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Characterizing Uncertain Outcomes with
the Restricted HT Transformation

L. Joe Moffitt

Restrictions on the hyperbolic trigonometric (HT) transformation are imposed to guarantee
that a probability density function is obtained from maximum likelihood estimation. Per-
formance of the restricted HT transformation using data generated from normal, beta,
gamma, logistic, log-normal, Pareto, Weibull, order statistic, and bimodal populations is
investigaled via sampling experiments. Results suggest that the restricted HT transforma-
tion is sufficiently flexible to compete with the actual population distributions in most
cases. Application of the restricted HT transformation is illustrated by characterizing un-
certain net income per acre for community-supported agriculture farms in the northeastern

United States.
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Stochastic efficiency analysis of farm manage-
ment alternatives frequently requires charac-
terizing uncertain economic outcomes with es-
timated probability density functions (e.g.,
McDonald, Mofhtt, and Willis; Yassour, Zil-
berman, and Rausser). Economists have otten
met this need by estimating common para-
metric probability density functions such as
the normal, gamma, beta, etc., for economic
variables of interest. Unfortunately, compel-
ling theoretical reasons for choosing one com-
mon probability density function over another
can be rare. The choice between common al-
ternatives is often made based on the apparent
fit of the various alternatives to sample data.
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This approach amounts to choosing one of the
common densities to best approximate the un-
known one, which, of course, may have an
unusual shape relative to even the most flexi-
ble of the common forms.

The hyperbolic trigonometric (HT) trans-
formation for empirically estimating a proba-
bility density function was introduced by Tay-
lor as another way to approximate an
unknown probability density function. He em-
phasized the flexibility of the HT transforma-
tion using a cubic polynomial form and noted
particularly its ability to provide approxima-
tions 1o bimodal densities. Despite its flexibil-
ity, the HT transformation has been applied in
relatively few studies since its introduction.
There appear to be at least two reasons for the
evident lack of use. First, as shown subse-
quently, maximum likelihood estimation of
the HT transformation does not neccessarily
lead to a functional form that gualifies as a
probability density function. Hence, maximum
likelihood estimation. as suggested by Taylor
(p. 71), may lead to unusable results. Second.
there is little practical information to shed
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light on the potential risks of estimating the
HT transformation versus commonly used
probability density functions. This Tack of in-
formation has left practitioners with consid-
erable uncertainty regarding the implications
and appropriateness of the HT transformation
for use in practical settings.

This article extends Taylor’s investigation
of the HT transformation as a probability den-
sity function in two directions. First, the need
to restrict the HT transtormation in order to
guarantee that maximum likelihood estimation
leads to a probability density tunction is ad-
dressed for the cubic polynomial form used by
Taylor. The constrained maximum Jikelihood
estimator turns out to be practical for a wide
range of sample sizes drawn from various pop-
ulations. Second, sampling experiments based
on small, medium, and large samples are used
to assess the restricted HT transformation’s
flexibility in approximating various candidate
forms. The sampling experiments provide an
indication of the risks associated with using
the restricted HT form when the actual popu-
lation that generated the sample data is un-
known.

The next section develops the restricted HT
transtformation and the associated constrained
maximum likelihood estimator. Following
this, sampling experiments involving normal,
beta, gamma, logistic, log-normal, Pareto,
Weibull, order statistic. and bimodal popula-
tions are detailed in the third section. Use of
the restricted HT transformation to character-
ize net income per acre for community-sup-
ported agriculture farms in the northeastern
United States is presented in the fourth sec-
tion. Some concluding remarks are given in
the final section.

The Restricted HT Transformation

The HT transformation, f(x), associated with
uncertain outcome x is given by

(hH flx) = 0.5P"(x)sech’(P(x)),

where sech(x) is the hyperbolic secant func-
tion and P(x) is a polynomial in x (Taylor, p.

71). Given n observations on x, denoted x,, x,.
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..., X,, Taylor suggested maximum likelihood
estimation of equation (1), where the likeli-
hood function is given by

2y LP) =[] 0.5P"(x))sech?(P(x,))
i=1

and B is a vector of unknown parameters con-
tained in the polynomial P(x).

A problem with the use of equation (2) is
that the maximum likelihood estimate of B
may lead to a fitted f(x), which does not qual-
ity as a probébility density function. To see
this, note that, while sech’(P(x)) is always
nonnegative, P'(x) need not be. Hence, max-
imum likelihood estimation can lead to an es-
timate of B for which P’(x) < 0 and, conse-
quently, for which f(x) < 0. In such cases, the
maximum likehihood estimate provides results
that violate a basic requirement of a probabil-
ity density function. When estimating the HT
transformation, it must be required that the es-
timated parameters lead to a probability den-
sity function, i.e., a function that is every-
where nonnegative. This means that the
derivative of the polynomial, P'(x), must be
everywhere nonnegative. In general, the con-
strained maximum likelihood estimator is
found as the solution to

3) maximize L(B)

By

subject to P'(x) = 0.

It should be noted that the solution to equation
(3) resiricts the HT transformation to provide
an estimate of equation (I) that is always a
probability density function.

While noting that P(x) can be any order
polynomial, Taylor applied the HT transfor-
mation using a cubic polynomial form for
P(x), namely

(4) P(x) = B, + Bax + Bax? + Bux

The asymptotic variance—covariance matrix
of the maximum likelihood estimator of the
HT model is minus the expected value of the
inverse Hessian of the log-likelihood function.
The latter is known as the inverse of the Fisher
information matrix. The expected value of the
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Hessian in this case is intractable; however,
minus the inverse Hessian, where the latter is
evaluated using the sample data and the pa-
rameter estimates, is often used to estimate the
asymptotic variance—covariance matrix in
such cases. The Fisher information matrix as-
sociated with the HT transformation incorpo-
rating a polynomial is shown in Table 1.

The restricted HT method developed sub-
sequently guarantees that a proper probability
density function (PDF) will result from max-
imum likelihood estimation in the case of a
cubic polynomial. It should be noted that the
use of the cubic polynomial is for approxi-
mation purposes and the individual parameters
contained in equation (4) have neither an eco-
nomic nor statistical interpretation. It is im-
portant to remain mindful that, e.g., if the es-
timated coefficient f-34 were statistically
insignificant, one could not simply delete the
third-order term in the polynomial, re-esti-
mate, and work with a quadratic. The reason
this cannot be done is that P(x) would then be
quadratic and it would not be possible to en-
sure that the estimated PDF would be every-
where nonnegative. However, unless degrees
of freedom are very low, there does not seem
to be a compelling reason to work with a low-
er order polynomial and thus there do not ap-
pear to be serious practical consequences as-
sociated with this limitation.

When fitting the HT transformation as a
probability density function, we require that
the estimated parameters lead to a function
that is everywhere nonnegative. This means
that the derivative of the polynomial used in
defining the form in equation (2) must be ev-
erywhere nonnegative. We now consider the
implications of equation (4) for the con-
strained maximum likelihood estimation de-
picted in equation (3). We require that P’'(x)
= (, or equivalently, that P'(x) = O at its min-
imum. Hence, we solve for the value of x at
which P'(x) achieves its minimum and require
its minimum to be =0. Solving P'(x) = 0
gives x = —(By/(3B.)). A sufficient condition
for —(B/(3B.,)) to be a minimum point of P'(x)
is that the second derivative of P'(x) be pos-
itive or that 6B, > 0. Because P'(—B;/(3B,))
= B, — B¥/3B.,)), it follows that sufficient con-

Table 1. Estimated Fisher Information Matrix for the HT Density Incorporating a Polynomial
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ditions for nonnegativity of P’(x) are (1) ¥/
(3B, — B> = 0 and (2) B, > 0. Substituting
equation (4) into equation (2) and incorporat-
ing the result of the substitution and the suf-
ficient conditions into equation (3) provides
the problem to be solved to find the con-
strained maximum likelihood estimator for the
restricted HT transformation:

(5) maximize #n In(0.5)
(B1.p1 Ba.By)

+ E In(B, + 2Byx, + 3B.x))
il

”

+2 E In[sech(B, + B.x; + B2 + B

i1

subject to :B; - B,=0 and p,> 0.
3By

Solving equation (5) approximates the
probability density function for the sample ob-
servations using the HT transformation. Max-
imum likelihood estimates may be obtained
easily because equation (5) is a mathematical
programming problem. In the sampling exper-
iments reported in the next section, maximum
likelihood estimates following from solution
of equation (5) were invariably rapidly ob-
tained regardless of the sample size or sample
population involved. The inequality constraint
was found to bind in a number of cases in-
volving the sampling experiments and in the
empirical illustration as well. It should also be
noted that the cumulative distribution function
associated with the solution of equation (5)
will be well behaved. To see this. observe that
the indefinite integral of the probability den-
sity function is

j 0.5 sech(P(x))"P'(x) dx

= (.5 tanh(P(x)) + ¢ ftor all P(x).

If we take ¢ = 0.5, then the indefinite integral
of the probability density function is 0.5
tanh(P(x)) + 0.5 for all functions P(x). Be-
cause of the properties of tanh (lim_,, tanh(x)
= 1 and lim,__. tanh(x) = 0). the area under
the probability density function is [ if P(x) —
% as x — « and P(x) > —= as x - —=. The

Journal of Agricultural and Applied Economics, December 2002

latter conditions will be met by the cubic poly-
nomial obtained from equation (5). Finally, it
should also be noted that the constraints in
equation (5) are sufficient but not necessary
conditions for nonnegative density function
estimates in cases where the outcomes are
nonnegative. In the latter case. checking
would be needed to see if the constraints were
unduly restrictive.

Sampling Experiments

This section reports sampling experiments in-
volving application of the restricted HT trans-
formation to sample data drawn from normal,
beta, gamma. logistic, log-normal, Pareto,
Wetbull, order statistic, and bimodal popula-
tions. The order statistic population refers to
the minimum of two normally distributed ran-
dom variables. The experimental design was
as follows. Denoting the population density by
g(x), samples of size n = 30, 100, and 1,000
were drawn trom the population density. The
parametric form of the true population density
was estimated by the method of maximum
likelihood for each sample size to obtain the
fitted form of the population density, g(x). The
restricted HT transtormation was estimated by
solving equation (5) in conjunction with the
same sample data used to estimate the true
population density. The HT approximation to
the population density is denoted by f(x) Spe-
cific population densities employed in the ex-
perimernts were

normal:
exp —( ; M)*
2a-
RV e
withpw =16 and o =2
beta:

(x — a)y '(b — .x):

glx) = —F
J Nl = et de
O

with a = 10, b = 20,

|
]

p=3 and ¢ =
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gamma:

B S By

g(x) = =
j re et dr
O

witha =64, B =1/4
logistic:
e*[l\ v
g(.x) - B(l + ety M/M)Z
with p = 16 and pB=4
log normal:
(log(x) — p)?
exXp|—— ————
207
g(x) =
V2mox
withp =2 and o =1
Pareto:
g(\) — akuxf(xwl)
withk = 14 and o =9
Weibull:
\ A\
g(x) = qu exp _(_.> e 1
B
witha =94 and B = 16.6
order statistic:
Jex _ e 0 | — ert|
P 203 \/E(rl
glx) =
g,
exp A(L¥ X)z 1 — erf ol L
, 207 \'503
+
a,
= 2V2w
with w, = 16, o, =4,
w, = 12, and o, =20
bimodal:
exp| W =0’ (e 1)
P 20 203
— + - =
) o, o,
(x) = ——
£ T
with p, = 150, o, = 20,
w, =50, and o, 20.
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Details concerning the parametric form of the
population densities used in the sampling ex-
periments and their maximum likelihood es-
timation are found in Johnson and Kotz
Statistical comparison of the fitted form of
the actual population density and the fitted re-
stricted HT transformation is shown in Table 2.
The fitted forms are compared according to
Akaike’s information criterion (AIC) statistic,
Vuong’s nonnested hypothesis test, and the
likelihood dominance criterion for model selec-
tion suggested by Pollak and Wales. The Akai-
ke criterion is based on selecting the model that
minimizes AIC = —2(log likelihood) + 2(num-
ber of parameters estimated) and hence does
not involve significance levels in selection of the
best fitting model. The Vuong test is a classical
hypothesis test that is used here to test the null
hypothesis that the fitted population density and
the fitted restricted HT transformation are the
same. Under the null hypothesis, #~"*(log-like-
lihood ratio)/w, 1s a standard normal random
variable, where w, is an estimate of the stan-
dard error of the log-likelihood ratio under the
null hypothesis. The likelihood dominance cri-
terion i1s also a hypothesis testing procedure
involving significance levels in its comparison
of models. However, some ambiguities of hy-
pothesis testing are precluded, which lends a
model selection character to its findings. The
likelihood dominance criterion involves com-
paring the estimated log-likelihood ratio to
critical points of the chi-square distribution.
Specifically, the criterion is indecisive be-
tween the fitted population density and the fit-
ted restricted HT transformation if |C(n, — n,
+ 1) = C(1)}/2 > log-likelihood ratio > |C(n,
+ 1) — C(n, + D]/2, where C(x) is the chi-
square distribution with x degrees of freedom
evaluated at the 5% significance level and #,
and n, are the number of parameters estimated
in the population density and restricted HT
transformation, respectively. The fitted popu-
lation density is selected if the log-likelihood
ratio < [C(n, + 1) — C(n, + 1)]/2, while the
fitted restricted HT transformation is selected
if the log-likelihood ratio > [C(n, — n + 1)
— C(1)}/2. In case the number of parameters
is the same (n, = n,), the criterion selects the
model with the largest log-likelihood value.
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Table 2. Statistical Comparison of Estimated Population Density and Restricted HT Transfor-

mation by the Akaike (AIC), Vuong, and Likelihood Dominance Criterion, Sample Size (n) =

1000
Likelihood
Dominance
Criterion
AIC Vuong Log-Likelihood
Population HT n % LR, /w, Ratio
Normal 4.178.0% 4.179.9 1.03 1.06%
Beta 4,116.86* 4,152.96 —3.490 —18.05°
Gamma 6,230.56¢ 6,256.52 -2.03% —10.98
Logistic 6,709.62 6,704.06" 1.40 4.78°
Log normal 6.726.68* 7,256.94 —10.43¢ —263.13
Pareto 3,152.544 3.531.94 —11.89¢ —187.7¢
Weibull 4,143.98 4,140.42b0 1.07 3.78"
Order statistic 7,586.444 7.876.3 —9.52¢ —144.93#
Bimodal 10,089.9¢ 10,102.9 —1.64 —6.49¢

a Criterion indicates selection of the population density.

* Criterion indicates selection of the restricted HT transformation.

From Table 2, the AIC selects the fitted
population density over the fitted restricted HT
transformation in all cases except for the lo-
gistic and Weibull population densities. Be-
cause of the close relationship between the lo-
gistic and the HT transformation, the result
concerning the logistic is expected. while there
is no obvious explanation for the Weibull se-
lection beyond sampling variation and the use
of a finite sample size in conjunction with an
asymptotic criterion. The Vuong test indicates
that the restricted HT transformation provides
a fit with differences that are statistically in-
significant from the fitted population density
in half of the cases. The most significant dif-
ferences between the fitted restricted HT trans-
formation and the fitted population density oc-
cur in the cases of the log-normal and Pareto
populations. The number of parameters for the
population and restricted HT transformation
are the same (n, = n, = 4) for the beta, order
statistic, and bimodal populations. Hence, the
likelihood dominance criterion selects the fit-
ted density with the largest log likelihood in
these three cases. For the remaining popula-
tions, n, = 2 and n, = 4, with critical points
[C(ny, + 1) = C(ny + D12, 1C(ny — 0 + 1)
— C(1H]/2 = (1.63, 1.99). Comparing the log-
likelihood ratios shown in Table 2 with the
critical points reveals that, at the 5% signifi-

cance level, model selection by the likelihood
dominance criterion and the AIC coincide.
The outcome of the sampling experiments
is depicted graphically in Figures 1-5. Each
figure shows a graph of the actual population
density, g(x), as a solid line, a graph of the
fitted form of the actual population density,
&(x), as a line with long dashes, and the fitted
restricted HT transformation, f'(x), as a line
with short dashes for each of the three sample
sizes and. with the exception of Figure 5, for
two sampling populations. From the figures, it
is apparent that both the fitted form ot the ac-
tual population density and the fitted form of
the restricted HT transformation provide better
approximations to the actual population den-
sity as the sample size increases. With the ex-
ception of the order statistic population, the
fitted form of the actual population density is
essentially indistinguishable from the actual
population density when estimated by maxi-
mum likelihood using a large sample. More-
over, the fitted form of the actual population
density generally provides a better approxima-
tion to the population than the fitted form of the
restricted HT transformation. Hence, as might
be expected, information on the parametric form
of the population density has value in approxi-
mating the actual population density using sam-
ple data. The flexibility of the restricted HT
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Figure 1.  Population Density, g(x) ———, Fitted Population Density, ¢(x) — —, and Fit-
ted Restricted HT Transformation, f(x) - - - -, for Normal and Beta Populations by Sample
Size (n)

transformation has value when the parametric
form of the population density is uncertain.
Figure | shows that the restricted HT trans-
formation approximates the normal density
very well and nearly as well as the normal
density itself for the population sampled. The
approximation provided by the restricted HT
transformation for the beta population sampled
is not so impressive, though the basic shape is
preserved. The restricted HT transformation
provides an excellent approximation to both
the gamma and logistic populations sampled
(Figure 2). The latter is cxpected because of
the close relationship between the logistic and
the HT transformation. However, neither the

log-normal nor Pareto populations sampled
are approximated well by the restricted HT
transformation (Figure 3). The approximation
of the Weibull population density appears to
be quite good and rivals the fitted form of the
population density (Figure 4). Neither the fit-
ted form of the order statistic density nor the
restricted HT transformation provides highly
accurate approximations of the population
sampled and can be regarded as roughly
equivalent in performance (Figure 4). A nor-
mal mixture distribution provides a pro-
nounced bimodal population, which is approx-
imated very well by the restricted HT
transformation (Figure 5).
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Figure 2.  Population Density, g(x) ———, Fitted Population Density, §(x) — —, and Fitted
Restricted HT Transformation, f(x) - - - -, for Gamma and Logistic Populations by Sample
Size (1)

The results of the sampling experiments in-
volving small, medium, and large samples
suggest that the restricted HT transformation
with a cubic polynomial is sufficiently flexible
to compete with the parametric forms of the
actual population densities in most cases. Ex-
ceptions include samples from the log-normal
and Pareto populations, which were not ap-
proximated well. Even so, it should be kept in
mind that the sampling experiments pitted the
restricted HT transformation against common
alternatives on their own turf. This is the case
because the samples were drawn for the com-

mon alternative densities. As Taylor has

shown, in cases where the parametric form of
the population density sampled is unknown or
exhibits properties not usually found among
common probability density functions, such as
bimodality, the HT transformation’s flexibility
may provide an advantage in approximation.

Community-Supported Agriculture Real
Net Income per Acre

Community-supported agriculture (CSA) be-
gan in the United States in western Massachu-
setts in 1984. Kelvin loosely defines CSA as
a marketing arrangement in which farmers en-
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Figure 3. Population Density, g(x) ———, Fitted Population Density, g(x) — —, and Fitted
Restricted HT Transformation, f(x) - - - -, for Log-Normal and Pareto Populations by Sample
Size (n)

ter into an agreement with a group of local
consumers to provide food for their families.
Each CSA operation has its own unique ar-
rangements between farmers and shareholders.
However. the farmer is usually paid by the
shareholders prior to the season for a weekly
share of the harvest. CSA presents an alter-
native business model for farmers, especially
those operating small farms, and the CSA con-
cept is increasing in popularity. The number
of CSA farms in Massachusetts is now 39, and
there are currently more than 1,000 CSA
farms in the United States.

Basic data on CSA operations in the north-
eastern United States were collected via a sell-

administered mail survey of CSA operations
during the 19951997 garowing seasons (San-
neh. Motffitt, and Lass). The mail surveys were
sent to CSA operators in Connecticut, Mas-
sachusetts, Maine, New Hampshire, New Jer-
sey. New York, Pennsylvania, Rhode lsland,
and Vermont, with a 36% response rate. The
survey elicited data on the CSA operations.
including farm size. the proportion of acreage
used for CSA operations, revenues from the
CSA operations, other on-farm enterprises,
nonfarm sources of income, farm outputs,
types and number of shares sold, farm oper-
ating expenses, labor use, weed, soil, and dis-
ease management practices, and operator char-
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Figure 4. Population Density, g(x) ———, Fitted Population Density, £(x) — —, and Fitted
Restricted HT Transformation, f(x) - - - -, for Weibull and Order Statistic Populations by

Sample Size (1)

acteristics. The survey yielded 82 observations
on net income per acre for CSA farms in the
northeastern United States, which were ex-
pressed in 1997 dollars using the Consumer
Price Index. This section utilizes these survey
data to characterize uncertain CSA real net in-
come per acre with an estimated probability
density function.

It is important to provide some interpreta-
tion of the notion of uncertainty, which is re-
flected by the result of estimations based on
the survey data. The defining characteristic of
a CSA farm is a marketing arrangement that
shifts production risk to shareholders. All rev-
enue that a CSA farm will typically receive

during a season is in hand prior to planting. If
a CSA farm its shareholders. it
should experience relatively little temporal
variation. As expected. in preliminary analy-
ses of both revenues and costs using the sur-
vey data, the null hypothesis that revenues and
costs were equal across the three years could
not be rejected. So an estimated probability
density function for net income per acre based
on the survey data is expected to provide pri-
marily information on spatial variation. The
estimated probability density function thus
provides information on the variability ot net
income per acre across CSA tfarms in the
northeast rather than that of a representative

maintains
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Figure 5. Population Density, g(x) \
Fitted Population Density, g(x) — —, and Fit-
ted Restricted HT Transtormation, f(x) - - - -.
for a Bimodal Population by Sample Size (n)

CSA farm. A potential entrant into the world
of CSA farming in the northeast should regard
the estimated probability density function as
an indicator of the net income uncertainty they
face when considering conversion to the CSA
concept.

The normal probability distribution was in-
vestigated for CSA real net income per acre.
Statistical tests for normality provided by
D’ Agostino, Belanger. and D’Agostino were
implemented for the observations on real net
income per acre. D’Agostino, Belanger, and
D’ Agostino provide a test statistic based on
skewness. which they denote as Z(b))'2, and a
test statistic based on kurtosis, which they de-
note as Z{h,). Both Z(b)"* and Z(b,) are ap-
proximately normally distributed under the
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normal hypothesis of population normality. A
third test statistic provided by D’ Agostino, Be-
langer, and D’ Agostino, denoted as L? and re-
ferred to by them as an omnibus test because
it is based on both skewness and kurtosis, is
approximately distributed as a chi-squared
random variable with two degrees of freedom
when the population is normally distributed.

Results of the normality tests are as fol-
lows. For real net income per acre, the
D’Agostino. Belanger, and D’Agostino test
statistics are Z(b,)"? = —1.25, Z(b,) = 2.1824,
and K2 = 6.32, with prob-values 0.106, 0.014,
and 0.042, respectively. Neither the test based
on skewness nor the omnibus test permit re-
jection of normality for CSA real net income
per acre observations. However, the test based
on kurtosis does permit rejection of normality.
The mixture of results obtained does not pro-
vide strong evidence for rejecting normality.
Even so. the results also suggest that it may
be possible to approximate the distribution of
CSA real net income per acre more closely
with a nonnormal density.

Maximum likelihood estimates of the pa-
rameters in the restricted HT transformation
using equation (5), with x; denoting CSA real
net income per acre, are 3, = —0.4539, @3 =
0.000356, 3, = 1.583 X 10 0, and B, = 2.685
X 10°'%. Estimated standard errors, approxi-
mated based on Table 2, associated with the
estimates of B, B.. B.. and B, are 0.10328,
0.0000421982, 7.72867 X 107%, and 1.04207
X 1072, respectively. Maximum likelihood es-
timates of the parameters in the normal density
are p = 1318.17 and o = 2601.98, with esti-
mated standard errors 287.34 and 203.213, re-
spectively. A graph of the fitted restricted HT
transformation with constraints binding and
the fitted normal density are shown in Figure
6. It is apparent in the figure that fitted den-
sities are quite similar though they are not in-
distinguishable.

Comparison of the fitted restricted HT
transformation to the fitted normal density is
pursued according to the information criterion
(AIC) suggested by Akaike, the likelihood
dominance criterion of Pollak and Wales, and
the nonnested hypothesis test due to Vuong.
The AIC criterion is used for model selection
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Figure 6. Fitted Normal Density — — and Fitted Restricted HT Transformation - - - - of

CSA Real Net Income per Acre in the Northeastern United States

rather than hypothesis testing. Statistical mod-
els are regarded as approximating the true but
unknown probability density, and the focus is
on obtaining the model that provides the best
approximation. As described earlier, the Akai-
ke criterion is based on selecting the model
that minimizes AIC = —2(log likelihood) +
2(number of parameters estimated). The val-
ues of the AIC statistic for the fitted restricted
HT transformation (-2(—759.021) + 2(4) =
1526.04) and the fitted normal density
(—2(=761.194) + 2(2) = 1526.39) suggest
that the restricted HT transformation be se-
lected over the normal density for approxi-
mating the probability distribution of CSA real
net income per acre. The same result follows
from application of the likelthood dominance
criterion because the log-likelihood ratio =
2.173 > 198664 = [C(n, — ny + 1y — C(H|/
2. Hence, the fitted restricted HT transforma-
tion is selected by the likelihood dominance
criterion. The Vuong test statistic is n ">(log-
likelihood ratio)/w, = 1.28, which shows that
the hypothesis that the fitted normal density
and the fitted restricted HT transformation are
equal cannot be rejected. Though it is not pos-

sible to conclusively reject the normal density,
the approximation to the sample data provided
by the restricted HT transformation appears to
be better according to the model selection cri-
teria and equivalent from the perspective of
hypothesis testing.

Concluding Remarks

Use of the HT transtormation for character-
izing uncertain outcomes was investigated,
Restrictions on the HT transformation were
derived to ensure that a probability density
function results from its estimation. A con-
strained maximum likelihood procedure was
developed for the restricted HT transformation
that embaodies a cubic polynomial. Sampling
experiments showed the restricted HT trans-
formation and constrained maximum likeli-
hood estimator to be easily implemented and
capable of approximating several common
probability density functions well. The re-
stricted HT transformation was estimated us-
ing real net income per acre observations for
community-supported agriculture farms in the
northeastern United States. The fitted restrict-
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ed HT transformation approximated the sam-
ple data better than the normal density, which
was also estimated by maximum likelihood.
Results indicate that the restricted HT trans-
formation provides a viable alternative to sev-
eral common probability density functions for
characterizing uncertain outcomes. Notable
exceptions include cases where sample data
are suspected of having been generated by log-
normal or Pareto-type probability density
functions because the restricted HT transfor-
mation provided relatively poor approxima-
tions in these cases.

[Received August 2001; Acceptred January
2002.]
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