the level of scientific effort

to identify new species and on distinguishing

the individual effects of these efforts—exclu-

sion, mitigation and information gathering—

in order to identify the historic significance of

prevention efforts and guide policymakers in

the development of efficient control programs

in the coming years.

[Received February 2007; Accepted July 2007.]
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