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1. Introduction

lt is oftcn th~ case that an econometrician's focus of interest is a speci(ic "structural" equation,
such as a demand for money equation in the context ot the application we shall discuss below. If
all current variables in that equation, except one, are assumed to be weakly exogenous, following
the tenninology in Engle et aL (1983), then standard least squares estimation techniques yield
e(iicienl estimates of its coefíicients. }íowever, violation of these (implicit) exogeneity assumptions
may have severe consequences: infemnce on the coefficients of interest will be distorted and, often
moro importantly, shi(ts will be induced in the catiniated coe(Ticients as soon as the distribution
of thc crroncously assumed exogenous variables changes, even though the underlying atructurnl
coefficients may be itivariant against such changes. See e.g. Hendry and liichard (1983, subsection
2.'2) or Engle and Hendry (1989) for further discussion of this important issue. Hence the need for
operational techniques whereby the exogeneity o[ key variables can formally be investigated.

A Bayesian "instrumental variables" approach to "testing" the exogeneity of a single variable
has been proposed 6y Lubrano et al. (1986). Multivariate extensions of that approach are concep-
tually straightforward but the development of flexible and efficient computer programs fot routine
investigation of multivariate exogeneity asaumptions is far more demanding. The object of the
present paper is to report on the current status oí this line of research. Our presentation builds
upon recent analytical and numerical developments and yet aims at minimizing technical diacus-
sious. More technically oriented references are provided in the course of the paper. An application
to a U.K. moncy demand equation serves illustrating the flexibility of the proposed techniques.

1'1~e ~aper is organized as follows: In section 2 we describe the class of models under consid-
eration and survey the concepts and techniques which are currently applicable within this context,
wliereas in subsection 2.3 we derive the baseline formulas for a general Bayesian "instrumental
variables" exogeneity analysis. In section 3 we analyse a U.K. money demand equation and present
a(partial) application of the techniques under development. Conclusions and avenues of further
research are discussed in section 4.

2. The Statistical Framework

2.1 The Model

Lineaz Dynamic Models have received much attention in the econometric literature. Useful
surveys by Granger and Watson (1984), Hendry et al. (1984) and Geweke (1984) can be found in
the Handbook of Econometrics. See also the papers by Richard (1984) and Florena et al. (1987) for
presentations that aze directly relevant to the ob ject of our paper. The latter, in particular, discusses
Limited Information analysis of dynamic models at a level of generality which aeta in prospect
a number of key modelling assumptions such as cuts, innovations, exogeneity or noncausality.
We shall adopt here a mode of presentation which ia more in line with conventional econometric
formulations and largely focuses on computational issues.

Let the equation of interest be the tollowing:

Q'y, t 7~x, - u, u~ ~!N(O,o~) t: 1 y T (1)
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~t~here y,E1R" is a vectors of "endogenous" variables ( including at this stage of the discussion all
variables whose potential exogeneity is under scrutiny), x,EIIik is a vector of variables meant to
characterize an information set !,' which consists of current ( weakly) exogenous variables and of
the past history of all current variables in the model. Initial conditions are assumed to be known,
though, at a higher level of generality they could be included in the list of unknown coef6cients. Q
and y are vectors of unknown coefficients and o2 is an unknown variance. Eventually (~3',ry',oz)
has to be normalized and Q and ry might be subject to exact (prior) restrictions as well, assumed
to be linear, in the case of y at least. For practical implementation such constraints ought to
be explicited, if only in order to avoid conditionalization paradoxes, and (p,y) would then be
function of a vector of "free" coefficients. shall nevertheless keep using the notation associated with
equation ( 1), as long as no ambiguity arises from such use. Throughout the rest of our discussion
it. is assnmod U~at ~i,y and o' (or fuuctions thereof) are the sole "parametera of interest".

Equal.iuu ( I) is fonnall,y embedded iu a sequential Lincar Dyn:unic Modcl of the form

ye~lr ~ N"(rlr,~), (2)

wliere ~~, is a vector of conditional expectations and 52 an arbitrary symmetric positive definite
matrix. Equation ( 1) is then reformulated as

p'z),}ry'x,-0, t:lyT (3)

and formally defines an ( n - 1)-dimensional lineaz manifold for the vector rít. Also o~ - J3'S2~i.
As such, equation (3) includes n- 1"incidental" parameters essentially consisting of all but one
components of rl,. Within an Instrumental Variables (IV) framework these incidental parameters
are eliminated by means of n- 1 additional linear relationships of the form

' S~nc - P~wr, (4)

where w,E I[Lc is itself a selection of "instruments" from I,', P is an f x (n - 1) matrix of unknown
coefficients and S is an n x(n - 1) matrix of known constants, such as a selection matrix. Let v,
denote the "residual" associated with equation(4),

S'y, - P'w, - v„ ve~I, ~ N"-,(0,5'S2S). (5)

Equations (4) and (5) incorporate the important assumption that v, is an innovation relative to I,
- see footnote 2- wliich is necessary to validate our exogeneity analysis in section 2.2. Let us now
define

Qe - (Q : S). (6)

It is assurnrd thronghont our analysis that Qp is non-singular ( almost surcly in ~3). With the
introduction of the instrumental variables equations in (4), we have effectively eliminated all inci-
dental parameters. Nevertheless, we still have to deal with a potentially large dimensional set of
"nuisance" parameters, consisting of the "free" elements of P and of the variance and covaziance
matrices S'S2S and S'S2Q.

' More specifically, it is assumed that, conditionally on xt, u, is independent of I,, hence that
u, is an "innovation" relative to !,.

a In practice, w, might include variables that were not initially included in the information set
1, associated with equation (1). In such a case I, has to be extended in such a way that it includes
the additional "instruments" as well as their lagged values.
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The matrix Sl. or bi-linear transformations thereof, can be handled by means ot an Inverted-
~~'ishart prior density, whether couditionally or unconditionally with respect to the exogeneity
assumptious to be iutroduced below. Experience suggests that the class of Inverted-Wishart prior
densities is ftexible enough for most practical purposes. Furthermore, if the need arises it can
easily be extended by means of well-known recursive factorizations, as documented e.g. in Richard
and Steel (1988). Also, operational random number generators are available for Inverted-Wishart
distributions and recursive generalizations thereoï which can, therefore, be used as "importance
functions" for Monte Carlo numerical integration. This issue is discussed ïurther in subsection 2.3
below.

The trcatment of P raises more problems. Conventional Bayesian "Limited Information"
techniques, as surveyed e.g. in Drèze and Richard (1983), proceed under the assumptions that:
(i) the s~.t r, of "predetermined" variables in equation (1) is a subset of the set of instrumental
variahles in (4), and; (ii) P is left completely unrestricted urtder either a Natural Conjugate (NC)
hfatricvariate Nonnal prior or a"Non-informative" limiting version thereoL Richard (1984) extends
this LI analysis to the case where P is sub jected to linear restrictions that preserve the matricvariate
structure of the NC prior on P, i.e. restrictions that apply in exactly the same way to all tows
or columns of P. In particular, components of x, can be excluded from wr at a reasonable cost
of computation. Nevertheless, as initially noted by Rothenberg (1963), the matricvariate structure
of NC priors on P remains far too restrictive for most practical purposes. In the context of the
tnodel under consideration, the variables in S'y~ may depend on specific instrumental variables;
Noncausality assumptions, in the sense of Granger (1969) may widely differ from one instrumental
equation to another; the collection of all instrumental variables that are needed to characterize S'y~
may be large relative to sample size, a.s.o. R.egarding inference on exogeneity in pazticular, the
use of a large unrestricted set of instruments in each equation of the system (4) will often generate
"overfittinR" and, hence, severely distort sample evidence.

In a reccnt paper, Richard and Steel (1988) have proposed a so-called Recursive Extended
Natnral Congngale (}tENC) prior deneity for Seemingly Unrelated Regression Equations (SURE)
models. 'Tlris class of priors is tlexible enough to accommodate an arbitrary matrix of second order
prior moments for P and yet is numerically tractable for SURE models of moderate size, currently
up to five or six equations. In particular, RENC prior distributions are fully compatible with
arbitrary exact linear restrictions on P. It follows that under an RENC prior tor P, the selection
of instrumental variables can be specific to each component in S'yi.

In addition to the set of IV equations in (5), to which the application of an RENC prior
would be straightforward, our current model also includes the structural equation (1). A fully
efficient application of the RENC framework ought to exploit the fact that, conditionally on p, the
n equations in (I) and (5) jointly define a SURE system which can be written as

Qpyr - n~xr tci E ~~~~ ~ N~(ft,Qp~QO)

with

(7)

n - (7 - P) (8)

and where, for the ease of notation, xi and wi are now conflated with each other without loss of
generality given that the RENC framework can accommodate arbitrary lineaz restrictions on II-
rondítionally ar (3. In subsection 2.3 below, we shall specifically discuss how the RENC framework
can be adapted to the system (7) with special emphasis on iníerence on thc parameters (Q,ry,o')
and on the exogeneity status oí S'y~ or components thereof.
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2.2 Weak Exogeneity

The concept of exogeneity we use is that of weak exogeneity, as defined by Engle et al. (1983)
within a,ampliug theory framework. Bayesian extensions of this concept essentially require re-
placing the notiou of "variation freeness" (among subsets of ccefficients) by that of "prior indepen-
dence". See e.g. Florens et al. (1989) or, in a bivariate framework, Lubrano et al. (1986). The key
issue is whether or not the posterior density for the parameters of interest ((i, ry,o~) simplifies into
the product of their prior density and the "marginalized likelihood" function associated with the
(,:oqnential) cunditional distribution o(!3'ye ({iven .S'y, (and I,).s

Straigótfurward (sequoutial) factorization of the joiut denxity of (Qay,~I,), as churactcAzed by
equations (G) and (7), reveals that iL

(i) Cov(:3'y,, S'y,~l,) - p'f2S - 0 (9)

(ii) (~3,y,oZ) and (P,S'12S) are a priori independent,

then (p, ry,o2) and (P, S'f2S) are also a posteriori independent and the posterior density of (~3,ry,o~)
is given by

D(A,ry,a'I{y~})a ~~Qe~~T D(A,ry,oZ) rt IN(Q'yr t7'x~~o,o'), (lo)~-i

where D(.) auJ jh.(-~p,o1) respectively denote an arbitrary prior density and the density function
of a univariate random variable with mean u and variance o2. See e.g. Florens et al. (1987,
subsection 3.3) for a general derivation of formula (10) or Lubrano et al. (1986, subsection 3.1) for
a simpler - though easily generalizable-bivariate presentation.

In words, conditions (i) and (ii) are sufficient for the weak exogeneity of S'y, for the parameters
of interest (p,ry,o~) and condition (i) in particular wíl be the focus of our analysis.

Within a conventional Limited Information framework, whereby the prior on P is Natural
Conjugate, the (weak) exogeneity oí S'y, entails that of any of its subvectors. This need not be
the case under an RENC prior, as we now discuss. Let S and P be partitioned conformably with
each other

S - (S, : Se) P - (P, : P~). (11)

Under the assumption that ~i'f2S~ - 0, we can factorize the joiut distribution of QDy,~l, as
follows:

i

Soyi
Siye,fe ~ N" '' 712,

~ ( p'f2Q p'fZSa
I ID~aSey~ f Pó ax~ `S;S2A Eaa.e (12)

Séy~~I, ~ 1V(Pnz„Eee) (13)

' It is notationally - and often conceptually - convenient to discuss the exogeneity of S'y, in a
way which does not critically depend on the normalization rule adopted for ((3,ry,o~). In practice,
it will often be the case that a component of ~i, say the first one, is set equal to one and that the
corresponding row in S is set equal to zero. In such a case ~QB ~ - 1 and the mazginalized likelihood
used in (10) below represents the conditional distribution of the first component of y, given all the
others and I,.
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where ~';~ - S,'S2S;,i, j,c{a,b} and

~ea - Eae~ Ee" Eaa e- s~ao - EoeEeer Eea (14)

P, e - P - Pa~e". (I5)

It is well-known that under an [nverted-Wishart prior density for SI and, hence, for E, the param-
eters (:~e,,, i'", e) and L'ae are independent. This property remains valid under recursive general-
izations of the Inverted-Wishart distribution. llowever, under a general RENC prior for P, the
parameters Fá b and Pe are typically nol independent of each other in which case the condition
that SbfIQ - 0 is not sufficient on its own for weak exogeneity of Spy,. An additional condition has
to be introduced, namely that

(iii) Y e and Pe are a priori independent.

Condition (iii) is not easily verifiable and minimal sufficient conditions for it to hold may be highly
specific to each individual model. A more operational but quite stronger condition would be

(iv .a) ~e, - 0, and

(iv .b) P and P6 are a priori independent.

That condition (iv) is not necessary is best illustrated by the fact that condition (iii) holds under
an NC prior for P, independently of whether or not condition (iv) applies.

In conclusion to this discussion, the choice o[ an RENC prior for P will often be motivated
by the nc~~d to implement parsimony ou P in situations where sample size is limited (relative to
the tota.l ntlmber of instrumeutal variables). Since, however, IiENC prior distributions typically
link together the parameters Pe and P e, it Collows that the parameters of interest (Q, ry, o~) are no
lunger indepcndent ot the nuisance parameters (Pe, Eea), even though S6SZ~i - 0. If, ín addition,
Sá12~3 - 0, then an additional factorization of the distribution in (12) yields the result that S'y, is
jointly exogenous fot (~3,ry,o2) although Sby, on its ovm is not. Note finally that the link between
P6 and ((3,y,oz) is "indirect" in the sense that they are independent of each othet, conditionally
on P,.6. It might be that except for pathological cases, a violation of condition (iii) would have no
major impact on the posterior density of (J3,ry,o~) as long as S6S2Q - O.4

2.3 Implementation

It follows from the above discussion that the covariances ~i'SIS are of primary concern as
soon as the exogeneity of S'y, is under scrutiny. As usual within the algebra of Inverted-Wishart
distributions, inference ia conducted in terms of a set of regression cceffients associated with these
covariances. Two such sets are available depending on whether we conaider the regression of ~3'yr
on S'y, ( equivalently, of u, on v,) or that of S'y, on p'y, (equivalently, of v, on u,).

The regression of R'y, on S'y, is associated with the natural factorization of the density of
Q'~y,~I, which leads to the very notion of weak exogeneity ( see, in particulaz, equations ( 12) and

4 Note, in particular, that the first equation in the conditional submodel (12) is the structural
eyuation of interest itself. [n the words of Engle et al. (1983), the condition S~12A is sufficient for
the predeterminedness of Séy, in equation (1) but not for its weak exogeneity.
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(13) which are relative to S(y,). Hence it is hardly surprising that much of the eazly work on
esogeneity testing focuses on that set of regression ccefficients along the línes of the discussion in
~~'u (19ï3). Nevertheless, as discussed e.g. in Richard (1984) or Lubranoet al. (1986), the "reverse"
regression ot S'y, on p'y, leads to more operational factorizations of the likelihood function and,
hence, to more tractable expressious for the posterior densities of interest. We shall accordingly
conduct our analysis in terms of the coefficients of that "reverse" regression, which are given by

a - S'nA (A'nA)-' - ( is)
~1'e note in passing that, as discussed in Lubrano et al. (1986), a is a bounded function of (i (while
the regression coefficients of Q'y, on S'y, are linear and, hence, unbounded in ~3). It follows that
t he existence of prior and posterior moments tor a does not require the existence of corresponding
moments for Q. This is not a purely casual issue. As discussed e.g. in Drèze and Richard (1983),
we might wish to impose the requirement that the prior density of p be invariant with respect to
the choice of a normalization rule in equation (1). Densities which satisfy that requirement, among
which the Cauchy and certain types of so-called 1-1 poly-t densities, have no moments (as long as
the origin belongs to their support).

Inference on a may be conducted in several often complementary ways. A"direct" approach
consists in selecting a prior density for a which is centered around a- 0, the hypothesis of concern,
and in examining whether or not the posteriot density of a has significantly shifted away from the
origin. This is the approach used by Lubrano et al. (1986) and which we shall also follow here.
A straightforward alternative to that approach would consist in attaching a non-zero probability
to the point hypothesis that a- 0 and in computing the corresponding posterior odds. See e.g.
Zellner (19 ï 1) or Leamer (1978) tor the derivation of posterior odds for a vaziety of hypotheses of
interest in the context of regression analysis. "Indirect" approaches are also available. In pazticulaz,
Florens and Mouchart (1988) propose Bayesian extensions of the classical notion of specification
tests, as defined by Hausman (1978). These extensions aze based upon explicit comparisons of the
marginal aqd conditional (relative to the hypothesis ~- 0) posterior densities for the ccefficients
of interest which, in the context of our analysis aze p,ry and oz. Practical implementations of this
conceptually attractive idea within our general instrumental variables framework belong to our
research agenda.

Having discussed all the components of a general Bayesian IV approach to exogeneity testing,
we now specifically discuss their softwaze implementation. Let B denote the set of all coefficients
other than p. Loosely speaking, B includes (the "free" elements of) ry,P and f2 - or whatever
transformation of these coefficients is introduced in the course oí the RENC analysis. A natural
implementation of our analysis proceeds in two steps.

Step 1: Conditionally on A, we can apply the RENC techniques described in Richard and Steel
(1988) to the SURE system (7).

The main input at this stage of the analysis consists of a prior density for B, which, in all
generality, can be conditional on p. Interestingly enough the decision on whether or not B and Q
ought to be priori independent of each other has little implication on the overall cost of computing
the posterior densities and, hence, may lazgely be considered on its own merits. Thie issue oí
independence is of special interest if we wish to specify a prior density for a which is centered
around the prior belief that a- 0, since a is a function of both 9 and ~3. Lubrano et al. (1978,
subsections 3.3 and 3.4) specifically discuss ways of selecting prior densities on (B, Q) subject to the
condition that E(a) - 0, when a is a scalaz. Multivariate extensions of their analysis are esaentially
straightforward. Alternatively, we can impose the stronger requirement that E(a~~i) - 0, (3 - almost
surely.



1'he main output of our conditioi~al RENC analysis consists of:

(i) Conditional posterior densities and moments for the coefficients of interest (ry,o7) and
also for a;

(ii) A"marginalized" Gkelihood function for Q, which is given by

L. (p; y) - f G(Q, B ; v) D(eI A) dQ, (17)
e

where G(p,B; y) denotes the likelihood function associated with ( 7) and D(B~(~) the prior
density of B conditionally on (3.

Step 2: A kernel of the posterior density of (3 is given by

D(Al y) a L. (A; y) D(Q), (18)

where D(~i) is the prior density of ,13. That posterior density is of interest on its own for inference
on F3, but is also needed for marginalizing w.r1. R the conditional results obtained in step l. For
example, the uuconditional posterior density of a is

D(aly)- f D(alr3,y)D(ply)dA, (IS)
A

where fJ denotes the support of the posterior density of Q. The integral of the posterior kernel (18)
is not known analytically. All integrations relative to p can be evaluated by means of Monte Carlo
procedures with importance sampGng. An obvious choice for the importance sampling distribution
would be the posterior distribution ot p, as derived under a Limited Information framework (i.e.
under a NC prior for P and S2), since the latter is a so-called poly-t distribution for which there now
exist efGcient random number generators. See Drèze and Richazd (1983) or Bauwens and Richard
(1985) for téchnical details.

At the time this paper is being written step l is fully operational but we have yet to complete
the software implementation of step 2. In fact, though the sequence we have just described is quite
natural for expository purposes, there seem to exist numerically more efficient alternatives whose
implementation, however, is somewhat more demanding. In short, the empirical findings in Richard

and Steel (1988) unequivocally indicate that major efficiency gains are achieved when the bulk of
the analysis - whether analytical or numerical - is conducted conditiona!!y on f2 and the final step
of computation consist of marginalization w.r.t. f2 under an Inverted-Wishart importance function.
}feuristically, (mazginal) inference on the structural ccefficients ~i and ry is highly sensitive to a
~iumber of problems among which lack of "qualitative" identification (due e.g. to multicollinearity
among included and omitted regressors). It ïollowe that the posterior densitiea ot these coefficients
may be yuite "ill-behaved" and severe skewness or even bimodality are not unheard of. In contrast,

the posterior distribution of the ccefficients in f2, which measure the overall fit of the equations
and not the identification of individual regression ccefficients, is more robust against such problema
(we have yet to find a bimodal posterior dístribution for f1!) and their evaluation by Monte
Carlo procedures, based on Inverted- Wishazt importance sampling distributions, aeems to be
remarkably efficient. Furthermore, conditionally on f2, inference on ~i, ry and P is largely analytical

or numerically easy to contml. The RENC techniques described in Richard and Steel (1988) take

full advantage ot these findings. Their extension to our general instrumental vaziables framework

necessitates inverting the order of integration with respect to Q and S2 and generates additional

technicalities relative to the simpler but less efficient procedure we have outlined in formulas (17)

- (19).
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3. A U.K. Money Dernand Equation

3.1 Introduction

We now apply the techniques we have just described to a money demand equation for the UK.
'The background to our own study is found in Lubrano et al. (1986) (hereafter, LPR). Institutional
details and a(single variable) exogeneity analysis of interest rate alone are found in LPR. In
summary, LPR find that the impact coefficient of interest rate changes sign (from negative to
positive) with the introduction in October 1971 of the set of ineasures known as Competition and
Credit Control (CCC);s that the long term demand for money is stable across the change of regimes;
that long terrn adjustments towards equilibrium are slow; that interest rate clearly is exogenous
in the post-CCC regime and that its exogeneity cannot be rejected in the pre-CCC regime; and,
finally, that money does not Granger (1969) cause interest rate in the pre-CCC regime.

Our current analysis extends that o( LPR in several directions:

(i) First and foremost, we shall investigate the joint exogeneity of price and interest rate;

(ii) The data used in LPR cover the period 1961(iv) - 1981(ii) and, hence, net of initial
conditions and forecasts include only 35 observations for each regime, which is not enough
to conduct independent specification searches. Our data set covers the period 1955(i) -
1986(ii) with some minor revisions. The availability of this lazger data set enables us to
conduct independent specification searches for each regime individua.lly. It ought to be
mentioned here that CCC was gradually abolished and came to an end on 20th August
1981. This raises the possibility of an additional atructural break around 1981(ii). All our
post - 1971 equations have been estimated on the periods 1971(iv) - 1981(ii) and 1971(iv)
- 1986(ii). The results being essentially the same over the two periods we shall only report
those obtained for the longet period.

(iii) A growing part of the personal sector monetary aggregate M3, whose precise definition
is found in Appendix A, is interest bearing. While LPR model disequilibrium feedbacks
in terms ot a log-level Error Correction Mechanism (ECM), Hendry (1987) suggests that
ECM factors on interest bearing aggregates ought to be expressed in levels (leaving the
short term components of the equation unchanged). Both versions will be used for the
post-CCC regime as a substantial (and increasing) fraction o( M3 is interest bearing during
that period.

The variables used in our analysis are:
M: the M3 personal sector monetary aggregate;

Y: real personal disposable income;

P: the deflator of Y;

R: the Local Authorities short term interest rate;

U: the unemployment rate;

B: the level of real official reserves.

5 In short, the pre-CCC regime was one of direct control of short term interest rates, while the
post-CCC regime is one in which control over the monetary aggregates is attempted through the

free operation of market forces.
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De(initions and data sources are given in Appendix :~. 'I'he data are quarterly and seasonally
unadjusted. '['hr notation is that used in LPR: MY for (bf~P)„ MYY for (M~PY),, D for the
di(ference operator (0 wlcen conventional notation is used), trailing i Cor the i-th lag operator, D;
for the i-th diSerence operator (~;), DD for the squared difference operator (~2), L for natural
togarithms (lrz), R for 100 t R, and Q; for the i-th quarter seasonal dummy. Periods A and B cover
1955(i) - 1971(iii) and 1971(iv) - 1986(ii) respectively, including initial conditions, whereas, for
purposes of comparison, periods A1 and B1 will denote 1961(iv) - 1971(iii) and 1971(iv) - 1981(ii),
respectively.

The specification search is conducted along the principles described in Hendry and Richard
(1982,1983) and using the software PC-GIVE, documented in Hendry (1989). Tests for parameter
constancy,forecast accuracy, mean innovation, autocorrelation, heteroskedasticity, autoregressive
conditional heteroskedasticity, normality and the validity of linear restrictions are extensively used
throughout the analysis. The test statistics are listed in Appendix B together with references
(one degree of freedom test statistics are asymptotically chi-squared, two degrees of freedom test
statistics are approsimately F).

3.2 The Demand for Money

The outcome of our specification search íor the demand for money in each subperiod is pre-
sented in Table 1(constants and seasonal dummies are omitted, values in parentheses are asymp-
totic standard deviations, the test statistic are those listed in Appendix B together with degrees of
freedom, one for XZ and two for F test statistics). Graphs of the actual and fitted values of DLM
are found in I'igures 1 and 2. While LPR used DLMP as the dependent variable we use instead
DLNL6

On the overall our results agree with those obtained by LPR which, as already mentioned,
are based on a substantially shorter sample period. The long term coefficients, which are reported
in Table 2, áre in complete agreement though clearly not estimated with much precision especially
in period B. The short term dynamics differ in several respects, the most significant one being
that the interest rate coefficient in period A has changed sign and is now positive, though not
significantly so. In fact, the ( impact) coefficient of interest rate is now positive and essentially
constant throughout the sample period.' The long term elasticity of interest rates is negative as
expected.

A second important change is that in period A, our ECM ccefficient is more significant and
adjustments towards long term equilibrium solutions are generally faster. Parameter constancy
within period A is quite satisfactory judging by the statistics which are reported in Table 1 as well
as by the one step-ahead Chow tests in Figure 3.

We note that in period B the ECM coefficient, whether ín log or level form, remains quite small
and not very significant with the consequence that long term elasticities are not well determined.

6 In doing so we draw a clear distinction between the endogenous variable DLM and the po-
tentially exogenous one DLP. The two formulations are nevettheless equivalent since DLMP -
DLM - DLP and DLP is included in the list of regressors.

' The fact that the initial impact of an unexpected rise in interest rates is to increase the demand
for money is by no means as counterintuitive as one might think. The private sector has subatantial

liabilities and the first effect of a rise in interest rate may well be an increase in the amount of
money required for covering the interest charges. Note, in particular, that mortages in the UK

have variable interest rates.
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C'Iearly, more work is needed in order to obtain a more satisfactory specification of the money
demand equation in period 13, assuming one exists,s but this goes beyond the objectives of our
present paper. In line with the conclusions we draw below it is com(orting to know that additional
investigations can proceed under the working assumption that price and interest rates are weakly
exogenous.

3.3 The Instrumental Variables Equationa

Though economic theory offers some guidelinea for the selection of variables to be included
in the price and interest rate equations, it tells us very little regazding their specific functional
forms. Hence, beyond the initial selection of (current and lagged) variables entering the unrestricted
versions of these two equations, we shall select their final parsimonious versions lazgely on purely
statistical considerations (diagnostic tests). After all, these equations are of no interest to us and
our sole preoccupation at this stage ot our analysis is to estimate their innovation components for
tlte purpose of drawing inference on the ccefficient a in equation (16).

The results are reported in Table 3 for the price equation and in Table 4 for the intereat
equation. The only statistic that is not satisfactory is the test for Normality (rht) in the interest
rate equation for period A. A number of surges in interest rates [in pazticular for 1961(iii), 1964(iv),
196ti(iii) and 1967(iv)] is not accounted for by the model. Given a structural explanation, dummies
for these observations could be considered. None of the other diagnostics, however, seem to indicate
any problems. '1'he retained specifications make reasonable sense. They are quite parsimonious and
}~et the percentage point standard deviations range between 0.5q and l.lolo. Note in passing that
the three equations constituting our final model differ completely from each other in their selection
of regressors. }íence the relevance of our RENC approach. The application of conventional Bayesian
Limited Information techniques would roughly require trebling the number of coefficients in P.

3.4 RBNC prior densities

As already discussed in subsection 2.3, our empirical exogeneity analysis is conducted condi-
tionally on (i. We shall ( partially) investigate the robustness of out findings by considering alternate
choices of ~3. Conditionally on (~, the system ( 7) constitutes a SURE system to wlilch we can apply
the RENC framework, selecting a prior density that suits the specific object of our analysis. The
reader is referred to Richazd and Steel ( 1988) for the technical details of an RENC implementation
and we limit ourselves to discussing here the information content of the RENC prior densities we
shall use. We mention in passing that RENC prior distributions are relative to a recursive reparam-
eterization of (Ti, Q'pStQ~ ) which can be selected in such a way that it includes a, the key ccefficient
for our exogencity analysis. It follows that RF,NC prior densities arc ideally suited for the putpose
of analysing the exogeneity structure oÍ a single equation IV model.

s The telative weakness of our specification from the perspective of economic theory shonld not
overshadow the fact that it is statistically quite well behaved. It constitutes a parsimonious version
of an unrestricted equation including five lagged values of all relevant variables (M,Y,P and R)
and yet the standard deviation of its distnrbance, expressed in percentage points, is of the order of
1,201o to 1,3010. It also passes a broad range of diagnostic test statistics and seems to be relatively
invariant withín regime B. Potential azeaa of investigation for future research aze (i) the choice
of the interest rate vaziable (LPR report unsuccessíully experimenting with othet interest rates,
including the own interest rate) or ( ii) the explicit modelling of the finding that the fraction oí M3
which bears interest has considerably changed over regime B.



11

We first briefly discuss the selection of our "baseline" RENC prior distribution. Its distin-
gnisliing featurq relative to a conventional NC prior, lies in the fact Lhat it incorporates all the
c~clusion restrictious that have emerged trom our specífication search and, in particular, from our
sclection of instrumental variables.9For practical considerations our current software implementa-
tion only accommodates nondegenerate prior distributions though "diffuseness" can be achieved by
the selection of a"large" value for the prior covariance matrix of the unconstrained elements of II.
In tl~e case under consideration, prior variances aze set equal to 100 and prior covariances to 50.
Tl~ese numbers can vary over a broad range with e.ssentially no impact on the posterior densities.

As for all NC type prior distributions, the selection of the marginal prior distribution of the
covariance matrix fi requires attention. NC-type priors are given by the product of a conditional
Normal density for the elements of II given f2 and of a marginal density for f2. In practice, howevet,
priur assertions relative to IT typically are unconditiona! on St. It is, nevertheless, the conditiona!
precisiou matrix of II given S2 that essentially determines the weight of the prior information relative
to the sa.mplc information. It is now well understood that the selection of a"non-informative"
prior for ft often geuerates unreasonably large relative precision matrices for B given !I and, hence,
escessive weight for the prior on 11. See e.g. Richard (1973, p. 181) for a technical discussion of
tliis issue within a univariate framework. In summary, we have to select a prior that wiB generate
a"reasonable" weighted average between prior and sample information on II and yet remains
moderately informative in the absence of sharp prior information on f2 itself. Our current practice
which is simple to implement and seems to achieve the compromise we are aiming for consists in
selecting for tlie prior expectation of f2 a preassigned fraction of the unconditionalsample covariance
matrix of y„ meant to reflect our crude beliefs relative to the overall "fit" of the model. See the
discussion in Richard and Steel (1988, appendix D) for a more formal justification of this practice
within a simpler univariate framework. Prior degrees of freedom, denoted by vo below, are then
selected in such a way that the implicit "hypothetical prior sample" size remains small relative
to the actual sample size. Our practical experience suggests that posterior results typically are
robust agaiqst ("moderate") deviations from our baseline prior and that the mix between prior and
posterior in(ormation is reasonable. The results which follow are based on the prior expectation of
fi being set equal to 60q of the sample covariance matrix of y,. Prior degrees of freedom are set
equal to either 10 (largely uninformative) or 30 (moderately informative), the actual sample sizes
bcing around 60.

Our baseline prior can easily be modified in such a way that it incorporates the prior belief

9 We might equally relax these restrictions and replace them by probabilistic versions thereof.
'I'he burden of computation is not critically affected since, in either case, the resulting prior covari-
ance structure is fundamentally incompatible with that of an NC prior density. We opted in favor
of the "conditional" prior in order to avoid diluting sample information among an excessively lazge
number of nuisance parameters.

We are fully aware of the fact that our procedure which consists o[ a preliminary ("pretest")
specification search followed by a conditional Bayesian analysis is not fully consistent with a strict
Bayesian perspective. A formal Bayesian analysis ought to proceed under a"grand" prior density
covering all a priori acceptable specifications. It is, however, inapplicable in the current context
where wc have very littlc genuine prior information regazding, in particular, the (short term) lag
structure of uur ~~quations so that the set of potentially acceptable specifications is enormous, while
at the same time parsimony remains critical. We believe that our "pretest" procedure constitutes a
reasonable cotnpromise relative to a strictly Bayesian approach under a"grand" prior and a penalty
function against non-parsimonious specifications.



12

iha.t .S"'y, is wcakly exogenous for ((3,ry,o'). Our so-called ~Veak Exogeneity ( WE) prior deviates
fruw our baseline prior in that :(i) E(a~{3) is set equal to zero; and (ii) 7 and P are assumed to be
a priori independent.

3.5 Posterior distributions

Tables 5 to R regroup posterior means and standard deviations for y and a under various
prior specifications, together with indicators of numerical accuracy. These four tables can be
cliaractcrircd :uti follows:

'1'able 5 contains postcrior results for period A u~der either the baseline prior or the WE prior,
conditionally on the coefficients of DLR and DLP being set at their OLS estimated values,
respcctively 0.22 and 0.62;

Table 6 contains the results of a similaz analysis except that the coefficients of DLR and DLP
are now set equal to -0.25 and 1.0 respectively. These values reflect the dogmatic prior belief
that the coefficient of DLR ought to be negative and that price has no direct impact on the rea!
quantity of money. More importantly in the context of our analysis, these values are meant to
be instrumental in our assessment of the robustness of our findings relative to changesto in p;

-'fables ï and 8 contain the results of a similaz analysis for the fevel vetsion of the demand for
money equation in period B.

The tables include estimates of the relative error bounds fo associated with each individual
posterior mean, measured in percentage points. As usual within the context of Monte Carlo numer-
ical integration tl~ese measures are based on Central Limit'Thcorems. See e.g. Kloek and van Dijk
(1978), Bauwens (1984) or, for a more formal presentation of existence conditions, Geweke (1989).
These errot bounds are known to be conservative'r as it appears from the limited variation of the
results between runs of computation corresponding to neighboring priors and, hence, to different
simulations. We also report the relative error bound c;,,~ for the integrating constant of the poste-
rior density. If anything, these error bounds are amaringly good given the low numbers of drawings
on which they are basedr' and which are reported in the table for each run of computation.

Our tables also include posterior means for p, the correlation ccefficient between the residuals
oi the price and interest rate equations, the role of which has been discuased in subsection 2.2.

Our main empirical findings can be summarized as follows:

(i) The posterior results are quite robust with respect to variations in the prior density (baseline
versus WE, vo - 10 versus vo - 30) and to substantial changes in (3;13

'o Note that the changes we are considering are quite substantial and represent something in the
order of two standard deviations, as estimated by OLS in Table 1.

" In particular, these bounds take no account of the typically high positive correlation between
the estimates of the two components in the ratio of integrals that definea a posterior mean.
" As described in Richard and Steel (1988) we follow an iterative procedure for the progressive

refinernent of the importance function from which values of S2 are drawn. Initial calibration is based
on a merc 100 drawings and only very few (G 3) iterations were required for the results obtaiaed.

" The posterior inference on exogeneity is even essentially unchanged if we adopt the LPR
specification instead for the money demand function. For the sake of brevity, these results are not
reported here.
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(ii) Sample evidence is largely in favor of the joint exogeneity of price and interest rate. It is
only for period B and conditional on the alternate values of Q(Table 8) that we find posterior
expectations of aD~r (i.e. the element of a corresponding to prices) that are around two
standard deviations away from zero. Note, however, that these results are conditional on a
value of ~3 that would be given little weight in the posterior distribution of ~3, judging at
least frwn the estimated OLS standatd deviations. Furthermore, they are indicative of a
substantial negative correlation between the price coefficient and aD~P, mimicking results
found by Lubrano et al. (1986) in their univariate analysis of the exogeneity of interest rate.
It fulluws (rotn th~~se two remarks that, relative to the conditiona! results which are reported
iu 7'ablu ~i, the unconditional posterior mean uf AUtp is likely to be closer to zero and its
wrconditioual standard deviation substantially larger.

4. Conclusions

Two types of conclusions emerge from our analysis. Firstly, at the level of the application we
have just discussed, we feel quite confident in concluding that price and interest rate are jointly
weakly exogenous in both periods, even though our conclusion is based sclely on a pa.rtial fcon-
ditional) analysis. We expect our findings to be fully confirmed by later and computationally far
more demanding unconditional investigations. In consequence, additional searches towards a satis-
factory specification of a UK demand for money equation can safely proceed under that bivariate
exogeneity assmnption and, hence, be based upon standard single equation techniques.

At a higher levcl of generality we find that the Bayesian 1V approach we analyse here is
quite promising. '1'he analysis conditional on p is already fully operational and exhibits excellent
numerical accuracy. Though its current test implementation is highly inefficient and, in particular,
uses non "streamlined" APL routines, a typical run of computation of an IBM~PC-AT only requires
a few hours. Based on our experience, a fully optimized softwaze implementation ought to reduce
that time by a very substantial factot. Hence, a fully unconditiona! analysis, which is conceptually
straightforward in the light of the developments we have discussed here, ought to be feasible in the
ncar future and we are actively working on its implementation.

A final point is worth mentioning even though it mainly concerns the issue oí computational
statistics. The present analysis confirms our earlier finding that our (RENC) approach which is
based on importance sampling on S2 requires an amazingly low number of drawings and, henceforth,
can achieve very substantial efficíency gains relative to more conventional approaches based on
importance sampling on B and which, in our own experience, may require many more drawings
or may even fail to converge if the problem is "ill-behaved". In addition, the dimensionality of
most applications greatly favors drawings in the epace of SI, which has only six dimensions here,
as opposed to the 25 or 29 (depending on the period) unrestricted coefficients in II. This finding
opens a promising avenue of research towards the development of operational Bayesian procedures
that would be applicable to systems of simultaneous equations of moderate size.
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Appendix A: The Data Sources

The variables are given by:

1. Personal sector M3 holdings. Cumulated from the flow of funds accounts in BESA (1955-
1973) and FS (1974-1981(2)), and from the financial transactions accounts in the BEQB (1981(3)-
1987(2)). Consists of changes in:

notes and coins

deposits with banking sector:

- Stc~rling sight

- Sterling time

- forcign nirrcncy.

2. Local autlrority 3 month deposit rate at last working day. From BESA (1955-1974), FS (1975-
1981(2)), and BEQB (1981(3)-1987(3)).

3. Iteal personal disposable income in millions of pounds and 1980 prices. Source: ETAS 1987
(1955-1986(2)).

~!. Total pérsonal disposable income in millions of pounds and current prices. Source: ETAS 1987
(1955-198G(2)).

5. Total unemployed including school leavers in thousands. Source: ETAS 1987 (1955-1986(3)).

G. 7'otal working population in thousands. Source: ETAS 1987 (1955-1986(2)).

7. Level of official U K foreign reserves. Cumulated from flow of funds accounts in BESA (1955-1973)

and FS (1974-1981), and from the financial transactions accounts in BEQB (1981(2)-1987(2)).

Itefercuces:
E'TAS Economic Trends Annual Supplement

BESA Bank of England Statistical Abstract
F'S Financial Statistics

BEQB Bank of England Quarterly Bulletin
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Appendix B: Statistics Used in Modelling

name definition reference

à equation standard error

RZ coefficient of determination

DW Durbin-Watson statistic

r)1 prediction test Hendry (1980)

q~ Chow's lest for parameter Chow ( l9(i0)
constancy

r)a t test for zero Hendry (1989)
forecast innovation mean

pa Box-Pierce test for Box and Pierce
autocorrelation (1970)

Os LM test for autocorrelation Godfrey (1978)

r)5 F version of ~6 Harvey (1981)

r); ARCH test Engle (1982)

ne heteroskedasticity test White (1980)

r)9 test for functional White (1980)
misspecification and heteroskedasticity

nro RESET test Ramsey (1969)

q~r test for Normality Jazque and Bera (1980)

r)~2 joint F test of lineaz reatrictions Harvey (1981)
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'1'able 1: OLS Estimates [or the UK Money Demand Equation
Dependent Variable: DLM

Perind A B B
F,C ~1 log level log

I,It3 -.40(.l4) ULY4 .30(.09) .20(.09)
DLY 27(.06) DLP .35(.14) .30(.1'l)
UI,P .(i'l(.l8) D`lDLP2 -.40(.13) -.30(.13)
LMI'Y1 -.li(.03) DLR .20(.12) .17(.12)
U2LM2 -.48(.O6) MPYS .02(.O1)
(D'2LM2)'' 4.12(.80) LR5 -.09(.11) -.12(.07)

DLR .22(.21) DLY1 .59(.14) .59(.15)

UAlP1'3 .09(.04) DLMY1 .40(.12) .46(.11)
inrludes C D4LR1 -.04(.11)

DLR4 .36(.12)
LMPY3 -.02(.02)

includes C,Q1,Q2,Q3

ó .01154 ó .01214 .01329
12` .80 R~ .67 .59
DW 2.16 DW 2.19 2.05

r,, 5.52(8) rl~ 14.16(8) 16.96(8)
~lz . .67(8,46) r~, 32.40(20) 43.20(20)
r13 .29[t(39)] ~a 1.53(8,37) 1.90(8,39)
r~4 .81(12,39) qz 1.28(20,25) 1.63(20,27)
~5 13.07(6)
r~b '2.09(6,48) p4 .53(12,21) .11(5,49)

~~ .17(6,47) ~s 8.22(6) 11.31(6)
rls .99(15,38) ns 1.05(6,39) 1.62(6,41)
il~, 1.06(27,28) rh .28(6,33) .56(6,40)

rlto 1.42(2,52) na .52(23,21) .91(19,27)

r)„ 1.67(2) qs .46(24,27)

il,, 0.85(19,34) r,ro 1.20(2,43) .15(2,45)
tlu .89(2) .12(2)
,)1z .57(18,27) 1.37(15,32)



I'able 2: Long Run Solution Coefficient Values

I'i~ri~,d
5liecif.

ct

d

7

a

P

generic equat.ions:

É~~ - v- rtUez~(C t~g t 7t t a(t f g)2)
V -CtpLRtugf~PÍ

DI,P - f, DLl' - g, DLR - 0

:~ I A
LPH present

-1.52 -2.36
(2.2?) (1.14)

-6.53 -10.07
(5.11) (2.00)

-5.54 -7.95
(5.50) (2.21)

98.19
(27.27)

Ii 1 IS [3
I,PR present present

levels logs

-4.75 -6.71
(4.73) (7.98)

-16.98 -11.15
(14.67) ( 15.04)

-19.21 -13.29
(11.41) (11.84)

-4.69
(9.31)

-6.10
(11.22)

-13.87
(13.20)



Table 3: Reaction Function for Prices DLP

Period A B

DLPY . 36(.OH) LP5 -. 02(.003)
LR5 .09(.07) LR5 .34(.05)
LM1 .O12(.004) D79(3) . 04(.O1)
DlllL!vt2 -. 16(.02) ULMP1 -. 31(.07)
DLR4 -. 15(.10) D3LR1 . 30(.OS)
I,63 -.013(.005) DLY1 . 16(.06)
U'3LY2 . 09(.02)

includes C,Q3 include s C,Ql,Q2

ó .004963 . 009099
RZ .76 .76
U W 1.83 L94
n, 11.36(8) 10.40(8)
r1, 50.00(20)
riz .92(8,45) .99(8,42)
'7z 1.60(20,30 )
T13 -1.44[t(26)]
r7, .33(6,50) 1.23(5,49)
~7s 1.53(3) 9.52(6)
~lfi .42(3,50) 1.41(6,44)
~~; .39(3,49) . 24(3,46)
r1e .45(15,37) . 43(13,36)
r19 .60(27,27)
rl,o .02(2,51) . 25(2,48)
~1i, 2.50(2) .69(2)
~~„ ~?'~~~31,291 1.70('25,25)

~'ot.e: 'I'he dummy variable Dï9(3) reflects an upward price shock due to the second oil
CI'I~IC.



't'aLle .I: Ri~action Punrtion for Intorest Rates DLR

}'eriod A B

LR2 -.38(.07) LR4 -.18(.O6)
L11 -.009(.004) DDLU2 -.08(.02)
LMY2 .O6(.02) DLM2 -.44(.15)
llLR.5 .27(.10) DLR2 -.30(.10)
D'21,P3 -.17(.08) DLM4 -.63(.16)
LB -.02(.O1) DLB -.03(.01)
LY .O1(.O1) D4LM1 .31(.OS)

includes C,Q2 includes C

n .0053(i9 .O l 143
If' .55 .6l
I) ~V Y.27 2.l!1
rl, IO.G4(8) 4.00(8)
p, 31.20(20)
rll .91(8,44) .48(8,43)
q, .99(20,31)
rl3 -.82~t(19)J
r), .80(12,37) .26(5,41)
rls 3.75(6) 3.13(6)
~6 .50(6,46) .42(6,45)

' ~7 .50(6,45) 1.91(6,39)
pH .83(15,36) 1.36(14,36)
p, .48(26,27)
rl,,, .61(2,50) 1.38(2,49)
rl„ 8.29(2) .40(2)
rl,~ .26(25,27) .82(26,25)



Table 5: Posterior ~loments for Period A - 1955(i)-1971(ul); 3DLR - 022, i.ip~p - O.G2

Prior Baseline W E

vu 30 10 30 10
~drawings 500 500 300 2000

mean s.d ca [nean s.d co mean s.d to mean e.d ~o
LR3 -.91 (. 15) 6.8 -. 40 (.13) 7.5 -. 40 (.15) 9.8 -.90 (. 13) 3.1
DLY 28 (. 07) 4.5 28 (. O6) 5.0 27 (. 07) G.6 27 (.O6) 2.1
I.MI'Yl -. 17 (.04) 3.9 -.17 (.03) 4.3 -.17 (. 04) 5.5 -. 17 (.03) 1.8

y D2LM2 -.46 (. O6) 2.6 -. 47 (.05) 2.8 -. 47 (.07) 3.5 -. 47 (.06) 1.1
(D2LM2)2 3.79 (. 85) 4.3 3.86 (. 75) 4.6 3.97 (. 92) 5.9 3.94 (. 79) 1.9
DnIPY3 10 (. 09) 8.7 10 (. 04) 9.0 10 (. 05) 11.4 10 (.04) 3.7

DL[t .018 (. 060) 018 (. 12) 0 (.060) 0 (.12)
prior

a DLP .2l (. OG3) 21 (. 12) 0 (.075) 0 (.15)

UI,R. .004 (.040) 182.5 -.009 (. 053) 124.3 -.005 (.039) 205.3 -.013 (.052) 38.5
posl.erior

DLP 17 (. 04) 4.4 14 (. 05) 7.5 051 (.041) 21.7 084 ( .050) 5.9

p 10 IS 098 18
~ itcrations I 1 1 2
c;,,~ ï-4

- ~-- -
141

-- - --
Il4

---
3.5



'1nbl~~ (i: I'o,t~,rior ~lon~.~uts for Period i`: 19.JJ(I)-I9i 1(111); (jOLN --U.25, IjDLP - 1.00

Prior Baseline W E

i~o 30 10 30 10

~drawings 50U 500 2000 50U
mean s.d ca mean s.d ea mean s.d ta mean s.d co

f.Ft3 -.51 (.l5) 5.3 -. 53 (.14) 4.8 -.52 (. 16) 2.8 -. 52 (.14) 5.2
llLY' 2U (.07) 5.2 25 (. O6) 4.7 24 (. 07) 2.8 24 (. 06) 5.2
LhIPYI -. 17 (.04) 4.2 -. 16 (.03) 3.7 -. 16 (.04) 2.2 -.16 (.03) 4.0

y D'2Lr12 -.45 (.O6) 2.7 -. 45 (.O6) 2.4 -.46 (.07) 1.3 -.46 (.O6) 2.5
(n2l Af2)" 3.G9 (. 89) 4.6 3.78 (. 81) 4.0 3.91 (. 95) 2.2 3.87 (. 83) 4.2
D~1PY"3 09 (.O5) 9.7 . 09 (.04) 8.4 10 (. OS) 4.6 09 (. 04) 8.8

DLR .018 (. 060) 018 (. 12) 0 (.060) 0 (.12)
prior

a DLI' .21 (.063) 21 ( .12) 0 (.075) 0 (.15)

DLR .U42 (.04`l) 23.1 . 057 (.052) 16.7 .029 (. 040) 13.4 .050 (.052) 20.6
pntit.~~ri~~r

lll.l' .I-1 ( U40) G.1 U9i (.U47) 9.5 U26 (. U43) IG.7 . 05U (.051) `1U.8

p ll 20 .10 19
~ iterntions 2 2 2 3
c~,,, ~,, I í.] 3 U d.0



`fable ï: Puslerior !1lomenls (or Period B: l9ï l(iv)-l9d(i(ii); I3DLH - 0.10~ ~DLP - O.3S

P r ior Basel ine W E

v~ 30 t0 30 10
~drawings 200 500 400 500

mean s.d ea mean s.d ee mean s.d eo mean e.d ea
DLY4 29 (.08) 8.3 30 (.08) 4.9 29 (.08) 6.8 .29 (.OB) 5.3
D2DLP2 -.90 (.12) 8.7 -.40 (.11) 5.3 -.40 (.12) 7.3 -.40 (.11) 5.7
DLIt4 33 (.12) L0.4 .37 (.11) 5.8 36 (.12) 7.8 .36 (.11) 6.4

7 A9YY5 -.018 (.Oll) 17.6 -.019 (.010) 10.1 -.019 (.Oll) 13.9 -.019 (.010) 10.6
Lft5 -.09 (.OS) 25.8 -.09 (.08) 16.7 -.09 (.08) 22.3 -.09 (.08) 17.4
DI,Y1 5ï (.13) 6.4 60 (.12) 3.7 60 (.12) 5.0 60 (.12) 3.9
DLn1Y1 39 (.11) 7.9 40 (.10) 4.6 40 (.10) 6.3 .41 (.10) 4.9
D4LR1 -.04 (.08) 64.0 -.04 (.07) 35.1 -.04 (.08) 47.7 -.04 (.07) 35.?

DLR .18 (.19) 18 (.37) 0 (.19) 0 (.38)
prior

a ULP -.04.1 (.19) -.044 (.38) 0 (.19) 0 (.38)

DLR .039 (.10) 79.2 -.097 (.13) 28.9 -.078 (.11) 41.4 -.12 (.13) 22.1
posterior

DLP .085 (.10) 34.6 -.041 (.11) 53.3 -.022 (.09) 94.8 -.024 (.I1) 95.8

p 02 12 02 .12
~ iterations 1 2 2 1

c;,,~ 9.3 7.9 13.5 10.0



TaLli, 8: I'o.~rrior Alomrnta for P~~riod H: 197i(iv)-19A(i(ii); dpr.ir - -0.25, 13p~~ - 1.00
-

1'nur
- -- --- - -----
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-- - - - --- - - ----
W F

vu 30 10 30 10
~drawings 500 50U 1500 500

mean s.d co mean s.d ea mean s.d ~o mean s.d co
DLY4 .32 (.09) 5.7 33 (.09) 5.0 .32 (.09) 4.5 33 (.09) 5.5
D2DLP2 -.47 (.14) 5.8 -.47 (.13) 5.0 -.47 (.14) 4.4 -.47 (.13) 5.6
DLR4 45 (.13) 5.8 50 (.13) 4.9 .44 (.13) 4.7 .49 (.13) 5.5

~ I.[PY5 -.063 (.013) 4.0 -.062 (.013) 3.7 -.064 (.013) 3.1 -.062 (.013) 4.1
LR5 -.47 (.09) 3.9 -.46 (.09) 3.7 -.48 (.09) 3.0 -.46 (.09) 4.1
DLI~'1 78 (.14) 3.7 .79 (.14) 3.3 T8 (.14) 2.8 .79 (.14) 3.6
DLI.1Yl 60 (.12) 4.0 59 (.12) 3.7 80 (.12) 3.1 .60 (.12) 4.0
D4LR1 -.38 (.09) 4.7 -.37 (.09) 4.4 -.38 (.09) 3.0 -.37 (.09) 4.8

DLR .18 (.19) 18 (.37) 0 (.19) 0 (.38)
prior

a DLP -.044 (.19) -.044 (.38) 0 (.19) 0 (.38)

DLR .074 (.091) 28.0 .043 (.089) 38.3 .031 (.088) 40.4 .035 (.097) 55.2
posterior

DLP -.17 (.075) 8.9 -.22 (.076) 6.7 -.15 (.086) 9.2 -.20 (.07T) 8.0

p 04 .13 03 .13
~ iterations 2 3 1 2
c;,,, 9.5 5.2 10.4 8.8



Figure 1: Actual and Fítted Values for Period A
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Figure 2: Actual and Fitted Values for Period B(levels ECM)
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Figure 3: One Step-Ahead Chow Tests for Period A
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