Discussion paper
for

Center
 for
 Economic Research

No. 9370

INTERSECTION THEOREMS ON THE SIMPLOTOPE

by Gerard van der Laan and Dolf Talman

October 1993

INTERSECTION THEOREMS ON THE SIMPLOTOPE

Gerard van der Laan ${ }^{1}$ and Dolf Talman ${ }^{2}$

[^0]

INTERSECTION THEOREMS ON THE SIMPLOTOPE

Gerard van der Laan and Dolf Talman

Abstract

In this paper we present several new intersection theorems on the Cartesian product of a finite number of unit simplices, called the simplotope. These intersection results generalize well known intersection theorems on the unit simplex. In case the simplotope is the product of N simplices the sets covering the simplotope are labelled by a set of N indices. Moreover the number of sets equals the number of vertices of the simplotope. In existing intersection theorems on the simplotope the sets covering the simplotope are indexed by just one index. We consider the case where the simplotope is the product of one-dimensional unit simplices seperately. The simplotope is in that case equivalent to the unit cube. Finally, we show the relation between the intersection theorems and the existence of a Nash equilibrium strategy vector in a noncooperative game with a finite number of players.

Keywords: intersection point, stationary point, labelling rule, Nash equilibrium.

1 Introduction

On the unit simplex many intersection theorems have been developed. The most well known intersection theorem is probably the lemma of Knaster, Kuratowski and Mazurkiewicz (KKM lemma), see [4]. Let S^{n} be the n-dimensional unit simplex, being the subset of the non-negative orthant \mathbf{R}_{+}^{n+1} of the ($n+1$)-dimensional Euclidean space where the sum of the components equals one. The KKM lemma says that if S^{n} is covered by closed sets $C^{1}, C^{2}, \ldots, C^{n+1}$ such that for every x in S^{n} there exists an index $i \in\{1, \ldots, n+1\}$ with $x_{i}>0$ and $x \in C^{i}$, then these $n+1$ sets have a nonempty intersection. The same result holds when for every x in the boundary of S^{n} it holds that x lies in C^{i} for all indices i for which $x_{i}=0$. The latter result is due to Scarf [9]. In case there is no boundary condition and so $C^{1}, C^{2}, \ldots, C^{n+1}$ are just closed sets covering S^{n}, then Lüthi [8] proved that there must exist a point x^{*} in S^{n} such that for every i for which x^{*} does not belong to C^{i} it holds that $x_{i}^{*}=0$. On the unit simplex there are also intersection theorems where the sets covering S^{n} are labelled by a subset T of $\{1, \ldots, n+1\}$ instead of just one integer out of the set $\{1, \ldots, n+1\}$. For such a covering Shapley [10] generalized the KKM lemma and Ichiishi [2] the Scarf lemma by stating related boundary conditions under which there exists a balanced collection of sets having a nonempty intersection.

In this paper we consider intersection theorems on the Cartesian product of several unit simplices, called a simplotope. Until now, on the simplotope only intersection theorems have been developed where the sets covering the simplotope are labelled by only one index. In the intersection theorem of Kuhn [5] the number of labels is equal to the dimension of the simplotope plus one as on the unit simplex itself. Freund [1] and van der Laan and Talman [6] gave intersection theorems for which the number of labels is equal to the number of variables, being N more than the dimension of the simplotope, in case it is the Cartesian product of N unit simplices. All these theorems can be considered as direct generalizations of the intersection theorems on the unit simplex as given by KKM, Scarf and Lüthi. We will generalize the latter three results to intersection theorems on the simplotope in case the simplotope consisting of N unit simplices is covered by a collection of closed sets, each of them being labelled by a set of N indices. More precisely, the simplotope is covered by closed sets C^{T} where T consists of N indices. Given some set T, there is for each $j \in\{1, \ldots, N\}$ precisely one integer $k \in\left\{1, \ldots, n_{j}+1\right\}$ for which the index (j, k) belongs to T, with n_{j} being the dimension of the j th unit simplex in the Cartesian product. So, the number of sets covering S is
equal to the number of vertices of S. Under various boundary conditions we prove that there is an intersection point. These conditions coincide with the ones given in either the KKM or the Scarf lemma when the simplotope consists of just one unit simplex (the case $N=1$). We also give an intersection theorem in case the sets C^{T} covering the simplotope are chosen arbitrarily. This immediately proves the existence of a Nash equilibrium in a noncooperative game with a finite number of players, each player having a finite number of actions to choose from. A special case, corresponding with the N-dimensional unit cube, is obtained when n_{j} equals 1 for every $j=1, \ldots, N$.

This paper is organized as follows. In Section 2 we introduce some notation and concepts and we prove an existence lemma by using the well known fixed point theorem of Kakutani for upper hemi-continuous point-to-set mappings. Section 3 states and proves the intersection theorems on the simplotope. Two of these theorems can be proved by using Kakutani's theorem directly. The third one will be proved by using the existence result of Section 2. Finally, in Section 4 we consider the case when the simplotope is the product of one-dimensional unit simplices. In Section 5 it is shown how the intersection theorems can be used to prove the existence of a Nash equilibrium in a finite noncooperative game.

2 Basic concepts and definitions

For some positive integer k, let S^{k} be the k-dimensional unit simplex, i.e.,

$$
S^{k}=\left\{x \in \mathbf{R}^{k+1} \mid \sum_{j=1}^{k+1} x_{j}=1, x_{i} \geq 0 \text { for } i=1, \ldots, k+1\right\}
$$

For some given positive integer N, let n_{1}, \ldots, n_{N} be positive integers and let n be equal to $\sum_{j=1}^{N} n_{j}$. We call the Cartesian product of $S^{n_{1}}, \ldots, S^{n_{N}}$, denoted S, a simplotope, so

$$
S=S^{n_{1}} \times \ldots \times S^{n_{N}}
$$

The dimension of S is equal to n. An element in S is denoted by

$$
x=\left(x_{1}, . ., x_{N}\right) \text { with } x_{j} \in S^{n_{j}} \text { for every } j
$$

The k th component of the vector x_{j} in $S^{n_{j}}$ is denoted $x_{j k}$ and is also the (j, k)-th component of an element x in S, for $k=1, \ldots, n_{j}+1, j=1, \ldots, N$. For $j=1, \ldots, N$, the
set $I(j)$ equals the index set $\left\{(j, 1), \ldots,\left(j, n_{j}+1\right)\right\}$, and I equals the union of $I(j)$ over all j. The set I_{k} will denote the index set $\{1, \ldots, k\}$.

For $X^{j} \subset \mathbf{R}^{n,+1}, j \in I_{N}$, let $X=\Pi_{j=1}^{N} X^{j}$ be a convex, compact, nonempty subset of $\Pi_{j=1}^{N} \mathbf{R}^{n_{j+1}}$ and let G be an upper hemi-continuous mapping from X to the collection of nonempty subsets of X such that for every $x \in X$ the set $G(x)$ is convex and compact. According to Kakutani's fixed point theorem there exists an $x^{*} \in X$ such that $x^{*} \in$ $G\left(x^{*}\right)$, see [3]. Now, let F be a mapping from X to the collection of subsets of $\prod_{j=1}^{N} \mathbf{R}^{n_{j}+1}$. We call an element $x^{*} \in X$ a stationary point of F on X if for some $y^{*} \in F\left(x^{*}\right)$ it holds that for every $j \in I_{N}$

$$
x_{j}^{T} y_{j}^{*} \leq\left(x_{j}^{*}\right)^{T} y_{j}^{*} \text { for all } x_{j} \in X^{j}
$$

Lemma 2.1. An upper hemi-continuous point-to-set mapping F from X to the collection of subsets of $\Pi_{j=1}^{N} R^{n j+1}$ such that $\cup_{x \in X} F(x)$ is bounded and for every $x \in X$ the set $F(x)$ is nonempty, convex and compact, has a stationary point on X.

Proof. Let Y be a compact, convex set in $\Pi_{j=1}^{N} \mathbf{R}^{n_{j}+1}$, containing the set $\cup_{x \in X} F(x)$. Then we define the point-to-set mapping H from Y to the collection of subsets of X by

$$
H(y)=\left\{x^{*} \in X \mid x_{j}^{T} y_{j} \leq\left(x_{j}^{*}\right)^{T} y_{j} \text { for all } x_{j} \in X^{j} \text { and } j \in I_{N}\right\}
$$

Using the maximum theorem, it is easily shown that H is upper hemi-continuous. Moreover, for every $y \in Y$ the set $H(y)$ is nonempty, convex, compact, whereas $\cup_{y \in Y} H(y)$ as a subset of X is bounded. For $(x, y) \in X \times Y$, let $G(x, y)$ be defined as

$$
G(x, y)=H(y) \times F(x)
$$

then G is an upper hemi-continuous mapping from the set $X \times Y$ to the collection of nonempty subsets of $X \times Y$ satisfying for every $(x, y) \in X \times Y$ that the set $G(x, y)$ is nonempty, convex and compact. According to Kakutani's fixed point theorem, there exists an $\left(x^{*}, y^{*}\right) \in X \times Y$ such that

$$
x^{*} \in H\left(y^{*}\right) \text { and } y^{*} \in F\left(x^{*}\right),
$$

which proves the lemma.

Given the simplotope $S=S^{n_{1}} \times \ldots \times S^{n_{N}}$, let T be a subset of I such that $T \cap I(j) \neq \emptyset$ for every $j \in I_{N}$. Then m^{T} denotes the barycentre of the face $S(T)=\left\{x \in S \mid x_{j k}=0\right.$ for every $(j, k) \notin T\}$, i.e., $m_{j k}^{T}=1 /|T \cap I(j)|$ for $(j, k) \in T$ and $m_{j k}^{T}=0$ otherwise. When $T=I$ we write m instead of m^{I}. When for some $T \subset I$ the set $T \cap I(j)$ consists of one element for every $j \in I_{N}$, we also write $e(T)$ instead of m^{T}. For such a T the element $e(T)$ is a vertex of S and for every $j \in I_{N}$ the vector $e_{j}(j, k)=e_{j}(T)$ with $T \cap I(j)=\{(j, k)\}$ is an $\left(n_{j}+1\right)$-dimensional unit vector in $\mathbf{R}^{n_{j}+1}$, being also a vertex of $S^{n_{j}}$.

3 Intersection theorems on the simplotope

In existing theorems about intersection points on the simplotope, the sets covering S were labelled with just one index, e.g. see [1], [6], [7]. In this paper we consider collections of sets where each set is labelled by a set of indices. More precisely, when $S=S^{n_{1}} \times \ldots \times S^{n_{N}}$, a set out of the collection of sets covering S is labelled by a set of N indices, for every $j \in I_{N}$ one index out of $I(j)$. Let I be the collection of sets T of indices $(j, k) \in I$ such that for every $j \in I_{N}$ the set $T \cap I(j)$ consists of just one element. When C^{T} for $T \in \mathcal{I}$ is a collection of closed sets covering the simplotope S, for some $T^{*} \subset I$ the set $C^{T^{*}}$ is defined as the set of all elements $x \in S$ for which there exist T_{1}, \ldots, T_{k} in \mathcal{I} such that

$$
T^{*}=\cup_{j=1}^{k} T_{j} \text { and } x \in \bigcap_{j=1}^{k} C^{T_{j}}
$$

We will show that there exist an element $x^{*} \in S$ and an index set $T^{*} \subset I$ such that $x^{*} \in C^{T^{*}}$ and $(j, k) \notin T^{*}$ implies $x_{j k}^{*}=0$.

Theorem 3.1. Let $\left\{C^{T}, T \in \mathcal{I}\right\}$ be a collection of closed subsets covering S. Then there exists an $x^{*} \in S$ such that for some $T^{*} \subset I$ it holds that

$$
x^{*} \in C^{T^{*}} \text { and if }(j, k) \notin T^{*} \text { then } x_{j k}^{*}=0 .
$$

Proof. Let the point-to-set mapping F from S into the set of subsets of S be given by

$$
F(x)=\operatorname{Conv}\left(\left\{e(T) \mid x \in C^{T}\right\}\right)
$$

where Conv (A) denotes the convex hull of a set A. Clearly, for every $x \in S$, the set $F(x)$ is nonempty, convex and compact. Moreover, since F has a closed graph, F is upper hemi-continuous. According to Kakutani's fixed point theorem there exists an $x^{*} \in S$ such that $x^{*} \in F\left(x^{*}\right)$. Now, let $\left\{T_{1}^{*}, \ldots, T_{k}^{*}\right\}$ be the collection of sets in \mathcal{I} such that $x^{*} \in C^{T_{i}^{*}}$ for $i=1, \ldots, k$. Then there are nonnegative numbers $\lambda_{i}^{*}, i=1, \ldots, k$, such that

$$
x^{*}=\sum_{i=1}^{k} \lambda_{i}^{*} e\left(T_{i}^{*}\right)
$$

Let T^{*} be the union of T_{i}^{*} over all i. Then $x^{*} \in C^{T^{*}}$ and, since $e_{j h}\left(T_{i}^{*}\right)=0$ whenever $(j, h) \notin T_{i}^{*}, x_{j h}^{*}=0$ if $(j, h) \notin T^{*}$.

We remark that we allow some of the sets $C^{T}, T \in \mathcal{I}$, to be empty. In particular, in case C^{T} for just one $T \in \mathcal{I}$ covers S then the vertex $e(T)$ of S is the unique intersection point, satisfying the conditions of Theorem 3.1. In fact the theorem states that when a collection of $C^{T}, T \in \mathcal{I}$, is a closed covering of S then there exists a nonempty $T^{*} \subset I$ such that

$$
C^{T^{*}} \cap\left\{x \in S \mid x_{j k}=0 \text { for every }(j, k) \notin T^{*}\right\} \neq \emptyset
$$

For $N=2, n_{1}=n_{2}=1$, Theorem 3.1 is illustrated in the Figures 1 and 2. In Figure 1 the set T^{*} is equal to $\{(1,2),(2,1),(2,2)\}$ and the point $x^{*} \in C^{T^{*}}$ satisfies $x_{11}^{*}=0$. In Figure 2 there are three intersection points: $x^{1} \in C^{\{(1,2),(2,2)\}}$ with $x_{11}^{1}=x_{21}^{1}=0, x^{2} \in C^{\{(1,2),(2,1)\}} \cap C^{\{(1,2),(2,2)\}} \subset C^{\{(1,2),(2,1),(2,2)\}}$ with $x_{11}^{2}=0$, and $x^{3} \in C^{\{(1,2),(2,1)\}} \cap C^{\{(1,1),(2,1)\}} \subset C^{\{(1,1),(1,2),(2,1)\}}$ with $x_{22}^{3}=0$. As is illustrated in both figures it cannot be guaranteed that the set C^{I} is non-empty, i.e. there may not exist an x^{*} such that for every $(j, k) \in I$ there is a $T \in \mathcal{I}$ satisfying $(j, k) \in T$ and $x^{*} \in C^{T}$. To guarantee that the set C^{I} is nonempty some boundary conditions are necessary. We give two of these conditions in the next theorems. The first result generalizes the intersection theorem of Scarf [9] to the simplotope.

Figure 1. Illustration of Theorem 3.1 when S is covered by two sets.

Figure 2. Illustration of Theorem 3.1 when S is covered by three sets.

Theorem 3.2. Let $\left\{C^{T}, T \in \mathcal{I}\right\}$ be a collection of closed subsets covering S such that if x lies in the boundary of S then $x \in C^{T}$ for some $T \in \mathcal{I}$ containing an index $(j, k) \in I$ for which $x_{j k}=0$. Then $C^{I} \neq \emptyset$.

Proof. According to Theorem 3.1 there exist an $x^{*} \in S$ and a $T^{*} \subset I$ such that $x^{*} \in C^{T^{*}}$ and $x_{j k}^{*}=0$ whenever $(j, k) \notin T^{*}$. We will show that $x^{*} \in C^{I}$. Clearly, $x_{j k}^{*}>0$ implies that $(j, k) \in T^{*}$. So, suppose that $(j, k) \in I$ is such that $x_{j k}^{*}=0$. Let ($x^{l}, l=1,2, \ldots$) be a sequence of points in S converging to x^{*} such that $x_{j k}^{l}=0$ and $x_{i h}^{l}>0$ for every $(i, h) \neq(j, k)$. Because of the boundary condition, for every $l \in\{1,2, \ldots\}$ there must exist a $T^{l} \in \mathcal{I}$ such that $x^{l} \in C^{T^{l}}$ and $(j, k) \in T^{l}$. Since there are only a finite number of index sets in \mathcal{I}, there is a T° such that $T^{l}=T^{\circ}$ for an infinite, subsequence of points x^{l}. Without loss of generality we may assume that $T^{l}=T^{\circ}$ for every l. Consequently we have that $(j, k) \in T^{\circ}$ and that for every l it holds that $x^{l} \in C^{T^{0}}$. Since $C^{T^{0}}$ is closed and the sequence $\left(x^{l}, l=1,2, \ldots\right)$ converges to x^{*} we obtain that $x^{*} \in C^{T^{0}}$. Hence, $x^{*} \in C^{T}$ with $T=T^{*} \cup T^{\circ}$. Repeating this procedure for every $(j, k) \in I$ for which $x_{j k}^{*}=0$ we can conclude that $x^{*} \in C^{I}$.

For $N=2$ and $n_{1}=n_{2}=1$, Theorem 3.2 is illustrated in Figure 3. In this figure every point on the curve between a and b lies in the intersection of $C^{\{(1,1),(2,1)\}}$ and $C^{\{(1,2),(2,2)\}}$ and it lies therefore in C^{I}.

Figure 3. Illustration of Theorem 3.2.

The next theorem is a generalization of the KKM lemma on the unit simplex to the simplotope.

Theorem 3.3. Let $\left\{C^{T}, T \in \mathcal{I}\right\}$ be a collection of closed subsets covering S such that if x lies in the boundary of S then for some $T \in \mathcal{I}$ it holds that $x \in C^{T}$ and $x_{j k}>0$ for every $(j, k) \in T$. Then $C^{I} \neq \emptyset$.

Proof. Let the set $V=\Pi_{j=1}^{N} V^{n_{j}}$ in $\Pi_{j=1}^{N} \mathbf{R}^{n_{j}+1}$ be given by for $j=1, \ldots, n$,

$$
V^{n_{j}}=\left\{v_{j} \in \mathbf{R}^{n_{j}+1} \mid \sum_{k=1}^{n_{j}+1} v_{j k}=1, v_{j k} \geq-\left(n_{j}+1\right)^{-1} \text { for every } k \in I(j)\right\}
$$

Notice that $V^{n j}$ is the convex hull of the points $v_{j}(j, k)=2 e_{j}(j, k)-m_{j}$, for $k=$ $1, \ldots, n_{j}+1, j \in I_{N}$. For $v \in V$ the point $p(v) \in S$ denotes the relative projection of v on S, i.e., $p(v)=\left(p_{1}\left(v_{1}\right), \ldots, p_{N}\left(v_{N}\right)\right)$ with the relative projection $p_{j}\left(v_{j}\right)$ of v_{j} in $V^{n_{j}}$ on $S^{n_{j}}$ given by

$$
\begin{aligned}
p_{j k}\left(v_{j}\right) & =0 & & \text { if } v_{j k}<0 \\
& =v_{j k} / \sum_{\left\{h \mid v_{j h} \geq 0\right\}} v_{j h} & & \text { if } v_{j k} \geq 0
\end{aligned}
$$

Now, let the point-to-set mapping F from V to the set of subsets of $\prod_{j=1}^{N} \mathbf{R}^{n_{j}+1}$ be defined by

$$
F(v)=\operatorname{Conv}\left(\left\{m-e(T) \mid p(v) \in C^{T} \text { and if }(j, k) \in T \text { then } v_{j k} \geq 0\right\}\right)
$$

Since F has a closed graph and p is a continuous function, F is upper hemi-continuous. Moreover, $\cup_{v \in V} F(v)$ is compact, and for every $v \in V$ the set $F(v)$ is nonempty, convex and compact. According to Lemma 2.1 there exist $x^{*} \in V$ and $y^{*} \in F\left(x^{*}\right)$ satisfying

$$
x_{j}^{T} y_{j}^{*} \leq\left(x_{j}^{*}\right)^{T} y_{j}^{*}
$$

for every $x_{j} \in V^{n}$, and $j \in I_{N}$. Let the number α_{j}^{*} be equal to $\left(x_{j}^{*}\right)^{T} y_{j}^{*}$. Then by taking x_{j} equal to m_{j}, it follows that $\alpha_{j}^{*} \geq 0$, since $\sum_{k=1}^{n_{j}+1} y_{j k}^{*}=0, j=1, \ldots, N$. When we take x_{j} succesively equal to the vertex $v_{j}(j, k)$ of $V^{n_{j}}$ for every $(j, k) \in I$, we obtain

$$
2 y_{j k}^{*} \leq \alpha_{j}^{*}, \text { for every }(j, k) \in I .
$$

On the other hand if for some $(j, k) \in I$ it holds that $x_{j k}^{*}>-\left(n_{j}+1\right)^{-1}$, by taking x_{j} equal to $-\epsilon v_{j}(j, k)+(1+\epsilon) x_{j}^{*}$ for arbitrarily small $\epsilon>0$, we obtain that $2 y_{j k}^{*} \geq \alpha_{j}^{*}$. Hence, $y_{j k}^{*}=\frac{1}{2} \alpha_{j}^{*} \geq 0$ when $x_{j k}^{*}>-\left(n_{j}+1\right)^{-1}$.

Let the collection \mathcal{J}^{*} of elements of \mathcal{I} be defined by

$$
\mathcal{J}^{*}=\left\{T \in \mathcal{I} \mid p\left(x^{*}\right) \in C^{T} \text { and if }(j, k) \in T \text { then } x_{j k}^{*} \geq 0\right\}
$$

Suppose $\mathcal{J}^{*}=\left\{T_{1}, \ldots, T_{h}\right\}$ and let T^{*} be the union of T_{j} over $j=1, \ldots, h$. We will show that T^{*} is equal to I. Since $y^{*} \in F\left(x^{*}\right)$ there exist nonnegative numbers $\lambda_{1}^{*}, \ldots, \lambda_{h}^{*}$ with sum equal to 1 such that

$$
y^{*}=\sum_{i=1}^{h} \lambda_{i}^{*}\left(m-e\left(T_{i}\right)\right)
$$

Suppose that $x_{j k}^{*}=-(n+1)^{-1}$ for some $(j, k) \in I$. Then $e_{j k}\left(T_{i}\right)=0$ for every $i \in I_{h}$ and hence $y_{j k}^{*} \geq 0$. Therefore, $y_{j k}^{*} \geq 0$ for every $(j, k) \in I$ and, since $\sum_{k=1}^{n_{j}+1} y_{j k}^{*}=0$, we must have $y_{j}^{*}=0$ for $j=1, \ldots, N$. Hence, for every $(j, k) \in I$ it holds that

$$
\sum_{i=1}^{h} \lambda_{i}^{*} e_{j k}\left(T_{i}\right)=\sum_{i=1}^{h} \lambda_{i}^{*} m_{j k}=\left(n_{j}+1\right)^{-1}>0 .
$$

This implies that for every $(j, k) \in I$ it must hold that $e_{j k}\left(T_{i}\right)>0$ for at least one $i \in I_{h}$. Consequently, for every $(j, k) \in I$ there is an $i \in I_{h}$ such that $(j, k) \in T_{i}$. Therefore, the set T^{*} is equal to I and so $x^{*} \in C^{I}$.

For $N=2$ and $n_{1}=n_{2}=1$, Theorem 3.3 is illustrated in Figure 4. In this figure all four sets $C^{T}, T \in \mathcal{I}$, meet in the intersection point x^{*}. Remark that for every $T \in \mathcal{I}$, the vertex $e(T)$ of S must lie in C^{T}.

Figure 4. Illustration of Theorem 3.3.

4 Applications to the unit cube

In case $n_{j}=1$ for every $j \in I_{N}$, the three theorems stated in the previous section lead to equivalent theorems on the n-dimensional unit cube K^{n}, defined by $K^{n}=\left\{x \in \mathbf{R}^{n} \mid 0 \leq\right.$ $x_{i} \leq 1$ for all $\left.i \in I_{n}\right\}$. The set K^{n} is now considered to be the Cartesian product of n unit intervals, i.e. $K^{n}=[0,1]^{n}$. Instead of using indices $(j, 1)$ and $(j, 2)$ it is more natural to use $-j$ and $+j$, respectively, for $j=1, \ldots, n$. So, we cover the set K^{n} by closed sets C^{T} for $T \in \mathcal{I}$, where

$$
\mathcal{I}=\left\{T \subset I_{n} \cup\left(-I_{n}\right) \mid \text { for every } j \in I_{n} \text { either }+j \in T \text { or }-j \in T\right\}
$$

Notice that every $T \in \mathcal{I}$ consists of n indices. We denote the union of I_{n} and $-I_{n}$ by the set I. For an arbitrary set $T^{* *} \subset I$ we define the set $C^{T^{*}}$ as in the previous section, i.e.,

$$
C^{T^{*}}=\left\{x \in \cap_{k=1}^{h} C^{T_{k}} \mid T^{*}=\cup_{k=1}^{h} T_{k}, T_{k} \in \mathcal{I} \text { for every } k \in I_{h}\right\}
$$

Now Theorem 3.1 becomes as follows.

Corollary 4.1. Let $\left\{C^{T}, T \in \mathcal{I}\right\}$ be a collection of closed subsets covering K^{n}. Then there exists an $x^{*} \in K^{n}$ such that for some $T^{*} \subset I$ it holds that $x \in C^{T^{*}}, x_{j}^{*}=$

0 when $-j \notin T^{*}$, and $x_{j}^{*}=1$ when $+j \notin T^{*}$.

The theorem says that if the n-dimensional unit cube is covered by closed sets labelled by a set of n indices containing for $j=1, \ldots, n$ either $+j$ or $-j$, then there is a point x^{*} in the unit cube such that for every $j \in I_{n}$ it holds that i) $x_{j}^{*}=0$ or $x^{*} \in C^{T}$ for some T containing $-j$, and ii) $x_{j}^{*}=1$ or $x^{*} \in C^{T}$ for some T containing $+j$. In case K^{n} is covered by just one set C^{T}, then the vertex v of K^{n} with $v_{j}=0$ if $+j \in T$ and $v_{j}=1$ if $-j \in T$ is the only intersection point. Theorem 3.2 reduces on K^{n} to the following corollary.

Corollary 4.2. Let $\left\{C^{T}, T \in \mathcal{I}\right\}$ be a collection of closed subsets covering K^{n} such that if x lies in the boundary of K^{n} then there exists a $T \in I$ satisfying $x \in C^{T}$ and for some $j \in I_{N}$ the set T contains an index $-j$ for which $x_{j}=0$ or an index $+j$ for which $x_{j}=1$. Then there is an $x^{*} \in K^{n}$ such that for every $j \in I_{n}$ both $x^{*} \in C^{T_{1}}$ for some $T_{1} \in I$ with $+j \in T_{1}$ and $x^{*} \in C^{T_{2}}$ for some $T_{2} \in I$ with $-j \in T_{2}$, i.e., $C^{I} \neq \emptyset$.

Theorem 3.3 simplifies on K^{n} to the following result.

Corollary 4.3. Let $\left\{C^{T}, T \in \mathcal{I}\right\}$ be a collection of closed subsets covering K^{n} such that if x lies in the boundary of K^{n} then there is a C^{T} containing x that satisfies $x_{j}>0$ when $-j \in T$ and $x_{j}<1$ when $+j \in T$. Then $C^{I} \neq \emptyset$.

The last two corollaries give conditions under which there exists an intersection point which is labelled by all indices out of the set I. Notice that there are $2 n$ different indices and 2^{n} different labels possible.

5 Application to noncoopertative games

An application of the intersection theorems mentioned in this paper is to prove the existence of a Nash equilibrium in a noncooperative game with N players where for every $j \in I_{N}$ player j has $n_{j}+1$ pure actions. For $k=1, \ldots, n_{j}+1$, the index (j, k) refers now to the k th action of player $j, j=1, \ldots, N$. Further, for $(j, k) \in I$ and $x \in S$, the number $x_{j k}$ equals the probability with which player j chooses action (j, k). An element x of S denotes a strategy vector of the game and for $j \in I_{N}$ the element x_{j} denotes a strategy of player j. Given strategy vector $x \in S$ the $\left(n_{j}+1\right)$-vector $z_{j}(x)$ denotes
the marginal payoff vector for player j at x, i.e., for $(j, k) \in I, z_{j k}(x)$ is the payoff or profit for player j when he plays action (j, k) and the other players play according to the strategy vector x. For $j \in I_{N}$, the function $z_{j}: S \rightarrow \mathbf{R}^{n_{j}+1}$ is linear in x_{i} for any given $i \in I_{N}$. At strategy vector $x \in S$ the expected payoff for player j equals $x_{j}^{T} z_{j}(x)$. An element $x^{*} \in S$ is a Nash equilibrium strategy vector if and only if

$$
z_{j k}\left(x^{*}\right)=\max _{h} z_{j h}\left(x^{*}\right) \text { whenever } x_{j k}^{*}>0 .
$$

At an equilibrium a player only chooses an action with positive probability when the marginal payoff of that action is maximal for him. An action of a player, having maximal marginal payoff given some strategy vector $x \in S$ is called an optimal action at x. Therefore, at a Nash equilibrium strategy vector every player chooses a nonoptimal action with probability zero. So x^{*} is a Nash equilibrium strategy vector if and only if x^{*} is a stationary point of the marginal payoff function $z: S \rightarrow \Pi_{j=1}^{N} \mathbf{R}^{n_{j+1}}$.

At an arbitrary strategy vector $x \in S$ it holds that for every player at least one of his actions is optimal. We therefore could label every point x with any set of N indices such that for each player his index is referring to one of his optimal actions at x. In this way we can cover the strategy space S by a collection of sets $C^{T}, T \in \mathcal{I}$, defined by

$$
C^{T}=\left\{x \in S \mid z_{j k}(x)=\max _{h} z_{j h}(x) \text { if }(j, k) \in T\right\}
$$

The set C^{T} denotes the set of strategy vectors in S where every action $(j, k) \in T$ is optimal for player $j, j=1, \ldots, N$. Because of the continuity of the function z in x we have the property that every set $C^{T}, T \in \mathcal{I}$, is closed (or empty). Hence, according to Theorem 3.1 there exists an $x^{*} \in S$ and a $T^{*} \subset I$ such that $x^{*} \in C^{T^{*}}$ and $x_{j k}^{*}=0$ whenever $(j, k) \notin T^{*}$. From this it follows that

$$
z_{j k}\left(x^{*}\right)=\max _{h} z_{j h}\left(x^{*}\right) \text { if }(j, k) \in T^{*}
$$

and

$$
x_{j k}^{*}=0 \text { if }(j, k) \notin T^{*} .
$$

Consequently, any intersection point is a Nash equilibrium strategy vector. Of course, the converse is also true.

Corollary 5.1. Every noncooperative game with a finite number of players and actions has a Nash equilibrium strategy vector.

6 References

[1] R.W. Freund, "Combinatorial theorems on the simplotope that generalize results on the simplex and cube", Mathematics of Operations Research 11, 1986, 169-179.
[2] T. Ichiishi, "Alternative version of Shapley's theorem on closed coverings of a simplex", Proc. Am. Math. Soc. 104, 1988, 759-763.
[3] S. Kakutani, "A generalization of Brouwer's fixed-point theorem", Duke Math. J. 8, 1941, 457-459.
[4] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, "Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe", Fundam. Math. 14, 1929, 132-137.
[5] H.W. Kuhn, "Some combinatorial lemmas in topology", IBM J. Res. Develop. 4, 1960, 518-524.
[6] G. van der Laan and A.J.J. Talman, "On the computation of fixed points in the product space of unit simplices and an application to noncooperative N-person games", Mathematics of Operations Research 7, 1982, 1-13.
[7] G. van der Laan, A.J.J. Talman and L. Van der Heyden. "Simplicial variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using a general labelling", Mathematics of Operations Research 12, 1987, 377-397.
[8] H.J. Lüthi, "A simplicial approximation of a solution for the nonlinear complementarity problem", Mathematical Programming 9, 1975, 278-293.
[9] H. Scarf, The Computation of Economic Equilibria, Yale University Press, New Haven, CT, USA, 1973.
[10] L.S. Shapley, "On balanced games without side payments", in: Mathematical Programming, T.C. Hu and S.M. Robinson, eds., Academic Press, New York, NY, USA, 1980, pp. 261-290.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:		
(For previous papers please consult previous discussion papers.)		
No.	Author(s)	Title
9232	F. Vella and M. Verbeek	Estimating the Impact of Endogenous Union Choice on Wages Using Panel Data
9233	P. de Bijl and S. Goyal	Technological Change in Markets with Network Externalities
9234	J. Angrist and G. Imbens	Average Causal Response with Variable Treatment Intensity
9235	L. Meijdam, M. van de Ven and H . Verbon	Strategic Decision Making and the Dynamics of Government Debt
9236	H. Houba and A. de Zeeuw	Strategic Bargaining for the Control of a Dynamic System in State-Space Form
9237	A. Cameron and P. Trivedi	Tests of Independence in Parametric Models: With Applications and Illustrations
9238	J.-S. Pischke	Individual Income, Incomplete Information, and Aggregate Consumption
9239	H. Bloemen	A Model of Labour Supply with Job Offer Restrictions
9240	F. Drost and Th. Nijman	Temporal Aggregation of GARCH Processes
9241	R. Gilles, P. Ruys and J. Shou	Coalition Formation in Large Network Economies
9242	P. Kort	The Effects of Marketable Pollution Permits on the Firm's Optimal Investment Policies
9243	A.L. Bovenberg and F. van der Ploeg	Environmental Policy, Public Finance and the Labour Market in a Second-Best World
9244	W.G. Gale and J.K. Scholz	IRAs and Household Saving
9245	A. Bera and P. Ng	Robust Tests for Heteroskedasticity and Autocorrelation Using Score Function
9246	R.T. Baillie, C.F. Chung and M.A. Tieslau	The Long Memory and Variability of Inflation: A Reappraisal of the Friedman Hypothesis
9247	M.A. Tieslau, P. Schmidt and R.T. Baillie	A Generalized Method of Moments Estimator for LongMemory Processes

No.	Author(s)	Title
9248	K. Wärneryd	Partisanship as Information
9249	H. Huizinga	The Welfare Effects of Individual Retirement Accounts
9250	H.G. Bloemen	Job Search Theory, Labour Supply and Unemployment Duration
9251	S. Eijffinger and	Central Bank Independence: Searching for the Philosophers'
	E. Schaling	Stone
9252	A.L. Bovenberg and R.A. de Mooij	Environmental Taxation and Labor-Market Distortions
9253	A. Lusardi	Permanent Income, Current Income and Consumption: Evidence from Panel Data
		Imperfect Credibility of the Band and Risk Premia in the
9254	R. Beetsma	European Monetary System

No.	Author(s)	Title
9314	O.P.Attanasio and M . Browning	Consumption over the Life Cycle and over the Business Cycle
9315	F. C. Drost and B. J. M. Werker	A Note on Robinson's Test of Independence
9316	H. Hamers, P. Borm and S. Tijs	On Games Corresponding to Sequencing Situations with Ready Times
9317	W. Güth	On Ultimatum Bargaining Experiments - A Personal Review
9318	M.J.G. van Eijs	On the Determination of the Control Parameters of the Optimal Can-order Policy
9319	S. Hurkens	Multi-sided Pre-play Communication by Burning Money
9320	J.J.G. Lemmen and S.C.W. Eijffinger	The Quantity Approach to Financial Integration: The Feldstein-Horioka Criterion Revisited
9321	A.L. Bovenberg and S. Smulders	Environmental Quality and Pollution-saving Technological Change in a Two-sector Endogenous Growth Model
9322	K.-E. Wärneryd	The Will to Save Money: an Essay on Economic Psychology
9323	D. Talman, Y. Yamamoto and Z. Yang	The ($\left.2^{n+m+1}-2\right)$-Ray Algorithm: A New Variable Dimension Simplicial Algorithm For Computing Economic Equilibria on $\mathrm{S}^{\mathrm{n}} \times \mathrm{R}_{+}^{\mathrm{m}}$
9324	H. Huizinga	The Financing and Taxation of U.S. Direct Investment Abroad
9325	S.C.W. Eijffinger and E. Schaling	Central Bank Independence: Theory and Evidence
9326	T.C. To	Infant Industry Protection with Learning-by-Doing
9327	J.P.J.F. Scheepens	Bankruptcy Litigation and Optimal Debt Contracts
9328	T.C. To	Tariffs, Rent Extraction and Manipulation of Competition
9329	F. de Jong, T. Nijman and A. Röell	A Comparison of the Cost of Trading French Shares on the Paris Bourse and on SEAQ International
9330	H. Huizinga	The Welfare Effects of Individual Retirement Accounts
9331	H. Huizinga	Time Preference and International Tax Competition
9332	V. Feltkamp, A. Koster, A. van den Nouweland, P. Borm and S. Tijs	Linear Production with Transport of Products, Resources and Technology

No.	Author(s)	Title
9333	B. Lauterbach and U. Ben-Zion	Panic Behavior and the Performance of Circuit Breakers: Empirical Evidence
9334	B. Melenberg and A. van Soest	Semi-parametric Estimation of the Sample Selection Model
9335	A.L. Bovenberg and F. van der Ploeg	Green Policies and Public Finance in a Small Open Economy
9336	E. Schaling	On the Economic Independence of the Central Bank and the Persistence of Inflation
9337	G.-J. Otten	Characterizations of a Game Theoretical Cost Allocation Method
9338	M. Gradstein	Provision of Public Goods With Incomplete Information: Decentralization vs. Central Planning
9339	W. Güth and H. Kliemt	Competition or Co-operation
9340	T.C. To	Export Subsidies and Oligopoly with Switching Costs
9341	A. Demirgüç-Kunt and H. Huizinga	Barriers to Portfolio Investments in Emerging Stock Markets
9342	G.J. Almekinders	Theories on the Scope for Foreign Exchange Market Intervention
9343	E.R. van Dam and W.H. Haemers	Eigenvalues and the Diameter of Graphs
9344	H. Carlsson and S. Dasgupta	Noise-Proof Equilibria in Signaling Games
9345	F. van der Ploeg and A.L. Bovenberg	Environmental Policy, Public Goods and the Marginal Cost of Public Funds
9346	J.P.C. Blanc and R.D. van der Mei	The Power-series Algorithm Applied to Polling Systems with a Dormant Server
9347	J.P.C. Blane	Performance Analysis and Optimization with the Powerseries Algorithm
9348	R.M.W.J. Beetsma and F. van der Ploeg	Intramarginal Interventions, Bands and the Pattern of EMS Exchange Rate Distributions
9349	A. Simonovits	Intercohort Heterogeneity and Optimal Social Insurance Systems
9350	R.C. Douven and J.C. Engwerda	Is There Room for Convergence in the E.C.?
9351	F. Vella and M. Verbeek	Estimating and Interpreting Models with Endogenous Treatment Effects: The Relationship Between Competing Estimators of the Union Impact on Wages

No. Author(s)

9352	C. Meghir and
G. Weber	

9353 V. Feltkamp

9354	R.J. de Groof and
	M.A. van Tuijl

9355 Z. Yang

9356 E. van Damme and S. Hurkens

9357 W. Güth and B. Peleg
9358 V. Bhaskar
9359 F. Vella and M. Verbeek

9360 W.B. van den Hout and J.P.C. Blanc

9361 R. Heuts and J. de Klein
P.J.-J. Herings

9365 F. van der Ploeg and
A. L. Bovenberg

9366

9367 H.G. Bloemen and
A. Kapteyn

9368 M.R. Baye, D. Kovenock and C.G. de Vries

9369 T. van de Klundert and S. Smulders

Title
Intertemporal Non-separability or Borrowing Restrictions? A
Disaggregate Analysis Using the US CEX Panel
Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values

Aspects of Goods Market Integration. A Two-Country-Two -Sector Analysis

A Simplicial Algorithm for Computing Robust Stationary Points of a Continuous Function on the Unit Simplex

Commitment Robust Equilibria and Endogenous Timing

On Ring Formation In Auctions
Neutral Stability In Asymmetric Evolutionary Games
Estimating and Testing Simultaneous Equation Panel Data Models with Censored Endogenous Variables

The Power-Series Algorithm Extended to the BMAP/PH/1 Queue

An (s, q) Inventory Model with Stochastic and Interrelated Lead Times

A Closer Look at Economic Psychology
On the Connectedness of the Set of Constrained Equilibria
A Note on "Macroeconomic Policy in a Two-Party System as a Repeated Game"

Direct Crowding Out, Optimal Taxation and Pollution Abatement

Sector Participation in Labour Supply Models: Preferences or Rationing?

The Estimation of Utility Consistent Labor Supply Models by Means of Simulated Scores

The Solution to the Tullock Rent-Seeking Game When $\mathrm{R}>2$: Mixed-Strategy Equilibria and Mean Dissipation Rates

The Welfare Consequences of Different Regimes of Oligopolistic Competition in a Growing Economy with Firm-Specific Knowledge

Intersection Theorems on the Simplotope
P.O. BOX 90153,5000 LE TILBURG, THE NETHERLAND Bibliotheek K. U. Brabant

17000011335701

[^0]: ${ }^{1}$ Department of Econometrics, Free University, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
 ${ }^{2}$ Department of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands This research is part of the VF-program "Competition and Cooperation"

