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Characterizing Uncertain Outcomes with 
the Restricted HT Transformation 

L. Joe Moffitt 

Rcs[rictions o n  the hyperbolic trigonometric (HT) transformation are imposed to guarantee 
that a probability density fi~nction is obtained from maximu~n likelihood estimation. Per- 
formance of the restricted H T  transformation  sing data generated from normal, beta, 
gamma, logistic, log-normal, Pareto, Weibull. order statistic, and bimod;~l populatio~is is 
investigated via sampling experiments. Results suggest that the restricted HT transthrma- 
tion is sufficiently flexible to compele with the actual population distributions in most 
cases. Application of the restricted HT transformation is illustr:~tecl by characterizing un- 
certain net income per acre for com~l~un i ty - su~>~>c~r t ed  agricultur-e f a r ~ n s  in the northeastern 
United States. 
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Stochastic efficiency analysis  o f  fa rm manage-  
m e n t  alternatives f req~len t ly  requires charac-  
terizing uncertain economic  ou tcomes  with es- 
timated probabilily densi ty funct ions ( e . ~ . ,  
McDonald ,  Moftitt ,  a n d  Willis;  Yassour, Zil- 
b e r n ~ a n ,  a n d  Rausser) .  Economists  have  often 
rnet this  need by  est imating c o m m o n  para- 
metr ic  pl-obability densi ty funct ions such  a s  
the  n o r ~ n a l ,  g a m m a ,  beta, etc., f o r  e c o n o m i c  
variables o f  interest.  Unfortunately, compel -  
ling theoretical reasons for  choos ing  o n e  c o m -  
m o n  probability densi ty funct ion o v e r  another  
can  b e  rare. T h e  choice  between cornmon al- 
ternatives is of ten m a d e  based o n  the apparent  
tit of  the  various alternatives t o  sample  data .  

T h i s  approach alnounts  to  choos ing  o n e  ot' the 
c o m m o n  densities t o  best approximate  the  iln- 
k n o w n  one ,  which,  of course,  m a y  h a v e  a n  
~ ~ n u s u a l  shape  relative t o  even  the  mos t  flexi- 
ble  o f  the c o m m o n  forms .  

T h e  hyperbol ic  t r igonometr ic  (HT) trans- 
formation f o r  empir ical ly  est imating a proba- 
bility densi ty funct ion w a s  introduced by Tay- 
l o r  a s  a n o t h e r  w a y  t o  a p p r o x i m a t e  a n  
u n k n o w n  probability densi ty funct ion.  H e  e m -  
phasized the  flexibility o f  the  HT transforma- 
tion using a cub ic  polynomial  f o r m  a n d  noted 
particularly its ability t o  p rov ide  approxima-  
t ions to  bimodal  densities. Despi te  its flexibil- 
ity, the  H T  transformation has  been  appl ied in 
relatively few studies  s ince  its introduction. 
T h e r e  appear  t o  be  at least t w o  reasons for t h e  . & 
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light on the potential risks of estimating the 
HT transformation versus commonly used 
probability density functions. This lack of in- 
formation has left practitioners with consid- 
erable ~lncertainty regarding the implications 
and appropriateness of the HT transformation 
for use in practical settings. 

This article extends Taylor's investigation 
of the HT transformation as a probability den- 
sity f~~nct ion  in two directions. First, the need 
to restrict the HT transformation in order to 
guarantee that maximum likelihood estimation 
leads to a probability density function is ad- 
dressed for the cubic polynomial form used by 
Taylor. The constrained maximum likelihood 
estimator turns out to be practical for a wide 
range of sample sizes drawn from various pop- 
ulations. Second, sampling experiments based 
on small. medium, and large samples are used 
to assess the restricted HT transformation's 
flexibility in approximating various candidate 
fornls. The sampling experiments provide an 
indication of the risks associated with using 
the restricted HT form when the actual pop~l- 
lation that generated the sample data is un- 
known. 

The next section develops the restricted HT 
transformation and the associated constrained 
maxi~nutn likelihood estimator. Following 
this, sampling experiments involving normal, 
beta, gamma, logistic, log-normal, Pareto, 
Weibull, order statistic. and bimodal popula- 
tions are detailed in the third section. Use of 
the restricted HT transformation to character- 
ize net income per acre for community-sup- 
ported agriculture farms in the northeastern 
United States is presented in the fourth sec- 
tion. Some concluding remarks are given in 
the final section. 

The Restricted HT Transformation 

The HT transformation, f'(x), associated with 
uncertain outcome x is given by 

where sech(x) is the hyperbolic secant func- 
tion and P(.\-) is a polynolnial in .w (Taylor. p. 
7 1 ) .  Given n observations on x, denoted x , ,  s,. 

. . . , x,,, Taylor suggested maximum likelihood 
estimation of equation (I),  where the likeli- 
hood function is given by 

and p is a vector of unknown pal-ameters con- 
tained in the polynomial P(x). 

A problem with the use of equation (2) is 
that the maximum likelihood estimate of P 
may lead to a fitted f(x),  which does not qual- 
ify as a probibility density function. To see 
this, note that, while sech2(P(x-)) is always 
nonnegative, P'(s) need not be. Hence, max- 
imum likelihood estimation can lead to an es- 
timate of p for which P1(x) < 0 and. conse- 
quently, for which .f'(.r) < 0. In such cases, the 
maximum likelihood estimate provides results 
that violate a basic requirement of a probabil- 
ity density function. When estimating the HT 
transformation, it must be required that the es- 
timated parameters lead to a probability den- 
sity function, i.e., a function that is every- 
where nonnegative. This means that the 
derivative of the polynomial, P 1 ( x ) ,  must be 
everywhere nonnegative. In general, the con- 
strained maximum likelihood estimator is 
found as the solution to 

(3) maximize L(P)  subject to P1(x)  2 0. 
llil 

It should be noted that the solution to equation 
(3) restricts the HT transformation to provide 
an estimate of equation ( I )  that is always a 
probability density function. 

While noting that P(x) can be any order 
polynomial, Taylor applied the HT transfor- 
mation using a cubic polynomial form for 
P(x), narnely 

The asymptotic variance-covariance matrix 
of the maximum likelihood e\tituator of the 
HT model is minus the expected value of the 
inverse Hessian of the log-likelihood function. 
The latter is known as the inverse of the Fisher 
information matrix. The expected value of the 



Hessian in this case is intractable; however, 
minus the inverse Hessian, where the latter is 
evaluated using the sample data and the pa- 
rameter estimates, is often used to estimate the 
asymptotic variance-covariance matrix in 
such cases. The Fisher information matrix as- 
sociated with the HT transformation incorpo- 
rating a polynomial is shown in Table 1 .  

The restricted HT method developed sub- 
sequently guarantees that a proper probability 
density function (PDF) will result from max- 
imum likelihood estimation in the case of a 
cubic polynomial. It should be noted that the 
use of the cubic polynomial is for approxi- 
mation purposes and the individual parameters 
contained in equation (4) have neither an eco- 
nomic nor statistical interpretation. It is irn- 
portant to remain mindful that, c.g., if the es- 
timated coefficient 0,  were statistically 
insignificant, one could not simply delete the 
third-order term in the polynomial, re-e\ti- 
mate, and work with a quadratic. The reawn 
this cannot be done is that P(x) would then be 
quadratic and it would not be possible to en- 
sure that the estimated PDF would be every- 
where nonnegative. However, unless degrees 
of freedom are very low, there does not seem 
to be a compelling reason to work with a low- 
er order polynomial and thus there do not ap- 
pear to be serious practical consequences as- 
sociated with this limitation. 

When fitting the HT transformation as a 
probability density function, we require that 
the estimated parameters lead to a function 
that is everywhere nonnegative. This means 
that the derivative of the polynomial used in 
defining the form in equation (2) must be ev- 
erywhere nonnegative. We now consider the 
implications of equation (4) for the con- 
strained maximum likelihood estimation de- 
picted in equation (3). We require that P1(x) 
2 0, or equivalently, that P r ( x )  2 0 at its min- 
imum. Hence, we solve for the value of x at 
which Pr(x)  achieves its minimum and require 
its minimum to be 20. Solving P'(x) = 0 
gives x = (P3/(3P,)). A sufticient condition 
for -(P3/(3P,)) to be a minimum point of Pf (x )  
is that the second derivative of Pr (x )  be pos- 
itive or that 6P, > 0. Because P'(-P31(3P,)) 
= Pz - pj/3@,)), it follows that sufficient con- 



ditions for nonnegativity of P1(.t-) are ( I )  p</ 
(3P, - P1 5 0 and (2) p, > 0. Substituting 
equation (4) into equation (2) and incorporat- 
ing the result of the substitution and the suf- 
ficient conditions into e q ~ ~ a t i o n  (3) provides 
the problem to be solved to find the con- 
strained maximuni likelihood estiniator for the 
restricted HT transformation: 

p; 
sub.ject t o  1 - P2 5 0 and P, > 0. 

4 3 4  

Solking equat ion ( 5 )  apprc>xirnate\ the 
probnbllity dens~ ty  function for the sample ob- 
servation\ u\ing the H T  transfc)r~nation. Max- 
imum likelihood estimates may be obtained 
easily because equation ( 5 )  is a mathematical 
programming problenl. In the sampling exper- 
iments reported in the next section, maximum 
likelihood estimates following from solution 
of equation (5) were invariably rapidly ob- 
tained regardless of the sample size or  sample 
population involved. The inequality constraint 
was found to bind in a nurnber of cases in- 
volving the sampling experiments and in the 
empirical illustration as  well. I t  should also be 
noted that the cumulative distribution function 
associated with the solution of equation ( 5 )  
will be well behaved. To see this, observe that 
the indetinite integral o f  the probability den- 
sity function is 

latter conditions will be met by the cubic poly- 
nomial obtained from equation (5). Finally, it 
should also be noted that the constraints in 
equation (5 )  are sufficient but not necessary 
conditions for nonnegative density function 
estimates in cases where the outcomes are 
nonnegative.  In the  lat ter  case.  check ing  
would be needed to see if the constraints were 
i~nduly  restrictive. 

Sampling Experiments 

This section reports sampling expel-ilnents in- 
volving application of the restricted HT trans- 
I'ormation to  sample data drawn from normal. 
beta,  g a m m a ,  logist ic.  log-normal ,  Pareto.  
Weibull, order statistic. and bitnodal popula- 
tions. The order statistic population refers to 
the minimum of two normally distributed ran- 
dorn variables. The experimental design was 
as  follows. Denoting the population density by 
g(.r), samples of si7e rz = 30. 100, and 1,000 
were drawn from the population density. The  
parametric form of the true population density 
was estimated by the method of maximum 
likelihood for each sample size to obtain the 
fitted form of the population density, i ( x ) .  The  
restricted H T  transformation was estimated by 
solving equation (5) in conjunction with the 
same sample data used to estimate the true 
populaticln density. The HT approximation to  
the population density is denoted by ,f(x) Spe- 
cific population densities employed in the ex- 
periments were 

normal: 

-; 0.5 tiinh(P(s)) + c for all P(x). 

beta: 
If we take (. = 0.5,  then the indefinite integral 
of the probability density function is 0.5 
tanh(P(.r)) + 0.5 for all functions P(.\-). Be- 
cause of  the properties of tanh (lim,,, tanh(x) 
= 1 and lim,,-, tanh(.r) = 0). the area under 
the probability density function is 1 if P(x) + 
2 as  x + x and P(.r) + -=  as x + -2 .  The  

with = 16 and a = 2 

with u = 1 0 .  h = 20, 



gamma: 

logistic: 

with I* = 16 and P =  4 

log nor~nal: 

with = 2 and n = 1 

Pareto: 

g ( . , )  r ak,?x-(<?i 1 1  

with k = 14 and a = 9 

Weibull: 

with cu = 9.4 and P == 16.6 

order statistic: 

exp  

I- 

with F~ = 16, (7) = 4, 

= 12, and a: = 20 

with kI = 150, tr,  = 20, 

p2 = 50.  and tr ,  = 20. 

Details concerning the parametric form o f  the 
~opulation densities used in the sampling ex- 
periments and their maximum likelihood es- 
timation are found in Johnson and Kotz.' 

Statistical comparison o f  the fitted form o f  
the actual population density and the fitted re- 
stricted FIT transformation is shown in Table 2. 
The fitted forms are compared according to 
Akaike's information criterion (AIC)  statistic, 
Vuong's nonnested hypothesis test, and the 
likelihood dominance criterion for model selec- 
tion suggested by Pollak and Wales. The Akai- 
ke criterion is based on selecting the model that 
minimizes A1C = ? ( l o g  likelihood) + 2(num- 
ber o f  parameters estimated) and hence does 
not involve significance levels in selection o f  the 
best fitting model. The Vuong test is a classical 
hypothesis test that is used here to test the null 
hypothesis that the fitted population density and 
the fitted restricted HT transformation are the 
same. Under the null hypothesis, n- log-like- 
lihood ratio)/w,, is a standard normal random 
variable. where w,, is an estimate o f  the stan- 
dard error o f  the log-likelihood ratio under the 
null hypothesis. The likelihood dominance cri- 
terion is also a hypothesis testing procedure 
involving significance levels in its comparison 
o f  models. However, some ambiguities o f  hy- 
pothesis testing are precluded, which lends a 
model selection character to its findings. The 
likelihood dominance criterion involves com- 
paring the estimated log-likelihood ratio to 
critical points o f  the chi-square distribution. 
Specifically, the criterion is indecisive be- 
tween the fitted population density and the fit- 
ted restricted HT transformation i f  (C(n ,  - n ,  
+ 1 )  - C( 1 )]I2 > log-likelihood ratio > [C(n2 
+ I )  - C(n,  + 1)]/2, where C(.u) is the chi- 
square distribution with .x degrees o f  freedom 
evaluated at the 5 %  significance level and n ,  
and rz,  are the number o f  parameters estimated 
in the population density and restricted HT 
transformation, respectively. The fitted popu- 
lation density is selected i f  the log-likelihood 
ratio < [C(n, + I )  - C(n,  + 1 )] /2,  while the 
fitted restricted HT transforrnation is selected 
i f  the log-likelihood ratio > [C(n,  - n,  + 1 )  
- C(1)] /2 .  In case the number o f  parameters 
is the same ( n ,  = n,) ,  the criterion selects the 
model with the largest log-likelihood value. 



Table 2. Statistical Comparison of Estimated Population Density and Restricted HT Transfor- 

mation by the Akaike (AIC), Vuong. and Likelihood Dominance Criterion, Sample Sire  (n) = 

1000 

Li kclihood 
Dominance 

AIC 
Criterion 

Vuong Log-Likelihood 
Population HT P I  ".' LR,,/w,, Ratio 

Norrnal 4.178.0" 4,179.9 I .03 1.06,' 
Beta 4, I 16.86.' 4,152.96 3 . 4 9 . '  - 18.05" 
Gamma 6,230.56,' 6,256.57 -2.03.' - 10.98" 
Logistic: 6,709.62 6,704.06h 1.40 4.7Xh 
Log normal 6,726.68,' 7,256.94 - 10.43“ -263. 13.1 
Pareto 3,152.54 3.53 I .94 - l l .89.' - 187.7,' 
Weibull 4,143.08 4.1 40.42h 1.07 3.78'' 
Order statistic 7,5Xh.44.' 7,876.3 -9.52,' - 144.93,' 
Bimodal 10.089.9.' 10,102.9 - 1.64 -6.49" 

"Criterion indicates selrction of the population density. 
Criterio~i indicates selection o f  the restricted HT transform 

From Table 2, the AIC selects the fitted 
population density over the fitted restricted HT 
transformation in ;ill cases except for the lo- 
gistic and Weibull population densities. Be- 
cause o f  the close relationship between the lo- 
gistic and the HT transformation, the result 
concerning the logistic is expected. while there 
is no obvious explanation for the Weibull se- 
lection beyond sampling variation and the use 
of a finite sample size in conjunction with an 
asymptotic criterion. The Vuong test indicates 
that the restl-icted HT transformation provides 
a fit with differences that are statistically in- 
significant from the fitted population density 
in half of the cases. The most significant dif- 
ferences between the fitted restricted HT trans- 
formation and the titted population density oc- 
cur in the cases of the log-normal and Pareto 
populations. The number of parameters for the 
population and restricted HT transformation 
are the same ( n ,  = nZ = 4)  for the beta, order 
statistic. and bimodal populations. Hence, the 
likelihood dominance criterion selects the fit- 
ted density with the largest log likelihood in 
these three cases. For the remaining populn- 
tions, n, = 2 and nZ = 4, with critical points 
LC(n2 + 1 )  - C(n,  + 1)]/2, lC(17~ - n,  + 1) 
- C(1)]/2 = (1.63, 1.99). Comparing the log- 
likelihood ratios shown in Table 2 with the 
critical points reveals that, at the 5%' signifi- 

cance level. model selection by the likelihood 
dominance criterion and the AlC coincide. 

The outcome of the sampling experiments 
is depicted graphically in Figures 1-5. Each 
figure shows a graph of the actual population 
density. g(x), as a solid line, a graph of the 
fitted form of the actual population density, 
g(x), as a line with long dashes, and the fitted 
restricted HT transformation, ,f(x), as a line 
with short dashes for each of the three sample 
sizes and. with the exception of Figure 5 ,  for 
two sampling populations. From the figures, it 
is apparent that both the fitted form of the ac- 
tual population density and the fitted form of 
the restricted H T  transformation provide better 
approximations to the actual population den- 
sity as the sample size increases. With the ex- 
ception of the order statistic population, the 
fitted form of the actual population density is 
essentially indistingi~ishable from the actual 
population density when estimated by maxi- 
mum likelihood using a large sample. More- 
over, the fitted form of the actual population 
density generally provides a better approxi ma- 
tion to the population than the fitted form of the 
restricted HT transformation. Hence, as might 
be expected. information on the parametric form 
of the population density has value in approxi- 
mating the actual popirlation density using sam- 
ple data. The flexibility of the restricted HT 



Normal Beta 

Figure I .  Population Density. gCr) ---- , Fitted Population Dencity, <<(r) - -, and Fit- 
ted Re5tricted HT Transformation. ,f(r) - - - -, for Normal and Beta Populations by Sample 
Size ( n )  

transformation has value when the parametric 
form of the population density is uncertain. 

Figure I shows that the restricted HT trans- 
formation appl-oxiniates the nol-rnal density 
very well and nearly as well as the normal 
density itself for the population sampled. The 
approximation provided by the restricted HT 
transformation h r  the beta population sampled 
is not so  impressive, though the basic shape is 
preserved. The restricted HT transformation 
provides an excellent approximation to both 
the earnma and logistic populations sampled 
(Figure 2). The latter is cxpected because of 
the close relationship between the logistic and 
the HT transformation. However, neither the 

log-norn~al nor Pareto populations sampled 
are approximated well hy the restricted HT 
transformation (Figure 3). The approxi~nation 
of the Weibull population density appears to  
be quite good and rivals the fitlcd form of the 
population density (Figure 4).  Neither the fit- 
ted form of the order statistic density nor the 
restricted HT transforniation provides highly 
accurate approximations of the population 
sampled and can be regarded as roughly 
equivalent in performance (Figure 4). A nor- 
~ n n l  ~r l ix ture  distr ibution provides a pro- 
nounced hi~nodal  population. which is npprox- 
imated very well  by the  restricted H T  
transformation (Figure 5 ) .  
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Gamma Logistic 

Figure 2. Population Density, g(x) ------- , Fitted Populat~on Density, h;(x) - -, and Fitted 
Restricted HT Transformation, f ( x )  - - - -, for Gamma and Logistic Populations by Sample 
S i ~ e  ( 1 1 )  

The results of the sampling experiments in- 
volving small, medium, and large samples 
suggest that the restricted HT tl-ansformation 
with a cubic polynomial is sufficiently flexible 
to compete with the parametric forms of the 
actual population densities in most cases. Ex- 
ceptions include samples from the log-normal 
and Pareto populations, which were not ap- 
proximated well. Even so, it should be kept in 
mind that the sampling experiments pitted the 
restricted HT transformation against common 
alternatives on their own turf. This is the case 
because the samples were drawn for the com- 
mon alternative densities. As Taylor has 

shown, in cases where the pal-ametric form of 
the population density sampled is unknown or 
exhibits properties not usually found among 
common probability density functions, such as 
bimodality, the HT transformation's flexibility 
may provide an advantage in approximation. 

Community-Supported Agriculture Real 
Net Income per Acre 

Community-supported agriculture (CSA) be- 
gan in the United States in western Massachu- 
setts in 1984. Kelvin loosely defines CSA as 
a marketing arrangement in which farmer\ en- 



Lognormal Pareto 

Figure 3. Population Density, g(.r) - , Fitted Population Density, j j ( .x) - -, and Fitted 
Restricted HT Transformation, f'(.r) - - - -, for Log-Normal and Pareto Populations by Satrlple 
Size ( M )  

ter into an agreement with a group of local 
consumers to provide food for their families. 
Each CSA operation has its own unique ar- 
rangements between farmers and shareholders. 
However. the farmer is usually paid by the 
shareholders prior to the season for a weekly 
share of the harvest. CSA presents an alter- 
native business model i'or farmers, especially 
those operating small farms, and the CSA 
cept is increasing in popularity. The number 
of CSA farms in Massachusetts is now 39. and 
there are currently more than 1,000 CSA 
farrils in the United States. 

Basic data on  CSA operations in the north- 
eastern Unitecl States were collected via a sell- 

administered mail survey of CSA operations 
during the 1995-1 997 growing seasons (San- 
neh. Moffitt, and L-ass). The mail surveys were 
sent to CSA operators in Connecticut, Mas- 
sachusetts, Maine. New Hampshire. New Jer- 
sey, New York, Pennsylvania, Rhode Island, 
and Vermont, with a 36% response rate. The 
survey elicited data on the CSA operations. 
including farm s i ~ e ,  the proportion of acreage 
used for CSA operation\, re\enue\ from the 
CSA operation\, other on-farm enterprise\, 
nonfarm sources of income, farm outputs. 
types and number of shares sold, farm oper- 
ating expenses, labor use, weed, soil. and dis- 

ease management practices, and operator char- 
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Weibull Order Statistic 

Figure 4. Population Density, g(x) - , Fitted Populatio~i Density, h;(x) - -, and Fitted 
Restricted HT Transformation, j (x) - - - -, for Weibull and Order Statistic Populations by 
Sample Size ( t i )  

acteristics. The survey yielded 82 observations 
on net income per acre for CSA farms in the 
northeastern United States, which were ex- 
pressed in 1997 dollars using the Consumer 
Price Index. This section utilizes these survey 
data to characterize uncertain CSA real net in- 
come per acre with an estimated probability 
density function. 

I t  is important to provide some interpreta- 
tion of the notion of uncertainty, which is re- 
flected by the result of estimations based 011 

the survey data. The defining characteristic of 
a CSA farm is a marketing arrangement that 
shifts production risk to shareholders. All rev- 
enue that a CSA farm will typically receive 

during a season is in hand prior to planting. If 
a CSA farm maintains its shure1iolde1-s. it 
should experience relatively little temporal 
variation. As expected, in preliminary analy- 
ses of both revenues and costs using the sur- 
vey data. the null hypothesis that revenues and 
costs were equal across the three years could 
not be rejected. So an estimated probability 
density function for net income per acre based 
on the survey data is expected to provide pri- 
marily information on spatial variation. The 
estimated probability density function thus 
provides information on the variability of net 
income per acre across CSA fr~rrns in the 
northeast rather than that of a representative 
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Bimodal 

Figure 5. Population Density, x(.L) -, 
Fitted Population Density. i ( . x )  - -, and Fit- 
ted Restricted HT Transformation, f (x) - - - -. 
for a Bimodal Population by  Sample Size ( n )  

C S A  farm. A potential entrant into the world 
o f  C S A  farming in the northeast should regard 
the estimated probability density function as 
an indicator of the net incotne uncertainty they 
face when considering conversion to the C S A  
concept. 

T h e  normal probability distribution was in- 
vestigated for C S A  real net income per acre. 
Statistical tests for norrnality provided by 
D'Agostino. Belanger. and D'Agostino were 
implemented for the observations on  real net 
income per acre. D'Agostino, Belanger, and 
D'Agostino provide a test statistic based on  
skewness. which they denote as Z(/?,)"?, and a 
test statistic based on kurtosis, which they de- 
note as Z(h,). Both Z(b,)I1' and Z(h?) are ap- 
proxi~l i~~te ly  normally distributed under thc 

normal hypothesis o f  population normality. A 
third test statistic provided b y  D'Agostino, Be- 
langer, and D'Agostino, denoted as L2 and re- 
ferred to  by  them as an o~nn ibus  test because 
it is based on  both bkewness and kurtosis, is 
appl-oximately distributed as a chi-squared 
random variable with t w o  degrees o f  freedom 
when the population is no]-mally distributed. 

Results o f  the normality tests are as fol- 
lows. For real net income per acre, the 
D'Agostino. Belanger, and D'Agostino test 
statistics are Z(bl) ' /2 = - 1.25, Z(hl) = 2.1824, 
and K' = 6.32, with prob-values 0.106, 0.0 14, 
and 0.042. respectively. Neither the test based 
on skewness nor the omnibus test permit re- 
jection o f  normality for C S A  real net income 
per acre observations. However, the test based 
o n  kurtosis does permit rejection o f  normality. 
T h e  mixture o f  results obtained does not pro- 
vide strong evidence for rejecting normality. 
Even so. the results also suggest that it may 
be possible to  approximate the distribution o f  
C S A  real net income per acre more closely 
with a nonnormal density. 

Maximum likelihood estimates o f  the pa- 
rameters in the restricted HT transformation 
using equation ( 5 ) .  with x, denoting C S A  real 
net income per acre, are pi = 0 . 4 5 3 9 ,  p, = 

0.000356, B3 = 1.583 X 10 "I, and p, = 2.685 
X 10 l'. Estimated standard errors. approxi- 
mated based on Table 2 ,  associated with the 
estin~ates o f  Dl, D,, 0;. and 6, are 0.10328, 
0.000042 1982, 7.72867 X 10-" and 1.04207 
X 10 1 2 ,  respectively. Maximum likelihood es- 
timates o f  the parameters in the norrnal density 
are = 13 18.17 and (T = 2601.98, with esti- 
mated standard errors 287.34 and 203.213, re- 
spectively. A graph o f  the fitted restricted HT 
transformation with constraints bincling and 
the fitted norrnal density are shown in Figure 
6.  It is apparent in the ligure that fitted den- 
sities are quite similar though they are not in- 
distinguishable. 

Comparison o f  the fitted restricted HT 
transformation to the fitted normal density is 
pursued according to the information criterion 
( A I C )  suggested b y  Akaike,  the likelihood 
dominance criterion o f  Pollnk and Wales,  and 
the  onne nested hypothesis test due to Vuong.  
T h e  AIC criterion is used for rnodel selection 
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Figure 6. Fltteci Normal Denclty - - and Fitted Re\tricted HT Tran\fhrmation - - - - of 
CSA Real Net Income per Acre in the Northea\tern United State\ 

rather than hypothesis testing. Statistical mod- 
els are I-egarded as approximating the true but 
unknown probability density, and the focus is 
on obtaining the model that provides the best 
approximation. As described earlier, the Akai- 
he criterion is based on selecting the model 
that lnini~nires AlC = -2(log likelihood) + 
2(number of parameters estimated). The val- 
ues of the AIC statistic for the titted I-estricted 
HT transformation (-3(-759.021) + 2(4) = 

1526.04) and the titted normal density 
(-2(-761.194) + 2(2) = 1526.39) suggest 
that the restricted HT transformation be se- 
lected over the normal density for approxi- 
mating the probability distribution of CSA I-eal 
net income per acre. The same result follows 
from application of the likelihood dominance 
criterion because the log-likelihood ratio = 

2.173 > 1.98664 = [C(lll - 11, + I )  - C( l ) ] /  
2. Hence, the fitted restricted HT transformn- 
tion is selected by the likelihood dominance 
cl-iterion. The Vuong test statistic is r1 ('"'(log- 
likelihood I-atio)/w,, = 1.28. which shows that 
the hypothesis that the titted norlnal density 
and the titted restricted HT transformation are 
equal cannot be rejected. Though it is not pos- 

sible to conclusively reject the normal density. 
the approximation to the sample data provided 
by the restricted HT transformation appears to 
be better according to the model selection cri- 
teria and equivalent from the perspective of 
hypothesis testing. 

Concluding Remarks 

Use of the HT tl-ansformation for character- 
izing uncertain outcomes was investigated. 
Restrictions on the HT transformation were 
derived to ensure that a PI-obahility density 
function results from its estimation. A con- 
strained maximum likelihood procedure was 
developed for the restl-ictecl HT transformation 
that embodies a cubic polynomial. Sampling 
experiments showed the I-estricted H T  trans- 
formation and constrained maximum likeli- 
hood estimator to be easily implemented and 
capable of approximating several common 
probability density functions well. The re- 
stricted HT transformation was estimated us- 
ing real net income per acre observations for 
community-supported agriculture f ~ i r ~ n s  in the 
northeastern United States. The titted t-estrict- 



e d  HT transfcxmation approximated the sam- 
ple data better than the normal  density, which 
was also estimated by max imum likelihood. 

Results indicate that the restricted HT trans- 

formation provides a viable alternative t o  sev- 
eral  common  probability densi ty funct ions for  

characterizing uncertain outcomes.  Notable 

exceptions include cases where sample  data 

are suspected of  having been generated by log- 
no rma l  o r  Pa r e to - t ype  p robab i l i t y  dens i t y  

functions because the restricted HT trunsfor- 

mation provided relatively poor  approxima- 
tions in these cases. 
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