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A SIMPLICIAL ALGORITHM FOR COMPUTING
PROPER NASH EQUILIBRIA OF FINITE GAMESg

Dolf Talman and 'Laifu Yang '

Abstract A simplicial algorithm is developed to compute a robust sta-

tionary point of a continuous function on the Cartesian product S of

unit simplices. The concept of a robust stationary point is a refinement

of the concept of a statiunary point on S and coincides with the proper-

ness of a Nash c~uilibrium of a finite game when the function is defined

by the expected marginal payoff of the game. The algorithm and the

concept of a robust stationary point are generalizations for functions on

the unit simplex introduced in an earlier paper. Starting with an arbi-

trarily chosen interior point v in S, the algorithm generates a piecewise

linear path of points in S and terminates with an approximate robust

stationary point of any a priori chosen accuracy within a finite number

of steps. We apply the algorithm to find proper Nash equilibria of non-

cooperative finite games, where S is the strategy space. The path of

points generated by the algorithm admits a game-theoretically natural

interpretation. Some numerical examples are given.

Ifeywords: Robust stationary point, noncooperative game, proper equi-

librium, simplicial algorithm, piecewise linear approximation, triangu-

lation.

1 Introduction

Let S denote the Cartesian product of n unit simplices S"~ -{ x~ E Rf ~
~~' ~ x~,k - 1}, j - 1,...,n. Suppose that f : S~---r r[;-, R"~ is a function. Then

the stationary point problem for f on S is to find a point ~' E S such that for every

j E { 1,...,n}
(~~ - ~iÍ~fi(x~~ ~ 0

íor any point x E S. We call x' a stationary point of f on S. It is well known

that this problem is equivalent to the Brouwer fixed point problem on S(see e.g.

Doup [3~~.

SThis reasearch is pazt of the VF-progtam "Competition and Cooperation".
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'1'o computc a fixed poinL or a statíooary point of a continuous function on
5', several sirnplicial algorithms have been developed (see van der Laan and Tal-
man [13], Doup and Talman [4]). In a simplicial subdivision of S, starting with
an arbitrary point. of S, such algorithms search for a simplex which contains an
approxirnate solution, by generating a sequence of adjacent simplices of varying
dimension. 1'he simplex with which the algorithm terminates is reached within a
finite numbcr of steps. These algorithms are generalizations of an algorithm ini-
tiated in van der Laarr and Talman [12] which could date back to the pioneering
work of Scarf [18]. I'or more details on the development of simplicial algorithms,
the reader rnay consult some excellent articles and books which include Todd [21],
llonp [:3], and Allguwer and Ceorg [1].

'I'he concept of a robust stationary point recently introduced in Yang [25] is a
rc(inenrent of the concept of a stationary point of a continuous function on the unit
simple~x. In this paper we generalize this concept to the Cartesian product S of
unit simplices and modify the algorithm in [25] to find a robust stationary point
of a continuuus function on S. In particular proper Nash equilibrirrm strategies of
noncooperative finite games, introduced by Myerson [16], can be computed in this
way, where S is the strategy space of the game. The proper Nash equilibria of a
garne coincide with the robust stationary points of the marginal expected payoff
funct,ion of the game. Moreover the path of points generated by the algorithm
adrnil.s a garnc-thcoretically natural interpretation. Wc remark that the algorithrn
can be also applied to find robust equilibria of other economic models, for example,
international t.rade models and general equilibrium models with increasing returns
to scale production (see Mansur and Whalley [15], and van der Laan [ll]).

Let us now give a brief survey on the development of the computation of Nash
c~qnilibria of finite garnes. 'Chere has been an extensive litcrature dcaling with this
problc,nr start.ing with Lemke and Ilowson [14]. In their paper they showed that a
binra.t.rix garnc~ can be solved by forrnulating it as a linear complementarity problern.
li.ose~nmiillc~r [17] and Wilson [22] furthcr independently discovered that N-person
games can bc~ formulated as a nonlinear complementarity problem. Based on fea-
tures of these nonconstructive methods Garcia, Lemke and Luthi [7] firstly proposed
a simplicial algorithm to compute a Nash equilibrium of N-person games. Later a
nrore efficient simplicial algorithm was proposed in van der Laan and Talman [13].
A procedure to search for a perfect equilibrium of a bimatrix game was developed
by van den Elzen and '1'alman [6]. Wilson [`L'3] presented an algorithm to compute
simply stable equilibria of a bimatrix game.

In the development of our ideas we have been influenced by the exposition of the
procedure by Yamamoto [24] for the determination of a proper Nash equilibrium
of firríte garnes. However, the algorithm in this paper differs from Yamamoto's
procedure in the following aspects: In order to avoid confusion, we will denote the
procedure of Yamamoto by Y-procedure.
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(i) 'I'he 1'-procedurc, is a nonconsLructive met.hod, while the algorithrn is a con-

arucl.ive one in f.hc sense that an approximate proper equilibrium of any given

;c priuri chosc,n ac'c'uracy can bc, rcached wiLhin a finite numbcr of iLcrations.

(ii) 'I'hc, 1 ~~rocc~clurr c an unly sLart at t.hc Iraryccutcr of thc sLraLcgY spacc, whilc

Lhc alguriLhrn can start from any completely mixed strategy poinL rn the

strategy spac.e. 'I'hcrefore a priori information ( if available) about the location

of a solution can be used and more proper equilibtia ( if any) could be found

by the algorithm. In this sense the algorithm can provide more insights to

analyze the structure of proper equilibria of games. For example, the structure

of thc set of proper equilibria in a bimatrix game is analysed by Jansen [S].

(iii) '['he Y-procedure is involved in solving nonlinear equation systems, while the

algorithm only needs to solve very simple linear equation systems. Since

dealing with nonlinear equation systems is generally intrinsically difficult (see

c.g. Allgower and Georg [1]), the latter method is decisively improving the

first one from a computationally theorectical point of view. As Wilson [23]

poinf s out: 'Studies of more realistic problems require an ef6cient algorithm.

An algoriLhm is also essential for empirical studies of the many game-theoretic

cnodels developed to study imperfectly competitive markets'.

(iv) '1'he algorithm can deal with any finite game no matter whether iL is de-

gcnerate or nondegenerate in the sense of Lemke-Howson or in the sense of

YamamoLo. In fact we do not make any assumption on finite games in the

paper.

(v) "Che algorithm is based on a specific simplicial subdivision and is easy to

implement on a computer.

'L'he remainder of this paper is organized as follows. In Section 2 we introduce the

definition of a robust stationary point on the Cartesian product .S of unit simplices

and establish its relationship with the concept of a proper Nash equilibrium of a

noncooperative finite game. Section 3 specifies the simplicial subdivision of the set

S which underlies the algoriLhm. In Section 4 we give the path of points followed by

Lhe algorithm, prove the convergence of the algorithm under the assumption that

thc function f to be considered is continuous, and also derive the accuracy of an

aPProximatc robust stationary point. Section 5 describes the steps of the algorithm.

Sorne examples are given in Section 6.



2 Proper Nash equilibria and robust stationary

points

'1'hc~ concept. of a proper equilibrium defined by Myerson [l6~ as a refinement of a

perfect Nash equilibrium, is probably one of the most important and elegant ideas

in garne theory. The aim of this section is to derive the relationship between the

concept of a robust stationary point and the concept of a proper Nash equilibrium

o( a finitc game. Let us first introduce the definition of a robust stationary point

on Ihc~ Cartcsian producL S- jj~-r S"' oí n unit simplices, whcrc S"~ -{ x~ E

~tt' I~h-r s~.h - I} is the (ni - 1)-dimensional unit simplex, j E{ 1, ..., n}. We

denot.c Lhe sct of integers { 1, ..., n} by I,,. I~urthermore, we denote ~~-r n~ by M

and an elemcnt x E S by x -(xi ;...; x,T, )T where x~ is an element of S"~, j E I,,.

Lef, a function f: S c-a RM be given.

Definition 2.1 !or yiven B 7 0 a point x E S is a B-roóust stationary point oJ

f if
(I) :r is a cr~lative inlerior point of S;

(:,~~ xk; G Oxk,i tlÏk,~(z) C fk,i(x), for 1 C i, j G nk, k E I,,.

Definition 2.2 A poinl x' E S is a robust stationary point of f on S if lhere

exisl sequences { Bc }~ r nnd { x(Oc) }~ r of Br-robust stntionary points x(t7r) of f such

llcal
lim Oc - 0 and lirn x(Br) - x`.ry~ c~~

Observe that if a stationary point x' of f lies in the relative interior of S, then

x' must bc a robust stationary point of j. Some examples given in 5ection 6

will cle~monsl.rate that the concept, of a robust stationary point is indc:ed a proper

n~finc~nn~nt uf Lhe c~onc'c~pl. of a stationary point. Analogous t,o [25~, wc havc thc

followiuF n~sull.,.

Lemma 2.3 l,ct f: S H RM be a conlinuous function. If x' E S is a robust

slafianary poinl of f, lhen x' is also a stationary point of f.

Theorem 2.4 l,r.t f: S f----a RM br. a continuous function. Then f has at least

ona robusl stalionary point.

Now we briefly review Myerson's concept of a proper Nash equilibrium of a

finite game. A finite n-person game in strategic form is characterized by a 2n-tuple

I' -(~r, ... ,~n; Ur, ..., U„), where ~~ denotes a nonempty finite set and Ui is a

rcal-valued function defined on the domain ~- r[; r~: for j E I,,. We interpret



1„ as thc set of playcrs. l~or each j E l,,, ~~ is the set of player j~s pure strategics

bcing inciexed by (j, 1), ... , (j,n~), and U~ is the payoff function of this player, i.c.

U,(ó) is thc payoff to player j when the strategy ~-((1, ji), ( 2, j2), ... , (n, j„)) E~

is such t.hat for i E I„ player i chooses action ( i, j;) E~;. The set of all mixed

strategies of player j E!„ is the ( n~ - 1)-dimensional unit simplex S"~ and the

rnixecí st.rategy space of the game is the Cartesian product S-]-j~-r S"~. Given a

rnixecí strategy x-(x~ ;.. . ; xn )T in S the probability that a pure strategy

~ - ((1,7r),(2,7x),...,(n,7n)) E ~

occurti is gívcn hy .r(~) -[j','-~ T ta~. 'I'hcn t,hc cxpcctcd payo(f for playcr j is cqual

Lu 1',l.r) -- ~~,Em~'(~)('~(~)- 'I'hc c.xpccted rnarginal payo(f for playcr i E I„ al.

.r r.ti' whcu hc playa his pure stratcgy ( i, k) is givc~n by

Uk(x) - ~ U~(~) 11 xr.ir.
dE4,tiJ,)-ti,k) I-1,l~i

It is readily seen that U;(x) -~i-r x;,tU;(x) for every i E!„ and x E S.

A mixed strategy x E S is a Nash equilibrium if

U~(x) ~ U~ ( x) for all j E I„ and all k E { 1, ..., n~ }.

l~or c 7 0, wc define an e-proper equilibrium to be any completely mixed strategy

x(c) E S such that if U~(x(e)) C U~(x(e)), then x~,k(e) C ex~,r(e) for all j E I„ and

k, ! E{ 1, ... , n~ }. This implies that every player gives a better response always a

probability at least c-r times higher than a worse response. A mixed strategy y" E S

is called a proper equilibrium if there exist sequences {e(k)}k r and {y(e(k))}k ,

such that each e(k) ~ 0 and limk-.~ E(k) - 0, each y(e(k)) is an e(k)-proper

eqnilibrium, and límk-.~y(E(k)) - y". lt is shown in [í6~ that any strategic game

has a nonempty set of proper equilibria, being a subset of the set of perfect Nash

equilibria.
Now for x E S we define f(x) by

j~h(x) - U~(x) forjEl„andhE{1,...,n~}

h(( r) -(( j;. (~(x),...,j,,,,,(~)) T for j E 1„ (2.l)

j1x) - ljllx)~i...ijn(t)~)~.

Clearly, j is a continuous function [rom the Cartesian product S to RM and using

the Brouwer fixed point theorem f has a stationary point i on S, satisfying (i~ -

x~)T j~(ï) ~ 0 for all j E I„ and x in S. This coincides with i being a Nash

equilibrium by recalling that U~(x) -~h x~,hU~ (x) for every j E I„ and x E S.

F'urthermore we establish the following relationship between the two concepts above.
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Theorem 2.5 Lcl a noncooperative finitr n-person game I' in strate9ic form 6e

g~ivr.n as above. 77cen r' E S is a proper Nash equilibrium of the game áf and only

if x' is ra robust station.ary point of f on S defined by (2.1).

Ilcn~i~ l~hi~ probleni of finding propcr Nash equilibria is a special case oC the

problcn~ of ( inding robusL stationary points on S. So, with the algorithrn to bc

discussed below, a proper Nash equilibrium can be computed.

3 The P-triangulation of the product space of

unit simplices

We first introduce some notations to be used later. The sets JV, No and I C J

represent the set of positive integers, the set of nonnegative integers and a proper

subset I of J, respectively. Moreover, for j E In the k-th component of x~ in

Sn~ will bc denoted by x~,k, also being the (~,-~ n; t k)-th component of a point

s in S. l~or j E In, e(j,k) denotes the (~;-~ n; -~ k)-th unit vector in R`y and

c(j) -~h-r e(j, h). Let v-(vi ;...; vn )T be any point in the relative interior of

.S. 'I'he point v will be the starting point of the algorithm. We define a vector

P-(Pi~.~.~ Pn )T E S by for every j E Ik

P~,k - vi,ik, k- 1, ..., n~

where ( ir,...,in~) is a permutation of (1,...,n~) satisfying v~,;, 1 v~,;m for all 1

rn C n~. For l E[0,1] and j E In, let

n,

Pi,k(t) - Pi,ktk-rr'~Pi,~t`-r, for k- 1,...,n~.
;-r

lt is readily seen that p~,r(t) 1... ~ p~,n~(t) for t E [0,1].

Definition 3.1
!'or t E [0, 1], the subset A(t) of S is given by

n~
A(t)-{xERM ~~x;,;-1,

t-r
k

~ xi r C~ p~,~(t) for any J C { 1, ..., n~ }

IEJ 1-1

with k - ~J~, and for j E In }.

Glc
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II. is casily sccn I,hat A(0) - 5', and that if v is thc baryccnter of S, thcn

A(1) -{ v}. More generally for every t E[0, 1] we have that v E A(t) and v is a

vertex of A( I). Moreover A(t) is a polytope for every t E [0,1].

I~or j E 1,,, J C { I,...,n~ }, and t E[0, 1], we define. a(j,J) and 6~,J(t) by

a(j, J) - ~ c(j, k),
kEJ

!

bi.J(t) - ~Pi,k(t) with l - ~J[.
k-1

Lcl, the collcction of ordercd indexed sets, Z, be defined by

Z - { I - (II~I,....Il.m~i I2.Ir...,IyPn7;....In,1i.-.,In.m~) I

h,~ C... C h,,,,~ C{ I,...,n~ },j E 1,,, wíth at leasL one Ik,c ~~}.

We say that I E Z conforms to J E Z, if it holds that every component of I is

also a component of J. [.et { Bk }kE,~r bc a strictly decreasing sequence of positive

numbers smaller than one and converging to zero. For I E Z and k E JV, let

f(k, I) -{ x E A(Bk) ~ aT(.i, Ii,h)Z - bi.li~n(ek)

for every h E{ 1, ..., m~ } and j E I„ }.

'Chen I'(k, I) is a face of A(9k) with dimension equal to M - n-~k-1 mk. For

1EZ,IcL

!'(0, l; I) -{ x[x - av t (1 - a)z for some z E F(1, I) and a E[0,1] }

and for k E JV

1'(k, k~ 1; I)-{ x~ x- ay -~ (1 - a)z for some y E F(k, l),

z E F(k -F 1,1), and a E[0, 1] }.

'['hc subdivision of S for nl - n2 -`l, Bk - 2-k for k E N,

and v-( I ~2, 1 ~2; 3~5, 2~5)T, is depicted in Figure 1.

higurc l. Subdivision of S for ral - nz - 2.

I'or I E Z, we denote the union of F(k, k-~ 1; I) over all k - 0,1,... by F(I).

Notice Lhat the dimension of F(I) is equal to t- M-n -~~-r nzr ~-1. A simplicial

subdivision underlying the algorithm must be such that every set F(k, k~ 1; I) is

subdivided into t-dimensional simplices. Such a triangulation can be described as

follows. For I E Z, we denote v(0, I) - v and for k E J1~, v(k, I) is a relative interior

point (e.g., the barycenter) of F(k,l). For 1 E Z, if I consists of M-n components,
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t.hc~n l.'(k, I) is a vertex of A(9k). For general 1 E Z, let F(k, I(M - n)) be a vertex

of l~'(k, I), i.i~.. I(M - n) has M - ri. cornponcnts and 1 conforms to 1(M - n).

~~luri,uvi~r li,l (.I~,.~~1....,J,) - ry(t,l(h'1 - ta)) bc a confonnation bctwcv,n I aud

I( Al ~t), i.~,., Ji :- I( M11 - tr), .1,~ E Z for k-'?,...,1 - l, J~ - l, .IA ~~onfornis Lo .Ik--i

:,n~l ha.ti uiu~ ruiu~,uni~nl. Irss Lhan .lr -i for k- 2,...,1. 14tr givan k C JVu, t E Z, a.ncl

~(1, I(!11 n)), I,h,~ sulr.~~l. l~'(k,k } I; t,ry(t, I(M11 -tt))) of 1~'(k,k ~ I; I) is th~(inr~d

tu hr I h~~ ~~unvi,x hnll uf t~(k, Ji ) , 'r'(d~, Ji), ..., z~(k, Jt), v(k ~ 1, J~ ), v(k ~- I, J-i), .,

aud n(k f I,Jt), so

F(k,k~-];I,ry(1,1(M-n))) - {xES~x-v(k,l(M-n))f~9
t-r

f ~ ~i9~(a),
~-i
OL~L1, andOGat-tC...C~lCl}

where qo - v(k -~ 1, I(M - n)) - v(k, I(M - n)), and for j - 1,..., t- 1, 0 e~ C 1,

v'(~ti) -~(v(k t ~, ~~fr) - v(k f 1, ~~)) -~ (i - a)(v(k, ~~tt) - v(k, ~~)).

'1'hc dimension of F(k, k~ 1;1, ry(I, I(M - n))) is equal to t and F(k, k-}- 1; I) is

the union of F(k, k~ 1; y(1, I(A1 - n))) over all conformations y(I,1(M - n)) and

over all index sets 1(~N - n) conformed by 1.

Let, d be an arbitrary positive integer.

Definition 3.2 For k E JUo, the set Gd(k, k f 1;1, y(I, I(M - n))) is the collec-

tiorz oj t-simplices a(a, n) with vertices yt,..., yttl in F(k, k-~ 1;1, ry(I,1(M - n)))

such that

(l) ,y~ - v(k, I(M - n)) -~ a(0)d-`qo t~~-i a(7)y'(a(~)~d)~(a(0) t dk) where a-

(a(0),a(1),...,a(M-n-1))T is a vector of integers such that 0 C a(0) G d-1,

and a(M - n- 1) -... - a(t) - 0 G a(t - 1) L... C a(2) c a(1) G a(0) f dk;

~2) a-(ar,..., at) is a permutation of (0,1,..., t- 1) such that s G s' if for some

y E{ 1,...,t - 2} il holds that a, - q, ~r,~ - q f- 1, a(q) - a(q ~ 1) tin case

q 1 1, and a(0) -~ kd - a(1) in r.a.se y- 0;

(3~ I,e,t i be such thal n; - 0. Then

y't' - y' f y"~(a(o)Id)I(a(o) -~ kd),~ - i,...,i - i,
ytti - v(k,l(M - n)) f(a(~) t 1)d-t4

e-t
t~a(j)v'((a(o) ~ i)Id)I(a(o) f i -~ kd)

;-,
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t~. ~~"'((a(o) t i )~~t)I(~r(~) t t f k,!),
~-1

r~~ti - r~i t qn'((a(fi) f I)~c!)~(a(0) t l f kd),z G j G L.

7'hc sct Cd(k,k f L I,ry(I,I(M - n))) is a simplicial subdivision of F(k,k f
1;l.-y(1,1(M - n))) with grid size d-r. Moreover, the union Gd(k,k f l;l) of
Cd(k,k ~ l;ry(!, I(M - n))) over all conformations ry(T,1(M - n)) and I(M - n)
confonncd by ! is a simplicial subdivision of !~(k, k t 1; !). The union Gd(k, k~ I)
of Gd(k, k f 1; !) over all sets I E Z induces a triangulation of A(Bktr)`A(Bk).
'1'aking the rmion Cd(k) oí Gd(j, j f I) over j - 0,1, ... , k- 1, we obtain a simplicial
subdivision of A(Bk) with grid size d-r. The union of Gd(k) over all k E~Ío is a
simplicial subdivision of the relative interior of S and is called the P-triangulation
of S. We remark that for I E Z the union Gd(I) of Gd(k, k f 1; I) over k- 0, 1, ..., is
a simplicial subdivision of the set F(!). The P-triangulation of S for nr - n2 - 2,
d- 2, Ok - 2-k for k E ~1~, and v- ( 1~2,1~2; 3~5,2~5)T is illustrated in Figure 2.

Fígure 2. The P-triangulation of S for nr - n2 - 2.

As norm we use the Euclidean norm II . I~ m RM. For a set B in RM, we define
thc diarnc~ter of B by

diam(!3) - suP{ IIy' - yZII I y~, J2 E B}.

"I'hcn for givc~n k C- ~1~o thc mcsh sizc of Gd(k,k f 1) is equal t,o

!Ik d - Sllp{ d2arrt(U) I O" E Gd(k, k~ 1) }.

Now we have the following observation.

Lemma 3.3 For the P-triangulation of S wilh grid size d-1, it holds that

kl.mbk,d - ~.

1'he 1'-triangulation therefore is such that the diameter of the simplices converges
to zaro when the boundary of S is approached.

4 The path of the algorithm

In this section we discuss how to operate the algorithm in the P-triangulation of S
to approximate a robust stationary point of a continuous function f on S. Starting
at the point v, the algorithm will generate a sequence of adjacent simplices of the
P-triangulal,ion in the set F(I ) having I-complete common facets, for varying I E Z.
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Definition 4.1 I,r.t be given lhe funclion f: S~--~ RM. For given I-

(lr.l,...,ll.,,,,;h.l,.. ,IZ,,,,,;...;l,,,t,.. ,1,,,,,,,) E Z and s- t- l or t, where

f- fl1 - n-~j-1 nz~ {- 1, an s-simplex o with verlices yt,... ,y'tt is 1-complele if

flrr ~i~~lrrn of liarnr rqvalinn..

.~~
~j(y') 1-~`C~`Ftn~a(j,li,h) 1-~Pr1 e(1)~-1 ~~ (9.1)

L. J L. L i, J ` `~-t 1 ~-th-r 0 r-r 0 1

wltere 0 is an M-vector of zeros, has a solution ~~, i- 1,...,s ~ 1, It~h, j E 1„ and

It - I,...,rni, and ~~ , l E I,,, satisfying a~ 1 0, i- 1,...,s -}- 1, p~ h 1 0, 7 E In,
h - I,...,rrti.

Notice that the system (4.1) has (s f 1) ~- (~~-r mi -~ n) columns, so when
s- t- 1- M - n-~~-r mi, the system has M f 1 columns and for s- t one

column more. A solution a;, i- 1,...,s t 1, It~,h, j E I,,, h- 1,..., mi, Q~, l E I,,,
will be denoted by (a`,p', f3').

Nondegeneracy assumption~ For s- t- 1 the system (4.1) has a unique

solution (a',p',l3`) with a~ ~ 0, i- 1,...,t, and iti.h 1 0, j E I,,, h- 1,. .,rni,

and for s- t at most one variable of (a',p') is equal to zero.

I lndor I his nondc~gcncracy aSS1llrlptlOil rrn -{ v} is lo-completc with lo -

(li.l,..., li.,,,-t;lz,t,...,l2,nz-t;....lo,t,...,lo.n.,-t) where Ioh - {71,...,7h } for j E

I,,, Iz - I,... , ni - 1 satisfying [or j E l,,, f~,i, (v) 7 fi,iz(v) 7..- ~ ji,i.., (v). Notice

t.hat for j E In, (jr,..., j,,,) is a permutation of (1,...,ni).

'1'fle algorithm now starts with av for 1- Io and fo]lows a sequence of adjacent

t-simplices in F(!) for varying I, ! E Z, such that their common facets are !-

complctc. ln this way within a finite nurnber of steps cither thc algorithm reaches

a poinl, a in an (M - n)-dirnensional simplex for which fi,k(á) - fi,t(i) for every

j E 1„ and k,1 E{ 1, ..., ni }, where f is the piecewise linear approximation of f

with respect to the P-triangulation, or for k- 1, 2,... the algorithm finds an I(k)-

ccimplet,e simplex in F(k,!(k)) [or some I(k) C Z. Suppose the latter case holds,

then wc have t.he following result. Let { Bt }1-1 be given as in Section 3.

Lemma 4.2 hor snme k E N and I E Z, let a with vertices yt,...,,y' be an

1-cnntplelr (t - I)-simplex lyiny in h(k,l). Let (a',IC',~3') be lhe corresponding

itrtiquc solution of syslem (4.1). Then x-~i-1 a;y' is a Ok-robust stationary point

nj the piecewise linear appraxirnalion f of j with respcct to lhe P-triangulation.

Morcover, x i.s a stationary point of f on A(Bk).

t'1'his assumption can be dropped if we use lexicographic pivoting method in linear program-

rning to solve. system (4.1), see e.g. Todd [21].
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I~ur I- ~l~,i,...,li,,,,,~lt,~,...,lz.,,,,;...;h,.~,...,ln.,,,n) E Z, wc daline 1~'"(!) -
{ y E R'~c ~ y-~j'-i ~rR-i Ni,ha(7, li,n)f~i-i ~j~c'(1), hi.ti ~ 0 and ~ii E R}. ClearlY,
for a statiouary point x E F(k,l) of J on A(~k) it holds that f(x) E F'(1), and
conversely. The next lemma shows that a Bk-robust stationary point of f is an
approxirnatc Ok-robust stationary point of f.

Lemma 4.3 Get rtk,d - sup{ diarn( f(Q)) ~ v E Gd(k - 1, k) }. Let x be a Bk-
robust stationary point of the piecewise linear appmximatáon f of f with respect to
the Y-triangulation with grid size d-' obtained by the algorithm, so that x E F(k, I)
jor some ! E Z. 7'hen f( x) lies in the rlk,d-neighborhood of F'(I), i.e. there ás a
,y E F'(l) such that ~~y - f(x)~~ G qk,d.

I'r'oof: ScY~ Appendix. ~

Since S' is compact and f is continuous on S, the error r,k,d tends to zero as the
mesh size 8,~ d goes to zero when k goes to infinity. Let xk be a Bk-robust stationary
point. of j and pk,d the error in Lemma 4.3. Suppose that the algorithm generates
the sequence { xti ~ h- 1, 2, ... } of approximate Bk-robust stationary points of f
which therefore has a cluster point x'. For simplicity of notation we can assume
that this sequence itself converges to x'. We are now ready to state the following
corol lary.

Corollary 4.4
Suppose lhat xk is an approxímate Ok-robust stationary point genernted by the

algorilhm, Jork- 1, 2,... . Then the seqvence { xk ~ k- 1, 2, ... } has a cluster point
and rtny cluster poínt is a robust statàonary point of f on S.

Proof: See Appendix. ~

In case the algorithm terminates with an (M - n)-dimensional simplex a with
vert.ices y',...,,yM-"f', then i -~M~"t' a~y' is a robust stationary point of f. If the
arcnra~y of approximat.ion is not satisfactory, t,he. algorithm can be rest,arted at the
point. .r wil.h a srnallcr grid sizc d-' to find a bcttcr approximatc robust stationary
poinl., hopefully within a small number of steps. Without loss of generality we may
ass~nne` thal. the algorithm in this case generates a sequence {~ h ~ h- f, 2, ... },
wh~`n` .r~` is t.hc robusL stat.ionary point of f corresponding to t,hc grid sizc, dh' for
an increasing seyuence of positive integers { dh ~ h- 1,2,... }. It is readily seen that
Cor nvcry k E No, thc mesh size 6k,d,, tends to zero when h goes to infinity. `Iherefore
the sequence { áh ~ h- 1,2,... } has a subsequence converging to a point being a
robust. stationary point of J on .S.



tiuw Ic~l us concludc~ this scction with somc intcrprctation on thc path gcner-

alc,cl b~' Ihc~ algoritlnn in garnc-t.hcurct.ic' Lcnns. St.arting with a cornplctcly rnixc,cl

titrrLc~,r;~' r IJrr algoril.linr initially gcnc~ratc~s a piccewisc lincar pal.h of sl.ratcgic:s in

1(Oi), un whir'h t.hr~ probabilil.ics of all actions of cac'Ir playcr arc~ simutancously

adjustc~d tiuch t.hat. for cvcry playcr thc highcr thc marginal payof[ of an act,ion

is, t he highcr the corrc~poncíing probability will be. As soon as the path hits the

boundary of .4(~r), a Or-proper equilibrium of the piecewise linear approximation

f of the expected marginal payoff function f of the game is obtained. From then

on the algorithm continues to follow a piecewise linear path of B-proper equilibria

of J in such a way that for each player an action with a higher piecewise linear

rnarginal payoff is always given a probability at least 6-r times higher than an ac-

tion with a lower piccewise linear marginal payoff. ln this way either the algorithm

terrninates in the interior oi S or an approximation is found having the required

a priorly chosen accuracy. In the first case the algorithm may be restarted at the

found approximation with a smaller grid size in order to improve the accuracy.

In the next section we shall describe the steps of the algorithm in more detail.

5 The steps of the algorithm

Now we turn to give a detailed description of the steps of the algorithm. The al-

gorithm starts with the zero-dimensional simplex ao - { v}. Under nondegeneracy

assurnption, t.hen the zero-dimensional simplex { v} is Io-complete where lo E Z is

as clc~scribcd in the previous section. Moreover, vo is a facet of a unique 1-simplex

o' in h'( Ir'), wherc or - o(a, rr) with a- 0 E R`y-" and a-(0). Since under thc

nonclcgeneracy assumption for any given I E Z an I-complete t-simplex has at most

two I-complcte, facets and a facet of a t-simplex in F(I) either is a facet of exactly

onc other t-simplex in F(1) or lies in the boundary of F(1), we obtain that the

I-cornplete t-simplices a(a, ~r) in F(1) determine sequences of adjacent t-simplices

in l.'(I) with 1-complete common facets. As described below, the sequences of the

I-complete t-simplices in F(1) can be uniquely linked together for varying I E Z

to obtain sequences of adjacent simplices of varying dimension. One of these se-

quences starts with oo in F(lo) and is followed by the algorithm, so starting at

the point v, the algorithm generates a unique sequence of I-complete adjacent t-

simplices in F(!) of varying dimension. With respect to each of these simplices a

linear programming (Ip) pivot step is made in (4.1). When, with respect to some

rr(a, rr) with vcrtices ~r,...,,yrtr in Gd(k, k~ 1; l, ry(I, I(n-1))) for somc k E JVo and

ry(1, I(n -1)), the variable ~q, for some q, 1 C q G t f 1, becomes zero through an Ip

pivol. step in (4.1 ), t,hcn Lhe facet r opposit.c the vertex ,y9 of o(a, rr) is I-complctc.

If r docs not lie in Lhe boundary of the set, l: (k, k f l; l, ry(I, l(n - 1))), then a

t-sirnplex a(á, ir) sharing the common facet r with o can be obtained írom a and rr

as given in Table 1, where E(j-1) is the j-th unit vector in RM-", j- 1,..., M-n.
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fablc I. f'ararneters Of rr iï thc vert.ex y4 of o(a,a) is replaced.

~ a

q - l (nz,...,an~r~) a ~ F(~i)

1~ E~ G i. ~ 1 (7rr,....7ry-2,7rq,7rq-r,~rq}I...,Jrt) a

q- t f 1 (nc,xl,...,~rE-r) a- E-(~t)

'I he algorithm continues with ó by rnaking an lp pivot step in ( 4.1) with

(J(y)T, 1)T, where y is the vertex of ir opposite the facet r. In case the 1-complete

facet. r of a simplex o(a, a) in Gd(k, k f 1; l, ry(!, I(M - n))) is not a facet of an-

other sirnplex in Gd(k,k f l;l,ry(l,l(M - n))), then r lies iu the boundary of

F(k k-~ I: l, y(],1(M - n))). According to Definition 3.2 we have the following

Ic~mrna.

Lemma 5.1 Let a(a, a) Ge a t-simple.x in F(k, k f 1; I, ry(I, I(.M - n.))). The

JacEt r nJ a oppasitc the verlez y4, 1 G q C t~ 1, lies in the óoundary of this set íJ

n.nd onl~~ r;( onr oJ lhe Jollotning casr.s occurs:

(r) 9- 1, n~ - ~, and a(0) - d- 1;

(ii} I G q G t-~ 1, ~rq - h t],~y-r - ji for sorne h E { 0, 1, ..., l- 2}, and

a(h) - a(h } 1) i a r,ase la ~ 1, and a(0) f kd - a(1) in case h- 0;

(iii) q - t~- l, nc - U, and a(0) - ~;

~2r,) q - t~ 1, ~rc - l- 1, and a(t - 1) - 0.

Supposc the algorithrn gcnerates a sirnplex Q(a, ir) as given in Lemma 5.l and 1y

bccotncs zcro after rnaking an Ip pivot step in (4.1). Then the facet r of a opposite

tu f he~ vc~rtcx y~ is I-complete. In case (i) the facet r lies in the face h(k -F 1, I)

of ,1(0~,}r) and tbe algoritLm rcachcs a p~tr-robust stationary point i -~;t2 ~;y'

of ~- lying in ~.'(A: ~- I, I). (f k is large enough, then z is an approximate robust

st.ationary point of J. Otherwise, the algorithm proceeds with á by making an lp

pivoL step in ( 1.1) with (JT ( y), 1)T, where y is the. vertex of rr opposite. the facet r

and a in F(k f 1, k~- 2; l,y(1, I(M - n))) is obtained according to Table 1.

In case ( iii) the facet. r lies in the face F(k, I) of A(Bk) and the algorithm

cont.inucs with á by making an ]p pivot step in (4.1) with ( fT (y), 1)T, where y

is thc vcrtcx of ó opposite thc facet r and á in F(k - 1, k; I,ry((, I(M - n))) is

ohtaincd ~.Iso frorn '1'ablc 1.
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In casi~ (i i.) and if h ) l, the facet r is a facet of the t-simplex á- o(a,rr) iu
I-'(k, k ~ I; I) lying in thc subseL !.'(k,k ~ l; 1,7(l, !(M - re))) wit,h

7(l, I(M -TC)) - (Jl,...,Jn,Jntl,Jntz,...,J~),

wherc Jn~~ E Z, Jntl ~ Jnt~, is uniquely determined by the properties that Jntl
conforms to Jn, has one component less than Jn, and is conformed by Jntz. In
case ( ii) and if h- 0, then T is a facet of the t-simplex rT - Q(a, a) in F(k, k f
I; l,ry(l, Í(M - n))) with Í(M - n) and ry defined as follows. Let

Jl - 1(M-n) - ( Il,l,...h,n~-l;Iz,1,...,Iz,nx-1;...;In,1,...,In,nn-1l-

In case

for some j E In, we have

1(M - n) - (h~l, ..y h~n,-l; . .. ~ li,l, ..., ij,n~-2, IJ.ni-1, ...; In,l, ..., In,nn-1)

Wlth li.n~-1 -(L(~,1),...,(.i,nJ)}`IJ,ni-1)UIJ,ni-2'

In casc

for sornc j E In, then

Í( M - n) - (11,1, ..., h.ni-1; ...; h,t, Ii,z, ..., ]i,ni-l; ...; In,l, ..., In,nn-1)

with Íi,i - lia`li,l.
Finally, if

J2 -(h,l, ..., h,n,-l, ...~ li,l, ..., h,kv IJ,kf2, ..., li,n~-1, ...~ In,l, ..., In,n..-1)

for sonle j E In and k E{ 1, ..., ni - 3}, we have

I(M - rl) -(ll,i,..., Il,n,-; ...; li,1i ..., li,k, li,ktl, li.ktz,..., ]i,n,-1; ...; In,l, ..., In,nn-1)

with li,ktt - Ii~kU(li,ktz`li,kfl). Then7(1,1(M-n))-(1(M-n),Jz,...,Jl). In
all subcases of case (ii) the algorithm continues with making a pivot step in (4.1)
wit}i ( jT (,y), 1)T, where y is the vertex oí the new t-simplex á opposite the facet r.

ln case (iv) the facet lies in the subset F(k, k~ 1; J~-1) of F(1). More precisely,
r is Lhe (t - 1)-simplex a(a, á) in F(k, k{- 1; I, ry(1,1(M - n))), where I- Jt-l,
ry(I, 1(M - n)) -(Jl,...,Jt-1), and á-(al,...,a~-1). The algorithm now proceeds
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with making a pivot step in (4.1) with (-aT(j,~~,h),0)T, where h,h is the unique

c ompon~~nt oC JI-1 but not of J,.

I~ inally, if through a lincar programming pivot step in (4.1), Lhe variable {r~,h be-

corne~ 0 for somc j E{ l, ..., n } and for some h E{ 1, ..., m~ }, the algorithrn termi-

natcs wit.h t.hc approximate robust stationary point i -~; a; y' of f ií ~~ 1 ml - 1

and rest.arts ihen at thc point i with a smaller grid size in case the accuracy is not

nat.isfactory. Otherwise, the simplex o(n, n) is I-complete and is a Cacet of a unique

(l f I)-sirnplc:x Q in !~(I) with

! -- ( I i,i , ..., I i,,n, ; 12.i. ..., 12,,,,,; ...; h,l, ..., ~i,h-1 ~ li,h~l, ..., h,,,,, ; ...; h,,1, ..., h,,m..).

More praciscly, Q- Q(a, ~) lies in F'(k, k~ 1; l,7(1, I(M - n))), where ry(I,1(M -

rl)) -(y,Í), and á-(nl,.-.,~nt). The algorithm continues by making a pivot

step in ( ~l.l ) with ( f~( j), 1)T , where y is the vertex of ó opposite the facet Q. This

completes the description of how the algorithm operates in the P-triangulation oí

S.

6 Examples

In this scction we give some examples to show that the concept of a robust stationary

point is indeed a refinement of the concept of a stationary point and moreover to

demonstrate the performance of the algorithrn.

l:xarnple 1: Let a continuous function f: S3 x S2 ~---r R3 x R2 be defined by

f(~) - (Il., (~), f1,2(~), t1,3(~); f2,1 (~), f2a(x))T

with
21 ~221,3

2
~1,1~1,3

-x1,Ix1,2(1 } 21,3)

22,1~2.2(1 - ~2,1)

-~2.IT'1,2(1 - a2,1)

for :r E.q- ~l'he set of st.ationary points of this function is equal t.o:

{(~l,l, ~1.2, 0; 1, 0)T, x E S} U{ (xl.l, Z,.2, 0; 0, 1)T, x E S}.

However, only (1,0,0; 1,0)T is a robust stationary point.

Fxarnple 2: We consider the 2-person game given by Myerson [l6]. F.ach player has

three pure strategies and the payoff is given in Table 2.

Table 2. Payoff of the game in example 2.
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P~Qyer 1

Ylayer 2

~1 ~2 ~3
rGr (1, 1) (6, ~) (- 9, -9)
~2 (0, 0) (0, 6) (-7 , -7)
~3 (-9, -9) (-7~ -7) (-7 ~ -7)

As shown in [16], this game has three Nash equilibria: (zlit, ~1), (~izi ~z) and (t,i3i ~).
Among these equilibria, (z,it, ~t ) and (r(iz, ~z) are perfect equilibria. However, (~ir, ~1)
is thc only proper equilibrium. Now we transform the game into the framework of
system (2.l ). 'I'he corresponding function is defined by f: S3 x S3 ~--~ R3 x R.3
with

f(x) -(Ït,r (x), ft,z(x), ft,3; Íz,t(x), fz,z(x), Íz,3(x))T for x E S

where
Ïr,t(x)
f1,2(x)

I I,3(x)
f2,t(x)

Ïz,2(x)
f2,3(x)

x2,1 - 9x2~3
-7x23

-gxz,r - 7xz,z - 7~23
xr,t - 9x1,3
-7x1,3

-9xr.1 - Íxl,z - 7x,,g.

(6.2)

'I'he function f has three stationary points: (1, 0, 0;1, 0, 0)T, (0, 1, 0; 0, ], 0)T and
(0,0,1;0,0,1)T, corresponding to the three Nash equilibria given above, respec-
tively. Among these stationary points the only robust stationary point is
(1, 0, 0; l, 0, 0)T which corresponds to the proper equilibrium (~il, ~r ).

Let us now compare the procedure of van den Elzen and Talman [6] with the
algorithm using F,xample 2. Let v-(1~3, 1~3, 1~3; 1~3, 1~3, 1~3)T, the barycenter
of S. We choose v as khe starting point of the procedure. The projection of the
pal.h ge~nc~rated by the procedure on .S3 is shown in h'igure 3. The procedure in [6]
converges to t.he perfect equilibriurn (zliz, ~z). While the algorithm always converges
Lo the propc~r equilibrium (~~~,~t) no matter what interior point of S is chosen as
thc starting point. Figure 4 illustrates the projection oí the path generated by the
algorithrn on S3, when v is the starting point. We remark that we implemented the
algorit.hrn by using lexicographic pivoting rules and taking Bk - 2-~ for k E JV.

Figure 3. The projection of the path of the procedure in [6] on S3.

Figure 4. The projection of the path of the algorithm on S3.

Appendix
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Proof of Lemma 4.2 Since 1-(II,~,...,h,,,,,;Iz,r,...,lz,m,;...;ln,r,...,ln,nm) E Z,

th~n for c~c~r~' j E In thcrc exist li G lz G. .. c 1,,,~ such that

I j,,

l,,z

- { ii,...,il, }

- { :~,...,z!„zl~tl,.--~riz }

Ij,,n - { ir, ..., ilm~ }

{ 1,. .,Iti }`IJ.mJ - { 2lmJtlr...,2n7 }'

'1'hc~n it. follows from equation ( 4.1) that at x-~;-r a~y'

fi,;~ Íx) - ... - fi,~l, (~) - Ici,r f ... -F l~i,m, } ~i

~ f7~4,i~ (:L) - ... - fJ,,~2(~) - Í~j~2 f ... ~ hl,mJ ~ Yr ~

~ fl.~i.nJ-~tl (~) - ... - fJ.iln,, (y) - ~j,mj } ~j

7 .~iá~~,~~ ri (.r) - ... - .~~.~..1 (~r) - ~~j,

w6~,n~ ~c~, ~ 0 fur 'à - I,...,nt;. Nuw it is nol. clitlicult to chcck 1,hat

~i,; G p~xi,h whenever fi,;(~) C fi,h(x)'

IL mcans f hat x is a Ok-robust st,ationary point of the piecewise linear approxi-

Inat.ion f oC f with respect to the P-triangulation.
Morcovcr, for each face F(k, l), I E Z, let F'(I) be the set of all M-dimensional

vectors ,y such that every point of F(k,I) is a solution of the linear programming

problern

max yTx subject to i E A(Bk).

'I'hen the stationary poínt problem for f on A(Bk) is the problem of finding

a point, :c in A(Ok) such t,hat f(x) E F'(I) for a minimum face F(k,l) of A(Bk)

containing :r.. Duality theory (see e.g [19]) implies that

~,~.(
~) -{!I ~ J- L L Ic,.hu(J, ~i~h) i~, ~~lc'(f ). lcj.h ~ 0 and ~i! E IC }.

j-1h-1 !-1 -

lt follows from above that f(x) E F"(I). Hence x is a stationary point of f on

n(0~,) O



Yroof of Lemma 4.3 I,et y', ..., y` be the vertices of a(t-1)-simplex of Cd(k- I, k)
in l~'(k, I) ronLaining .r. 'I'hen f(.r) -~~-i ~~ f(y~) lics in ("(I), wherc~ a~,..., ~~
am ~ onvc,x c ombination coefficient.s snch that, :r -~~-r a~y~. 'Pherefore

IIf(z) - f(x)II - II ~ a;f(y') - f(2)II,-r
~

- II ~a;(f(y')-f(x))I~
~-r

c
~ ~ ~,`Ilf(y') - f(~)II

i-r

C rlk,d-

O

Proof of Corollary 4.4 '1'he continuity of f, the property of the P-triangulation
and the conrpactness of S imply that for any given e~ 0, there exists a positive
integer l,, such that for k E JV with k~ L, there is a Bk-robust stationary point
a.k E A(Ok) of f which is in the c-neighborhood of ak. On the other hand, since
lirnk-,~ xk - x', it immediately follows that

lim ik - x'.
k-.oo

Ifcnrc~ s' is a robust stationary point of f on S. O
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