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Abstract

If repeated observations on the same individuals are not available it is not

possible to capture unobserved individua: chara.cteristics in a linear model

by using the fixPd effects estimator in the standard way. If large numbers ot

observations are available in each period one can use cohorts of individuals

with common characteristics to achieve the same goal, as shown by Deaton

(19}i5]. It is tempting to analyze the observations on cohort averages as

if they are observation~ on iodividua!s ~.vhich are observed in consecutive

time periods. In this paper we analyze under whic h co~:ditiuns this is a

valid approach. Moreover, we consider the impact oí the construction of t.he

cohorts on the bias in the standard fixed effects estimator. Onr results show

that the ef[ect.s oC ignoring tlfe Cacf thal. only a sy~~th~.'i~- panel is availah!e

will be small if the cohort sizes are suíl'icicntly large and if the true rneans

within each cohort exhibit sufGcient timc variation. In applications the lattcr

r,ondition seems hard to fulfill, which implies th~t fa.irly lar,ge cohort sizes

(1U0, 200 individuals) are needed to va,lidly ignore the cohoit nature of the

data.



1 Introduction

In recent years much attention is paid to the comparison of panel data with
a single cross section or a series of independent cross sections (eC Hsiao
[1985]). In the context of a random effects model, for example, Nijman and
Verbeek [1990] show that more efficient estimators of several functíons of the

parameters can be obtained from a series of cross sections than from a panel

(with the same number of observations). On the other hand several authors
have stressed the fact that panel data are not indispensible for the identifica-
tion of many commonly estimated models and that the parameters of interest
can be identified (with or without some additional assumptions) from a sin-
gle cross section or a series of independent cross sections (see, for example,
Heckman and Robb [1985], Deaton (1985] and Moffitt [1990]). In this paper
we pay attention to a regression model with individual effects thaL are corre-
lated with the explanatory variables ("the fixed effects model" ), and a.nalyze

the properties of the within estimator based on aggregated data on cohorts

constructed from a series of independent cross sections. In this approach

"similar" individuals are grouped in cohorts, after which the averages within
these cohorts are treated as observations in a synthetic panel (cf. Deaton

[1`~8.51).
;btodels in which the individual effects are correlated witli the explanatory

variables often arise naturally from econornic theory, for example in life cyde

models where the individual effects represent marginal utility of wealth (see,

~..g., Ileckrnan and MaCurdy [1980], MaC;urdy [1981] and 13rowning, I~caf,on

and Irish [1985]). Because in many couut.ries no panel data on hou,chold

consumption or labor supply are available but repeated cross sectional in-

formation is, the latter data is typically used to estimate life cycle models.

Deaton [1955] has shown that the slope parameters in such models can usu-

ally be identified from a series of independent cross sections. In his approach,

cohorts are defined as groups of individuals sharing common observed char-

acteristics, such as age or sex. Because the observed cohort aggregates are

error-ridden measurements of the true cohort population values, an errors-
in-variables estimator is proposed which yields consistent estimators under
fairly weak assumptions.

Ilowever, if the numbers of observations per cohort is large, it is tempting

to ignore the errors-in-variables problem and to use standard software to

handle the synthetic panel as if it were a genuine panel. This is what is



usually done in empirical studies, see, e.g., Browning, Deaton and Irish [1985~

and Blundell, Browning and Meghir (1989]. In this paper we analyze to what

extent this is a valid approach.
First, in Section 2, we present a general introduction to the estimation

of a regression model from cohort data if the individua] effects are treated

as fixed unknown parameters. Moreover, we derive conditions for the consis-

tency of the standard within estimator on the synthetic panel which ignores

the measurement errors problern. In Section 3 we derive expressions for the

bias of this estimator if the conditions for consistency are not met (under

additional assumptions on the data generating process ou an individual level

and the way in which the cohorts are constructed). Furthermore, we analyze

the effects of the choice of the cohort sizes on this bias. In Section 4 atten-

tion is paid to the (true) variance of the within estimator compared with the

estirnated variance frorn standard routines and the influence from the choice

of the cohort sizes on these variances. In section 5 we consider the implica-

tions of our results for the estimation of Engel curves for food expenditures

from Dutch monthly data. The results suggest that fairly large numbers oí

observations are required in each cohort to validly ignore the fact that the

model is estimated írom cohort data. Finally, 5ection 6 concludes.

2 Estimation from cohort data

Consider the following linear model

r1~e - z~o~ f 0~ t etc, t- 1,...,T (I)

where i indexes individuals and t indexes time periods and suppose (i is

the parameter of interest. Throughout the paper we assume that E{e;c ~

x„} - 0 for all s, t- l, ..., T and all i, j. In each period, observations on

~ti' individuals are available. Throughout we assume that the data set is a

series of independent cross sections. This assumption does not. rule out the

possibility that some individuals are observed more than once. It is suflicicnt

that each cross section is a random sample of the population such that all

covariances between individuals observed in different periods are zero.

Tn many applications the individual effects B, are likely to be corrclated

with the explanatory variables in a;c so that estimation procedures treating



the B; as random drawings from some distribution lead to inconsistent estima-

tors, wiless the corrclatiou is explicitly taken into account. When panel data

are available this problem can be solved by ereating the 0; as fixed unknown

parameters. L}sttally thc fixed effects are eliminated beforc estirnation, for

example by a within or first difference transformation. Obviously, this strat-

egy no longer applies if no repeated observations on the same individuals are

available.
Deaton [1985] suggests the use of cohorts to obtain consistent estimators

for Q in (1) if repeated cross sections are available, even if the individual

effects are correlated with the explanatory variabes. Let us define C cohorts,

which are groups of individuals sharing some common characteristics. These

cohorts are defined in such a way that each individual is a member ofexactly

one cohort which is the same for all periods. For example, a particular cohort

may consist of all individuals born in 1945-1949, or of all males having a

univcrsity degree on January 1, 1990. Aggregation of all observations to

cohort lcvel results in

?~ce-~ct~fecti-Ech C-Í,...,i;;t-1,...,7~ (Z)

where y~t and i~t are the averages of all obse,rved y;t's and x;t's in cohort

c at time t. The resulting data set is a synthetic (or pseudo) panel with

repeated observations on C cohorts over T periods. The main problem with

the estimation of this model is that B~t in (2) depends on t, is unobserved and

is likely to be correlated with i~t. Therefore, treating the B~t as random (and

uncorrelated with the explanatory variables) is likely to lead to inconsistent

estimators and treating them as fixed will result in an identification problem

unless the variation of B~t over t can be neglected. Intuitively, the latter will

be the case ií the number of observations within each cohort is large. In

thc remainder oí this section wc analyre in morc detail the conditions under

which tlte within estitnator on the synthetic panel will be consistent.

An alternative way to approach the problern is adopted by Dcaton [ 198~i],

who considers the cohort population versiou of (1),

y~t - x~rA f B~ f e~t, c- 1, ..., C; t- 1, ..., T (3)

where the asterisks denote (unobservable) population cohort means and where

9~ is the cohort fixed effect, which is constant over time because population

cohorts contain the same individuals in all periods (ignoring birth and death
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of individuals). If the population cohort means would be observable, equa-

tíon (3) could be used to estimate ~3 usiug standard procedures for a paucl

consisting of C cohorts observed in T periods. However, we can regard the

observed cohort means y~i and x~~ as error-ridden measurements of the true

population cohort means y~~ and x~~. Deaton (1985] assumes that the mea-

surement errors in y~i and z~i are normally distributed with zero mean and

independent of the true values y~i and x~~, in particular'.

(~~i~NN"xn I

One way to estimate the parameter Q in (3) is to analyze the model

in (3) and (4) as a model with measurement errors. If the row vector of

cohort dummies is denoted by d~ and the column vector of corresponding

paranieters is denoted by 0" -(B„ ..., B~)', the errors-in-variables estimator

(on the model in levels) proposed by Deaton (1985] is given by

r

c-1 t-1 ` x~de ~ce2~~et
F-J,

~ I - `c~ t~ ` xetycyct
~

~ ~ (5)

where ~ and ó are estimates of ~ and a based on all individual observatious.

If the following assumption holds, the estimator Q is consistent for (i if the

number of observations CT tends to infinity, while 0 is consistent for 0' if

the total numbcr of observations per cohort (TN~C) tends t,o infinity.

Assumption 2.1 The moments matrix oJ the population rneans of the ex-

planatory variables

1 c T d~d d'i
plim - ~~ ` ` `

cT,a, CT ~-r ~-r ~~td~ ~~i~~i - Ê
(6)

is nonsingvlar.

If the number of observations per cohort is not too small, it is tempting to

ignore the errors-in-variables problem and to estimate (2) assuming equality

~Note that, contrary to Deaton, we do noL include the cohort dummies in the vector
of x's. These dummies are of course observed without error.



of population and sample means. The resulting estimator for ~3 is the within

estimator on the synthetic panel, fiw, given by

~

i~w - I r~ ~(x~t - ~~)~(x~i - x~)~ 1 ~ ~(x~t - ~~)~(y. ~ - y~)~ , (7)
` te-t `c-ia-i

where i~ is the time average of x~i, i.e. ï~ - T~T 1 á~i and analogously for

y~. Using ( 2) it is easy to show that Qyy is unbiased if

E{B~t - B~ ~.z~a - i~} - t7 (d)

provided the following assumption holds.

Assumption 2.2 The moments matrix of the oóserved cohort means of the

explanatory variaóles

1 c z
plim ~ ~(á~t - ~~)~Í~~: - x~)
cz~,~ CT ~-r ~-~

(9)

is nonsingutar.

It is important to note that Assurnption 2.2 is implied by Assumption 2.1

but that the converse is not true. Condition (8) will be satisfied if B; is inde-

pendent of x;i (for all t) or if the averaged individual effects B; are constant

over time (9~~ - B~). If the number of observations per cohort, N~C, is large,

one is tempted to assume that the latter condition holds. In the sequel of

this paper we shall pay attention to the bias in the cohort within estimator

~3iy given the number of observations per cohort (N~C). Note that increasing

the number of observations per cohort implies a decrease in the number of

observations in the synthetic panel and thus an increase in the variance of

the within estimator on the synthetic panel. Evidently, the optimal choice

of the cohorts will depend on both its impact on the bias and its impact on

the variance, which will be analyzed (for a simple model) in Sect.ions 3 and

1 respectively.
A striking point írom our results is that it is possible that lleaton [1985~'s

estimator has a nonexisting probability limit (for CT -a oo), while ~~y has

a. well-defined probability limit which may even equal the true value Q. This

will happen when Assumption 2.2 is satisfied but Assumpt,ion 2.1 is not. We

will return to this point in the next sectiou.



3 The effects of the choice of cohorts on the
bias

Our basic interest lies in the validity of the argument that "the number of
observations per cohort is latge enough to ignore the errors-in-variables prob-
lem" (cf., e.g., Browning, Deaton and Irish [1985]). We therefore concentrate
on the case where the number of observations per cohort N~C is fixed. To
simplify the analytical results we approximate the finite sample bias by the
asymptotic bias for large C and large .N. fiumerical checks reveal that this
approximation is accurate if C is not too small (10-20). Under Assumptíon
2.1, this is one of the situations in which Deaton's estimator is consistent (for
C-~ oo) and the standard within estimator need not be consistent.

In this section we will derive the asyrnptotic bias in (iry for the special
case of a linear model with only one explanatory variable,

y;e - Q~;e f B; -~ E;t (10)
where x;t is a scalar variable. Following Chamberlain [1984], we assume that
the dependence of x;t and 6; can be characteriaed as follows.

Assumption 3.1 The individual effects g; are corr~lated with lhe x's in the
following way

6;-ai;i-l;; (11)

where E{{; ~ x;~} - 0 for all t- 1,...,T and V{y;} - of.

'Ihen, under Assumptions 2.2 and 3.1, a- 0 is a sufficient condition for
consistency of (3k~ as in that case the cohort effects B~i in (2) are uncorrelated
with the regressors. Cohorts are assumed to be constructed in the following
way.

Assumption 3.2 Cohorts are defined an the ba.sis ofan ab.solute continuous
distributed variable z which is distributed independently across individuals
u~ith variance normalized to unity. Aloreover, the cohorts are chosen such
Nrut thr (uncnndilinualJ lr~ohnbilit~ of Lrixq iu u ptu~lirulru~ rnliorl is lltr ,vruree
for trll cnltnrl.v.

According to this assumption the support of the density of z is split into C
intervals with equal probability mass, implying that all cohorts have approx-
imately the same number of inembers in the sample. In practice, the variable
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z may be based on more than one underlying variable. It should be noted

that the choice of z(or the underlying variables) is restricted. First, z; shoulcí

be constant over time for each individual i because individuals cannot move

from one cohort to another. Second, z; should be observed for all individuals

in the sample. The latter requirement rules out variables like "wage earn-

ings in 1988n or "family size at January, lst, 1990r, because these variables

are typically not observed for al] indivicíuals in the sample. In applications

variables like date of birth or sex will be chosen to define the cohorts.

For Assumptions 2.1 and 2.2 to be satisfied it is required that the true

cohort means vary over cohorts and~or over time. To model this, we assume

that the correlation between x;t and z; (on an individual level) is of the

following form.

Assumption 3.3 7'he regressor variable x;~ is correlated urith z; in the fol-

lowing fashion
~~~ - l~~ t 7iz~ ~- vtz (12)

where v;i is uncorrelaled with z;, has expectation ze.ro and (for the sake of

simplicity~ a constant variance a~. Its correlation over time is characterized

by E{v;w;,} - pov if s~ t. The p; are fixed (unknown~ constants (fized time

effects).

This assumption implies that v;t has the commonly assumed error compo-

nents structure with an individual specific effect. The results can easily be

generalized to, for example, the case where E{v;tv;,} - pl;-,lay (s ~ t).

In this case 1~(T - 1)p in the expressions below should be replaced by

T T-k1 -~ 2 ~k-1 T pk~
It can be shown (see Appendix) that under Assumptions 2.2, 3.1, 3.2 and

3.3 the asymptotic bias of the within estimator ~3yr. is given by

1-~(T-1)p T~z -ó (13plim(~w - (j) - ~~ 7~ ~~r i- rw2 )
c-.a

where r-(T - 1)~1', ~i is the truc within cohort variance defined asz

c T
c`'' - c~~ CT ~~(~`` - x`)~~

(14)
-r~-i

z1'he true cohort means are treated here as fixed but unknown coustants.
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with i~ - T~i r x~i, and where wz is the measurement error variance in i~i,

i.e. 1 c T
wx - Plim G;7, ~~(i~c - x~i)2 - n ~ ta~, (15)

~-.~ ~-ti-t

whi~re n~ is the number of individuals in each cohort (N~C)1. Using (12) we

can writ.~~

r 1 '
wi - I 7e - 7, ~ ry, .

~-~ ` , i i -i
(16)

llndrr Asswnption 3.3 it cau bc casily checkMl Lhat. Assumption 'l.l iin-

plics that w~ ~ 0, whilc Assumption '2.2 implies that w~ -f rwz ~ 0. 1'hc

choice oí the cohort identifying variable z; determines the values of tar, ryi,

v~ and p. Thus, the choice of z; determines wl. Note that wt ~ 0 requires

that p~ or ryi vary with t. If this is not the case the probability limit of

Deaton's errors-in-variables estimator dces not exist, while the bias in the

within estimator is maximal, i.e.

1-}-(T-1)p -
cl~~(~W

- Q) - ~[ 7, ] - b,,,a~, (17)

which is independent of the cohort sizes. The choice of larger cohorts (de-

creasing w2) will reduce the bias iC w~ 1 0 only. Because wz is a decreasing

function o[ n~ the bias in the within estimator is smallest if the number of

observations in each cohort is as large as possible.

In Table 1 we present some numerical results on the bias in Qry as a

fraction of the maximum bias bmor for several values of n~ and wl~Qv. We

can see from the table that for the chosen values of w~~o~ the number of

observations per cohort (n~) should be fairly large for the bias of the witttin

estimator to be a small fraction of the maximum bias ~(1 t (T - 1)p)~T. For

example, if the cohorts have 100 or more observed members each, the bias is

1-16 qo of the maximum bias. If the chosen values of w~~a~ are relevant for

practical situations, this finding more or less justifies the fact that in rnost

empirical studies ( see, e.g., Browning, Deaton and Irish [1985] or Blundell,

Browning and Meghir [1989]) the measurement errors are ignored and the

1 T 1 T ~ 1 T

7,~ p`-7.~p.) ~7.~

31f cohort sizes are unequal the observationa should be reweighted first by the square

root of the cohort size, as in Deaton (1985].
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T-4 T-12

~..,r~o„ - Wr,o~ -
n~ 0.05 0.10 0.20 0.50 0.05 0.10 0.20 0.50

2 0.882 0.789 0.652 0.429 0.902 0.821 0.696 0.478

5 0.750 0.600 0.429 0.231 0.786 0.647 0.478 0.268
10 0.600 0.429 0.273 0.130 0.647 0.478 0.314 0.155

25 0.375 0.231 0.130 0.057 0.423 0.268 0.155 0.068
50 0.231 0.130 0.070 0.029 0.268 0.155 0.084 0.035
75 0.167 0.091 0.048 0.020 0.196 0.109 0.058 0.024
100 0.130 0.070 0.036 0.015 0.155 0.084 0.044 0.018
150 0.091 0.048 0.024 0.010 0.109 0.058 0.030 0.012
200 0.070 0.076 0.018 0.007 0.084 0.044 0.022 0.009

Table 1: Bias in the standard within estimator J3ry as a fraction of the max-

imum bias b,,,a~

standard within estirnator is used. It is important to note Lhat cohort sizes

may be chosen smaller if the cohort identifying variable is chosen in such a

way that the true within cohorts variarrce is large relative to av.

4 The effects of the choice of cohorts on the

variance

In the previous section we have shown t.hat the bias in the within estimator

from the synthetic panel may be small if the number of observations per co-

hort is sufficiently large. However, an increase in the number of observations

per cohort implies a decrease in the number of observations in the synthetic

panel (CT ) and - consequently - an increase in the variance of (iry. In this

section we will analyze the impact of the ~ hoice on the numher of cohorts ou

this variance in more detail. Moreover, we show that the di(Tercnce betwecn

the true variance of QH. and the probability limit of its routincly estimated

variance is a function of the bias only.
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The asymptotic variance of (ily can be written as

V{~ily} - CT(~1 }
rwZ)-ZV' (18)

where
I C T

V' - lim V ~ ~(i~t - i~)(g~a - 9~ -f- ect - ec) . (I9)c-.~ CT ~-, t-,

It should be noted that the expression within curved braces in (19) does

not have expectation zero, because of the inconsistency of the estimator (if

a~ 0). Ivloreover, the summations over c and t are neither summations

over independently nor identically distributed variables. This complicates

elaboration of the expression in (19). In the Appendix it is shown that under

the additional assumption that i~t, B~t and É~t are norrnally distributed, thc
variance of (~ly is given by

~~{Í~w )- Lj, ~(áé -~ a~~r,.,. ~)(i-'~ F rw't)- ~ I h~~~ (20)

where ó is the asymptotic bias of the withirt estimator defined iu (13), and

ae - afnc 1}~z(1 i- (T- I)P~w2, (21)

which is the variance oí B~t - B~.

An increase in the cohort sizes n~ influences the variance of the within
estimator Qly in two ways. First, the measurement error variance w2 and the
equation error variance aB f oFn~ 1 are reduced. Second, the total number of
observations CT is decreased. The latter effect is dominant, so an increase
in n~ will cause a decrease in the variance of the within estimator on the
synthetic panel. We will present some numerical results in the next section.

Ií standard software is used to compute ~31y, the routinely computed es-
timator of the variance,

V{Qw} - ó~ L (22)
C T

x
~ ~(Zce - ~c)
c-1t-1

will not be consistent for V{Qly} in ( 20). In general, it converges to

I 23V {Qw} - ó~f,~, (w, f r~z)-r ( )



13

where ó2 - plirrr~-,,,o v2. One can see from this expression that the true

variance of the within estimator is underestimated by the routinely computed

variance in two ways. First, the dependence of the errors and the explanatory

variables ïnvalidates the standard formula for the variance. This is reflecteii

by the second term in ( 20). Second, the estimator for the error variance,

1 C T y

ó~ - ( ) ~ ~ ~(y~~ - y~) - Qw(x~e - 2 ~)~ . (24)
CT-1

will underestimate the true error variance aZ -(of {- o~)n~ ~, in particular

' 25plimá2 - á2 - a~n~~ f oé - ó2 ( wi ~- r~z) . ( )
c-a,

Note that both aspects work in the same direction. Using (25) the probability

limit of the estimated variance o[ Qw can be written as

V {(iry} - C7, `(aé } a`n~ ~ ) (~i -} T~2)-r - ól~ ~ (V0)

As will be clear from the formulae above, the difíerence between the true

variance and the probability limit of the estimated variance equals 2óZ~CT

so it will be small if the bias ó is small.

5 An empirical illustration

In this section we consider the implications of the results in the previous

sections on the estimation of Engel curves for food expenditures of Dutch

households. We use a monthly panel data set to analyze what the properties

of the within estimator on a synthetic panel would have been if one would

analyze a series o[ repeated cross sections instead of a panel. The data

used are the 367 complete monthly observations for 1986 in tl~e so-called

f;xpenditure Index Panel ronducted by 1~1T'OMAR1', a marketing research

at;~~n~ y in I,hc N~~t.hcrlands.

'fhe rnodel which is analyzed is Lhe Engel curve [or cousumer expeuditures

on [ood,

w~~ -~log~~~ f 9; f e~a, t- 1,..., 12, (27)
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where w;i is the budget share of food (in total expe,nditures on non-durables)

and log x;r is the natural logarithm of total expenditures on non-durables.

The individual effects B; reflect the influence of household specific charac-

teristics (age, education, family size, etcetera) that are constant over the

sarnple period (12 months). Obviously, these variables are likely to be corre-

lated with total expenditures on non-durables and a fixed effects treatment

oí the 8; is desired. As in the previous sections we shall impose Assumption

3.1,
B; - alogx; f ~;- (28)

The construction of the cohorts will be based on the date of birth of the head

of the household, as in many applied studies (see, e.g., Browning, Deaton and

lrish [1985]). Because the relationship between age and total expenditures

is likely to be nonlinear we choose the cohort identifying variable z; as a

yuadratic function of the deviation of individual i's date of birth from the

average date of birth in the sample (in ycars and months). 'Che variancc of

z; is normalized to one. Under Assumption 3.3 it holds that

logx~i - F`e f yiz; f v;i. (2~)

Using the 367 household observations of the balanced sub-panel, we eas-

ily obtain consistent estimates of the model parameters using ordinary least

syuares, which are given in Table 2. All estimated ryr's are negative implying

that (in a given period) total expenditures on non-durables are maximal at

the average age of 49.2. Although all ryr's and ~Ct's differ significantly from

zero, the variation in the ryr's and pr's (reflected in wl - 0.00681) is rela-

tively small in comparison with the estimated variance of v;t. Although the

dependence of age and total expenditures is significantly large, there does

not seem to be much time variation in this dependence. Particularly for

Deaton's errors-in-variables estimator this is something to wurry about be-

rarise its variance is inversely related with w~. Of course, the small variation

in the ryr's and {r~'s may be caused by the fact that we are using monthly

data.
Refore we discuss the conseyuences of these parameter values, we present

some specification tests. First, we shall test the functional form of (27) by

testing whether x;r (total expenditures on non-durables) should be included

in (27). Subsequently we do the same for the triple x;i, xZ, and Jx;i. This

results in values for the Lagrange Multiplier test statistics of 2.75 and 7.83,
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~3 -0.188 (0.006) ~1 12.235 (0.041) ryl -0.147 (0.028)
a 0.110 (0.007) ~~ 12.085 (0.041) yz -0.132 (0.028)
of 0.105 p3 12.202 (0.037) ry3 -0.164 (0.026)
o~ 0.072 ~~ 12.238 (0.041) ry~ -0.150 (0.028)
o~ 0.305 ps 12.270 (0.043) rys -0.170 (0.030)
p 0.634 ~s 12.165 (0.041) ys -0.156 (0.028)

~, 12.161 (0.046) y, -0.156 (0.022)
w, 0.00681 ps 12.152 (0.042) rys -0.139 (0.029)

p9 12.180 (0.039) ys -0.154 (0.027)
}r,o 12.3`l8 (0.042) 7,0 -0.162 (0.029)
p„ 12.224 (0.043) ylr -0.181 (0.030)

; - y~,l 12.385 (0.098) yrz -0.233 (0.033)

Table 2: Parameter estimates based on 367 observations from the balanced

sub-panel (standard errors - if computed - in parentheses)

respectively. Comparing these numbers with the critical values of a Chi-

square distribution with one and three degrees of íreedom, repectively, we

do not take them as evidence against the null. Furthermore, we test As-

sumption 3.3, in particular the structure of the variance covariance matrix

of v;,. We períorm the (pseudo) LM test against first order autocorrelation,

as discussed in Nijman and Verbeek [1990, Appendix], which yields a value

of 0.057, clearly implying that we cannot reject our null hypothesis. Appa-

rantly, the error components structure imposed on v;i fits the data very well.

In summary, we may conclude that our model, though far simpler than many
related rnodels discussed in the literature, is not evidently in conílict with

the data.
From (17) we immediately obtain that the maximum bias in the within

estimator based on cohort data over 1`l periods equals 0.0731, which is 39Io

of the (estimated) true value. Given our choice of the cohort identifying vari-

ables it is possible to eliminate some of this bias by choosing large cohorts.

This is illustrated in Table 3, where the theoretical biases in the within esti-

mator are given for several cohort sizes. Note that the bias decreases slowly

with the cohort size. In the table also the probability limit of the estimated

standard error is given (based on (23)) and the true standard error (based on
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plim est. st. true st.

n~ bias ( in Qlo) error~ N error~ N

2 0.0695 37.0 0.099 0.124
5 0.0650 34.6 0.152 0.171

10 0.0586 31.2 0.205 0.220
25 0.0453 24.1 0.287 0.298
50 0.0329 17.5 0.348 0.356
75 0.0258 13.7 0.379 0.386

100 0.0212 11.3 0.398 0.904
150 0.(1157 8.3 0.420 0.424
200 0.0124 6.6 0.433 0.436

Table 3: Bias in the standard within estimator (3~y, plim of estimated stan-

dard error and true standard error

(20)). Both are based on the asymptotic distribution. Although the bias is

substantial the differences in these two standard errors are fairly small. Note

that both standard errors increase if the cohort sizes are increased, which is

caused by the fact that the number of (cohort) observations decreases if the

cohort sizes are increased. Although there is the counteracting effect that the
observations are more precise (contain less measurement error) if the cohort

sizes are large, this effect is almost negligable.

Our empirical illustration in this section draws attention to the fact that

in practice it may be the case that the common choice for the cohort identify-

ing variable (date of birth) dces not lead to a sufficiently large ~~~o~. If this

is the case the bias in the standard within estimator is substantial, even if

the number of individuals in each cohort is very large. For exactly the same

reason, Deaton's errors-in-variables estimator is not a good alternative, be-

cause its variance is inversely related with ~~. In practice one would therefore

hope to find a better cohort identifying variable z;, or that the correlation

between individual effects and explanatory variables (1) is srnall.



lï

6 Concluding remarks

In this paper we analyzed the validity of treating cohort data as genuine

panel data. Because the observed cohort averages are error-ridden measure-

ments of the true cohort means, in general errors-in-variables estimators are

required to obtain consistent estimators. If the individual effects and the

explanatory variables in the model are correlated, a bias will occur in the

standard fixed effects estimator, which will only be small if the number of

observations in each cohort is large and if the time variation in the true co-

hort means is sufficiently large. To illustrate this we used genuine panel data

on consumer expenditures to calibrate the possible magnitude of bias from

using the synthet,ic panel data. The results show that in practice fairly large

cohort sizes (100, 200 individuals) are nceded to validly ignore the cohort

nature of the data.
In summary, onc can say that there is no guarantee that the bias from

ignoring Lhe measurement errors and treating the synthetic panel as if it

were a true panel is small and negligable if the number of observations in

each cohort is quite large. Only if there is enough time variation in the true

cohort means of the explanatory variab(es, the bias may be negligable for

reasonable cohort sizes (100 individuals). If there is no time variation at all

(wl - 0), the bias in the within estimator is bounded, while the errors-in-

variables estimator proposed by Deaton [1985] has a non-existing probability

limit.

Appendix. 5ome technical details

In this appendix we sketch the derivation of (13) and (20). Using (12) we

can write for the observed cohort means ( in an obvious notation)

x~e - Ftt -F ry:Z~: -~ vot - ltt t 7tz~ } v~t - x~t f v ~t (30)

z~ - E{z; ~ i is a mctuber of cohort c} (31)

v~t - v~: -F ryt(~~a - z~). (32)

wh~rrc

and
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Furthermore, it follows from Assumption 3.1 for the aggregated individual
effects B~i that

Bd - .~~(2~r ~ 2c2 -~ ... i- 2cT) ~ Scn (33)

where x~, is the average x-value in period s of all individuals observed in
period t in cohort c. Notice that x~, is also an error-ridden measurement of
a~„ with the same properties as i~r except that it is not observed. To be able
to derive the probability limit of pry we need expressions for the following
probability limits.

1 c T
plim ~ ~(i~r - i~)~
c~~ CT -~ ,-~

and

(34)

C T

plim 1 ~ ~(~~: - x~)(~~a - 4~). (35)c-.~ CT ~-r a-,
For the evaluation of (34) we use that"

( C T l

E t 1~~(x~e - i~)2 j-
l CT c-i e-r 11

r Z 2

T r~ I l~r - T~ Fr,~ -f 1~~7r - 1~?''~
` 1~ z~2~

f ~ ~ ~ F S ( v~~ - 1 ~ v~s)~~ (36)
C~T -~r-r l l~a-r

f r n~ r 1 ~ ryé 1~ V{z; ~ i in cohort c},
T r-, C ~-r

where V{z; ~ i in cohort c} is the variauce of z; within cohort c. Because
the total variance of z equals unity, increasing the number of cohorts implies
that the distribution of z~ more and more resembles the distribution of z;.
Thus, the variancc of z between the C cohorts satisfies

c

c~ C ~
z~2 - 1 (37)

T ,-r T ,-r C ~-,

4Convergence Collows from applying Chebychev's weak law of large nurnbers.
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while

cym C, ~ V{z; ~ i in cohort c} - I- ~im C~ z~Z - 0. (38)
~-1 ~-1

Using these equalities one can easily derive that

3 c T
pltm -~~(i~t - i~)~ - t~r f rno rQ~ - wt f r~i (39)
r,-.~ CT ~-r t-,

I~or thc dcrivation of (35) wc use that Assumptions 3.`l and '3.3 inlply

( I C T

lim E 1 CT ~~( yca - xcs )(~~~ -~~~) - P~s, J~ s. (40)
Cy~ c-1 t-1

Now straightforward algebra shows that

C T

plim 1~ ~(y~ -- i~)(e~t - B~) - ~~T -r } T P~r~z, (41)
c~~ CT ~-r t-1

which proves (13).
'I'o derivc the variance of (~ry we have to elaborate ( 19). lJnder thc nor-

mality assumption of i~t, B~t and é~t the required fourth order mornents can

be written as functions of second order moments. In particular,

V ~ ~ ~~(Íct - 2c)(Bct - Bc ~ Éct - Éc)1 C T 1 -
r "i c-1 t-1

1 ~ ~ IFi{2ctxda} ~Fi{Bctede} ~ Fi{EctEda}) ~ i{2cteda}Fi{2daect}] ,
cT c d-1 s,t-1 l `

(42)
where x~t - ict - i~ and analogously for the other variables. Using straight-

forward algebra one can derive the following equalities.

!s{B~tBd,} -

T- 3 j(~Fnc 1-F ~~~7.-t } rP)wZ] if s- t,d - c
T l

-T ~(ofn~' -F ~2[I,-t f rP]c.~~1 if .a ~ l,d - c (93)

0 elsewhere,



and,

T-1
T

1

a[T-' f rp]w~ if s- t, d- c

E{2~itld,} - -7,a(T'' -~ rp]~Z if s~ t,d - c (44)

0 elsewhere.

Using these equalities the variance V' is readily obtained.
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