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A SIMPLICIAL ALGORITHM FOR COMPUTING
PROPER NASH EQUILIBRIA OF FINITE GAMES!

Dolf Talman and Zaifu Yang *

Abstract A simplicial algorithm is developed to compute a robust sta-
tionary point of a continuous function on the Cartesian product S of
unit simplices. The concept of a robust stationary point is a refinement
of the concept of a stationary point on S and coincides with the proper-
ness of a Nash equilibrium of a finite game when the function is defined
by the expected marginal payoff of the game. The algorithm and the
concept of a robust stationary point are generalizations for functions on
the unit simplex introduced in an earlier paper. Starting with an arbi-
trarily chosen interior point v in S, the algorithm generates a piecewise
linear path of points in S and terminates with an approximate robust
stationary point of any a priori chosen accuracy within a finite number
of steps. We apply the algorithm to find proper Nash equilibria of non-
cooperative finite games, where S is the strategy space. The path of
points generated by the algorithm admits a game-theoretically natural
interpretation. Some numerical examples are given.

Keywords: Robust stationary point, noncooperative game, proper equi-
librium, simplicial algorithm, piecewise linear approximation, triangu-
lation.

1 Introduction

Let S denote the Cartesian product of n unit simplices S™ = {z; € RY
Y zjx =1}, j = 1,..,n. Suppose that f : § +— [[j, R™ is a function. Then
the stationary point problem for f on S is to find a point z~ € S such that for every
Fedlzn}
(2§ —2;)" fi(=*) 2 0
for any point z € S. We call z* a stationary point of f on S. It is well known
that this problem is equivalent to the Brouwer fixed point problem on S (see e.g.
Doup [3]).
§This reasearch is part of the VF-program “Competition and Cooperation”.
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To compute a fixed point or a stationary point of a continuous function on
S, several simplicial algorithms have been developed (see van der Laan and Tal-
man [13], Doup and Talman [4]). In a simplicial subdivision of S, starting with
an arbitrary point of S, such algorithms search for a simplex which contains an
approximate solution, by generating a sequence of adjacent simplices of varying
dimension. The simplex with which the algorithm terminates is reached within a
finite number of steps. These algorithms are generalizations of an algorithm ini-
tiated in van der Laan and Talman [12] which could date back to the pioneering
work of Scarf [18]. For more details on the development of simplicial algorithms,
the reader may consult some excellent articles and books which include Todd [21],
Doup [3], and Allgower and Georg [1].

The concept of a robust stationary point recently introduced in Yang [25] is a
refinement of the concept of a stationary point of a continuous function on the unit
simplex. In this paper we generalize this concept to the Cartesian product S of
unit simplices and modify the algorithm in [25] to find a robust stationary point
of a continuous function on S. In particular proper Nash equilibrium strategies of
noncooperative finite games, introduced by Myerson [16], can be computed in this
way, where S is the strategy space of the game. The proper Nash equilibria of a
game coincide with the robust stationary points of the marginal expected payoff
function of the game. Moreover the path of points generated by the algorithm
admits a game-theoretically natural interpretation. We remark that the algorithm
can be also applied to find robust equilibria of other economic models, for example,
international trade models and general equilibrium models with increasing returns
to scale production (see Mansur and Whalley [15], and van der Laan [11]).

Let us now give a brief survey on the development of the computation of Nash
cquilibria of finite games. There has been an extensive literature dealing with this
problem starting with Lemke and Howson [14]. In their paper they showed that a
bimatrix game can be solved by formulating it as a linear complementarity problem.
Rosenmiiller [17] and Wilson [22] further independently discovered that N-person
games can be formulated as a nonlinear complementarity problem. Based on fea-
tures of these nonconstructive methods Garcia, Lemke and Liithi 7] firstly proposed
a simplicial algorithm to compute a Nash equilibrium of N-person games. Later a
more efficient simplicial algorithm was proposed in van der Laan and Talman [13].
A procedure to search for a perfect equilibrium of a bimatrix game was developed
by van den Elzen and Talman [6]. Wilson [23] presented an algorithm to compute
simply stable equilibria of a bimatrix game.

In the development of our ideas we have been influenced by the exposition of the
procedure by Yamamoto [24] for the determination of a proper Nash equilibrium
of finite games. However, the algorithm in this paper differs from Yamamoto’s
procedure in the following aspects: In order to avoid confusion, we will denote the
procedure of Yamamoto by Y-procedure.



(i) The Y-procedure is a nonconstructive method, while the algorithm is a con-
structive one in the sense that an approximate proper equilibrium of any given
a priori chosen accuracy can be reached within a finite number of iterations.

(ii) The Y-procedure can only start at the barycenter of the strategy space, while
the algorithm can start from any completely mixed strategy point in the
strategy space. Therefore a priori information (if available) about the location
of a solution can be used and more proper equilibria (if any) could be found
by the algorithm. In this sense the algorithm can provide more insights to
analyze the structure of proper equilibria of games. For example, the structure
of the set of proper equilibria in a bimatrix game is analysed by Jansen [8].

(iii) The Y-procedure is involved in solving nonlinear equation systems, while the
algorithm only needs to solve very simple linear equation systems. Since
dealing with nonlinear equation systems is generally intrinsically difficult (see
c.g. Allgower and Georg [1]), the latter method is decisively improving the
first one from a computationally theorectical point of view. As Wilson [23]
points out: "Studies of more realistic problems require an efficient algorithm.
An algorithm is also essential for empirical studies of the many game-theoretic
models developed to study imperfectly competitive markets’.

iv) The algorithm can deal with any finite game no matter whether it is de-
g

generate or nondegenerate in the sense of Lemke-Howson or in the sense of

Yamamoto. In fact we do not make any assumption on finite games in the

paper.

(v) The algorithm is based on a specific simplicial subdivision and is easy to
implement on a computer.

The remainder of this paper is organized as follows. In Section 2 we introduce the
definition of a robust stationary point on the Cartesian product S of unit simplices
and establish its relationship with the concept of a proper Nash equilibrium of a
noncooperative finite game. Section 3 specifies the simplicial subdivision of the set
S which underlies the algorithm. In Section 4 we give the path of points followed by
the algorithm, prove the convergence of the algorithm under the assumption that
the function f to be considered is continuous, and also derive the accuracy of an
approximate robust stationary point. Section 5 describes the steps of the algorithm.
Some examples are given in Section 6.



2 Proper Nash equilibria and robust stationary
points

The concept of a proper equilibrium defined by Myerson [16] as a refinement of a
perfect Nash equilibrium, is probably one of the most important and elegant ideas
in game theory. The aim of this section is to derive the relationship between the
concept of a robust stationary point and the concept of a proper Nash equilibrium
of a finite game. Let us first introduce the definition of a robust stationary point
on the Cartesian product § = [}, S™ of n unit simplices, where S™ = {z; €
RY | Thi, zjn = 1} is the (n; — 1)-dimensional unit simplex, j € {1,..,n}. We
denote the set of integers {1,...,n} by I,. Furthermore, we denote 3°7_; n; by M
and an element z € S by z = (z];..;z)7 where z; is an element of ", j € I,
Let a function f: S +— RM be given.

Definition 2.1 For given 0 > 0 a point z € S is a 0-robust stationary point of
fif
(1) w is a relative interior point of S;

(2) zx; < Ozij if fei(z) < frj(x), for 1 S 4,5 < mx, ke l,.

Definition 2.2 A point z* € S is a robust stationary point of f on S if there
exist sequences { 0, }32, and { z(0,) }32, of 0,-robust stationary points z(0,) of f such
that

‘]Lrg& =0 and lim z(0,) =:2%

Observe that if a stationary point z* of f lies in the relative interior of S, then
z* must be a robust stationary point of f. Some examples given in Section 6
will demonstrate that the concept of a robust stationary point is indeed a proper
reflinement of the concept of a stationary point. Analogous to [25]), we have the
following results.

Lemma 2.3 Let f : S +— RM be a continuous function. If z* € S is a robust
stationary point of f, then z* is also a stationary point of f.

Theorem 2.4 Let f: S +— RM be a continuous function. Then f has at least
one robust stationary point.

Now we briefly review Myerson’s concept of a proper Nash equilibrium of a
finite game. A finite n-person game in strategic form is characterized by a 2n-tuple
= (P, -0 s Pri Uty - - - ,Uy), where ®; denotes a nonempty finite set and U; is a
real-valued function defined on the domain ® = [T, ®: for j € I,. We interpret



I, as the set of players. Ior each j € I,, ®; is the set of player j’s pure strategies
being indexed by (j,1), -, (j,n;), and Uj is the payoff function of this player, i.e.
U,(¢) is the payoff to player j when the strategy ¢ = ((1,71),(2,72) - (n,7n)) € @
is such that for i € I, player i chooses action (i,7;) € ®;. The set of all mixed
strategies of player j € I is the (n; — 1)-dimensional unit simplex S™ and the
mixed strategy space of the game is the Cartesian product S = [[}—; S™. Given a
mixed strategy z = (27 ;.. -zT)7 in S the probability that a pure strategy

= ((11j1)1(21j2)7- "!(nvjn)) =

oceurs is given by x(¢) = [T, @i, Then the expected payoff for player j is equal
to U;(x) = Lseo x(p)U;(4). The expected marginal payofl for player ¢ € I, at
r € S when he plays his pure strategy (2, k) is given by

Ukz)y= Y. Ui9) fI L1y

$€0,(i,3:)=(i,k) Ry

It is readily seen that U;(z) = L%, z;1U!(z) for every i € I, and z € S.
A mixed strategy = € S is a Nash equilibrium if

Uj(z) > U(z) forall j €l andall k€{l,..n;}.

For ¢ > 0, we define an ¢—proper equilibrium to be any completely mixed strategy
z(c) € S such that if Uf(z(€)) < Ul(z(€)), then z;x(e) < ez;i(e) for all j € I, and
k,l € {1,..,n;}. This implies that every player gives a better response always a
probability at least ¢! times higher than a worse response. A mixed strategy y*eES
is called a proper equilibrium if there exist sequences {e(k)}2, and {y(e(k))}2,
such that each €(k) > 0 and limyc€(k) = 0, each y(e(k)) is an €(k)—proper
equilibrium, and limk_. y(e(k)) = y* It is shown in [16] that any strategic game
has a nonempty set of proper equilibria, being a subset of the set of perfect Nash

equilibria.
Now for z € S we define f(z) by
fin(z) = UMz) forjel, and h€ {1,..,n;}
fi(x) = (Fia(@)s ooy fim,(2))] for j € In (2.1)

fz) = (L@ /@)1

Clearly, f is a continuous function from the Cartesian product S to RM and using
the Brouwer fixed point theorem f has a stationary point Z on S, satisfying (z; —
z;)Tf;i(z) > 0 for all j € I, and z in S. This coincides with Z being a Nash
equilibrium by recalling that Uj(z) = T a:_,-.;.U;‘(:t) for every j € I, and = € S.
*urthermore we establish the following relationship between the two concepts above.



Theorem 2.5 Lel a noncooperative finite n-person game I' in strategic form be
given as above. Then a* € S is a proper Nash equilibrium of the game if and only
if x* is a robust stationary point of [ on S defined by (2.1).

lence the problem of finding proper Nash equilibria is a special case of the
problem of finding robust stationary points on S. So, with the algorithm to be
discussed below, a proper Nash equilibrium can be computed.

3 The P-triangulation of the product space of
unit simplices

We first introduce some notations to be used later. The sets N,Noand I C J
represent the set of positive integers, the set of nonnegative integers and a proper
subset I of J, respectively. Moreover, for j € I, the k-th component of z; in
S§™ will be denoted by z;x, also being the (3 iZ1 ni + k)-th component of a point
2 in 8. For j € I, e(j, k) denotes the ():f;ll n; + k)-th unit vector in RM and
e(j) = Tplie(d ). Let v = (v7;..;vr )T be any point in the relative interior of

S. The point v will be the starting point of the algorithm. We define a vector
p=(pl;..ipr)T €S by for every j € Ii

Pjk = Uj"'k.,k = 1,...,".,'

where (i1, ..-y2n,) is 2 permutation of (1,...,n;) satisfying vj;, = vjin foralll <1<
m < nj. Fort € [0,1] and j € I, let

"J .
pik(t) = pj_ktk‘I/ij';t‘"‘, fof: = Ljualis:

=1

It is readily seen that p;i(t) > ... > pjn,(t) for t € [0,1].

Definition 3.1
For t € [0,1], the subset A(t) of S is given by

At)={zeR” |Y zi=1,

i=1

k
Zz,-,, < ij_l(t) forany JC {1,..,n;}

led =1
with k = |J|, and for j € I, }.



It is casily scen that A(0) = S, and that if v is the barycenter of S, then
A(1) = {v}. More generally for every t € [0,1] we have that v € A(t) and v is a
vertex of A(1). Moreover A(t) is a polytope for every t € [0,1].

For j € I, J C {1,...,n; }, and t € [0, 1], we define a(j, J) and b; 4(t) by

a(j,J) = 3_ e(4, k),

keJ
!
bj'_](t) = ij'k(t) With = IJI
k=1
Let the collection of ordered indexed sets, Z, be defined by

I= { I = (II.Is---vll,ml; [2,1,---y lZ,mz;"';ln.lv-‘-v’n,m") |
Fiq € o0 I iy € Lysrym },j € I, with at least one [, #0 }.

We say that I € T conforms to J € Z, if it holds that every component of Iis
also a component of J. Let {0k }ren be a strictly decreasing sequence of positive
numbers smaller than one and converging to zero. For I € T and k € N, let

F(k, l) = {I 2 A((),,) laT(j, IJ'J.)I = b,',l,',_((),,)
for every h € {1,..,m;} and je I, }.

Then F(k, ) is a face of A(6) with dimension equal to M —n — Y p_, m;. For
I€Z,let

F(0,1;1) = {z|z = av + (1 — a)z for some z € F(1,1) and a€[0,1] }
and for k € N

Flk,k+1;I)={z| c=ay+(l—a)z for some y € F(k,I),
z€ F(k+1,I), and a€[0,1] }.

The subdivision of S forny =ny, =2, 0, =27 for k € N,
and v = (1/2,1/2;3/5,2/5)7, is depicted in Figure 1.

Figure 1. Subdivision of S for ny = ny = 2.

For I € T, we denote the union of F(k,k + 1;1) over all k = 0,1,... by F(I).
Notice that the dimension of F(I) is equal to t = M —n—37_,; m,+1. A simplicial
subdivision underlying the algorithm must be such that every set F(k,k+1;1) is
subdivided into t-dimensional simplices. Such a triangulation can be described as
follows. For I € T, we denote v(0,I) = v and for k € N, v(k, I) is a relative interior
point (e.g., the barycenter) of F(k,I). For I € I, if I consists of M —n components,



then I'(k, ) is a vertex of A(fx). For general I € T, let F(k,I(M —n)) be a vertex
of I'(k. 1), i.c., (M —n) has M — n components and I conforms to I(M — n).
Morcover let (Jy, Jay ey ) = (1, 1M — n)) be a conformation between [ and
(M =), iey Jy = (M —n), Ji € Tlork=2,..,L—1,J, =1, Jx conforms to Jx_,
and has one component. less than Ji -y for k=2,...,L. Vor given k € Ny, [ € Z, and
(I, I(M 1)), the subset 1'(kyk + 15 1,9(1, 1(M —n))) of I'(k,k+ 15 1) is defined
1o be the convex hull of v(k, Jy), v(k, J2), ..., v(k,Ji), v(k + Lidy)s v(k+ 15:J5)5 oaes
and v(k + 1,J,), so

F(k,k+ 1;1,7(1,1I(M — n))) {z € S|z = v(k,I(M —n)) + g’

t-1
o Eajqj(a)v
Jj=1
0<a<l,and 0< 1 <. <y <1}

where ¢° = v(k + 1,1(M — n)) —v(k,I(M —n)), and for j = 1,..., 1 — 1, o<axl,
7(@) = a(o(k + 1, J31) — v(k + 1,J))) + (1 = a)(v(k, Jjs1) = v(k, Jj))-

The dimension of F(k, k+1;1,7(I, (M —n))) is equal to t and F(k, k+1; I)is
the union of F(k,k+ 1;7(I,1(M —n))) over all conformations (I, /(M —n)) and
over all index sets I(M — n) conformed by I.

Let d be an arbitrary positive integer.

Definition 3.2  For k € Ny, the set G(k,k+1;1,7(1,I(M —n))) is the collec-
tion of t—simplices o(a, ) with vertices y',..., yttlin F(k,k+1;1,y(I, I(M —n)))
such that

(1) y* = v(k, (M —n))+a(0)d"'¢° + L}2} a(j)¢’ (a(0)/d)/(a(0) + dk) where a =

(a(0),a(1),...,a(M —n— 1))7 is a vector of integers such that 0 < a(0) <d-1,
anda(M —n—1)=..=a(t)=0<a(t-1)<.. < a(2) < a(1) < a(0) + dk;

(2) © = (my,..., ™) is a permutation of (0,1,...,t — 1) such that s < s' if for some

¢ € {1,..,t —2} it holds that =1, = g, 7y = q + 1, a(q) = a(g+1) in case
g>1, and a(0) + kd = a(1) in case ¢ =0;

(3) Let i be such that m; = 0. Then

gt = v + ¢~ (a(0)/d)/(a(0) + kd),j = 1,...,2 — 1,
g+ = o(k,I(M —n)) +(a(0) + 1)d7'¢°

t—1

+ Y a(5)¢ ((a(0) +1)/d)/(a(0) + 1 + kd)

i=1



t—1

b)Y a™((a(0) + 1)/d)/(a(0) + | + kd),
=1
y* o=y +¢7((a(0) + 1)/d)/(a(0) + 1 + kd),i < j < t.

The set G4(k,k + 1;1,5(I,I(M — n))) is a simplicial subdivision of F(k,k +
1;1,9(1, (M — n))) with grid size d~'. Moreover, the union G%(k,k + 1;1) of
7 (k,k + 1;4(1, I(M — n))) over all conformations y(/,I/(M — n)) and I(M — n)
conformed by I is a simplicial subdivision of F'(k,k + 1;I). The union G%(k,k+ 1)
of G4(k,k + 1;1) over all sets I € Z induces a triangulation of A(6ky1)\A(6k).
Taking the union G¥(k) of G%(j,j +1) over j = 0,1, ...,k — 1, we obtain a simplicial
subdivision of A(f) with grid size d~'. The union of G?(k) over all k € Ay is a
simplicial subdivision of the relative interior of S and is called the P-triangulation
of S. We remark that for I € T the union G%(I) of G4(k,k+1;I) overk =0, 1, ..., is
a simplicial subdivision of the set F(I). The P-triangulation of S for ny = ny, = 2,
d=2,0,=2"%for ke N, and v =(1/2,1/2;3/5,2/5)7 is illustrated in Figure 2.

Figure 2. The P-triangulation of S for ny = n, = 2.

As norm we use the Euclidean norm || - || in R™. For a set B in RM, we define
the diameter of B by

diam(B) = sup{ lly' — *ll|",4* € BY.
Then for given k € Ny the mesh size of G4(k,k + 1) is equal to
x4 = sup{diam(o) | 0 € G*(k,k+1) }.
Now we have the following observation.
Lemma 3.3 For the P-triangulation of S with grid size d™, it holds that
lenZO bka = 0.

The P-triangulation therefore is such that the diameter of the simplices converges
to zero when the boundary of S is approached.

4 The path of the algorithm

In this section we discuss how to operate the algorithm in the P-triangulation of S
to approximate a robust stationary point of a continuous function f on S. Starting
at the point v, the algorithm will generate a sequence of adjacent simplices of the
P-triangulation in the set F'(I) having I-complete common facets, for varying I € Z.
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Definition 4.1 Let be given the function f : § RM. For given I =
(s s 505 Fmg v B+ == s Do oo i Bnitpeeealitiiin) € & and s = t — 1 or t, where
t=M-n—-37,m;+1, an s-simplez o with vertices y',... y**" is I-complete if
the system of lincar cqualions

(1) - £ (U0) 2o (V)= (1) e

where 0 is an M -vector of zeros, has a solution A}, i=1,...s + 1, pj;, J € I, and
h = 1,..,mj, and B}, | € I, satisfying A} 2 0, ¢ =1,...,s + 1, wix =0, j €1,
h=1,...,m5-

Notice that the system (4.1) has (s + 1) + (Zj-; m; + n) columns, so when
s=t—1=M—n—Y},mj, the system has M + 1 columns and for s = t one
column more. A solution Af, 1= 1,.,s+ 1, pls, J € In, b= Nynis g 7 UE Ly,
will be denoted by (A*, 1%, 8%).

Nondegeneracy assumption® For s = t — 1 the system (4.1) has a unique
solution (A%, p7, %) with A} > 0, ¢ =1,....1, and pj, > 0; 7 '€ duy b= Lsouoymiys
and for s = ¢ at most one variable of (A%, u*) is equal to zero.

Under this nondegeneracy assumption ¢ = {v} is I°-complete with [° =
(100 B et Bl v B et = 184, 12, ) where 1Dy = {j1,...,Jn } for j €
I, h=1,. ,n;—1satisfying for j € I, f;;,(v) > f;(v) > . > fijn, (v). Notice
that for j € I, (ji,---Jn,) 18 @ permutation of ) B T

The algorithm now starts with o° for I = I° and follows a sequence of adjacent
t-simplices in F(I) for varying I, I € Z, such that their common facets are I-
complete. In this way within a finite number of steps either the algorithm reaches
a point z in an (M — n)-dimensional simplex for which fix(@) = fia(z) for every
j €I, and k,l € {1,...,n;}, where f is the piecewise linear approximation of f
with respect to the P-triangulation, or for k = 1, 2,... the algorithm finds an I(k)-
complete simplex in F'(k, I(k)) for some I(k) C I. Suppose the latter case holds,
then we have the following result. Let {6, };2, be given as in Section 3.

Lemma 4.2 For some k € N and I € I, let o with vertices y*,...,y" be an
[-complete (t — 1)-simplez lying in F'(k,I). Let (A%, p*, B*) be the corresponding
unique solution of system (4.1). Then z = {_ A1y is a Ox-robust slationary point
of the piecewise linear approzimation f of f with respect to the P-triangulation.
Moreover, z is a stationary point of f on A(6y).

!This assumption can be dropped if we use lexicographic pivoting method in linear program-
ming to solve system (4.1), see e.g. Todd [21].



Prool:  See Appendix. ]

For d = (Lgayeendvmg davyers Pamg w555 daty w553 igne) '€ Xy we define ¥(1) =
{y € RM |y = S0, 552y mina(G, Lin) + E0y Bie(l), pp > 0 and f € R}. Clearly,
for a stationary point = € F(k,I) of f on A(0k) it holds that f(z) € F*(I), and

conversely. The next lemma shows that a Ox-robust stationary point of f is an
approximate Ox-robust stationary point of f.

Lemma 4.3 Let npq = sup{diam(f(o))|o € G*k — 1,k)}. Let = be a O-
robust stationary point of the piecewise linear approzimation f of f with respect to
the P-triangulation with grid size =" obtained by the algorithm, so that = € F(k,I)
for some I € I. Then f(z) lies in the ni4-neighborhood of F*(I), i.e. there is a
y € F*(I) such that |ly — J(@)]| < mea.

Proof: See Appendix. )

Since S is compact and f is continuous on S, the error 7; 4 tends to zero as the
mesh size & 4 goes to zero when k goes to infinity. Let =¥ be a 0;-robust stationary
point of f and 74 the error in Lemma 4.3. Suppose that the algorithm generates
the sequence {z"|h = 1,2,...} of approximate i-robust stationary points of f
which therefore has a cluster point z*. For simplicity of notation we can assume
that this sequence itself converges to z*. We are now ready to state the following
corollary.

Corollary 4.4

Suppose that z* is an approzimate O-robust stationary point generated by the
algorithm, for k = 1,2,... . Then the sequence {z* |k = 1,2, ...} has a cluster point
and any cluster point is a robust stationary point of f on S.

Proof: See Appendix. m}

In case the algorithm terminates with an (M — n)-dimensional simplex o with
vertices y*,...,yM "1 then z = M7+ A1y is a robust stationary point of f. If the
accuracy of approximation is not satisfactory, the algorithm can be restarted at the
point. & with a smaller grid size d=! to find a better approximate robust stationary
point, hopefully within a small number of steps. Without loss of generality we may
assume that the algorithm in this case generates a sequence {z"|h = 1,2,...},
where 2" is the robust stationary point of f corresponding to the grid size d;' for
an increasing sequence of positive integers {dj | h = 1,2,... }. It is readily seen that
for every k € Ny, the mesh size x4, tends to zero when h goes to infinity. Therefore
the sequence {z"|h = 1,2,...} has a subsequence converging to a point being a
robust stationary point of f on S.
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Now let us conclude this section with some interpretation on the path gener-
ated by the algorithm in game-theoretic terms. Starting with a completely mixed
strategy o the algorithm initially generates a piccewise lincar path ol strategies in
A(0,). on which the probabilitics of all actions of cach player are simutaneously
adjusted such that for every player the higher the marginal payoff of an action
is, the higher the corresponding probability will be. As soon as the path hits the
boundary of A(f;), a 0,-proper equilibrium of the piecewise linear approximation
f of the expected marginal payoff function f of the game is obtained. From then
on the algorithm continues to follow a piecewise linear path of #-proper equilibria
of f in such a way that for each player an action with a higher piecewise linear
marginal payoff is always given a probability at least 0~! times higher than an ac-
tion with a lower piecewise linear marginal payoff. In this way either the algorithm
terminates in the interior of S or an approximation is found having the required
a priorly chosen accuracy. In the first case the algorithm may be restarted at the
found approximation with a smaller grid size in order to improve the accuracy.

In the next section we shall describe the steps of the algorithm in more detail.

5 The steps of the algorithm

Now we turn to give a detailed description of the steps of the algorithm. The al-
gorithm starts with the zero-dimensional simplex 0° = {v}. Under nondegeneracy
assumption, then the zero-dimensional simplex {v} is I°-complete where I’eZis
as described in the previous section. Moreover, ° is a facet of a unique 1-simplex
o' in I'(1°), where ' = o(a,7) witha=0¢€ RM~" and 7 = (0). Since under the
nondegeneracy assumption for any given / € 7 an I-complete t-simplex has at most
two I-complete facets and a facet of a t-simplex in F(I) either is a facet of exactly
one other t-simplex in F(I) or lies in the boundary of F(I), we obtain that the
I-complete t-simplices o(a, ) in F(I) determine sequences of adjacent -simplices
in F(I) with I-complete common facets. As described below, the sequences of the
I-complete t-simplices in F(I) can be uniquely linked together for varying I € T
to obtain sequences of adjacent simplices of varying dimension. One of these se-
quences starts with ¢° in F(I°) and is followed by the algorithm, so starting at
the point v, the algorithm generates a unique sequence of I-complete adjacent t-
simplices in F(I) of varying dimension. With respect to each of these simplices a
linear programming (lp) pivot step is made in (4.1). When, with respect to some
o(a, ) with vertices y',...,y*" in G4k, k+1;I,5(I,I(n—1))) for some k € Np and
4(I,1(n—1)), the variable A,, for some ¢, 1 < ¢ < t+1, becomes zero through an lp
pivot step in (4.1), then the facet T opposite the vertex y? of o(a,n) is I-complete.
If  does not lie in the boundary of the set F(k,k+ 1;1,v(I,1(n — 1))), then a
{-simplex o(a, ) sharing the common facet 7 with o can be obtained from a and 7
as given in Table 1, where E(j—1) is the j-th unit vector in RM-—"™ j=1,..,.M—n.



Table 1. Parameters of & if the vertex y? of a(a,7) is replaced.

T a
q=1 (725 Tty T1) a+ E(m)
1 cg<il+1 (1r|,...,7rq_2,7rq,7r,_l,7rq+,...,7r,) a
g=1t+1 (7, M1y ooy M) a— E(m)

The algorithm continues with & by making an lp pivot step in (4.1) with
(f(5)T,1)7, where y is the vertex of & opposite the facet 7. In case the I-complete
facet T of a simplex o(a,7) in GU(k,k + 1; I,4(I,I(M — n))) is not a facet of an-
other simplex in G%(k,k + 1;1,7(I, (M — n))), then 7 lies in the boundary of
F(k,k+ 1;1,7(1,1(M — n))). According to Definition 3.2 we have the following

lemma.

Lemma 5.1 Let o(a,w) be a t-simplez in F(k,k+1; I,v(I,I(M —n))). The
facet T of o opposite the vertez y?, 1 < ¢ <t+1, lies in the boundary of this set if
and only if onc of the following cases occurs:

(i) g=1,m =0, and a(0) =d - 1;

(i) 1 <q<t+l, m=h+]1 T = k for some h € {0,1,...,t — 2}, and
a(h) = a(h+1) in case h 21, and a(0) 4 kd = a(1) in case h =0;

(iii) g=1t+1, 7 =0, and a(0) = 0;
(iv) g=1t+1, 7 =t-1, and a(t — 1) = 0.

Suppose the algorithm generates a simplex o(a, ) as given in Lemma 5.1 and A,
becomes zero after making an Ip pivot step in (4.1). Then the facet 7 of o opposite
to the vertex y? is I-complete. In case (i) the facet 7 lies in the face F(k + 1,1)
of A(Ok41) and the algorithm reaches a 0x41-robust stationary point T = Sl
of f lying in F(k+ 1,1). If k is large enough, then Z is an approximate robust
stationary point of f. Otherwise, the algorithm proceeds with & by making an Ip
pivot step in (4.1) with (f7(g),1)7, where y is the vertex of & opposite the facet 7
and o in F(k+1,k+21,7(I,1(M - n))) is obtained according to Table 1.

In case (iii) the facet 7 lies in the face F(k,I) of A(f;) and the algorithm
continues with & by making an Ip pivot step in (4.1) with (f7(¥), 1)T, where g
is the vertex of & opposite the facet 7 and & in F(k =1,k 1,y(I,I(M —n))) is
obtained also from Table 1.
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In case (22) and if h > 1, the facet 7 is a facet of the t-simplex ¢ = o(a,7) in
1'(k.k +1;1) lying in the subset F(k,k+ 1;1,5(1,I(M —n))) with
F( s LM = n)) = (Jrvsi:5 This Tnrs Thaassess Jes

where Jyyy € I, Juy1 # Jns1, is uniquely determined by the properties that Jy,,
conforms to Jj, has one component less than Jj, and is conformed by Ju4,. In
case (i1) and if h = 0, then 7 is a facet of the t-simplex & = o(a,r) in F(k,k +
1;1,5(1,1(M —n))) with I(M —n) and 7 defined as follows. Let

Ji = HM —4) = [hapdime-15 Toymre Btg =i} vo i Tateen Taina—1)>

In case
oz = (g b - i Baows g - 33 Ling=a3eses L Beagsssdang—1)s
for some j € I,, we have
I(M —n)=(I1,1,.; Iyny-1;-- .;Ij'],...,Ij'u)-g,ij.ﬂl_l; sl s ses B~}

with ij.n,-l = ({ (], l), 555 (], n,-) }\]j.n,—l)U]j,n,—Z'
In case
.12 = (Il,lv weey Il.m =13 =evy Ij.g, . Ij'ﬂ’._l; aeey Iﬂll, ey In,nn—l)

for some j € I, then

(M — n)= (Bipnsee Bng=ti o0 I_,-_l,I,-'g,...,I_.,-,,.J_l;...;I,.,,,...,I,.,,.,,_,)
with I;; = L;2\I;1.
Finally, if

Iz = (B gsmees i =t veos Braweos Dyips L gianncey Gmg5esy In g oy st
for some j € I, and k € { 1,...,n; — 3 }, we have

I(M o Yl) = (Il,lv seny Il.nl—; ey Ij,lv ey lj.kr Ij,k+l7 Ij,k+2’ ] lj.n,’~1; ey In,ly weey ]ﬂ,nn—l)

with ik = i U(Jj+2\Lik+1). Then (I, I(M —n)) = (I(M — n),Ja, ..., Ji). In
all subcases of case (i) the algorithm continues with making a pivot step in (4.1)
with (fT(y),1)7, where y is the vertex of the new t-simplex & opposite the facet 7.

In case (iv) the facet lies in the subset F'(k,k+1;J,_;) of F(I). More precisely,
7 is the (t — 1)-simplex o(a,%) in F(k,k + 1;1,5(I,1(M — n))), where I = J,_4,
(I, 1(M = n)) = (4, ..., Ji-1), and & = (71, ..., m—1). The algorithm now proceeds
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with making a pivot step in (4.1) with (—a"(5,I;4),0)7, where I;; is the unique
component of J,_; but not of J,.

Iinally, if through a linear programming pivot step in (4.1), the variable p;; be-
comes 0 for some j € { 1,...,n }and forsome h € { 1,...,m; }, the algorithm termi-
nates with the approximate robust stationary point = i yiof fif S, m=1
and restarts then at the point Z with a smaller grid size in case the accuracy is not
satisfactory. Otherwise, the simplex o(a, ) is I-complete and is a facet of a unique
(t + 1)-simplex o in I°(1) with

I = (I|,|1 p— [l.m‘; I2‘|, ceny 12',,.7; oxey lj,h weay Ij,h—h Ij,h+11 -'-11j,m,; erny ]n,h ey In.m")-

More precisely, @ = o(a, ) lies in F'(k, k +1; I,3(I,1(M —n))), where (I, 1(M —
n)) = (v,1), and 7 = (w14 ..y ey ). The algorithm continues by making a pivot
step in (4.1) with (f7(y),1)7, where g is the vertex of & opposite the facet o. This
completes the description of how the algorithm operates in the P-triangulation of
S

6 Examples

In this section we give some examples to show that the concept of a robust stationary
point is indeed a refinement of the concept of a stationary point and moreover to
demonstrate the performance of the algorithm.

Example 1: Let a continuous function f:93%x 8% — R®x R? be defined by

f(I) = (fm(I)’ fl,Z(-"")» fl;s(l); f2,1(17)7 fm(z'))T

with
fl.l(l) = I12n13
fia(z) = ziazls
fia(z) = —zazia(l+ T13) (6.1)
faulz) = 1’2.133,2(1 = 1’%,1)
Jao(z) = —z5w2(1 — 1’%,1)

for = € S. The set of stationary points of this function is equal to:
{ (111'1,11'2,0; 1,0)T,$ € S}U{ (1’1'1,1'1,2,0;0, I)T,.'E (S S}

However, only (1,0,0; 1,0)7 is a robust stationary point.

Example 2: We consider the 2-person game given by Myerson [16]. Each player has
three pure strategies and the payoff is given in Table 2.

Table 2. Payoff of the game in example 2.
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l l ¢I (11 1) (07 0) ('91 '9)
plager ¥ [(0,00 [(0,0) [(7,7)
¢3 ('93 '9) ('77 '7) (’7v '7)

As shown in [16], this game has three Nash equilibria: (11, ¢1), (¥2, $2) and (3, ¢3).
Among these equilibria, (11, ¢1) and (32, ¢2) are perfect equilibria. However, (¥, ¢1)
is the only proper equilibrium. Now we transform the game into the framework of
system (2.1). The corresponding function is defined by f : §% x S — R® x R?
with

f(z) = (fia(z), [12(2), f3; f2a(z), fr2(2), f23(z)) forz € S

where
fia(z) = Zy1 — 9223
f1,2(l‘) = —712.3
fl..'!(z) = 9z — Tx22 — T233
fz,l(I) = T11 — 911,3 (6'2)
fz,z(x) = —711,3
fgva(z) = —911'1 = 711_2 = 711'3.

The function f has three stationary points: (1,0,0;1,0,0)7, (0,1,0;0,1,0)T and
(0,0,1;0,0,1)7, corresponding to the three Nash equilibria given above, respec-
tively. Among these stationary points the only robust stationary point is
(1,0,0;1,0,0)T which corresponds to the proper equilibrium (%1, ¢1).

Let us now compare the procedure of van den Elzen and Talman [6] with the
algorithm using Example 2. Let v = (1/3,1/3,1/3;1/3,1/3,1/3)7, the barycenter
of S. We choose v as the starting point of the procedure. The projection of the
path generated by the procedure on S® is shown in Figure 3. The procedure in [6]
converges to the perfect equilibrium (13, ¢,). While the algorithm always converges
to the proper equilibrium (¢1, ¢1) no matter what interior point of S is chosen as
the starting point. Figure 4 illustrates the projection of the path generated by the
algorithm on S®, when v is the starting point. We remark that we implemented the
algorithm by using lexicographic pivoting rules and taking 8, = 2% for k € N.

Figure 3. The projection of the path of the procedure in [6] on S°.

Figure 4. The projection of the path of the algorithm on S°.

Appendix
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Proof of Lemma 4.2 Since I = (Lygseees Fomii Tos sso Bngsevidn s s Inmi) € Ly
then for every j € I, there exist [} <l < ... < I, such that

Iia = {d;sadi }
11,2 == { ih---,il“ilxﬂw--,ilz }
Ly = {iyseaiiy, )
{1,...,nj }\IJ",,.J = { i1m1+1,...,in’ }

Then it follows from equation (4.1) that at z = ¢, Ajy’

Fle) = v = fra (@) = 85a dos t i, +65
> fiinar () = o = fiy(2) = p50 + oo+ Wm, + 55 >
> fj.n,,,)_,“(z) =..= fm,,., (z) = W m, + B;
> Lty 11(3) = 00 = i, (2) = A5,

where i3, > 0 for i = 1,...,m;. Now it is not diflicult to check that
z;; < 0xz; whenever f;i(z) < fn(z).

It means that z is a Ox-robust stationary point of the piecewise linear approxi-
mation [ of f with respect to the P-triangulation.

Moreover, for each face F(k,I), I € I, let F*(I) be the set of all M-dimensional
vectors y such that every point of F(k,I) is a solution of the linear programming
problem

max y' & subject to & € A(f).

Then the stationary point problem for f on A(6;) is the problem of finding
a point z in A(0) such that f(z) € F*(I) for a minimum face F(k,I) of A(6k)
containing z. Duality theory (see e.g [19]) implies that

w Wy n

Py = Ay Ly =30 wawalss L) + 32 ed), pin 2 0 and fr € R}

3=1 h=X =1

It follows from above that f(z) € F*(I). Hence z is a stationary point of f on
A(0y). =]
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Proof of Lemma 4.3 Let y', ..., y* be the vertices of a (t—1)-simplex of G*(k—1, k)

in I"(k,I) containing . Then f(z) = ;:, /\J'f(yj) lies in F*(I), where A},..., At
arc convex combination coefficients such that z = 2;___1 Ajy?. Therefore
¢
/() = f@I = 1XZXf) - f(2)I
j=1
t
= 12 X50@) - f(2)l
=1
t
< YNNI = f@)l
j=1
< M-
O

Proof of Corollary 4.4 The continuity of f, the property of the P-triangulation
and the compactness of S imply that for any given € > 0, there exists a positive
integer L, such that for k € N with k > L, there is a 6-robust stationary point
2% € A(0x) of f which is in the e-neighborhood of z*. On the other hand, since
limg_. ¥ = z*, it immediately follows that

lim z* = z*.
k—o0
llence z* is a robust stationary point of f on S. m]
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