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Abetract

In this paper we present aeveral new intersection theorems on the Carteaian
product of a finite number of unit simplices, called the simplotope. These inter-

section results generalize well known intersection theorems on the unit eimplex. In

case the simplotope is the product of N aimplices the sete covering the aimplotope

are labelled by a set of N indices. Moreover the number of aeta equala the number of
vertices of the simplotope. In existing intersection theorems on the aimplotope the
sets covering the simplotope are indexed by just one index. We conaider the case

where the simplotope is the product of one-dimensional unit simplices seperately.

The simplotope is in that case equivalent to the unit cube. Finally, we show the

relation between the intersection theorems and the exiatence ot a Nash equilibrium

atrategy vector in a noncooperative game with a finite number of playera.

Keywords: interaection point, stationary point, labelling rule, Nash equi-
librium.
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1 Introduction

On the unit simplex many intersection theorems have been developed. The most

well known intersection theorem is probably the lemma of Knaster, Kuratowski and

Mazurkiewicz (KKM lemma), see [4]. Let S" be the n-dimensional unit simplex, be-

ing the subset of the non-negative orthant R}tl of the (n ~- 1)-dimensional Euclidean

space where the sum of the components equals one. The KKM lemma says that if S"

ia coveced by closed seta Cl, C~, ..., C"tl auch that for every x in S" there exiats an

index i E{ I, ..., n f 1} with x; ~ 0 and x E C', then theae n f 1 eete have a nonempty

intersection. The same result holds when for every x in the boundary of S" it holds that

x lies in C' for all indices i for which x; - 0. The latter result is due to Scarf [9]. In

case there is no boundary condition and so Cl, C~, ..., C"tl are just closed sets covering

S", then Luthi (8] proved that there must exist a point x' in S" such that for every i

for which x' does not belong to C' it holds that x; - 0. On the unit simplex there

are also intersection theorems where the sets covering S" aze labelled by a subset T of

{1, ..., n~ 1} instead of just one integer out of the set {1,...,n ~ 1}. For such a covering

Shapley [10] generalized the KKM lemma and Ichiishi [2] the Scarf lemma by stating

related boundary conditions under which there exists a balanced collection of sets having

a nonempty intersection.

In this paper we consider intersection theorems on the Caztesian product of aeveral
unit simplices, called a simplotope. Until now, on the simplotope only intersection
theorems have been developed where the sets covering the simplotope are labelled by
only one index. In the intersection theorem of Kuhn [5] the number of labels ia equal
to the dimension of the simplotope plus one as on the unit simplex itself. Freund [1]

and van der Laan and Talman [6] gave intersection theorems for which the number of
labels is equal to the number of variables, being N more than the dimension of the
simplotope, in case it is the Cartesian product of N unit simplices. All these theorems
can be considered as direct generalizations of the intersection theorems on the unit
simplex as given by KKM, Scarf and L"uthi. We will generalize the latter three results
to intersection theorems on the simplotope in case the simplotope consisting of N unit
simplices is covered by a collection of closed sets, each of them being labelled by a set of
N indices. More precisely, the simplotope is covered by closed sets CT where T consists

of N indices. Given some set T, there is for each j E{1,...,N} precisely one integer

k E{ 1, ..., n~ t 1} for which the index (j, k) belongs to T, with n~ being the dimension

of the jth unit simplex in the Cartesian product. So, the number of sets covering S is
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equal to the number of vertices of S. Under various boundary conditions we prove that
there is an intersection point. These conditions coincide with the ones given in either the
KKM or the Scarf lemma when the simplotope consists of just one unit simplex ( the case
N- 1). We also give an intersection theorem in case the sets CT covering the simplotope
are chosen arbitrarily. This immediately proves the existence of a Nash equilibrium in a
noncooperative game with a finite number of players, each player having a finite number
of actions to choose from. A special case, corresponding with the N-dimensional unit
cube, is obtained when n~ equals 1 for every j - 1, ..., N.

This paper is organized as follows. In Section 2 we introduce some notation and
concepts and we prove an existence lemma by using the well known fixed point theorem
of Kakutani for upper hemi-continuous point-to-set mappings. Section 3 states and
proves the intersection theorems on the simplotope. Two oí these theorems can be
proved by using Kakutani's theorem directly. The third one will be proved by using
the existence result of Section 2. Finally, in Section 4 we consider the case when the
simplotope is the product of one-dimensional unit simplices. In Section 5 it is shown
how the intersection theorems can be used to prove the existence of a Nash equilibrium
in a finite noncooperative game.

2 Basic concepts and definitions

For some positive integer k, let Sk be the k-dimensional unit simplex, i.e.,

k}1
Sk-{xERk}'~~x~-1,x;10fori-l,...,k-bl}.

.i-1 -

For some given positive integer N, let n~, ..., nN be positive integers and let n be equal
to ~N~ n~. We call the Cartesian product of S"~, .., S"N, denoted S, a aimplotope, so

S-S"~X...XS"".

The dimension of S is equal to n. An element in S is denoted by

x-(x~,..,xN) with x~ E S"~ for every j.

The kth component of the vector x~ in S"~ is denoted x~k and is also the (j,k)-th
component of an element x in S, for k- 1, ..., n~ -F 1, j- 1, ..., N. For j - 1, ..., N, the
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set I(j) equals the index set {(j,l),...,(j,n; -~ 1)}, and I equals the union of I(j) over

all j. The set Ik will denote the index set {1,...,k}.

For X' C R"~t~, j E Ix, 1et X- TIN 1X~ be a convex, compact, nonempty subset of
IIx 1R",tl and let G be an upper hemi-continuous mapping from X to the collection of

nonempty subsets of X such that for every x E X the set G(x) is convex and compact.

According to Kakutani's fixed point theorem there exists an z' E X such that x' E
G(x'), see [3]. Now, let F be a mapping from X to the collection of subseta of IIN1R"~tl

We call an element x' E X a stationary point of F on X if for aome y' E F(x') it holda

that for every j E IN

x~y~ G(x~)Ty~ for all x; E X~.

Lemma 2.1. An upper hemi-continuous point-to-set mapping F from X to the collec-

tion of subsets of fIN1R"~}t such that UrExF(x) is bounded and for every x E X the

set F(x) is nonempty, convex and compact, has a stationary point on X.

Proof. Let Y be a compact, convex set in IIN 1R"~}', containing the set UrEXF(x).

Then we define the point-to-set mapping H from Y to the collection of subsets of X by

H(y) -{x' E X~x~ y; C(x~)Ty; for all x; E X' and j E Ir.}.

Using the maximum theorem, it is easily shown that H is upper hemi-continuous. More-

over, for every y E Y the set H(y) is nonempty, convex, compact, whereas UyEYH(y) as

a subaet of X is bounded. For (x, y) E X x Y, let C(x, y) be defined as

G(x, y) - H(y) x F(x),

then G is an upper hemi-continuous mapping from the set X x Y to the collection of

nonempty subsets o[ X x Y satisfying for every (x, y) E X x Y that the set G(x, y)

is nonempty, convex and compact. According to Kakutani's fixed point theorem, there

exists an (x',y') E X x Y such that

x' E H(y') and y' E F(x'),
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which proves the lemma. O

Given the simplotope S- S"' x... x S"N, let T be a subset of I such that T fl 1(j) ~ 0
for every j E IN. Then mT denotes the barycentre of the face S(T) -{x E S~z~k - 0
for every (j,k) ~ T}, i.e., m,k - 1~~T fl I(j)~ for (j,k) E T and m~k - 0 otherwise.
When T- I we writc m instead of m~. When for some T C I the set T fl I(j) consiats
of one element for every j E!N, we also write e(T) instead of mT. For auch a T the
element e(T) is a vertex of S and for every j E IN the vector e~(j, k) - e~(T) with
T fl l(j) -{(j,k)} is an (n~ f 1)-dimensional unit vector in R"~tl, being also a vertex
of S"~ .

3 Intersection theorems on the simplotope

In existing theorems about intersection points on the simplotope, the sets covering S were

labelled with just one index, e.g. see [1], [6], [7]. In this paper we consider collections of

sets where each set is labelled by a set o[ indices. More precisely, when S- S"' x... x S"N,

a set out of the collection of sets covering S is labelled by a set of N indices, for every

j E Irr one index out of I(j). Let Z be the collection of sets T of indices (j, k) E I such

that for every j E IN the set T fl I(j) consists of just one element. When CT for T E Z

is a collection of closed sets covering the simplotope S, for some T' C I the set CT~ is

defined as the set of all elements x E S for which there exist Tl, ..., Tk in Z such that

k
T' - U~-~T~ and x E n CT~.

~-i

We will show that there exist an element x` E S and an index set T` C 1 such that
x' E C~ and (j, k) ~ T' implies x~k - 0.

Theorem 3.1. Let {CT,T E Z} be a collection of closed subsets covering S. Then there
exists an x' E S such that for some T' C I it holds that

x' E CT~ and if ( j, k) ~ T' then xjk - 0.

by

Proof. Let the point-to-set mapping F from S into the set of subsets of S be given
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F(x) - Conv ({e(T)~x E CT}),

where Conv ( A) denotes the convex hull of a set A. Clearly, for every x E S, the set
F(x) is nonempty, wnvex and compact. Moreover, since F has a closed graph, F is
upper hemi-continuous. According to Kakutani's fixed point theorem there exists an
x' E S such that x' E F(x'). Now, let {Ti ,...,Tk } be the collection of sets in Z such
that x' E CT' for i - 1, ..., k. Then there are nonnegative numbers a;, i- 1, ..., k, auch
that

k

x' - ~ a; e(T; ).
;-t

Let T' be the union of T; over all i. Then x' E CT~ and, since e~ti(T; ) - 0 whenever

( j, h) ~ Ti , x~h - 0 if (j, h) ~ T'. o

We remark that we allow some of the sets CT , T E Z, to be empty. In particular, in
case CT for just one T E Z covers S then the vertex e(T) of S is the unique intersection
point, satisfying the conditions of Theorem 3.1. In fact the theorem states that when a
collection of CT,T E Z, is a closed covering of S then there exists a nonempty T' C!
such that

CT~ fi {x E S~x~k - 0 for every ( j, k) ~ T`} ~ 0.

For N- 2, nt - nz - 1, Theorem 3.1 is illustrated in the Figures 1 and 2. In

Figure 1 the set T' is equal to {(1,2),(2,1),(2,2)} and the point x' E CT~ satis-

fies xit - 0. In Figure 2 there are three intersection pointa: xt E C{(t,z),(z,z)} with

xit - x~t - 0, xz E C{b,z),(z.t)} n C{(t,z),(s,z)) C C{(ta),(z,t),(z.z)} with xit - 0, and

x3 E C{(t,z),(z,t)} n C{(t,t),(z,t)} C C{(t,t),(t,z),(z,t)} w,ith x~z - 0. As is illustrated in both

figures it cannot be guaranteed that the set Cr is non-empty, i.e. there may not exist an

x' such that for every (j,k) E I there is a T E Z satisfying (j,k) E T and x' E CT. To

guarantee that the set CI is nonempty some boundary conditions are necessary. We give

two of these conditions in the next theorems. The first result generalizes the intersection

theorem of Scarf (9] to the simplotope.
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k11-0

X,s-o

Xis-0

x"

x~~~o

Figure 1. Illusttation of Theorem 3.1 when S is covered by two sets.

k~i c O

X~~;4

k3
X:z~

Figure 2. Illustration of Theorem 3.1 when S is covered by three sets.
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Theorem 3.2. Let {CT,T E Z} be a collection of closed subsets covering S such that
if x lies in the boundary of S then x E CT for some T E Z containing an index (j, k) E!
for which x~k - 0. Then C~ ~ 0.

Proof. According to Theorem 3.1 there exist an x' E S and a T' C I such that x' E CT~

and x~k - 0 whenever (j, k) ~ T'. We will show that x' E C~. Clearly, x~k 1 0 implies

that (j, k) E T'. So, suppose that (j, k) E I is such that x~k - 0. Let (xl, l- 1, 2, ...)

be a sequence of points in S converging to x' such that x~k - 0 and x;h 7 0 for every

(i,h) ~(j,k). Because of the boundary condition, for every 1 E {1,2,...} there must

exist a TI E Z such that xl E CT~ and (j, k) E TI. Since there are only a finite number

of indcx scl,a in Z, thcre is a I~o !tllf,h thiLt I'( - To fOr all IOfÍnItC~~ 9uhsC(jUenCe Of pOlnt9

xl. Without loss of generality we may assume that T~ - To for every l. Consequently we

have that (j, k) E T` and that for every ! it ho}ds that x~ E CT`. Since CT' is closed and

the sequence (xl,l - 1,2,...) converges to x' we obtain that x' E CT`. Hence, x' E CT

with T- T' U T`. Repeating this procedure for every (j, k) E 1 for which x~k - 0 we

can conclude that x' E Cf. O

For N- 2 and n~ - nz - 1, Theorem 3.2 is illustrated in Figure 3. In this figure every

point on the curve between a and b lies in the intersection of C{~1,1),~x,')} and C{~i,z),(as)}

and it lies therefore in Cf.

X~- O

X,~-

S.(l,z).(2,))3 ~ C~U,1?,lz~l1~

~
Xu -0

~c~.2~,c~,~3 Gto,l~,cz.~~3

X~z-o
Figure 3. Illustration of Theorem 3.2.



10

The next theorem is a generaliaation of the KKM lemma on the unit simplex to the

simplotope.

Theorem 3.3. Let {CT,T E Z} be a collection of closed subsets covering S such that
if x lies in the boundary of S then for some T E Z it holds that x E CT and xjk ~ 0 for
every (j, k) E T. Then C~ ~ 0.

Proof. Let the set V- IIN 1V"~ in IIN 1R"~}1 be given by for j- 1,...,n,

n~}1

V"~ -{vj E R"~}1~ ~ vjk - l,vjk 1-(n~ -~ 1)-1 for every k E I(j)}.
k-1 -

Notice that V"~ is the convex hull of the points vj(j,k) - 2ej(j,k) - mj, for k-

1,...,nj -~ 1, j E ~N. For v E V the point p(v) E S denotes the relative projection of v

on S, i.e., p(v) - (p1(v1),...,pN(vN)) with the relative projection pj(vj) of vj in V"~ on

S"~ given by

pjk(vj) - 0 lf Vjk G ~

- vjk, ~{h~v~h10} t)jh ]f tljk i 0.

Now, let the point-to-set mapping F from V to the set ofsubsets of IIN1R"~tl be defined
by

F(v) - Conv ({m - e(T)~p(v) E CT and if (j, k) E T then v~k ~ 0}).

Since F has a closed graph and p is a continuous function, F is upper hemi-continuous.
Moreover, U„EyF(v) is compact, and for every v E V the set F(v) is nonempty, convex
and compact. Accordiug to Lemma 2.1 there exist x' E V and y' E F(x') satiefying

x~y~ G ( xJ)Ty~

for every x~ E V"~ and j E IN. Let the number a~ be equal to ( x~)Ty~. Then by taking
x~ equal to mj, it follows that cr~ ~ 0, since ~k'~1 y~k - 0, j- 1, ..., N. When we take
x~ succesively equal to the vertex vj(j, k) of V"~ for every (j,k) E I, we obtain

2yjk C aj, for every (j, k) E I.
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On the other hand if for some ( j, k) E! it holds that x~k ~-(ni ~ 1)-', by taking xi
equal to -evi(j,k) f(1 t c)x~ for arbitrarily small e~ 0, we obtain that 2y~k ~ a~.
Hence, y~k - za~ ~ 0 when x~k ~-(ni f 1)-'.

Let the collection ,7' of elements of Z be defined by

,'J` -{T E 2~p(x') E CT and if (j, k) E T then x~k ~ 0}.

Suppose ,7' - {T1i...,T~} and let T' be the union of Tj over j - 1,...,h. We will show
that T' is equal to I. Since y' E F(x') there exist nonnegative numbers a~,...,ah with

sum equal to 1 such that

h

y" - ~ a; (m - e(Ti))-
~-i

Suppose that x~k --(n t 1)-' for some (j,k) E I. Then eik(T;) - 0 for every i E I~,
and hence y~k ~ 0. Therefore, y~k ~ 0 for every (j, k) E I and, since ~k'il y~k - 0, we
must have y~ - 0 for j- 1, ..., N. Hence, for every ( j, k) E I it holds that

A h
~ ~ieik(Tt) - ~ ~imik - ( ni ~f- 1)-' ) 0.
~-t ;-i

This implies that for every (j, k) E I it must hold that eik(T;) ~ 0 for at least one i E Ih.
Consequently, for every ( j, k) E! there is an i E!ti such that (j, k) E T;. Therefore, the
set T' is equal to I and so x' E C~. O

For N - 2 and n~ - n~ - 1, Theorem 3.3 is illustrated in Figure 4. In this figure all

four sete CT,T E Z, meet in the intersection point x'. Remark that for every T E Z, the

vertex e(T) of S must lie in CT.
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Xi~-O

X,2-.0

X~~p
Figure 4. Illustration of Theorem 3.3.

X~~-~

4 Applications to the unit cube

In case n~ - 1 for every j E IN, the three theorems stated in the previous section lead to

equivalent theorems on the n-dimensional unit cube K", defined by K" -{x E R"~0 c

x; C 1 for all i E!"}. The set K" is now considered to be the Cartesian product of

n unit intervals, i.e. K" -[0,1]". Instead of using indices (j, l) and (j,2) it is more

natural to use -j and ~j, respectively, for j - 1, ..., n. So, we cover the set K" by closed

scts CT for T E Z, where

Z-{T C !" U(- !")~ for every j E!" either f j E T or - j E T}.

Notice that every T E Z consists of n indices. We denote the union of I" and -I" by the

set l. For an arbitrary set T' C 1 we define the set CT~ as in the previous section, i.e.,

CT~ -{x E f1k-,CT"~T' - Uk-,Tk,Tk E Z for every k E!h}.

Now Theorem 3.1 becomes as follows.

Corollary 4.1. Let {CT,T E Z} be a collection of closed subsets covering K". Then

there exists an x' E K" such that for some T' C! it holda that x E CT~,x~ -
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0 when - j~ T`, and x~ - 1 when f j~ T'.

The theorem says that if the n-dimensional unit cube is covered by closed sets labelled
by a set of n indices containing for j - 1,...,n either ~j or -j, then there is a point x'
in the unit cube such that for every j E!" it holds that i) x~ - 0 or x' E CT for some
T containing -j, and ii) x~ - 1 or x' E CT for some T containing fj. In case K" is
covered by just one set CT, then the vertex v of K" with v~ - 0 if ~j E T and v~ - 1
if -j E T is the only intersection point. Theorem 3.2 reduces on K" to the following
corollary.

Corollary 4.2. Let {CT,T E Z} be a collection of closed subsets covering K" such that

if x lies in the boundary of K" then there exists a T E Z satisfying x E CT and for some

j E!N the set T contains an index -j for which x~ - 0 or an index -}j for which x~ - 1.

Then there is an x' E K" such that for every j E 1" both x' E CT' for some Ti E I with

fj E T~ and x' E CT' for some Tz E 1 with -j E Tzi i.e., CI ~(~.

Theorem 3.3 simplifies on K" to the following result.

Corollary 4.3. Let {CT,T E Z} be a collection of closed subsets covering K" such that

if x lies in the boundary of K" then there is a CT containing x that satisfies x~ ) 0 when

-j E T and x~ C 1 when fj E T. Then C~ ~ 0.

The last two corollaries give conditions under which there exists an intersection point
which is labelled by all indices out of the set !. Notice that there are 2n different indices
and 2" different labels possible.

5 Application to noncoopertative games

An application of the intersection theorems mentioned in this paper is to prove the

existence of a Nash equilibrium in a noncooperative game with N players where for

every j E IN player j has n~ .} 1 pure actions. For k- 1, ..., n~ f 1, the index (j, k) refers

now to the kth action of player j, j- 1, ..., N. Further, for ( j, k) E 1 and x E S, the

number x~k equals the probability with which player j chooses action (j, k). An element

x of S denotes a strategy vector of the game and for j E !N the element x~ denotes

a strategy of player j. Given strategy vector x E S the (n~ f 1)-vector z~(x) denotes
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the marginal payoff vector for player j at x, i.e., for ( j, k) E I, z~k(x) is the payoff or
ptofit for player j when he plays action (j,k) and the other players play according to
the strategy vector x. For j E IN, the function z~ : S-i R"~tl is linear in x; for any
given i E IN. At strategy vector x E S the expected payoff for player j equals x~z~(x).
An element x' E S is a Nash equilibrium strategy vector if and only if

z~k(x') - mhx z~h(x') whenever x~k ~ 0.

At an equilibrium a player only chooses an action with positive probability when the
marginal payoff of that action is maximal for him. An action of a player, having maximal

rnarginal payo(f given some strategy vector x E S is called an optimal action at x.
Therefore, at a Nash equilibrium strategy vector every player chooses a nonoptimal
action with probability zero. So x' is a Nash equilibrium strategy vector if and only if
x' is a stationary point of the marginal payoff function z: S--~ HNrR"~tl

At an arbitrary strategy vector x E S it holds that for every player at least one of
his actions is optimal. We therefore could label every point x with any set of N indices
such that for each player his index is referring to one of his optimal actions at z. In this
way we can cover the strategy space S by a collection of sets CT, T E Z, defined by

CT -{x E S~z~k(x) - mha.x z~k(x) if (j, k) E T}.

The set CT denotes the set of strategy vectors in S where every action (j, k) E T is
optimal for player j, j- 1, ..., N. Because of the continuity of the function z in x we
have the property that every set CT,T E Z, is closed ( or empty). Hence, according to
Theorem 3.1 there exists an x' E S and a T' C I such that x' E CT~ and x~k - 0

whenever ( j, k) ~ T'. From this it follows that

z)klx~) - mhx zihlx') If l.i, k) E T.

and

x~k - 0 if (j, k) ~ T'.
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Consequently, any intersection point is a Nash equilibrium strategy vector. Of course,
the converse is also true.

Corollary 5.1. Every noncooperative game with a finite number of players and actions
has a Nash equilibrium strategy vector.
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