
ORNELL

WP 2001-14 August 2001



Working Paper

Department of Applied Economics and Management [Cornell University, Ithaca, New York 14853-7801 USA

# An Economic Evaluation of the New Agricultural Trade Negotiations: A Nonlinear Imperfectly Competitive Spatial Equilibrium Approach

by

Koushi Maeda (Kyushu University, Japan) Nobuhiro Suzuki (Kyushu University, Japan) and Harry M. Kaiser (Cornell University)

coordealed from: http:// a ene cornell. edu/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/restarch/rest

### An Economic Evaluation of the New Agricultural Trade Negotiations: A Nonlinear Imperfectly Competitive Spatial Equilibrium Approach

Koushi Maeda, Nobuhiro Suzuki, and Harry M. Kaiser

#### Abstract

The objective of the research reported here is to develop a more flexible and comprehensive policy simulation model for imperfectly competitive international agricultural trade with various trade and domestic support policies. The model is a nonlinear imperfectly competitive spatial equilibrium model formulated as a MCP. The model is flexible in that it can simulate the economic effects of the following trade policies: specific duties, ad valorem tariffs, tariff-rate quotas, export subsidies, production subsidies, production quotas, consumption taxes and price floors, combined with various imperfectly competitive market structures. The usefulness of the model is demonstrated with an application to international wheat trade simulated under several alternative scenarios based on proposals of major countries as well as the agreement between China and the United States on China's participation in the WTO. The main empirical findings are as follows. Keeping the committed 2000 support levels under the current WTO agricultural agreements would be favorable for wheat producers in the European Community and Canada, but harmful to the United States wheat sector. There would be little structural change in the world wheat trade in a case where China joins the WTO, keeping the other countries' policies at the committed 2000 support levels. Likewise, little structural change would occur in the case where the new WTO agricultural negotiations result in agreements favorable for importing countries. However, world wheat trade would drastically change under full trade liberalization. In this case, the European Community switches from the world's leading net exporter to the world's leading net importer of wheat. Also, China and India would become major net exporting countries, and net exports by the United States, Canada, and the Cairns group such as Australia and Argentina would expand under full trade liberalization.

The authors respectively are assistant and associate professors of agricultural economics at Kyushu University, and professor of applied economics and management at Cornell University.

## An Economic Evaluation of the New Agricultural Trade Negotiations: A Nonlinear Imperfectly Competitive Spatial Equilibrium Approach

In December 2000, World Trade Organization (WTO) member countries submitted their proposals for the forthcoming agricultural negotiations. It is clear from these proposals that there is severe friction between importing and exporting countries, as well as between major oligopolistic exporting countries. The ultimate outcome that is reached will depend upon which country or blocks of countries are dominant. China's participation in the WTO is also an important factor affecting the new agreement.

A tool that is important for each member country in developing negotiation strategies for the new agreement is a generalized policy simulation model. Such models estimate the economic effects of alternative agreements, and, to be useful, must be able to adequately incorporate all of the complicated agricultural policy measures such as tariff-rate quotas, and combination of specific duties and *ad valorem* tariffs. Policy simulation models used by member countries in past international agricultural trade negotiations include AGLINK by OECD, DWOPSIM by Roningen (at USDA), IFPSIM by Ohga and Gehlar (at IFPRI), and various Applied General Equilibrium models (e.g., Anderson, *et al.*; Rae and Hertel).

The above are static and dynamic models for multi-regional and multi-commodity markets. Some of these models incorporate PSE (Producer Subsidy Equivalents) and CSE (Consumer Subsidy Equivalents) as aggregated measures of degree of agricultural support. However, these models do not separately incorporate various trade and domestic support policies such as specific duties, *ad valorem* tariffs, tariff-rate quotas, export subsidies, production subsidies, production quotas, consumption taxes and price floors. In particular, tariff-rate quotas have become one of the most important WTO policies, but it has been difficult to incorporate this policy option into these simultaneous equation models due to a non-convergence problem. In addition, these models assume perfectly competitive markets, which may be problematic since most international agricultural markets (e.g., the world wheat market) are clearly imperfectly competitive. Finally, transportation costs have ignored in these simultaneous equation models, even though transportation costs are important transaction costs, similar to tariffs, and have a major impact on international agricultural trade.

Spatial equilibrium models based on Takayama and Judge have also been applied to policy simulation (e.g., Judge and Takayama; Cox, *et al.*; Zhu, Cox and Chavas). While these models incorporate transportation costs, they can not handle *ad valorem* tariffs because they were formulated as quadratic programming problems. Rutherford introduced *ad valorem* tariffs to the model by reformulating it as a mixed complementarity problem (MCP). Subsequently, Shono introduced other trade policies such as tariff-rate quotas to her spatial equilibrium model. However, Shono specified supply (or marginal cost) and demand functions in linear form as a linear complementarity problem (LCP). Shono's model also relaxed the assumption of perfect competition, but under the assumption that all countries behave in the same ologopolistic manner. Both Shono and Rutherford did not introduce domestic support policies to their models, although these policies influenced international trade and policy as well.

The objective of the research reported here is to develop a more flexible and comprehensive policy simulation model for imperfectly competitive international agricultural trade with various trade and domestic support policies. The model is a nonlinear imperfectly competitive spatial equilibrium model formulated as a MCP. The model is flexible in that it can simulate the economic effects of the following trade policies: specific duties, *ad valorem* tariffs, tariff-rate quotas, export subsidies, production subsidies, production quotas, consumption taxes and price floors, combined with various imperfectly competitive market

structures. The usefulness of the model is demonstrated with an application to international wheat trade simulated under several alternative scenarios based on proposals of major countries as well as the agreement between China and the United States on China's participation in the WTO.

#### The Model

Consider international trade among n ( $n \ge 2$ ) countries. In each country, there are three administratively different markets: (1) a domestic market with no tariffs, (2) an in-quota import market with lower tariffs, i.e., the so-called minimum or current access market, and (3) an over-quota import market with higher tariffs. Products in the three markets are not differentiated by consumers, i.e., there is only one demand function in each country.

Consumers in each country are assumed to behave as price-takers. On the other hand, producers in each country are classified into two types: (1) a price-taking producer, and (2) a producer behaving as a Cournot player who maximizes profits with the expectation that his rivals will not change their supply in response to changes in his supply. Notations used in this paper are as follows:

 $Y_i$ : quantity produced in country *i*;

 $X_{ii}^{d}$ : quantity supplied to domestic market in country *i* (*i* = *j*);

 $X_{ij}^{p}$ : quantity exported from country *i* to in-quota market in country *j*;

 $X_{ii}^{*}$ : quantity exported from country *i* to over-quota market in country *j*;

 $X_{ij}^{ep}$ : quantity exported with export subsidy from country *i* to in-quota market in country *j*;  $X_{ij}^{es}$ : quantity exported with export subsidy from country *i* to over-quota market in country *j*;

- $C_i = C_i(Y_i)$ : cost function in country *i*;
- $D_j = D_j (P_j)$ : demand function in country j;
- $ST_{j}^{p}$ : in-quota specific duty rate in country j;
- $ST_{j}^{s}$ : over-quota specific duty rate in country j;
- $AT_i^p$ : in-quota *ad valorem* tariff rate in country *j*;
- $AT_j^s$ : over-quota *ad valorem* tariff rate in country *j*;
- $\overline{X_i^p}$ : tariff-rate quota in country *j*;
- $ES_i$ : specific export subsidy in country *i*;
- $\overline{X_i^e}$ : upper limit of subsidized quantity exported in country *i*;
- $PS_i$ : (specific) producer subsidy in country *i*;
- $\overline{Y_i}$ : production quota in country *i*;
- $P_j$ : price floor in country j;
- $CT_i$ : (ad valorem) consumption tax rate in country j;
- $TC_{ii}$ : unit transportation cost from country *i* to *j* ( $i \neq j$ );
- $TC_{ij}^{d}$ : unit transportation cost inside country *i* (*i* = *j*),

where *i* and *j* are natural numbers,  $ST_j^p < ST_j^s$  and  $AT_j^p < AT_j^s$ . All demand and cost functions are assumed to be continuously differentiable. It is also assumed that unit transportation costs are constant regardless of quantity shipped, and there is no forwarding transportation between countries.

Using the above notation, the producer's profit maximizing behavior in country i

can be expressed as:

$$(1) \max_{\substack{Y_{i}, X_{u}^{a}, X_{u}^{d}, X_{u}^{a}, X_{u}^{d}, X_{u}^{d}, X_{u}^{p}, X_{u}^{s}}} \pi_{i} = \sum_{j=1}^{n} P_{j} \left\{ X_{ij}^{d} + X_{ij}^{p} + X_{ij}^{s} + X_{ij}^{ep} + X_{ij}^{es} \right\} - C_{i} \left( Y_{i}^{i} \right) - \sum_{j=1}^{n} T C_{ij}^{d} \left( X_{ij}^{p} + X_{ij}^{s} + X_{ij}^{ep} + X_{ij}^{es} \right) - \sum_{j=1}^{n} S T_{j}^{p} \left( X_{ij}^{p} + X_{ij}^{ep} \right) - \sum_{j=1}^{n} A T_{j}^{p} P_{j} \left( X_{ij}^{p} + X_{ij}^{ep} \right) - \sum_{j=1}^{n} S T_{j}^{s} \left( X_{ij}^{s} + X_{ij}^{es} \right) - \sum_{j=1}^{n} A T_{j}^{s} P_{j} \left( X_{ij}^{s} + X_{ij}^{es} \right) + E S_{i} \sum_{j=1}^{n} \left( X_{ij}^{ep} + X_{ij}^{es} \right) + P S_{i} Y_{i}$$

$$(2) \quad s.t. \quad \sum_{j=1}^{n} \left( X_{ij}^{d} + X_{ij}^{p} + X_{ij}^{s} + X_{ij}^{ep} + X_{ij}^{es} \right) \leq Y_{i}$$

$$(3) \quad \sum_{i=1}^n (X_{ij}^p + X_{ij}^{ep}) \leq \overline{X_j^p}, \ \forall j ,$$

$$(4) \quad \sum_{j=1}^{n} \left( X_{ij}^{ep} + X_{ij}^{es} \right) \le \overline{X_{i}^{e}}$$

(5)  $Y_i \leq \overline{Y_i}$ 

where  $Y_i$ ,  $X_{ij}^d$ ,  $X_{ij}^p$ ,  $X_{ij}^s$ ,  $X_{ij}^{ep}$  and  $X_{ij}^{es}$  are non-negative variables. Values for  $TC_{ij}^d$   $(i \neq j)$ and  $TC_{ii}$  are set to extremely large numbers in order that values for  $X_{ij}^d$   $(i \neq j)$ ,  $X_{ii}^p$ ,  $X_{ii}^s$ ,  $X_{ii}^{ep}$  and  $X_{ii}^{es}$  be zero. In the case where country j does not have the tariff-rate quota system, values for  $ST_j^p$ ,  $AT_j^p$  and  $\overline{X_j^p}$  are zero and over-quota tariff rates,  $ST_j^s$  and  $AT_j^s$ , are applied to all imports to the country.

If the producer in country i behaves as a Cournot player, the Kuhn-Tucker optimality conditions for the above maximization problem can be expressed as follows:

(6) 
$$P_{j} + \frac{dP_{j}}{dD_{j}} \left( X_{ij}^{d} + X_{ij}^{p} + X_{ij}^{s} + X_{ij}^{sp} + X_{ij}^{sp} \right) \leq TC_{ij}^{d} + \alpha_{i}, \ X_{ij}^{d} \geq 0,$$
  
$$X_{ij}^{d} \left[ TC_{ij}^{d} + \alpha_{i} - P_{j} - \frac{dP_{j}}{dD_{j}} \left( X_{ij}^{d} + X_{ij}^{p} + X_{ij}^{s} + X_{ij}^{sp} + X_{ij}^{sp} \right) \right] = 0, \ \forall ij ,$$

$$\begin{array}{l} (7) \quad P_{i} + \frac{dP_{i}}{d\Omega} \left[ \chi_{i}^{u} + X_{i}^{u} + X_{i}^{u} + X_{i}^{u} + X_{i}^{u} + X_{i}^{u} \right] = C_{i}^{u} + ST_{i}^{u} + AT_{i}^{u} \left\{ P_{i}^{u} + \frac{dP_{i}}{d\Omega} \left[ \chi_{i}^{u} + X_{i}^{u} \right] \right\} + \alpha + \beta_{i}^{u} - P_{i}^{u} - \frac{dP_{i}}{d\Omega} \left[ \chi_{i}^{u} + \chi_{i}^{u} + \chi_{i}^{u} + \chi_{i}^{u} + \chi_{i}^{u} \right] = 0, \quad \forall i j , \\ (8) \quad P_{i}^{u} + \frac{dP_{i}}{d\Omega} \left\{ \chi_{i}^{u} + X_{i}^{u} + \chi_{i}^{u} + \chi_{i}^{u$$

where  $\alpha_i$ ,  $\beta_{ij}$ ,  $\gamma_i$  and  $\delta_i$  are the Lagrange multipliers for constraints (2), (3), (4), and (5),

respectively. If the producer in country *i* behaves as a price taker, the term  $\frac{dP_i}{dD_j}$  in the above conditions becomes zero.

For a producer in country *i*,  $\beta_{ij}$  is the shadow price for the right to export to the inquota market in country *j*. Assuming that the market for this right is perfectly competitive in country *j*, producers in all countries should face the same shadow price for this right in country *j*. Throughout this paper, the competitive shadow price in country *j* is expressed as  $\beta_j$ . A relatively high shadow price means more expansion of tariff-rate quotas in country *j* is demanded. The parameters  $\gamma_i$  and  $\delta_i$  are shadow prices for the right to produce within production quotas in country *i*, and for the right to export within the upper limit of subsidized quantity exported in country *i*, respectively. Condition (11) shows that the relation  $\left(\alpha_i = \frac{dQ}{dX} + \delta_i - PS\right)$  holds if there is any production in country *i*. Condition (12) shows that if  $\alpha_i > 0$ , then total quantity shipped is equal to total quantity produced. However, this condition also allows for excess production even if the marginal cost is positive. If domestic support policies are ignored, as assumed by Rutherford and Shono, overproduction could occur only if the marginal cost is equal to zero.

As described earlier, the market is divided into three administratively different markets in each country: domestic market, in-quota import market, and over-quota import market. Since it is assumed there is only one demand function for each country, the market equilibrium condition in country / can be expressed as follows:

(16) 
$$D_{j}\left\{P_{j}\left(1+CT_{j}\right)\right\} = \sum_{i=1}^{n} \left\{X_{ij}^{d} + X_{ij}^{p} + X_{ij}^{s} + X_{ij}^{cp} + X_{ij}^{ss}\right\}, P_{j} \ge \underline{P_{j}}, \forall j \text{, or}$$
  
(17)  $D_{j}\left\{P_{j}\left(1+CT_{j}\right)\right\} < \sum_{i=1}^{n} \left\{X_{ij}^{d} + X_{ij}^{p} + X_{ij}^{s} + X_{ij}^{sp} + X_{ij}^{ss}\right\}, P_{j} = \underline{P_{j}}, \forall j \text{.}$ 

The spatial equilibrium model consists of conditions (6) to (17) formulated as the MCP.<sup>1</sup> The Nash equilibrium solution for these conditions is the spatial equilibrium solution. The solution is found by the pathsearch damped Newton method (Ralph; Dirkse and Ferris; Anstreicher, Lee and Rutherford).

Theoretically, introducing the conjectural variations concept into the above model can generalize the model to incorporate any degree of market structure from perfect competition to monopoly. However, conjectural variations in the generalized model cannot be estimated in the same manner as Iwata, or Suzuki, Lenz and Forker, in cases where  $X_{ij}^{p}$ ,  $X_{ij}^{s}$ ,  $X_{ij}^{ep}$ , and  $X_{ij}^{es}$  are zero, and tariff-rate quotas and limits of subsidized quantity exported are effective. Therefore, we use the above model without introducing conjectural variations, and find plausible market structures by simulating a lot of combinations of producers' marketing behavior according to Kawaguchi, Suzuki and Kaiser.

#### An Application

Because it is one of the most controversial areas of WTO agricultural negotiations, the model is applied to a policy simulation of international wheat trade. Five major exporting countries and areas (United States, Canada, European Union, Australia and Argentina) share about 85 percent of total exports in the international wheat market. Therefore, each of these countries and areas is assumed to behave as a Cournot player. On the other hand, producers in nine countries (China, Egypt, India, Japan, South Korea, Mexico, New Zealand, Nigeria and the former Soviet Union) are assumed to behave as price takers in simulation.

Table 1 shows domestic trade and support policies for wheat in each country. Tariff rates and tariff quotas represent levels in 2000 committed by each country under the WTO agreement (USDA, FAS; Dohlman and Hoffman; WTO). It is assumed that specific export

subsidies in 2000, calculated by dividing the committed value limit by the committed volume limit, can be used within the committed volume limit even though WTO agreements require countries to reduce the volume and value of subsidized export (WTO; Dohlman and Hoffman). China's trade and domestic support policies represent levels applied in 1998 because it is currently a non-WTO member. Likewise, Russia' s figures in 1998 are used for the former USSR. Specific duty rates and export subsidies are converted into U.S. dollars by using exchange rates at the end of 1998 (UN; Bank of Japan).

The WTO agreements also require countries to reduce the total Aggregate Measure of Support (AMS) as opposed to the commodity-specific AMS. However, instead of AMS, we use the unit PSE (converted into U.S. dollars) for wheat in 1998 (OECD) as (specific) production subsidies because we are focusing only on wheat trade.<sup>2</sup> Because the unit PSE in 1998 is not available for these countries and areas, the unit PSE's for Argentina, China, Egypt, India, Nigeria and the former USSR are, respectively, for the years 1992, 1992, 1992, 1990, 1989 and 1990 (USDA, ERS).

Floor prices for wheat converted into U.S. dollars are set at the intervention price in the European Community, the administrated price in Japan and Mexico, and the loan rate in the United States (OECD). Although price floors are set at producer prices, this model sets the price floor at the border price in each country and area by using the relationship that the border price is equal to the producer price minus unit MPS (or Market Price Support). In each country and area with production quotas, the quantity produced in 1999 (USDA, ERS) is used as a proxy for the volume of production quotas. The consumption tax rate in 2000 is used in each country and area.

For an empirical application of the model, demand and inverse marginal cost functions in each country and area are simplified and specified as follow:

(18)  $D_j = DD_j N_j = (a_j + b_j P_j) N_j$ 

(19)  $Y_i = YY_i A_i = YY_i (c_i PP_i^{d_i})$ 

where  $DD_i$  and  $N_j$  are quantity demanded and population in country j, respectively;  $YY_i$ ,  $A_i$ , and  $PP_i$  are yield, cultivated area and marginal cost in country i, respectively; and  $a_j$ ,  $b_i$ ,  $c_i$ , and  $d_i$  are parameters.

Per capita demand functions are specified in a linear form for the following reason. In this application, many combinations of producers' marketing behavior are simulated in order to find a good proxy for the actual market structure. In a case where producers in all countries and areas form a coalition to monopolize the international markets, the demand must be price-elastic in all markets. If a demand function with an inelastic constant elasticity is used in the model, there is no collusive solution. Therefore, we use a linear demand function, which is one functional form with variable price elasticities.

Border prices (OECD; USDA, ESS) are used as market prices for calculating linear demand functions in each country and area. Prices for the same years as those for PSE are used for Argentina, China, Egypt, India, Nigería and the former USSR. 1998 prices are used for other countries and areas, deflating by implicit deflators. Domestic consumption (USDA, ERS) and population (FAO) are used to calculate the per capita demand in each country and area. Per capita demand functions are calculated using these data and long-run price elasticies for per capita wheat demand for human uses estimated by Ohga and Yanagishima. As shown in table 2, multiplying the per capita demand functions by the latest (1999) estimates of population yields the aggregate wheat demand function for each country and area.

Producer prices (OECD; USDA, ESS), deflating by implicit deflators, are used as marginal costs in each country and area. The cultivated area data comes from OECD. The data years for both producer prices and cultivated areas are the same as the border prices. Cultivated areas' response functions to marginal costs are calculated using these data and long-run price elasticities of the cultivated area estimated by Ohga and Yanagishima. As shown in table 2, multiplying the response functions by the latest (1999) estimates of yield (USDA, ERS) provides the inverse marginal cost function in each country and area.

Grains are usually transported by ship. The main type of ship used is the bulk carrier (called the Panamax type). Transportation is occasional and supply and demand of the beam determines the freight. Assuming that the unit transportation cost is constant regardless of shipping volume, we estimate the unit transportation costs between ports in each country and area as follows: The main port in each country and area, and the shortest route usually taken by merchant ships is selected. The distance of the route between ports is calculated in terms of nautical miles. The freight per metric ton and per nautical mile between New Orleans and Tokyo is calculated, based on the information that the freight cost for grains between the U.S. Gulf Coast and Japan by bulk carrier (Panamax type) is US\$22.4 on average from 1994 to 1999 (Clarkson). As shown in table 3, multiplying the calculated freight cost per metric ton and per nautical mile by the distance of each route provides with the unit transportation costs among the countries and areas. On the other hand, the unit transportation cost inside each country and area is assumed to be zero.

Four scenarios are simulated based on current proposals for the new WTO agricultural negotiations from major countries, and the agreement between China and the United States on China's participation in the WTO (see table 4). The four scenarios are representative of a wide range of possible outcomes for the new trade agreements, ranging from no change to proposals favoring importing countries to proposals favoring exporting countries.

Scenario 1 is the base scenario that represents the committed 2000 levels of trade

and domestic support policies under the current WTO agricultural agreements. This scenario is indicative of the current market situation for world wheat trade. The in-quota *ad valorem* tariff rate in Japan is assumed to be 20 percent, and in Mexico and the United States only specific duties are imposed on over-quota imports. It is also assumed that trade and domestic policies in China and the former USSR shown in table 1 remain unchanged. All levels of other domestic policies, population, yield and unit transportation costs shown in tables 1 to 3 are used. Note that population, yield and unit transportation costs are also used in scenarios 2 to 4.

Under Scenario 2, it is assumed that China joins the WTO and all other trade and domestic support policies are the same as Scenario 1. Trade policies in China are assumed to be the committed levels for 2004 based on the 1999 agreement between China and the United States. That is, China establishes 9.636 million metric tons of tariff-rate quotas, and sets the in-quota *ad valorem* tariff rate at one percent and the over-quota *ad valorem* tariff rate at 65 percent. China's domestic policies shown in table 1 are used in this scenario.

Scenarios 3 and 4 represent the most extreme outcomes for the negotiations. Scenario 3 assumes that the new WTO agricultural negotiations result in agreements favorable for exporting countries. This scenario is close to full trade liberalization since all trade and domestic support policies except consumption taxes are eliminated in all countries and areas. On the other hand, in Scenario 4, it is assumed that the new WTO agricultural negotiations result in agreements favorable for importing countries. Here it is assumed that export subsidies are eliminated, the tariff-rate quotas are eliminated, and the current overquota tariffs are imposed on all imports. The current domestic support policies are assumed to remain unchanged in all countries and areas.

#### The Results

Table 5 shows the spatial equilibrium solution for scenario 1. First, we solved scenario 1 assuming three different market structures: (1) a case where producers in all countries and areas behave as a price taker, (2) a case where they form a coalition to monopolize the international markets, and (3) a case where they behave as a Cournot player. Although solutions in the above three cases are not shown, they were not realistic solutions. For example, the first and second cases resulted in highly simplistic world trade structures. The second and third cases resulted in extremely high market prices. As shown in table 5, the solution that was the closest to the actual world wheat trade structure was the case where producers in Argentina, Australia, Canada, European Community and the United States are Cournot players, and producers in the other nine countries and areas are price takers. Therefore, we used the fifth case as the basic market structure for simulating all four scenarios.

The results for the base scenario where the committed 2000 levels remain the same are displayed in Table 5. In this situation, the European Community, United States, and Canada are the largest net exporters (net exports of 18.3, 17.6, and 15.2 million metric tons, respectively). Total word trade is almost 120 million metric tons. While the European Community is the world's largest net exporter of wheat in this scenario, it is clear that the European Community has a high degree of domestic market protection. The high domestic intervention price for wheat in the European Community results in a large amount of surplus stocks, which totals almost 17 million metric tons in the base scenario. Consequently, there is tremendous pressure to reduce the size of government stocks through large export subsidies (\$1,364 million in the base case). At the same time, the relatively high market wheat price makes the European Community a particularly attractive market to other wheat exporters. This is also reflected in the results by the high shadow price for export rights into this market (\$113.60 per metric ton). Thus, in spite of WTO pressure to expand tariff-rate quotas, the

European Community has a strong incentive to restrict wheat imports, as is the case in this scenario.

A similar situation exists in Canada, which also has a high degree of domestic protection in the base scenario. However, Canada supports its wheat market though a price discrimination scheme operated by the Canadian Wheat Board. Price discrimination includes a higher domestic price and a lower export price for wheat, with producers receiving a weighted-average price based on market utilization. Indeed, Canadian producers receive the highest market price for wheat in this scenario of any country (\$189.28). The shadow price for the right to export into Canada is almost as high as the European Community (\$105.99). As was true for the European Community, the results of the base scenario suggest that Canada has an economic incentive to resist expansion of tariff-rate quotas.

On the other hand, the United States has a relatively low degree of protection for its wheat market. Second only to the European Community in terms of net exports, the United States has one of the lowest wheat market prices among all the exporters (almost one-half the market price of Canada and the European Community). It is clear that the United States should favor expansion of tariff-rate quotas in the future trade negotiations.

The simulation results for Scenario 2 are reported in Table 6, where China is part of the WTO and all other member countries are committed to 2000 support levels. This scenario does not result in drastically different results from the previous scenario, except that China would become a net importing country by increasing imports to its upper limit of tariff-rate quotas. Consequently, total world wheat trade increases in this scenario from 120 to 129 million metric tons. However, there is little change in market prices, and no other significant structural changes in the world wheat trade in this case.

Not surprisingly, the world wheat trade situation would change considerably under full trade liberalization (all trade and domestic support policies except consumption taxes are

eliminated in all countries and areas) reflected by Scenario 3 (reported in Table 7). Relative to the base scenario, world wheat trade increases by 47 percent in this scenario to 176 million metric tons. Under full trade liberalization, the European Community switches from the world's largest net exporter to the world's largest net importer of wheat (importing 10 metric tons). The market price for wheat in the European Community would fall by over 25 percent, and wheat production decreases by 35 percent compared to the base scenario. Indeed, the European Community wheat sector would suffer the largest losses by full trade liberalization.

Canada and the United States remain as the largest net exporters of wheat under full trade liberalization. Relative to the base scenario, Canada actually experiences an increase in net exports (from 15.2 million metric tons to 19.3). Trade liberalization results in a 23 percent increase in production. The higher production results in a 25 percent decrease in the market price in Canada. Net exports from the United States also expand in the full trade liberalization case, increasing from 17.6 to 20.2 million metric tons. Unlike Canada, however, the increase in net exports is due to a slightly lower domestic demand, which, in turn, is due to a higher domestic wheat price in the United States. The magnitude of the domestic price increase is 34 percent under this scenario. Prices become higher in less protected exporting countries, like the U.S., Australia and Argentina, because low export prices become lower in heavily protected countries, like the European Community, Canada, and Japan. Thus, market prices would be leveled in the whole world by a freer trade. Also, China and India would become major net exporting countries, and net exports by the Cairns group such as Australia and Argentina would expand under full trade liberalization.

The last scenario is the opposite of the third, in that it assumes export subsidies and tariff-rate quotas are eliminated, the current over-quota tariffs are imposed on all imports, and the current domestic support policies are maintained (Table 8). In this scenario, world wheat

trade is the lowest (117 million metric tons). Compared with the baseline scenario, the more restricted trade barrier scenario results in no significant structural changes in world wheat trade. Table 8 also shows that some importing countries such as Japan and Mexico would have larger increases in their domestic production.

#### **Concluding Remarks**

In this paper, we developed a nonlinear spatial equilibrium model for analyzing policy issues relating to world trade. By formulating the model as a mixed complementarity problem, this model can incorporate a diverse set of trade and domestic support policies. For instance, the developed model is capable of including the following policies: specific duties, *ad valorem* tariffs, tariff-rate quotas, export subsidies, production subsidies, production quotas, consumption taxes and price floors. Moreover, unlike many previous models that assume a perfectly competitive market structure, the model developed here can be combined with various imperfectly competitive market structures.

The usefulness of this model was demonstrated with an application to international wheat trade. The model was simulated under several policy scenarios based on proposals of major countries on the new WTO agricultural negotiations, and the agreement between China and the United States on China's entry to the WTO.

The main empirical findings are as follows. Keeping the committed 2000 support levels under the current WTO agricultural agreements would be favorable for wheat producers in the European Community and Canada, but harmful to the United States wheat sector. There would be little structural change in the world wheat trade in a case where China joins the WTO, keeping the other countries' policies at the committed 2000 support levels. Likewise, little structural change would occur in the case where the new WTO agricultural negotiations result in agreements favorable for importing countries. However, world wheat trade would drastically change under full trade liberalization. In this case, the European Community switches from the world's leading net exporter to the world's leading net importer of wheat. Also, China and India would become major net exporting countries, and net exports by the United States, Canada, and the Cairns group such as Australia and Argentina would expand under full trade liberalization.

The model can be used for policy simulation of international trade under any other intermediate policy scenarios. Any other products can be incorporated in the model. Many other trade and domestic support policies can also be incorporated in the model, such as export taxes, production taxes and consumption subsidies, by redefining these policies as negative export subsidies, negative production subsidies and negative consumption taxes, respectively. We also can incorporate price ceilings as well as price floors using the MCP formulation. Moreover, transferring shipments from country to country can be introduced in the model by refining it according to Lin and Kawaguchi.

#### References

Anderson, K., B. Dimaranan, T. Hertel, and W. Martin, "Asia-Pacific Food Markets and Trade in 2005: A Global, Economy-Wide Perspective," *Australian J. Agr. and Resour. Econ.*, 41 (March 1997): 19-44.

Anstreicher, K. M., J. Lee, and T. F. Rutherford, "Crashing a Maximum-Weight Complementary Basis," *Math. Programming*, 54 (1992): 281-294.

Bank of Japan, Research and Statistics Department, *Economic Statistics Annual*(1996). Tokyo: Bank of Japan, 1997.

Clarkson, Dry Bulk Trade Outlook, December, 2000.

Cox, T. L., J. R. Coleman, J. -P. Chavas, and Y. Zhu, "An Economic Analysis of the Effects on the World Dairy Sector of Extending Uruguay Round Agreement to 2005," *Can. J. Agr. Econ.*, 47 (December 1999): 169-183.

Dirkse, S. P. and M. C. Ferris, "A Pathsearch Damped Newton Method for Computing General Equilibria," *Annals of Oper. Res.*, 68 (1996): 211-232.

, "Crash Techniques for Large-Scale Complementarity Problems." *Complementarity and Variational Problems: State of the Art.* M. C. Ferris and J. -S. Pang, ed., pp.40-61. Philadelphia: SIAM, 1997.

Dohlman, E. and L. Hoffman, "The New Agricultural Trade Negotiations: Background and Issues for the U. S. Wheat Sector," *Wheat Situation and Outlook Yearbook*, ERS, USDA, (2000): 35-46.

FAO, FAOSTAT Database, (http://apps.fao.org/), 2000.

Ferris, M. C. and C. Kanzow, "Complementarity and Related Problems: A Survey," *Math. Programming Tech. Rep. 98-17*, Computer Sciences Dep., Univ. of Wisconsin -Madison, November 1998.

Ferris, M. C. and J. -S. Pang, "Engineering and Economic Applications of Complementarity Problems," *SIAM Rev.*, 39 (December 1997): 669-713.

Harker, P. T. and J. -S. Pang, "Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms and Applications," *Math. Programming*, Ser. B, 48 (1990): 161-220.

Iwata, G., "Measurement of Conjectural Variations in Oligopoly," *Econometrica*, 42 (September 1974): 947-966.

Japan Shipping Exchange, *Distance Tables for World Shipping, English Edition*. Tokyo: Japan Shipping Exchange, 1992.

Judge, G. G. and T. Takayama, ed., Studies in Economic Planning over Space and Time.

Amsterdam: North-Holland, 1973.

Kawaguchi, T., N. Suzuki, and H. M. Kaiser, "A Spatial Equilibrium Model for Imperfectly Competitive Milk Markets," *Amer. J. Agr. Econ.*, 79 (August 1997): 851-859.

Lin, L. and T. Kawaguchi, "On the Problem of Introducing the Transfer of Products into the Spatial Equilibrium Model of An Imperfectly Competitive Market," *J. Fac. Agr., Kyushu Univ.*, 44 (November 1999): 235-248.

Lloyd's, *Lloyd's Maritime Atlas of World Ports and Shipping Places, 19th Edition.* Colchester: LLP, 1997.

Ohga, K. and C. Gehlar, *The International Food Policy Simulation (IFPSIM) Model: A Documentation and Applications*. Washington D.C.: IFPRI, 1993.

Ohga, K. and K. Yanagishima, *IFPSIM International Food and Agricultural Policy Simulation Model (User's Guide)*. Tsukuba: JIRCAS, MAFF, 1995.

OECD, AGLINK Model Documentation, 1996.

\_\_\_\_\_, Producer and Consumer Support Estimates: OECD Database 1986-1999. Paris: OECD, 2000.

Agricultural Policies in OECD Countries: Monitoring and Evaluation. Paris: OECD, 2000.

Rae, A. N. and T. W. Hertel, "Future Developments in Global Livestock and Grains Markets: The Impacts of Livestock Productivity Convergence in Asia-Pasific," *Australian J. Agr. and Resour. Econ.*, 44 (September 2000): 393-422.

Ralph, D., "Global Convergence of Damped Newton's Method for Nonsmooth Equations, via the Path Search," *Math. Oper. Res.*, 19 (May 1994): 352-389.

Roningen, V. O., Documentation of the Dynamic World Policy Simulation (DWOPSIM) Model Building Framework, ERS, USDA, 1992.

Rutherford, T. F., "Extension of GAMS for Complementarity Problems Arising in Applied Economic Analysis," *J. Econ. Dyn. and Cont.*, 19 (November 1995): 1299-1324.

Shono, C., WTO to Kokusai-Nyuseihin-Boeki (The World Dairy Trade and WTO). Tokyo: Norin-Tokei-Kyokai, 2001 (in Japanese).

Suzuki, N., J. E. Lenz, and O. D. Forker, "A Conjectural Variations Model of Reduced Japanese Milk Price Supports," *Amer. J. Agr. Econ.*, 75 (February 1993): 210-218.

Takayama, T. and G. G. Judge, *Spatial and Temporal Price and Allocation Models*. Amsterdam: North-Holland, 1971.

UN, Statistical Yearbook: Forty-Fourth Issue. New York: UN, 2000.

USDA, ERS, PS&D View, (<u>http://usda.mannlib.cornell.edu/data-sets/international/93002/93002.zip</u>), 2000.

USDA, ESS, Producer and Consumer Subsidy Equivalents, 1982-1992 (95001), (http://usda.mannlib.cornell.edu/data-sets/international/95001/), 1994.

USDA, FAS, WTO Tariff Schedules, (http://www.fas.usda.gov/scriptsw/wtopdf/wtopdf\_frm.idc), 2000.

WTO, Secretariat, Export Subsidies: Background Paper by the Secretariat, 2000.

\_\_\_\_, Tariff and Other Quotas: Background Paper by the Secretariat, 2000.

Zhu, Y., T. L. Cox, and J. -P. Chavas, "An Economic Analysis of the Effects of the Uruguay Round Agreement and Full Trade Liberalization on the World Dairy Sector," *Can. J. Agr. Econ.*, 47 (December 1999): 187-200.

## Notes

<sup>1</sup> Harker and Pang, Ferris and Pang, and Ferris and Kanzow present excellent surveys on complementarity problems including MCP and their applications.

<sup>2</sup> Both AMS and PSE consist of monetary transfers from consumers to producers and from the governments to producers. One of the differences between AMS and PSE is that PSE includes "green box" policies, but AMS does not.

Table 1. Trade and Domestic Support Policies in Each Country and Area

(Unit: U.S. dollars per metric ton, million metric tons and percents)

|                    |                                                                                                                                                   |                        |                      | Trade Policies          |                          |                |                              |                       | Domestic Sug  | Domestic Support Policies |              |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-------------------------|--------------------------|----------------|------------------------------|-----------------------|---------------|---------------------------|--------------|
| Country or<br>Area | ,<br>L                                                                                                                                            | in-Quota Import Market | rket                 | Over-Quota Is           | Over-Quota Import Market | Specific       | Upper Lumtt of<br>Subsidized | (Specific)            | Production    | Consumption               | ī            |
|                    | Specific Duty                                                                                                                                     | Ad Fulorem<br>Tariff   | Tariff-Rate<br>Quota | Specific Duty           | Ad Valorem<br>Tariff     | Export Subsidy | Quantity<br>Exported         | Froduction<br>Subsidy | Quota         | Tax for Food              | trice ricor  |
| Argentina          | u.a.                                                                                                                                              | n a.                   | ца<br>П              | 0(10)0                  | 0.000                    | 0.000          | 0.000                        | 0,440                 | n.a.          | 21,000                    | n.a          |
| Åustralia          | В.<br>В.                                                                                                                                          | 11.9.                  | п.а.                 | 0000'0                  | 0000                     | 0000           | 0.000                        | 10.374                | ца            | 10.000                    | n.a.         |
| દે તામ્પ્રેસ       | 1.24                                                                                                                                              | 000 0                  | 0.227                | 0.000                   | 76 500                   | 14.693         | 8.851                        | 9.275                 | п.а.          | 0.000                     | n.a.         |
| Стана              | 13.A.                                                                                                                                             | n.a.                   | n.a.                 | 0.000                   | 114 000                  | 0.000          | 0.000                        | -36.000               | n.a.          | 17.000                    | n.a.         |
| Egym               | n.a.                                                                                                                                              | n.a.                   | n.a.                 | 0.000                   | 5.000                    | 0.000          | 0.000                        | 48.000                | n.a.          | 000.01                    | <b>n</b> .a. |
| EU                 | 0.000                                                                                                                                             | 000                    | 0.300                | 113.596                 | 0.000                    | 101.544        | 13.436                       | 149.588               | 96.888        | 9.800                     | 142.294      |
| India              | R.2.                                                                                                                                              | ir u                   | n.a.                 | 0.000                   | 100.000                  | 0.000          | 0.000                        | -66,000               | B.A.          | 000'0                     | n.a.         |
| raqui              | 0.000                                                                                                                                             | 0-20,000               | 5.740                | 475.779                 | 0.000                    | 000'0          | 000'0                        | 1275.087              | n.a           | 5.000                     | 1282.154     |
| South Korea        | n.a.                                                                                                                                              | n a                    | n.a.                 | 0000                    | 1.800                    | 0000           | 000.0                        | 454.900               | П.А.          | 10.000                    | n.a.         |
| Mexico             | 0.000                                                                                                                                             | 50.000                 | 0.605                | 000.06                  | 67.000                   | 24.183         | 0.312                        | 47.552                | R.A.          | 0000                      | 143.500      |
| New Zealand        | n.a.                                                                                                                                              | n.a                    | R. G.                | 00010                   | 0.000                    | 0.00           | 0.000                        | 0000                  | n.a.          | 12.500                    | L.A.         |
| Nigena             | R.à.                                                                                                                                              | n.a.                   | па                   | 0.000.0                 | 150.000                  | 0.000          | 0 000                        | 349,000               | 13.8          | 5.000                     | n.a.         |
| n S                | n,a.                                                                                                                                              | n,a                    | ц.я.                 | 3.500                   | 2.800                    | 25.065         | 14.522                       | 61.200                | n.a.          | 8.250                     | 94.800       |
| The Former<br>USSR | n.a.                                                                                                                                              | ъ<br>Ч                 | n.a.                 | 0.000                   | 5.000                    | 0.000          | 0000                         | 39,000                | 1,3,          | 0.000                     | n.a.         |
| Source: Tariff I   | Source Tarif Rates from USDA, FAS: Dohlman and Hoffman Tariff Quotas from WTO, Dohlman and Hoffman Export Subsidies from WTO, Dohlman and Hoffman | A, FAS: Dohlma         | and Hoffman.         | <b>Farifi</b> Quotas fr | om WTO; Dohl             | man and Hoffma | in. Expert Subsic            | lies from WTO;        | Dohlman and H | offman.                   |              |

Production Subsidies from OECD, USDA, ESS. Production Quotas from USDA, ERS. Consumption Taxes from Embassies and MOF in Japan. Price Floors from OECD. Exchange Rates from United Nations, Bank of Japan.

Note The traiff rates in countrates and areas with no traiff-rate quotas are shown in columns of over-quota import market. Mexico and the U/S-can solver the higher of specific duty or *ud valorem* traiff in their over-quota import markets

Table 2. Demand and Inverse Marginal Cost Functions in Each Country and Area

(Unit: million people and metric tons per ha)

| Country of         | Demand Function            | ction               |            | Inverse Marginal Cost Function          | st Function         |                                        |
|--------------------|----------------------------|---------------------|------------|-----------------------------------------|---------------------|----------------------------------------|
| Area               | Per Capita Demand Function | Price<br>Elasticity | Population | Response Function of Cultivated<br>Area | Price<br>Elasticity | Yield                                  |
| Argentina          | d≓0.16845-0.00055P         | -0.32               | 36.577     | $L = 0.31628P^{6.60}$                   | 09.0                | 2.553                                  |
| Australia          | d=0.34949-0.00068P         | -0.24               | 18.701     | $L = 0.16427P^{0.00}$                   | 06.0                | 2.016                                  |
| Canada             | d=0.29091-0.00044P         | -0.20               | 30.857     | $L = 1.08847P^{0.50}$                   | 0.50                | 2.591                                  |
| China              | d=0.10074-0.00006P         | -0.10               | 1274.107   | L=14.91401P <sup>0.15</sup>             | 0.15                | 3.947                                  |
| Egypt              | d=0.21283-0.00030P         | -0.20               | 67.226     | L= 0.18256P <sup>0.30</sup>             | 0.30                | 6.550                                  |
| Εſ                 | d=0.28258-0.00057P         | -0.27               | 375.049    | $L = 1.69804P^{0.50}$                   | 0.50                | 5.693                                  |
| India              | d=0.07862-0.00009P         | -0.30               | 998.056    | $L=2.66081P^{0.45}$                     | 0.45                | 2.583                                  |
| Japan              | d=0.05419-0.00003P         | -0.10               | 126.505    | $L = 0.00454P^{0.52}$                   | 0.52                | 3.450                                  |
| South Korea        | d=0.11786-0.00038P         | -0.40               | 46.48      | $L = 0.00007 P^{0.45}$                  | 0.45                | 5.000                                  |
| Mexico             | d=0.07169-0.00014P         | -0.30               | 97.365     | $L = 0.05606P^{0.55}$                   | 0.55                | 4.429                                  |
| New Zealand        | d=0.16803-0.00024P         | -0.22               | 3.828      | $L = 0.00114 P^{0.80}$                  | 0.80                | 5.000                                  |
| Nigeria            | d=0.00820-0.00002₽         | -0.93               | 108.945    | $L = 0.01421 P^{0.20}$                  | 0.20                | 1.286                                  |
| U.S.               | d=0.16994-0.00042P         | -0.35               | 276.218    | L= 1.55619P <sup>0.60</sup>             | 0.60                | 2.873                                  |
| The Former<br>USSR | d=0,47948-0,00055P         | -0.25               | 291.587    | L=13.69191P <sup>0.23</sup>             | 0.23                | 1.575                                  |
| 0 W                |                            |                     |            |                                         | Y                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |

Source: Population from FAOUVield from USDA, ERS. Price elasticities from Ohga and Yanagishima.

| Ê               |
|-----------------|
| ē               |
| 5               |
| Ξ               |
| - <u>5</u>      |
| E               |
| 5               |
| Ω.              |
| T.S.            |
| <u> </u>        |
| ollino.         |
| -0              |
| sci.            |
| $\square$       |
| 1.5             |
| 1               |
| 5               |
|                 |
| SES             |
| 2               |
| $\leq$          |
| ~               |
| and             |
| untries at      |
| <u>.</u>        |
| Ħ               |
| H               |
| لىپ:            |
| $\circ$         |
| 0ng             |
| S.              |
| Ē               |
| ains among      |
| BS              |
| al.             |
|                 |
| $\sim$          |
| 5               |
| 51              |
| jë -            |
| $\sim$          |
| Щ               |
| · <u>–</u>      |
| ta              |
| out             |
| Ê.              |
| ŝ               |
| ran             |
| farrae<br>sinne |
| nit             |
| <u>-</u>        |
| مىسىر           |
| er;             |
| Table           |
| <u>_</u>        |
| 2.2             |
|                 |

| Argentina (* 100)<br>Buertox Aires) (* 17, 800<br>(Sydney) (* 78)<br>(* Australia (* 78)<br>(* Australia) (* 78)<br>(* Australia) (* 78)<br>(* Australia) (* 78)<br>(* Australia) (* 78)<br>(* 50)<br>(* 50) |             | /            | (Shanghai) | Said)   | (Rouordam) | (Mumbat) | (Tokyo) | Nouth Korea<br>(Pusan) | Mexaco<br>(Tatapico) | New Zouland<br>(Wolfington) | (Layers) | U.S. (New<br>Orleans) | USSR (Sanki<br>Dependence) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|---------|------------|----------|---------|------------------------|----------------------|-----------------------------|----------|-----------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196.74      | 15.781       | 27.355     | 17.648  | 15 539     | 20.236   | 26.437  | 26 943                 | 13 730               | 14.617                      | 10.547   | 15.249                | Ł                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900 8       | 26.71.5      | 11.356     | 20.329  | 28.352     | 14.745   | 10 643  | 10.439                 | 22.508               | 3.629                       | 22.442   | 22.136                | 31.773                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.715      | O(X) O       | 28.916     | 12.480  | 3.002      | 19 945   | 26 779  | 27.833                 | 612 R                | 23 821                      | 12.571   | 7.521                 | 9,633                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 351      | 28.916       | 0 (88)     | 17.759  | 287 782    | 11 439   | 2.568   | 171.1                  | 24,708               | 13 130                      | 25.127   | 24 537                | 28.923                     |
| Egypt (Port 17 648<br>Said) 17 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.329      | 12.480       | 17 759     | (1.100  | 8 023      | 101 2    | 19 393  | 18.500                 | 16.590               | 22.545                      | 12.270   | 15.8K7                | 016-03                     |
| ELI (Rotterdam) 15.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.352      | \$ 062       | 25 782     | 8.023   | OVIO O     | 15.487   | 27416   | 26.622                 | 12.600               | 27 769                      | 10.221   | 11 895                | 2.963                      |
| India (Mantsai) 20 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SFL HI      | \$46.61      | 11.439     | 7.4(4   | 11.487     | UKKU U   | 13 077  | 12 09%                 | 24 (154              | 16.960                      | 17 531   | 23.351                | 18.589                     |
| lapan (Тоkyu) 26.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.643      | 26.779       | 2.568      | 19.303  | 27416      | 13 073   | 0.000   | 1.676                  | 22.572               | 12.353                      | 26.755   | 22.400                | 30.715                     |
| South Korea 36.943<br>(Pusau)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.439      | 27 833       | 1.17       | 18 509  | 26.622     | 12.(198  | 1 676   | 0.0001                 | 23.603               | 300,81                      | 25 826   | 23.406                | 29 643                     |
| Mevico 15 734<br>(Tampico) 15 734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 568      | 8.219        | 24.708     | 16.390  | 12 649     | 24 054   | 22,572  | 23.6(3                 | 000/1                | 19.61                       | 14.747   | 1 796                 | 18 401                     |
| Veve Z cafand 14 647<br>(Weilington)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.029       | 23 821       | 13 130     | 22.545  | 27 769     | 16.960   | 12.353  | 13 005                 | 19.61                | a 000                       | 23 892   | 19.412                | 34,923                     |
| Nigeria (Lagos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.442      | 12.57)       | 25 127     | 12 270  | 19.221     | 17.534   | 26 755  | 25 826                 | 14 747               | 23,892                      | Ú 460    | [4, ](8)              | 013-51                     |
| U.S. (New 15 249<br>Orleans) 15 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 336      | 7 524        | 24.537     | 15.M87  | 268-11     | 23.353   | 22 400  | 23.400                 | 1.726                | 19 442                      | 11 199   | 00H,0                 | 14 424                     |
| The Former<br>USSR (sankt 18 713)<br>Pearstag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 773      | 9 633        | 28.923     | 10, 207 | 2.963      | 18 589   | 30.715  | 29.663                 | 161-81               | 50 925                      | 13.116   | 14.424                | 0.050                      |
| Source: Lloyd's, Japan Shipping Exchange, Clarkson.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ipping Excl | hange; Clarl | kson.      |         |            |          |         |                        |                      |                             |          |                       |                            |

וולצמי רו Note: Selected ports in parentheses, Table 4. Policy Assumptions (Unit: percents and million metric tons)

| Scenario 4         | Removed                                 | Extended                                | Removed                          | Removed        | Extended           | Extended         | Extended        | Extended    |
|--------------------|-----------------------------------------|-----------------------------------------|----------------------------------|----------------|--------------------|------------------|-----------------|-------------|
| Scenario 3         | Removed                                 | Removed                                 | Removed                          | Removed        | Removed            | Removed          | Extended        | Removed     |
| Scenario 2         | China:1(Ad Valorem)<br>Others: Extended | China:65(AdValorem)<br>Others: Extended | China: 9.636<br>Others: Extended | Extended       | Extended           | Extended         | Extended        | Extended    |
| Scenario 1         | Extended                                | Extended                                | Extended                         | Extended       | Extended           | Extended         | Extended        | Extended    |
| Policy Instruments | In-Quota Tariff                         | Over-Quota Tariff                       | Tariff-Rate Quota                | Export Subsidy | Production Subsidy | Production Quota | Consumption Tax | Price Floor |
|                    |                                         | Policies                                | Trade .                          |                | S                  | eisilo¶ rioqq    | n2 omestic Su   |             |

## Table 5. Spatial Equilibrium Solution for Scenario 1 (Unit: million metric tons and U.S. dollars per metric ton)

| <u> </u>                                                                                                        | 10                       | Asgenitia | Northala  | Canada         | Christ  | Ugype       | UC .     | leufs-a       | եւրեր          | South<br>Kines | Mexico  | New<br>Zealand | Nigeria     | L K          | The For<br>ESS     |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|-----------|-----------|----------------|---------|-------------|----------|---------------|----------------|----------------|---------|----------------|-------------|--------------|--------------------|
|                                                                                                                 | Argentina                | Ð.a.      | R.∂.      | 0.08           | 6,a,    | rt.a.       | <u> </u> | 15.3.         | 0.20           | 12 в.а.        |         | ñ.a.           | ñ.a.        | <b>т</b> .я, | n.a                |
|                                                                                                                 | Australia                | D,a       | ñā.       | 0.140          | n.a.    | ñ.s.        |          | n.a.          | 0.37           | a n.a.         |         | Ю.А.           | £.i).       | D.a.         | F.3                |
|                                                                                                                 | Canada                   | 6.3.      | n.a.      | 77. <b>3</b> . | rt.3.   | в.a.        | 0,193    | 0.s.          | 0,26           | 5 n.a.         |         | n.a.           | fl.a.       | n.a.         | n.a                |
| VIA CALL A ALL                                                                                                  | Chusa                    | в.a,      | Ħ.a.      |                | n.a.    | ñ.a.        |          | ß.a.          | 3,72           | 8 n.a.         |         | E.a.           | B.3.        | B.a.         |                    |
|                                                                                                                 | t: spipi                 | ก.า.      | n.a.      |                | n.a.    | 0.3.        |          | 8.a.          | 0 ( <u>)</u> 5 | i6 n.a.        |         | <b>В.А.</b>    | п.а.        | ri, A.       | B,a,               |
| 14.43                                                                                                           | EU                       | 8.a.      | 6.3.      |                | n.a.    | P.à.        | 6,a.     | n.a.          | 0.53           | 9 <b>п</b> .а. |         | n.a.           | n.a.        | n.4.         | n.a.               |
| Import Markey                                                                                                   | lindia                   | n.a.      | n.a.      |                | p.ø.    | E.d.        | +        | rt.a.         |                | n.a.           | -       | n.a,           | E. it.      | ß.a.         | £.a.               |
| Junts: Ins                                                                                                      |                          | 6,8.      | n.a.      |                | n.a.    | 8.4.        | 1        | p.a.          | n.a.           | п.э.           | *****   | P.a.           | п.а.        | 0.8.         | n.ə.               |
| 0-4]                                                                                                            | South<br>Korea           | n.a.      | n.a.      |                | ŋ,a,    | n.a.        |          | ñ.#.          | 0.00           | 6 n.a.         | -       | ri.a.          | fi.a.       | ri.a.        | 8.8.               |
| The second se | Mexico                   | n,a,      | n.a.      |                | п,а,    | fl.ä.       |          | р.л.          |                | rt.at.         | 15.4.   | п.а.           | rt.a.       | B.a.         | n.a.               |
|                                                                                                                 | New<br>Zesiand           | n.a,      | n,a,      | +              | ħ.a.,   | R.a.        | <u>}</u> | n.a.          | 1              | B.á.           | -       | B.sl.          | 6.3.        | n,a.         | n.a.               |
|                                                                                                                 | Nigeria                  | n.a.      | B.A.      |                | п.а.    | n.a.        |          | n.a.          | +              | n.a.           |         | п,а.           | ħ.a.        | B.3          | B.A.               |
|                                                                                                                 | U.S.                     | fí.a.     | ñ.a.      | ,<br>          | Б.¥.    | <u>в.а,</u> | 0.107    | R.ä.          | 0.56           | s n.a.         | 0.605   | <u> </u>       | t.a.        | B.a.         | п.з,               |
| Eade                                                                                                            | The Former<br>USSR       | В.й.      | t.ä.      |                | п.а.    | n.a.        |          | n.a.          |                | Б.а.           | 1       | rs.a.          | D. A.       | ri.a.        | n.a.               |
| lune of                                                                                                         | Argensina                | n,a.      | 0.560     | ,              |         | 0.390       |          |               | <u> </u>       | 0.07           | 6       | 6.042          |             | 2,634        | +                  |
| 2                                                                                                               | Australia                | 0.156     | 6.3,      |                |         | 0.638       | 0,068    |               |                | 0.69           | ·{      | 0.076          | <u>+</u>    | 3.588        |                    |
|                                                                                                                 | Cstuda                   | 0.316     | 0.589     | n.a.           |         | 0.705       | 3.765    |               |                | 0.27           | +       | 0.044          |             | 4,967        | +                  |
|                                                                                                                 | Cisisa                   |           | +         |                | n.a.    |             |          |               |                |                |         |                |             | 4,907        | 8                  |
|                                                                                                                 | Egypt                    |           |           |                |         | n.a.        |          |               | [<br>          |                |         |                |             |              |                    |
| Kut                                                                                                             | εc                       | 1.397     | 1.231     | 2.069          |         | 1.811       | h.a.     |               |                | 1.25           | 0.207   | 0.050          |             | (            |                    |
| nri Marku                                                                                                       | Inésa                    |           |           |                |         |             | 61, ar.  | п.а.          |                | Fréd.          | 0.293   | 0.090          |             | 10,402       | 17.6               |
| hunts fingers                                                                                                   | jsbau                    |           |           |                |         | ·····       |          | H             |                |                |         |                | e           |              |                    |
| Dece-Qu                                                                                                         | South                    | <u> </u>  |           |                |         |             |          |               | 13.9.          |                |         |                |             |              |                    |
| -                                                                                                               | Козса<br>Мехісо          |           |           |                |         |             |          |               |                | F.ä,           |         |                |             |              |                    |
|                                                                                                                 | New                      |           |           |                |         |             |          |               | ·····          |                | 15.A.   |                |             |              |                    |
|                                                                                                                 | Zealand                  |           | 0.086     |                |         |             |          |               |                | ļ              |         | n.a.           |             |              |                    |
|                                                                                                                 | Nigeria                  |           |           |                |         |             |          |               |                |                |         |                | 13.4.       |              |                    |
|                                                                                                                 | U.S.<br>The Farmer       | 1,403     | (.314     | 2.100          |         | 1.650       | 14.264   |               |                | 1.316          |         | 0,099          |             | ri.a.        | 15.7               |
|                                                                                                                 | LSSR                     |           |           |                |         |             |          |               |                |                |         |                |             |              | n.a.               |
|                                                                                                                 | import                   | 3,472     | 3.780     | 4.397          | 0.060   | 5.214       | 18.397   | 0.000         | 5.740          | 3.613          | 0.898   | 0.345          | 0.000       | 21.591       | 52.1               |
|                                                                                                                 | mand for<br>stic Product | 0,417     | 1.695     | 1.880          | 110.340 | 5.314       | 43.629   | 53.787        | 0.684          | 0.000          | 4.219   | 0.168          | 0,068       | 12.298       | 68.66              |
| Tela                                                                                                            | i Demand                 | 3.8×9     | 4.785     | 6.277          | 110.340 | 10.528      | 62.026   | 53.787        | 6.108          | 3.613          | 5,117   | 0.513          | 0.068       | 33.889       | 120.72             |
| Mar                                                                                                             | ket Price                | 78.521    | 118.140   | 189.280        | 118.294 | 101.469     | 187-136  | 162.747       | 155.856        | 92,171         | 124.928 | 115.111        | 340.613     | 99,848       | 114.23             |
| Shed<br>Ga                                                                                                      | have Pince"<br>HII Qaxaa | С.a.      | 6.3.      | 165.987        | n.s.    | 6.a.        | 113.600  | R.A.          | 3.823          | ri.a.          | 37.649  | ñ.a.           | n.a.        | n.a,         | ñ.a,               |
|                                                                                                                 |                          |           |           |                |         |             |          |               |                |                |         |                |             |              |                    |
|                                                                                                                 | bulstý                   | Уссонна   | Australia | Canada         | Chusa   | L∷ypt       | l: i     | India         | Japain         | Sauth<br>Korea | Menaeo  | New<br>Zooland | Nigena      | u.s.         | l't⊭ Forme<br>USSR |
|                                                                                                                 | ta Domestu<br>tarket     | 0.417     | 1.005     | 1.880          | 116,340 | 5.314       | 43.629   | 53.787        | 0.684          | 0.008          | 4.219   | 0,16x          | 0.068       | 12.298       | 68.60              |
| Ì.                                                                                                              | 1000                     | 9.018     | (1.350    | 19.536         | 3.728   | 0.056       | 36.217   | 0.000         | 0.000          | 0,006          | 0.000   | 6,086          | o emo       | .19.144      | 0.00               |
| Net                                                                                                             | (cupour                  | 5,546     | 7.470     | 15.159         | 3.728   | -5.158      | 18,320   | 0.000         | -5.740         | -3,667         | -0,898  | -6,259         | 0,0880      | 17.553       | -52.83             |
| ी व्यक्ष                                                                                                        | 3 Supply                 | 9.435     | 12.255    | 21.436         | 114.068 | 5 370       | 80.346   | 53.787        | 0.684          | 8 006          | 4.219   | 0.254          | 0.068       | \$1.442      | 68.60              |
| 210                                                                                                             | doctate                  | 9.455     | 10.255    | 21.436         | 114.065 | \$.370      | 56,288   | \$3.787       | 0.684          | 0.066          | 4.219   | 0.254          | () () () () | 42 777       | 68,60              |
|                                                                                                                 | m Prier'                 | PL-1.     | n.a.      | 14.693         | 5.a.    | ñ.a.        | (0) 544  | с. <u>а</u> . | ti.,3,         | n.a.           | 0.0990  | й.н.           | n.i         | 26.045       | £.3.               |
|                                                                                                                 | sa Percet<br>            | 5.1       | £.a.      | N.2.           | n.a.    | 5 J         | 5N 125   | F. d.         | n. <i>3</i> .  | n.a.           | r:      | ń              | 3.0         | F            | ».a,               |

#### Table 6. Spatial Equilibrium Solution for Scenario 2 (Unit: million metric tons and U.S. dollars per metric ton)

|                | Pane:                                    | Argonona     | Newradia     | Coriada  | Chusa   | 6 <sub>35</sub> урн | E3.      | India           | topae      | South<br>Korca | Mexico                                | New<br>Zealand | Nagersa             | U.S                                    | The Form<br>USSR  |
|----------------|------------------------------------------|--------------|--------------|----------|---------|---------------------|----------|-----------------|------------|----------------|---------------------------------------|----------------|---------------------|----------------------------------------|-------------------|
|                | Argonima                                 | n.a,         | n.a.         | 0,164    |         | ft.3.               | <u> </u> | n.a.            | 0,064      | ******         |                                       | ð.4.           | n.s.                | 6.d.                                   | 63.3.             |
|                | Australia                                | n.a.         | ñ.a.         | 0.104    | 1.466   | p.a.                |          | n.a.            | 0.226      | n.s.           | 1                                     | n.a.           | E.a.                | 5.1.                                   | F1.34.            |
|                | Canada                                   | 0,3,         | S.a.         | N.8.     |         | F. 3.               | 0.784    | ſ\$. <b>ð</b> . | 0.524      | n.s.           | Ì                                     | 8.3.           | ξī. <sub>1</sub> 4. | ñ.a.                                   | n.a.              |
|                | China                                    | n.a.         | ñ.a.         |          | Π.∂.    | <b>5.</b> 3.        |          | ń.a,            | 4.510      | 17.34.         |                                       | Fi.3.          | n.a.                | n.ə.                                   | <i>б.</i> а.      |
|                | Egypt                                    | B.3.         | n.a.         |          |         | \$. <u>3</u> .      |          | B.3.            |            | ñ.a.           |                                       | 5.4.           | п.э.                | B.o.                                   | F1.36.            |
| Kel            | EU                                       | rs.a.        | 15.4.        |          | 4.133   | ń.a.                | ħ.a.     | n.a.            | 0,401      | 8.3.           |                                       | n.a.           | ft.3.               | D.d.                                   | n.ə.              |
| wit Mark       | India                                    | n.a.         | F5,3,        |          |         | ñ.a.                |          | n.a.            |            | 0.3.           |                                       | n.a.           | ња.                 | п.а.                                   | h.a.              |
| Ouotu Iznivort | Ispari                                   | n.a.         | п.э.         |          |         | fi.,pi.             | [        | τ.a.            | B.a.       | n.a.           | 1                                     | fī, ši.        | P. A.               | h.a.                                   | ñ.a.              |
| 0-77           | Soarb<br>Koroa                           | n.a.         | n.a.         |          |         | ñ.a.                |          | n.s.            |            | n,a,           |                                       | n.a.           | в.а.                | ri.a.                                  | ñ,a,              |
|                | México                                   | <b>п</b> .а. | п.a.         |          |         | £.ж.                |          | fi.a,           |            | 13.81.         | fi.a.                                 | F. 3.          | n.a.                | n.a.                                   | 13.at.            |
|                | New<br>Zealand                           | n.a.         | P.H.         |          |         | ŋ.a.                |          | n.a.            | <b>†</b>   | р.a.           |                                       | n.a.           | n.a.                | n.a.                                   | ŋ.a.              |
|                | Nigeria                                  | FL, 8.       | n.a.         |          |         | h.a.                |          | ñ.a.            |            | n.a.           |                                       | n.ə.           | D.ä,                | n.a.                                   | n.a.              |
|                | U.S.                                     | n.a.         | n.a.         |          | 4.038   | 8.3.                | 0.017    | n.a.            | 0.416      | n.a.           | 0.505                                 | e.4.           | ħ.à.                | п.а.                                   | n.a.              |
|                | The Former<br>USSR                       | ń.a.         | n.a.         |          | naria / | n.a.                |          | n.a.            | + <i>-</i> | ñ.a.           |                                       | n.à.           | n.jt,               | tr.a.                                  | h,a.              |
|                | Argonfine                                | Đ.ă.         | 0.390        |          |         | (),398              |          |                 |            | 6.694          |                                       | 0.032          |                     | 2,744                                  | 5.1               |
|                | Anstralia                                | 0.322        | o.a.         |          |         | 0.598               |          |                 |            | 0.660          |                                       | 0.056          |                     | 3,403                                  | 5.0               |
|                | Canada                                   | 0.329        | 6.415        | б.а.     |         | 0.729               | 3.801    |                 |            | 0.290          |                                       | 0.634          |                     | 5.044                                  | 8.5               |
|                | China                                    |              | 1.174        |          | n.a.    |                     |          |                 |            |                | • • • • • • • • • • • • • • • • • • • |                |                     |                                        |                   |
|                | Едуря                                    |              |              |          |         | n,a.                |          |                 |            |                |                                       |                |                     |                                        |                   |
| Market         | EC                                       | 1.415        | 1 060        | 2.104    |         | 1.817               | ti.a,    |                 |            | 1.368          | 0,293                                 | 0.079          |                     | 10.561                                 | 17.7              |
| Insport M:     | findsa                                   |              |              |          |         |                     |          | n.a.            |            |                |                                       |                |                     |                                        |                   |
| Quota his      | Japan                                    |              |              |          |         |                     |          |                 | h.a.       |                |                                       |                |                     |                                        |                   |
| ()mark         | South<br>Котса                           |              | 0.006        |          |         |                     |          |                 |            | ñ.a.           |                                       |                |                     |                                        |                   |
|                | Mexico                                   |              |              |          |         |                     |          |                 |            |                | n.a.                                  |                |                     | ······································ | ·····             |
|                | New<br>Zealand                           |              |              |          |         |                     |          |                 |            |                |                                       | в.а.           |                     |                                        |                   |
|                | Niporia                                  |              |              |          |         |                     |          |                 | •••        |                |                                       |                | ri.a.               |                                        |                   |
|                | U.S.                                     | 1.367        | 1.110        | 1,997    |         | 1.606               | 13.960   |                 |            | 3.384          |                                       | 0.686          |                     | p.a.                                   | 15.43             |
|                | The Former<br>USSR                       |              |              |          |         |                     |          |                 |            |                |                                       |                |                     |                                        | n.a.              |
| À              | Import                                   | 3.433        | 4.155        | 4,339    | 9 636   | 5.148               | 18.062   | 0.000           | 5.741      | 3.596          | Ü.N98                                 | 0.287          | 6.000               | 21.691                                 | 51.9}             |
|                | entand for<br>essie Preduct              | 0.437        | 0.862        | 1.912    | 102.638 | 5.374               | 43.797   | 53.787          | 11.684     | 0.000          | 4.219                                 | 0.236          | 6.068               | 12.099                                 | 68.68             |
| Τơ             | al Domand                                | 3.870        | 4.957        | 6.341    | 112 274 | 10.522              | 61.859   | 53.787          | 6.108      | 3.596          | 5.117                                 | 0.523          | 0.068               | 33.790                                 | 120.60            |
| Ms             | irket Price                              | 79,322       | 105 655      | (9), X97 | 94.305  | 101.801             | 187.858  | 162.747         | L\$\$.856  | 93 987         | 124.928                               | 104.976        | 340.613             | 100.649                                | 114.99            |
|                | das Price'<br>antQuita                   | ti.a.        | <b>п</b> .н. | 107,498  | 16.822  | PL.at.              | 113.600  | n.a.            | 27.812     | n.a.           | 35.236                                | nt.            | n.a.                | n.a.                                   | ñ.a.              |
|                |                                          |              |              |          |         |                     |          |                 |            |                |                                       |                |                     |                                        |                   |
| <              | Caunay                                   | Argentina    | Austypha     | Canada   | Chies   | t y y pi            | EG       | lodia           | tapin      | South<br>Karca | blessee                               | New<br>Zceland | Nigera              | U.S.                                   | The Forme<br>USSR |
|                | e to Domestic<br>Markes                  | 0.437        | 0.862        | 1.912    | 102.638 | 5.374               | 43,797   | \$3.787         | 0,684      | 6.009          | 4.319                                 | 0.236          | 0.068               | 12.099                                 | 6X,65             |
|                | Expert                                   | X.990        | 11.912       | 14 S 등 g | 5,684   | 0.000               | 40.824   | 0.000           | 0.000      | 0.006          | 0,000                                 | 6,000          | 0,000               | 41.921                                 | 0.00              |
| N              | et Explant                               | 5.557        | 7 757        | 15.329   | -3 952  | -5.148              | 22.762   | 0.000           | -5.741     | -3.,590        | -0.895                                | -0.267         | 0.080               | 20.230                                 | -51.93            |
| Tai            | a) Supply                                | 9,427        | 17.744       | 21.470   | 16×.322 | 5 374               | 84,621   | 53.787          | 0.684      |                | 4.219                                 | 0.336          | 0.068               | 54.020                                 | ሰጵ ሉአ             |
| Ph             | undracenzam                              | 9,423        | 12 714       | 23-474   | AUR 322 | 5.374               | 96,898   | 53.787          | 0.684      | i: ikih        | 4.219                                 | 0.236          | 0.068               | 54,020                                 | 68,684            |
| itue<br>15.ee  | tion Print <sup>®</sup><br>control pages | F4.          | F. 3         | . 2 AQ   | K.3     | n a.                | 39)1.544 | R.4.            | e a.       | f.1.           | 0 (49)                                | r'.it.         | r.,3,               | 25.667                                 | 0.1               |
|                |                                          |              |              |          |         |                     |          |                 |            | k              |                                       |                |                     |                                        |                   |

the second state of t

|                 | Progi<br>To                            | Argentista | Aostrália | Canada  | China   | Egypi   | EU      | India   | Japa <del>n</del> | South<br>Kores | Mexico  | New<br>Zealand   | Nigeria | G.S.    | The Forma<br>USSR |
|-----------------|----------------------------------------|------------|-----------|---------|---------|---------|---------|---------|-------------------|----------------|---------|------------------|---------|---------|-------------------|
|                 | Argentina                              | D.ä.       | 0.090     | 0.346   |         | 0.252   | 5.384   | 0.234   |                   |                | 0.234   | 0.012            | 0,038   | 2.256   | 3.65              |
|                 | Australia                              | 0.250      | n.a.      | 0.390   | 1.268   | 0.478   | 5.714   | 1.822   | 0.088             | 0.342          | 0,332   | 0.038            | 0.044   | 3.138   | 3.84              |
|                 | Carada                                 | 0.278      | 0.154     | n.a.    |         | 0.620   | 10.326  | 1,362   | 0.011             |                | 0,513   | 0.016            | 0,061   | 4.899   | 7.27              |
|                 | China                                  |            | 3.554     | 1.368   | 6.a.    | 1.056   | 4.488   |         | 5.626             | 1.294          |         | 0.050            |         |         |                   |
|                 | Egypt                                  |            |           |         |         | n.a.    |         |         |                   |                |         |                  |         | ·       | 5.16              |
|                 | EU                                     | 1.253      | 0.731     | 1.217   | 3.590   | 1.558   | n.a.    | 5.241   | 0.210             | 0.864          | 1.030   | 0.058            | 0.145   | 9.748   | 15.27             |
| Volmme of Trade | India                                  |            |           |         |         | 4.834   | 8.266   | л.н.    |                   |                |         |                  |         |         | 2.23              |
| ommo'           | Japan                                  |            |           |         |         |         |         |         | n.a.              |                |         |                  |         |         |                   |
| -               | South<br>Korca                         |            |           |         |         |         |         |         |                   | n.a.           |         |                  |         |         |                   |
|                 | Mexica                                 |            |           | 1.787   |         |         |         |         |                   |                | n.a.    |                  |         |         |                   |
|                 | New<br>Zeahand                         |            |           |         |         |         |         |         |                   |                |         | ħ.a.             |         |         |                   |
|                 | Nigeria                                |            |           |         |         |         |         |         | ·                 |                |         |                  | ft.a.   |         |                   |
|                 | U.S.                                   | 0.977      | 0.639     | 1.055   | 2.664   | 1.158   | 16.663  | 3.584   | 0.174             | 0.681          | 1.005   | 0.053            | 0.115   | n,a,    | 11.43             |
|                 | The Former<br>USSR                     |            |           |         |         |         |         |         |                   |                |         |                  |         |         | n.a.              |
|                 | import                                 | 2.758      | 4.168     | 6,163   | 7.522   | 9.956   | 50.841  | 12.243  | 6.109             | 3.181          | 3.114   | 0.227            | 0.403   | 20.041  | 48.87             |
|                 | mand for<br>1981ic Product             | 0.323      | 0.527     | 0.741   | 103.226 | 0.000   | 22.405  | 44.701  | 0.185             | 0,003          | 1.884   | 0.274            | 0,049   | 9.645   | 67.42             |
| Tot             | al Domand                              | 3.081      | 4.695     | 6.904   | 110.748 | 9.956   | 73.246  | 56,944  | 6.294             | 3.184          | 4.998   | 0.501            | 0.452   | 29.686  | 116.30            |
| Ma              | riket Price                            | 114.957    | 124.577   | 142.142 | 113.227 | 130.985 | 139.008 | 123.523 | 115.795           | 114.398        | 133.923 | 126.356          | 132.091 | 133.951 | 142,11            |
| Sha<br>(T       | dow Price'<br>mil Quesu                | p.a.       | ŋ.a,      | n.a.    | fi.â.   | Б.B,    | n.a.    | n.a,    | ń.a.              | n.a.           | ñ,a,    | B.a.             | tt.a.   | n,a,    | n.a.              |
|                 | Соняту                                 | Argonina   | Australia | Canada  | China   | Egypt   | EU      | Indea   | Lapias            | South          | Mexico  | New              | Nigeria | LS      | The Forme         |
|                 | sipply to                              | 0.323      | 0.527     | 0.741   | 103.226 | 0.000   | 22.405  | 44.701  | 0.185             | Korea<br>0.003 | 1.884   | Zealand<br>0.274 | 0.049   | 9.645   | USSR<br>67.429    |
|                 | estic Market<br>Export                 | 12,500     | 17.744    | 25.512  | 16,436  | 5.164   | 40.917  | 15.336  | 0.000             | 0.000          | 1.787   | 0.000            | 0,000   | 40,201  | 0.006             |
| Ne              | rt Experi                              | 9.742      | 13.576    | 19.349  | 8.914   | -4.792  | -9.924  | 3.093   | -6.109            | -3.181         | -1.327  | -0.227           | -0.403  | 20,160  | -48.871           |
| Tot             | al Suppiy                              | 12.823     | 18.271    | 26.253  | 119.662 | 5,164   | 63.322  | 60,037  | 0.185             | 0.003          | 3.671   | 0.274            | 0,649   | 49.846  | 67.429            |
| Pn              | oduction                               | 12.823     | 18.271    | 26.253  | 119.662 | 5.164   | 63.322  | 60.037  | 0.185             | 0.003          | 3.671   | 0.274            | 0.049   | 49,846  | 67.429            |
| Shae<br>Eiste   | tow Price <sup>b</sup><br>electrispery | n.a.       | 0.3.      | n.a,    | п.а.    | n.a,    | n.à.    | n.ii.   | л.а.              | п.а.           | n.a.    | p.a.             | n.a.    | n.n.    | n.a,              |
| Shun<br>Prode   | low Pricul<br>octore Quexai            | η.3.       | :1.2.     | n.a.    | p.a.    | ñ.s.    | Б.н.    | 11.3.   | rt.ià.            | л.а.           | n.a.    | n.a.             | n.a.    | п.а.    | n.a.              |

Table 7. Spatial Equilibrium Solution for Scenario 3 (Unit: million metric tons and U.S. dollars per metric ton)

Note: Blank spaces industry 2010.

a. Shudow proce for the right to exposi to the in-spino maraket.

5. Shadow prace for the right to expert within the upper limit of subsidied quantity experied.

c. Shadow print, for the right to produce within the production quote,

|                 | Photo<br>To                            | Argentina | Australia | Canada  | Chapa    | Egypt   | EU      | India   | Japan        | South<br>Korea | Мехноо  | New<br>Zealand | Vigeria | U.S.   | The<br>Former  |
|-----------------|----------------------------------------|-----------|-----------|---------|----------|---------|---------|---------|--------------|----------------|---------|----------------|---------|--------|----------------|
| *****           | Argentina                              | ń.a.      | 0.564     |         |          | 0.388   |         |         | 0.136        | 0.082          |         | 0.042          |         | 2.672  | 5.08           |
|                 | Australia                              | 0.362     | n.a.      |         |          | 0,636   | 0.140   |         | 0.274        | 0.694          |         | 0.070          |         | 3.618  | 5.36           |
|                 | Canada                                 | 0.315     | 0.588     | п.а.    |          | 0,717   | 3.966   |         | 0.182        | 0.278          |         | 0.044          |         | 4.964  | 8.41:          |
|                 | Chira                                  |           |           |         | п.а,     |         |         |         | 1.890        |                |         |                |         |        |                |
|                 | Egypt                                  |           |           |         |          | n.ä.    |         |         |              |                |         |                |         |        |                |
|                 | £33                                    | 1.393     | 1.229     | 2.125   |          | 1.799   | n.a,    |         | 0.403        | 1.249          | 0.336   | 0.090          | ·····   | 10.380 | 17.60          |
| f Tradic        | India                                  |           |           |         |          |         |         | n.a.    |              |                |         |                |         |        |                |
| Volume of Trade | lapan                                  |           |           |         |          |         |         |         | fi.a.        |                |         |                |         |        |                |
| 2               | South<br>Korea                         |           |           |         |          |         |         |         | 0.006        | n.a.           |         |                |         |        |                |
|                 | Mexico                                 |           |           |         |          |         |         |         |              |                | n.a.    |                |         |        |                |
|                 | Now<br>Zcaland                         |           | 0.086     |         |          |         |         |         |              |                |         | n.a.           |         |        |                |
|                 | Nigeria                                |           |           |         |          |         |         |         |              |                |         |                | n,a,    |        |                |
|                 | U. <u>S</u> .                          | 1.399     | 1.312     | 2.156   |          | 1.638   | 14.344  |         | 0.426        | 1.312          | 0.478   | 0.099          |         | n.a.   | 15,691         |
|                 | The Former<br>USSR                     |           |           |         |          |         |         |         |              |                |         |                |         |        | n.a.           |
|                 | lsteport                               | 3,469     | 3.779     | 4.281   | 0.000    | 5,178   | 18.450  | 6,000   | 3.317        | 3.615          | ().814  | 0,345          | 0.000   | 21.634 | 52.159         |
|                 | mand for<br>state Product              | 0.424     | 1.008     | 1.938   | 110.842  | 5.364   | 43.602  | 53.787  | 0.786        | 0.000          | 4.262   | 0.168          | 0.068   | 12.276 | 68.591         |
|                 | al Demand                              | 3.893     | 4.787     | 6.219   | 110.842  | 10,542  | 62.052  | 53.787  | 4.103        | 3.615          | 5.076   | 0.513          | 0.068   | 33.910 | 120.750        |
|                 | rket Price                             | 78.344    | 117.967   | 193.492 | 112.071  | 100.859 | 187.021 | 162.747 | 590.419      | 899.19         | 128.139 | 114.938        | 340.613 | 99.671 | 114.064        |
| Sha<br>/T.      | dow Price"<br>rolf Quota               | n.a.      | n.a.      | n.a.    | n.a.     | n.a.    | ŋ.ä.    | n.a.    | <b>љ</b> ,а, | ri.ä.          | n.a.    | л.а.           | n.a.    | n.a.   | n,a.           |
|                 |                                        |           |           |         |          |         |         |         |              |                |         |                |         |        |                |
| ć               | loantry                                | Argentina | Australia | Cərəada | China    | Egypt   | EU      | India   | Jupan        | South<br>Korea | Мемео   | New<br>Zealand | Nigeria | U.S.   | The<br>Former  |
|                 | upply to<br>estic Market               | 0.424     | 1.008     | 1.938   | [10.842] | 5.364   | 43.602  | 53.787  | 0.786        | 0.000          | 4.262   | 0.168          | 8.00.0  | 12.276 | USSR<br>68.591 |
| i               | Ехрон                                  | 8.966     | 11.160    | 19.469  | 1.890    | 0.000   | 36.669  | 0.000   | 0.000        | 0.006          | 0.000   | 0.086          | 0.000   | 38.855 | 0.000          |
| Ne              | ч Ехрыя                                | 5,497     | 7.381     | 15.188  | 1.890    | -5.178  | 18.159  | 0,000   | -3.317       | -3.609         | -0.814  | -0.259         | 0.000   | 17.221 | -52.159        |
| Text            | al Supply                              | 9.390     | 12.168    | 21.407  | 112.732  | 5.364   | 80.211  | \$3.787 | 0.786        | 0.006          | 4.262   | 0.254          | 0.068   | 51.131 | 68.591         |
| Pri             | oduction                               | 9.390     | 12.168    | 21.407  | 112.732  | 5.364   | 96.888  | 53.787  | 0.786        | 0.006          | 4.262   | 0.254          | 0.068   | 52.777 | 68.591         |
| Shac<br>Outs    | iem Price <sup>h</sup><br>oberiškopeni | n.a.      | ñ.a.      | n.a.    | n.a.     | 9.3.    | n.a.    | n.å.    | Ŋ.ª.         | n.a.           | S.3.    | n.a.           | n.a.    | n.a.   | n,a,           |
|                 | low Prite'<br>alon (Nets)              | 17.3.     | n.a.      | Fr. ä.  | n.s.     | п,а,    | 49.135  | n.a.    | n.a.         | p.a.           | ñ.a.    | n.ä.           | n.a.    | в.а,   | n.a.           |

Table 8, Spatial Equilibrium Solution for Scenario 4 (Unit: million metric tons and U.S. dollars and metric ton)

Nese, Blank spaces indicate zero.

a. Shadow price for the right to export to the in-motor manifed

b. Shalow price for the right to export within the upper first of subsected quantity exported.

 $\epsilon$  . Shadow price for the tight to produce within the production quota.

## OTHER A.E.M. WORKING PAPERS

| WP No   | Title                                                                                                                           | Fee<br>(if applicable) | Author(s)                           |
|---------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------|
| 2001-13 | Designing Nonpoint Source Pollution Policies with<br>Limited Information about Both Risk Attitudes and<br>Production Technology |                        | Peterson, J. M. and R. N. Boisvert  |
| 2001-12 | Supporting Public Goods with Voluntary<br>Programs: Non-Residential Demand for Green<br>Power                                   |                        | Fowlie, M., R. Wiser and D. Chapman |
| 2001-11 | Incentives, Inequality and Allocations                                                                                          |                        | Kanbur, R. and M. Tuomala           |
| 2001-10 | Rural Poverty and the Landed Elite: South Asian Experience Revisited                                                            |                        | Hirashima, S.                       |
| 2001-09 | Measuring the Shadow Economy                                                                                                    |                        | Kyle, S. and A. Warner              |
| 2001-08 | On Obnoxious Markets                                                                                                            |                        | Kanbur, R.                          |
| 2001-07 | The Adoption of International Labor Standards                                                                                   |                        | Chau, N. and R. Kanbur              |
| 2001-06 | Income Enhancing and Risk Management<br>Perspective of Marketing Practices                                                      |                        | Peterson, H. and W. Tomek           |
| 2001-05 | Qual-Quant: Qualitative and Quantitative<br>Poverty Appraisal: Complementarities,<br>Tensions and the Way Forward               |                        | Kanbur, R. (Editor)                 |
| 2001-04 | Fifty Years of Regional Inequality in China: A<br>Journey Through Revolution, Reform and<br>Openness                            |                        | Kanbur, R. and X. Zhang             |
| 2001-03 | Cross-Border Externalities, International Public<br>Goods and Their Implications for Aid Agencies                               |                        | Kanbur, R.                          |
| 2001-02 | The Role of Curvature in Estimating Accurate<br>Dual Functions                                                                  |                        | Tauer, L.                           |
| 2001-01 | Cooperation Among Competitors: The Japanese Super-Premium Cold Chain                                                            |                        | Hayashi, K., and J. M. Hagen        |

Paper copies are being replaced by electronic Portable Document Files (PDFs). To request PDFs of AEM publications, write to (be sure to include your e-mail address): Publications, Department of Applied Economics and Management, Warren Hall, Cornell University, Ithaca, NY 14853-7801. If a fee is indicated, please include a check or money order made payable to <u>Cornell University</u> for the amount of your purchase. Visit our Web site (*http://www.cals.cornell.edu/aem/*) for a more complete list of recent bulletins.