 for
Fconomic Research CBM
CBM
R
8414
$1989 \quad 51$

Discussion paper

51

No. 8951

SIMPLE ESTIMATORS FOR DYNAMIC PANEL

 DATA MODELS WITH ERRORS IN VARIABLES RY6by Tom Wansbeek
518.92
and Arie Kapteyn

October, 1989

SIMPLE ESTIMATORS FOR DYNAMIC PANEL data models with errors in variables

Tom Wansbeek, Groningen University Arie Kapteyn, Tilburg University

Abstract:

Simple dynamic models with individual effects are considered in which lagged endogenous or exogenous variabels are observed with error. The inconsistencies of estimators based on the elimination of individual effects are established. The results can be used to construct tractable consistent, and sometimes asymptotically efficient estimators. The emphasis is on simplicity of derivations and tractability of the resulting estimators, rather than on generality or newness of results.

Forthcoming in: Ronald Bewley and Tran Van Hoa (eds.), In Honour of Henri Theil, 1989.

We thank Marno Verbeek for comments.

1. INTRODUCTION

The model considered in this paper is a rather simple dynamic error components model. Models of this type have been studied by a number of authors, including Nerlove (1967, 1971), Trognon (1978), Anderson and Hsiao (1981), and Sevestre and Trognon (1985). Our assumptions will be fairly conventional, except for the fact that lagged endogenous or exogenous variables are allowed to suffer from measurement error. A variant of this model, not including error components, has been studied extensively in the literature, cf. Aigner et al. (1984). A full treatment of ML estimation in this so-called dynamic shock-error model has been given by Ghosh (1989). Griliches and Hausman (1986) study another variant, namely a static panel data model with measurement error in the exogenous variables.

The analysis of parameter estimation in models of this type tends to lead to rather complicated, if not messy, algebra. Our emphasis is on the use of methods that simplify derivations. The estimators presented can be written down in a transparent way and are easy to compute. Given that we aim at simplicity and tractability, generality is sacrificed whenever thought necessary.

In the Handbook of econometrics, Hans Theil (1983) asked the question "Why are matrix methods useful?" and of course he himself gave a most convincing answer, as one would expect from somebody who contributed so much to econometrics, in terms of both content and method. The present piece is partly meant as another illustration of how useful matrix methods are.

The set-up of this essay is as follows. In section 2 , we start by considering a dynamic model, assuming exact measurement. In this context, we derive plims of a broad class of inconsistent, parameter estimators and consider the implied consistent estimators in section 3. Variances of these estimators are the subject of section 4. Measurement error is introduced in section 5 , where we briefly review some well-known results and give some new ones. Section 6 integrates the two themes, bringing measurement error and (simple) dynamics together. Section 7 concludes.

2. THE DYNAMIC MODEL

For the time being we entertain the simplest possible dynamic model for panel data. This is

$$
\text { (2.1) } \quad y=\gamma y_{-1}+t_{T} \otimes \alpha+u
$$

where the symbols have the following meaning: let there be N households in the panel, each observed in T time periods. Then y is the NT-vector of observed values of some variable. The subscript -1 indicates a one-period lag. By ${ }^{\prime}$ T we denote a T-vector of ones; α is the N-vector of individual effects, and $u(N T \times 1)$ is the disturbance vector, assumed to be white noise with variance σ_{u}^{2}, independent of y. We do not specify whether α is random or fixed. This issue is avoided since we consider throughout the paper estimators that eliminate these effects. This elimination is achieved by some matrix $R(N T \times N T)$ that has properties

$$
\text { (2.2) } \quad R\left(t_{T} \otimes I_{N}\right)=R^{\prime}\left(t_{T} \otimes I_{N}\right)=0
$$

Below we will of ten impose more structure on R, frequently of the form
(2.3) $\quad R=Q \otimes I_{N}$
with $Q=Q^{\prime}$ a $T \times T$-matrix with $Q t_{T}=0$. In view of the requirements of section 4 we will use a general R as much as possible, though.

The central issue is the behavior of the OLSE of γ in the model where R is used to eliminate the effects, that is, of
(2.4) $\hat{\gamma}(R)=\frac{y^{\prime R y}-1}{y_{-1}^{\prime R y}-1}=$

$$
=\gamma+\frac{u^{\prime} R y_{-1} / N}{y_{-1}^{\prime R y_{-1}} / N}
$$

$$
=\gamma+\frac{\ell_{1}(R)}{m_{1}(R)}
$$

with, in general.
(2.5) $\quad \ell_{t}(R) \equiv \frac{1}{N} u^{\prime} R_{-t}$
(2.6) $\quad m_{t}(R) \equiv \frac{1}{N} y_{-t}^{\prime}{ }^{R y}-t$,
where the subscript -t indicates a t-period lag. We also need

$$
r_{t}(R) \equiv \frac{1}{N} u^{\prime} R u_{-t} .
$$

The expectations of these variables will be of importance:
(2.7) $\quad \lambda_{t}(R) \equiv E \ell_{t}(R)$
(2.8) $\quad \mu_{t}(R) \equiv E m_{t}(R)$
(2.9) $\quad \rho_{t}(R) \equiv E r_{t}(R)$.

Under general conditions there holds
(2.10) $\operatorname{plim}_{N \rightarrow \infty} \hat{\gamma}(R)=\gamma+\frac{\lambda_{1}(R)}{\mu_{1}(R)}$
and we now work this out. Throughout, we will only be concerned with plim's that have N go to infinity and take T fixed. This is motivated by the typical panel, which contains observations on many individuals at a few points in time.
3. PROBABILITY LIMITS

First an auxiliary result is needed, concerning the $\rho_{t}(R)$:
(3.1) $\quad \rho_{t}(R)=\frac{1}{N} E u^{\prime} R u_{-t}$

$$
=\frac{1}{N} \sigma_{\mathrm{u}}^{2} \operatorname{trR}\left(\mathrm{~B}_{\mathrm{t}}^{\prime} \otimes I_{\mathrm{N}}\right)
$$

where $B_{t}(T \times T)$ is the t-period backward-shift operator:
(3.2) $\mathrm{B}_{\mathrm{t}} \equiv\left[\begin{array}{llll}0 \begin{array}{lll}0 & \ldots & 1\end{array} \cdots & \cdots & 0 \\ & & & \cdot \\ 1 \\ & & & 0\end{array}\right] \mathrm{T}-\mathrm{t}$,
for $t=0, \ldots, T-1 ; B_{0}=I_{T}$ and $B_{T}=0$. We can now elaborate $\lambda_{1}(R)$. Take model (1.1), lag it by t :
(3.3)

$$
y_{-t}=\gamma y_{-(t+1)}+t_{T} \otimes \alpha+u_{-t},
$$

premultipy by $u^{\prime} R / N$ and take expectations to obtain
(3.4) $\quad \lambda_{t}(R)=\gamma \lambda_{t+1}(R)+\rho_{t}(R)$.

So

$$
\left[\begin{array}{llll}
1 & -\gamma & \tag{3.5}\\
& \cdot & : & \\
& & & 1-\gamma
\end{array}\right]\left[\begin{array}{l}
\lambda_{1}(R) \\
\vdots \\
\lambda_{T-1}(R)
\end{array}\right]=\left[\begin{array}{l}
\rho_{1}(R) \\
\vdots \\
e_{T-1}(R)
\end{array}\right]
$$

Note that $\lambda_{T}(R)=0$. Solving (3.5) gives for $\lambda_{1}(R)$
(3.6) $\quad \lambda_{1}(R)=\left(1, \gamma, \ldots, \gamma^{T-2}\right)\left[\begin{array}{c}e_{1}(R) \\ \vdots \\ \rho_{T-1}(R)\end{array}\right]$

$$
\begin{aligned}
& =\sum_{t=0}^{T-2} \gamma^{t} \rho_{t+1}(R) \\
& =\frac{1}{N} \sigma_{u}^{2} t r R\left(\left\{\sum_{t=0}^{T-2} \gamma^{t} B_{t+1}^{\prime}\right] \otimes I_{N}\right) \\
& =\frac{1}{N} \sigma_{u}^{2} \operatorname{tr} R\left(L^{\prime} \otimes I_{N}\right)
\end{aligned}
$$

where $L^{\prime}(T \times T)$ is implicitly defined as the matrix in braces:
(3.7)

$$
L^{\prime}=\left(\begin{array}{lllll}
0 & 1 & & \gamma & \cdots
\end{array} \gamma^{\mathrm{T}-2}\right)
$$

When R has structure (2.3), (3.6) simplifies to:
(3.8) $\quad \lambda_{1}(R)=\sigma_{u}^{2} \operatorname{tr} Q L$
and in particular for $Q=A_{T} \equiv I_{T}-\frac{1}{T}{ }^{\prime} T^{\prime}{ }^{\prime}$ ' the "within" transformation,
(3.9) $\quad \lambda_{1}(\mathrm{R})=\sigma_{\mathrm{U}}^{2} \operatorname{tr} \mathrm{~A}_{\mathrm{T}} \mathrm{L}=$

$$
\begin{aligned}
& =-\frac{1}{T} \sigma_{u^{\prime}}^{2} \mathrm{~T}^{\mathrm{L} \mathrm{\ell}} \mathrm{~T} \\
& =-\sigma_{\mathrm{u}}^{2} \frac{\varphi}{1-\gamma},
\end{aligned}
$$

with
(3.10) $\varphi \equiv 1-\frac{1}{T} \frac{1-\gamma^{T}}{1-\gamma}$.

Another interesting case is to eliminate the individual effect by differencing the data. Then for
(3.11) $\quad D^{\prime} \equiv\left[\begin{array}{lllllll}-1 & -1 & 1 & T & & & \\ & & \cdot & : & A_{-} & & \\ & & & & 1 & 1\end{array}\right] \mathrm{T}-1$
there holds $Q=D^{\prime}$, so
(3.12) $\lambda_{1}(R)=\sigma_{u}^{2} \operatorname{tr} D D^{\prime} L$

$$
\begin{aligned}
& =\sigma_{\mathrm{u}}^{2} \operatorname{tr} \mathrm{D}^{\prime} \mathrm{LD} \\
& =-\sigma_{\mathrm{u}}^{2}(\mathrm{~T}-1) .
\end{aligned}
$$

Hence $\lambda_{1}(R)$ is independent of γ.

After $\lambda_{1}(R)$ in the numerator of (2.10), we now consider $\mu_{1}(R)$ in the denominator. We make a simplifying assumption of stationarity in the sense that $\mu_{t}(R)=\mu(R)$, independent of t. Then
(3.13) $\quad \mu_{1}(R)=\mu(R)$

$$
\begin{aligned}
& =\frac{1}{N} E y^{\prime} R y \\
& =\frac{1}{N} E\left(\gamma y_{-1}+u\right)^{\prime} R\left(\gamma y_{-1}+u\right) \\
& =\gamma^{2} \mu(R)+\gamma\left\{\lambda_{1}(R)+\lambda_{1}\left(R^{\prime}\right)\right\}+\frac{1}{N} \sigma_{u}^{2} t r R \\
& =\gamma^{2} \mu(R)+\frac{1}{N} \sigma_{u}^{2} \operatorname{tr} R\left\{\left(I_{T}+\gamma L+\gamma L^{\prime}\right) \otimes I_{N}\right\} \\
& =\gamma^{2} \mu(R)+\frac{1}{N} \sigma_{u}^{2} \operatorname{tr} R\left(S \otimes I_{N}\right)
\end{aligned}
$$

with S (implicitly defined) the usual $\mathrm{AR}(1)$ correlation matrix with parameter γ. From (3.13) it follows that
(3.14) $\mu(R)=\frac{1}{1-\gamma^{2}} \frac{1}{N} \sigma_{u}^{2} \operatorname{tr} R\left(S \otimes I_{N}\right)$.

For $R=Q \otimes I_{N}$ this reduces to
(3.15) $\mu(R)=\frac{1}{1-\gamma^{2}} \sigma_{u}^{2} \operatorname{tr} Q S$.

Combining (2.10), (3.8), and (3.15) we obtain
(3.16) $\underset{N \rightarrow \infty}{p \lim _{N \rightarrow \infty}} \hat{\gamma}=\gamma+\left(1-\gamma^{2}\right) \frac{\operatorname{tr} Q L}{\operatorname{tr} Q S}$

$$
=\gamma+\left(1-\gamma^{2}\right) \frac{\operatorname{tr} Q L}{\operatorname{tr} Q+2 \gamma \operatorname{tr} Q L}
$$

In the two particular cases considered above, we have for $Q=A_{T}$ (so $\operatorname{tr} \mathrm{Q}=\mathrm{T}-1$),
(3.17) $\operatorname{plim}_{N \rightarrow \infty} \hat{\gamma}=\gamma-(1+\gamma) \frac{\varphi}{\mathrm{T}-\left(1+2 \varphi \frac{\gamma}{1-\gamma}\right]}$
and for $Q=D^{\prime}\left(\right.$ so $\left.\operatorname{tr} D^{\prime}=\operatorname{tr} D^{\prime} D=2(T-1)\right)$.

$$
\begin{align*}
\underset{N \rightarrow \infty}{p \lim _{N \rightarrow \infty} \hat{\gamma}} & =\gamma-\left(1-\gamma^{2}\right) \frac{T-1}{2(T-1)-2 \gamma(T-1)} \tag{3.18}\\
& =\frac{1}{2}(\gamma-1)
\end{align*}
$$

Both estimators are inconsistent. The inconsistency is introduced by the elimination of the effects. Both (3.17) and (3.18) can be used to arrive at a consistent estimator; write (3.17) or (3.18) as plim $\hat{\gamma}=f(\gamma)$ and estimate γ by $\hat{\hat{\gamma}}=f^{-1}(\hat{\gamma})$. This is trivial in case of (3.18) and requires numerical methods in the case of (3.17). Expression (3.17) has been derived before (along different lines, and in a somewhat different form) by Nickell (1981).

4. VARIANCES

When a consistent estimator is derived by transforming $\hat{\gamma}(R)$, the next question is one of second-order properties. In order to say something about asymptotic distribution, the essential step is to derive the variance of $\ell_{1}(R)$. We do so under the assumption of normality of u.

The method we use for easy computation is that of "repeated conditioning" as introduced by Merckens and Wansbeek (1989). To appreciate this method it is easiest to consider what it looks like in the present context:

$$
\begin{align*}
& E\left(\ell_{1}(R)\right)^{2}=\frac{1}{N^{2}} E\left(u^{\prime} R y_{-1}\right)^{2} \tag{4.1}\\
& \quad=\frac{1}{N^{2}}\left(E_{12} E_{34}+E_{13} E_{24}+E_{14} E_{23}\right) u_{(1)}^{\prime R y_{-1}}{ }^{\prime}(2) u_{(3)^{\prime} R y_{-1}}(4)
\end{align*}
$$

This means the following: the four random variables are labeled (in parentheses) $1-4$, and the expectation operator is broken down in three terms of two subsequent operations each. For example, E_{12} denotes the expectation with respect to the random variables labeled 1 and 2 , considering
everything else constant (even though variable 3 in this case is the same as variable 1!). The operator $\mathrm{E}_{12} \mathrm{E}_{34}$ denotes the above operation, followed by taking the expectation w.r.t. variables 3 and 4. The order of both operations is immaterial. The method of repeated conditioning is not restricted to the case of four random variables, but extends to an arbitrary number.

We are now in a position to look at the variance. Since, trivially,

$$
\begin{equation*}
\left(E \ell_{1}(R)\right)^{2}=\frac{1}{N^{2}} E_{12} E_{34^{u}}{ }_{(1)} R_{-1(2)}{ }^{\mathrm{uy}_{(3)^{\prime}}^{R y}}{ }_{-1(4)}, \tag{4.2}
\end{equation*}
$$

the variance of $l_{1}(R)$ can be evaluated using (3.6) and (3.14) repeatedly:
(4.3) $\operatorname{Var}\left(\ell_{1}(R)\right)=E\left(\ell_{1}(R)\right)^{2}-\left(E\left(\ell_{1}(R)\right)^{2}\right.$

$$
\begin{aligned}
& =\frac{1}{N^{2}}\left(\mathrm{E}_{13} \mathrm{E}_{24}+\mathrm{E}_{14} \mathrm{E}_{23}\right) \mathrm{u}_{(1)^{\mathrm{Ry}}}^{-1(2)^{\mathrm{u}}}{ }_{(3)^{\mathrm{Ry}}}^{-1(4)} \\
& =\frac{1}{\mathrm{~N}} \mathrm{E}_{13}\left\{\mathrm{E}_{24} \frac{1}{\mathrm{~N}} \mathrm{y}_{\left.-1(2)^{\prime} \mathrm{R}^{\mathrm{R}^{\prime}}(1)^{\mathrm{u}^{\prime}}(3)^{\mathrm{Ry}}-1(4)\right\}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{N} E \mu\left(R^{\prime} u u^{\prime} R\right)+\frac{1}{N} E \lambda_{1}\left(\text { Ry }_{-1} u^{\prime} R\right) \\
& =\frac{1}{N} \sigma_{u}^{2}\left\{\mu\left(R^{\prime} R\right)+E \frac{1}{N} \operatorname{tr} R_{-1} u^{\prime} R\left(L^{\prime} \otimes I_{N}\right)\right\} \\
& =\frac{1}{N} \sigma_{u}^{2}\left\{\mu\left(R^{\prime} R\right)+E \frac{1}{N} u^{\prime} R\left(L^{\prime} \otimes I_{N}\right) R y-1\right\} \\
& =\frac{1}{N} \sigma_{u}^{2}\left\{\mu\left(R^{\prime} R\right)+E \lambda_{1}\left(R\left(L^{\prime} \otimes I_{N}\right) R\right)\right\} \\
& =\frac{1}{N^{2}} \sigma_{u}^{4}\left\{\frac{1}{1-\gamma^{2}} \operatorname{tr} R^{\prime} R\left(S \otimes I_{N}\right)+\operatorname{tr}\left(R\left(L \cdot I_{N}\right)\right)^{2}\right\} \text {. }
\end{aligned}
$$

For the case $R=Q \otimes I_{N}$, this simplifies to
(4.4) $\operatorname{Var}\left(\ell_{1}(R)\right)=\frac{1}{N} \sigma_{U}^{4} \operatorname{tr}\left(\frac{1}{1-\gamma^{2}} Q^{2} S+\right.$ QLQL $)$.

In the above derivation our calculus with the λ - and μ-functions appears to pay off.
5. MEASUREMENT ERROR IN STATIC PANEL DATA MODELS

We now introduce measurement error. To start with we do so in the context of a static model, and repeat the pertaining results in this area. These are from Griliches and Hausman (1986), in part elaborated by Wansbeek and Koning (1989). The model is
(5.1) $y=x \beta+\iota_{T} \otimes \alpha+u$,
where the difference with (1.1) is the substitution of a (single strictly) exogenous variable x for y_{-1}. This $x(N T \times 1)$ is unobservable and instead we observe
(5.2) $\quad x_{*}=x+v$
with v white noise with variance σ_{v}^{2}. We start again from OLS in a model with effects eliminated by $R=Q \otimes I_{N}, Q=Q^{\prime}$. By entirely standard operations we arrive at
(5.3) $\underset{N \rightarrow \infty}{p \lim } \hat{\beta}=\underset{N \rightarrow \infty}{p \lim _{N \rightarrow \infty}} \frac{y^{\prime} R x_{*}}{y^{\prime} R x_{*}}$

$$
=\beta\left(1-\sigma_{v}^{2} \psi\right)
$$

with
(5.4) $\psi \equiv \frac{\operatorname{tr} Q}{\operatorname{tr} Q \Sigma_{*}}$
and Σ_{*} is the $T \times T$ covariance matrix of the $x_{n}{ }^{\prime} s, x_{n}$ being the T-vector of x 's for household n. Σ_{*} is consistently estimable from the data and for all practical purposes we may assume it known. A consistent estimator for
β is obtained by using two different Q 's, hence two different $\hat{\beta}^{\prime} s, \hat{\beta}_{1}$ and $\hat{\beta}_{2}$, say and two different $\psi^{\prime} s, \psi_{1}$ and ψ_{2}, say. Then

$$
\begin{equation*}
\underset{N \rightarrow \infty}{\operatorname{plim}} \hat{\beta}_{i}=\beta_{i} \equiv \beta\left(1-\sigma_{\mathrm{v}}^{2} \psi_{i}\right), \tag{5.5}
\end{equation*}
$$

so by construction the estimators
(5.6) $\hat{\beta}=\frac{\psi_{1} \hat{\beta}_{2}-\psi_{2} \hat{\beta}_{1}}{\psi_{1}-\psi_{2}}$
and

$$
\begin{equation*}
\hat{\sigma}_{v}^{2} \equiv \frac{\hat{\beta}_{2}-\hat{\beta}_{1}}{\psi_{1} \hat{\beta}_{2}-\psi_{2} \hat{\beta}_{1}} \tag{5.7}
\end{equation*}
$$

are consistent. When we construct more than two (m, say) estimators by using m different $Q^{\prime} s$, we obtain m equations of the type (5.5), and we are faced with a situation of overdetermination since there still are two parameters. Optimal estimators are obtained by using the minimum distance method (e.g. Hsiao, 1986) based on a consistent estimator of the asymptotic covariance matrix of the $\hat{\beta}_{i}$'s. Wansbeek and Koning (1989) show that the (i, j)-th element of this matrix is
(5.8) $\mathrm{V}_{\mathrm{ij}} \equiv \operatorname{avar}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)=$

$$
=\frac{1}{\operatorname{tr} Q_{i} \Sigma_{*} \operatorname{tr} Q_{j} \Sigma_{*}}\left\{\beta^{2} \sigma_{v}^{4} \operatorname{tr} Q_{i} Q_{j}+\left(\sigma_{u}^{2}+\beta^{2} \sigma_{v}^{2}\right) \operatorname{tr} Q \Sigma_{*} Q\right\},
$$

when the underlying distribution is normal. This result is easily derived by using the repeated conditioning method again.

The minimum distance estimators have a closed-form solution. Let
(5.9) $\quad \psi \equiv\left(\psi_{1}, \ldots, \psi_{m}\right)^{\prime}$
(5.10) $t \equiv\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}\right)^{\prime}$
then
(5.11) $\hat{\beta}=\frac{\frac{\psi^{\prime} t}{\psi^{\prime} \psi}-\frac{1^{\prime} t}{1^{\prime} \psi}}{\frac{\psi^{\prime} l}{\psi^{\prime} \psi}-\frac{1^{\prime} l}{1^{\prime} \psi}}$
(5.12) $\hat{\sigma}_{V}^{2}=\frac{\frac{\psi^{\prime} l}{\psi^{\prime} t}-\frac{l^{\prime} l}{1^{\prime} t}}{\psi^{\prime} \psi} \psi^{\prime} t-\frac{l^{\prime} \psi}{l^{\prime} t}$,
where all inproducts are in the metric of V , see (5.8).

6. MEASUREMENT ERROR IN A DYNAMIC MODEL

We again start from (2.1) and introduce measurement error in y : $y_{*}=y+v$ with v again white-noise measurement error. The equation for the observable vector y_{*} then becomes:
(6.1) $\quad y_{*}=\gamma y_{*-1}+{ }^{\prime} T{ }_{T}^{\otimes \alpha+u+v-\gamma v_{-1}}$
with OLSE
(6.2) $\quad \hat{\gamma}(\mathrm{R})=\frac{\mathrm{y}_{*}^{\prime} \mathrm{Ry}_{*}-1}{\mathrm{y}_{*}^{\prime}-1^{\mathrm{Ry}}{ }_{*}-1}$

$$
=\gamma+\frac{\left(u+v-\gamma v_{-1}\right)^{\prime} R\left(y_{-1}+v_{-1}\right) / N}{\left(y_{-1}+v_{-1}\right)^{\prime} R\left(y_{-1}+v_{-1}\right) / N} .
$$

The expectations involving v are
(6.3) $E v^{\prime} R y_{-1}=E v_{-1}^{\prime} \mathrm{Ry}_{-1}=E u^{\prime R v_{-1}}=0$
(6.4) $\frac{1}{\mathrm{~N}} \mathrm{Ev}^{\prime R v_{-1}}=\frac{1}{\mathrm{~N}} \sigma_{\mathrm{v}}^{2} \operatorname{tr~} \mathrm{R}\left(\mathrm{B}_{1}^{\prime} \otimes \mathrm{I}_{\mathrm{N}}\right)$
(6.5) $\frac{1}{N} E v_{-1}^{\prime} R v_{-1}=\frac{1}{N} \sigma_{V}^{2} \operatorname{tr} R$.

Then for $R=Q \otimes I$ there holds

$$
\begin{equation*}
\operatorname{plim}_{N \rightarrow \infty} \hat{\gamma}(R)=\gamma+\frac{\sigma_{u}^{2} \operatorname{tr} Q L+\sigma_{v}^{2} \operatorname{tr} Q B_{1}-\sigma_{v}^{2} \gamma \operatorname{tr} Q}{\frac{1}{1-\gamma^{2}} \sigma_{u}^{2} \operatorname{tr} Q S+\sigma_{v}^{2} \operatorname{tr} Q} \tag{6.6}
\end{equation*}
$$

For $Q=A_{T}$ this becomes
(6.7) $\underset{N \rightarrow \infty}{\operatorname{plim}} \hat{\gamma}(R)=\gamma-(1+\gamma) \frac{\varphi+\vartheta(\gamma+1 / T)}{T-\left(1+2 \gamma \frac{\varphi}{1-\gamma}\right)+\vartheta(1+\gamma)}$
with
(6.8) $\quad \theta \equiv(1-\gamma)(T-1) \sigma_{\mathrm{v}}^{2} / \sigma_{u}^{2}$
and for differencing this becomes

$$
\begin{equation*}
\operatorname{plim}_{N \rightarrow \infty} \hat{\gamma}(R)=\gamma-\frac{1}{2}(1+\gamma) \frac{1+(1+2 \gamma) \sigma_{v}^{2} / \sigma_{u}^{2}}{1+2(1+\gamma) \sigma_{v}^{2} / \sigma_{u}^{2}} \tag{6.9}
\end{equation*}
$$

Once again, the plims can be used to construct a simple consistent estimator for the parameters in the model. One still needs only two different estimators to do so, although the number of parameters involved is now three. But σ_{u}^{2} and σ_{v}^{2} enter only via their ratio, cf. (6.8) and (6.9).

7. CONCLUDING REMARKS

As suggested in the introduction, the main aim of this note is to offer simplicity. We have exploited some convenient matrix tricks as well as a useful repeated conditioning rule for the evaluation of higer order moments of normally distributed random variables. Given this apparatus, the derivation of estimators for parameters in slightly more complicated models (e.g., with exogenous variables added to (6.1)) is rather straightforward. Generally, one can attain higher efficiency is estimation by employing full information methods, like ML. Even then, the availability of consistent starting values allows one to attain the same efficiency by two-step methods. Hence the derivations given here, also serve a purpose in that context.

REFERENCES

Aigner, D.J., C. Hsiao, A. Kapteyn and T.J. Wansbeek, 1984, "Latent variable models in econometrics", in: Z. Griliches and M.D. Intriligator, (eds.), Handbook of Econometrics, North-Holland, Amsterdam.

Anderson, T.W. and C. Hsiao, 1981, "Estimation of dynamic models with error components", Journal of the American Statistical Association, 76, 598-606.

Ghosh, D., 1989, "Maximum likelihood estimation of the dynamic shock-error model", Journal of Econometrics, 41, 121-143.

Griliches, Z. and J.A. Hausman, 1986, "Errors in variables in panel data", Journal of Econometrics, 31, 93-110.

Hsiao, C., 1986, Analysis of Panel Data, Cambridge University Press, Cambridge.

Merckens, A. and T.J. Wansbeek, 1989, "Formula manipulation in statistics on the computer: Evaluating the expectation of higher-degree functions of normally distributed matrices", Computational Statistics \& Data Analysis, 8, 189-200.

Nerlove, M., 1967, "Experimental evidence on the estimation of dynamic economic relations from a time series of cross-sections", Economic Studies Quarterly, 18, 42-74.

Nerlove, M., 1971, "Further evidence on the estimation of dynamic economic relations from a time series of cross-sections", Econometrica, 39, 359-382.

Sevestre, P. and A. Trognon, 1985, "A note on autoregressive error components models", Journal of Econometrics, 28, 231-245.

Theil, H., 1983, "Linear algebra and matrix methods in econometrics", in: Z. Griliches and M.D. Intriligator, (eds.), Handbook of Econometrics, North-Holland, Amsterdam.

Trognon, A., 1978, "Miscellaneous asymptotic properties of ordinary least squares and maximum likelihood estimators in dynamic error components models", Annales de 1'INSEE, 30-31, 631-657.

Wansbeek, T.J. and R.H. Koning, 1989, Measurement Error and Panel Data, Manuscript, University of Groningen.

No.	Author(s)	Title
8801	Th. van de Klundert and F. van der Ploeg	Fiscal Policy and Finite Lives in Interdependent Economies with Real and Nominal Wage Rigidity
8802	J.R. Magnus and B. Pesaran	The Bias of Forecasts from a First-order Autoregression
8803	A.A. Weber	The Credibility of Monetary Policies, Policymakers' Reputation and the EMS-Hypothesis: Empirical Evidence from 13 Countries
8804	F. van der Ploeg and A.J. de Zeeuw	Perfect Equilibrium in a Model of Competitive Arms Accumulation
8805	M.F.J. Steel	Seemingly Unrelated Regression Equation Systems under Diffuse Stochastic Prior Information: A Recursive Analytical Approach
8806	Th. Ten Raa and E.N. Wolff	Secondary Products and the Measurement of Productivity Growth
8807	F. van der Ploeg	Monetary and Fiscal Policy in Interdependent Economies with Capital Accumulation, Death and Population Growth
8901	Th. Ten Raa and P. Kop Jansen	The Choice of Model in the Construction of Input-Output Coefficients Matrices
8902	Th. Nijman and F. Palm	Generalized Least Squares Estimation of Linear Models Containing Rational Future Expectations
8903	A. van Soest, I. Woittiez, A. Kapteyn	Labour Supply, Income Taxes and Hours Restrictions in The Netherlands
8904	F. van der Ploeg	Capital Accumulation, Inflation and LongRun Conflict in International Objectives
8905	Th. van de Klundert and A. van Schaik	Unemployment Persistence and Loss of Productive Capacity: A Keynesian Approach
8906	A.J. Markink and F. van der Ploeg	Dynamic Policy Simulation of Linear Models with Rational Expectations of Future Events: A Computer Package
8907	J. Osiewalski	Posterior Densities for Nonlinear Regression with Equicorrelated Errors
8908	M.F.J. Steel	A Bayesian Analysis of Simultaneous Equation Models by Combining Recursive Analytical and Numerical Approaches

No.	Author(s)	Title
8909	F. van der Ploeg	Two Essays on Political Economy (i) The Political Economy of Overvaluation (ii) Election Outcomes and the Stockmarket
8910	R. Gradus and A. de Zeeuw	Corporate Tax Rate Policy and Public and Private Employment
8911	A.P. Barten	Allais Characterisation of Preference Structures and the Structure of Demand
8912	K. Kamiya and A.J.J. Talman	Simplicial Algorithm to Find Zero Points of a Function with Special Structure on a Simplotope
8913	G. van der Laan and A.J.J. Talman	Price Rigidities and Rationing
8914	J. Osiewalski and M.F.J. Steel	A Bayesian Analysis of Exogeneity in Models Pooling Time-Series and Cross-Section Data
8915	R.P. Gilles, P.H. Ruys and J. Shou	On the Existence of Networks in Relational Models
8916	A. Kapteyn, P. Kooreman and A. van Soest	Quantity Rationing and Concavity in a Flexible Household Labor Supply Model
8917	F. Canova	Seasonalities in Foreign Exchange Markets
8918	F. van der Ploeg	Monetary Disinflation, Fiscal Expansion and the Current Account in an Interdependent World
8919	W. Bossert and F. Stehling	On the Uniqueness of Cardinally Interpreted Utility Functions
8920	F. van der Ploeg	Monetary Interdependence under Alternative Exchange-Rate Regimes
8921	D. Canning	Bottlenecks and Persistent Unemployment: Why Do Booms End?
8922	C. Fershtman and A. Fishman	Price Cycles and Booms: Dynamic Search Equilibrium
8923	M.B. Canzoneri and C.A. Rogers	Is the European Community an Optimal Currency Area? Optimal Tax Smoothing versus the Cost of Multiple Currencies
8924	F. Groot, C. Withagen and A. de Zeeuw	Theory of Natural Exhaustible Resources: The Cartel-Versus-Fringe Model Reconsidered

No.	Author(s)	Title
8925	O.P. Attanasio and G. Weber	Consumption, Productivity Growth and the Interest Rate
8926	N. Rankin	Monetary and Fiscal Policy in a 'Hartian' Model of Imperfect Competition
8927	Th. van de Klundert	```Reducing External Debt in a World with Imperfect Asset and Imperfect Commodity Substitution```
8928	C. Dang	The D_{1}-Triangulation of R^{n} for Simplicial Algorithms for Computing Solutions of Nonlinear Equations
8929	M.F.J. Steel and J.F. Richard	Bayesian Multivariate Exogeneity Analysis: An Application to a UK Money Demand Equation
8930	F. van der Ploeg	Fiscal Aspects of Monetary Integration in Europe
8931	H.A. Keuzenkamp	The Prehistory of Rational Expectations
8932	E. van Damme, R. Selten and E . Winter	Alternating Bid Bargaining with a Smallest Money Unit
8933	H. Carlsson and E. van Damme	Global Payoff Uncertainty and Risk Dominance
8934	H. Huizinga	National Tax Policies towards ProductInnovating Multinational Enterprises
8935	C. Dang and D. Talman	A New Triangulation of the Unit Simplex for Computing Economic Equilibria
8936	Th. Nijman and M. Verbeek	The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data
8937	A.P. Barten	The Estimation of Mixed Demand Systems
8938	G. Marini	Monetary Shocks and the Nominal Interest Rate
8939	W. Guth and E. van Damme	Equilibrium Selection in the Spence Signaling Game
8940	G. Marini and P. Scaramozzino	Monopolistic Competition, Expected Inflation and Contract Length
8941	J.K. Dagsvik	The Generalized Extreme Value Random Utility Model for Continuous Choice

No.	Author(s)	Title
8942	M.F.J. Steel	Weak Exogenity in Misspecified Sequential Models
8943	A. Roell	

P.O. BOX 90153,5000 LE TILBURG. THF NFTHFRLAND

