for omic Research

NR.1

Discussion paper

Center for Economic Research

No. 9401

MONTE CARLO SAMPLING AND VARIANCE REDUCTION TECHNIQUES

by Jack P.C. Kleijnen R35 and Reuven Y. Rubinstein

Simulation

January 1994

Monte Carlo Sampling and Variance Reduction Techniques'

Jack P.C. Kleijnen**
and
Reuven Y. Rubinstein***

A contribution to
ENCYCLOPEDIA OF OPERATIONS RESEARCH AND MANAGEMENT SCIENCE
edited by
Saul Gass and Carl Harris
published by
Kluwer Academic Publishers

Norwell, Massachusetts 02061

October 1993

^{*} This paper was written while the second author was visiting CentER; the financial support provided by CentER is gratefully acknowledged.

[&]quot;Tilburg University (Katholieke Universiteit Brabant), School of Management and Economics, CentER and Department of Information Systems and Auditing, 5000 LE Tilburg, Netherlands.

Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa 32000, Israel.

MONTE CARLO SAMPLING AND VARIANCE REDUCTION TECHNIQUES

Jack P.C. Kleijnen and Reuven Y. Rubinstein Tilburg University and Technion

Let $\ell(v)$ be the expected performance of a discrete event system (DES):

$$\ell(v) = \mathbb{E}_{v} \varphi \{L(Y)\} \tag{1}$$

where L(Y) is the sample performance function (simulation model) driven by an input vector Y with probability distribution function (pdf) f(y,v); the subscript v in E_v means that the expectation is taken with respect to f(y, v); φ is a real valued function. To estimate $\ell(v)$ through simulation one generates a random sample Y_i with i = 1,..., N from f(y, v), computes the sample function $L(Y_i)$, and the estimator

$$\tilde{\ell}_N = \frac{1}{N} \sum_{i=1}^N \varphi[L(Y_i)]. \tag{2}$$

This is called *Crude Monte Carlo (CMC)* sampling. *Variance reduction techniques (VRTs)* transform the underlying simulation model into a related one. Typically, the more one knows about the system, the more effective VRTs are. Well-known VRTs are antithetic and common random variables, control random variables, and importance sampling. Other VRTs are presented in Glynn and Iglehart (1988), Kleijnen (1974), and Wilson (1984).

There are good reasons for applying VRTs. (i) There may be negligible extra costs in terms of computer time and human effort. Examples are common and antithetic variables. (ii) The performance may represent the probability of a 'rare event'; for example, the failure probability of a highly reliable computer system may be 10⁻²⁵. Then the only practical alternative is importance sampling, which may make reliable estimation of the rare event probability feasible. In this paper we shall emphasize importance sampling.

Antithetic and Common Random Variables: Consider a simple example. X and Y are random variables (rv's) with known and fixed cumulative distribution functions (cdf's) F_1 and F_2 . We seek a minimum variance estimator of E(X - Y). Since

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$
(3)

cov(X, Y) should be maximized. Assume that both X and Y are generated by the inverse trans-

formation method:

$$X = F_1^{-1}(U_1) = \inf\{x: F_1(x) \ge U_1\}$$

$$Y = F_2^{-1}(U_2) = \inf\{y: F_2(y) \ge U_2\}$$
(4)

where U_1 and U_2 are uniformly distributed on (0,1). We say that *common random variables* (CRV) are used if $U_1 = U_2 = U$. We say that *antithetic random variables* (ARV) are used if $U_2 = 1 - U_1$.

Since both F_1^{-1} and F_2^{-2} are monotonic nondecreasing functions of U, it is readily seen that CRV imply a non-negative covariance in (3). It can be proved that Cov(X,Y) is maximized, so that Var(X-Y) is minimized. Similarly, Var(X+Y) is minimized when ARV are used. See Glasserman and Yao (1992).

Consider now a more realistic case, namely minimum variance estimation of $E\{L_1(X) - L_2(Y)\}$ with n-dimensional random vectors X and Y, and L_1 and L_2 real-valued monotone functions in each component of X and Y. In practice, L_1 and L_2 may correspond with two comparable queueing systems; if there are (say) three servers in series, then n equals four (one U per customer arrival plus one U per service time). Rubinstein, Samorodnitsky and Shaked (1985) prove that if L_1 and L_2 are monotonic in the same direction in each component of the vectors X and Y respectively and the dependence is permitted only between the components $X^{(i)}$ and $Y^{(i)}$ having the same indices (i=j), then the variance of $L_1(X) - L_2(Y)$ is minimized when $U_1 = U_2 = U$, componentwise.

Antithetics (ARV) means that in (2) pairs of negatively correlated samples are generated: Y_{2i-1} and Y_{2i} with i=1,...,N/2 use $U_{1,2i-1}$ and $U_{2,2i}=1-U_{1,2i-1}$ respectively.

When comparing two or more systems $(L_1, L_2, ..., L_Q)$ with Q > 1, then both common and antithetic variates can be applied. Their optimal combination (in the context of metamodeling, using the blocking concept taken from experimental design theory) is studied in Schruben and Margolin (1978); also see Donohue, Houck, and Myers (1992).

Applications of common random variables are abundant in practice, since simulationists find it the natural way to run their experiments: compare alternative systems under 'the same circumstances' (same sampled traffic rate). Their analysis is often crude: a few runs with no formal statistical analysis. If the analysis is not neglected, then the only extra work involves the estimation of the correlations among the sample performances L(Y). Applications of antithetics are rare, even though their implementation is very simple (as Kleijnen and Van Groenendaal, 1992, p. 199 show).

Control Random Variables: Suppose X is an unbiased estimator of μ . A random variable

C is called a *control variate* for X if it is correlated with X and its expectation γ is known. The *linear* control random variable $X(\alpha)$ is defined as

$$X(\alpha) = X - \alpha(C - \gamma) \tag{5}$$

where α is a scalar parameter. The variance of $X(\alpha)$ is minimized by

$$\alpha^* = Cov\{X, C\}/Var\{C\}. \tag{6}$$

The resulting minimal variance is

$$Var\{X(\alpha^*)\} = (1 - \rho_{XC}^2)Var\{X\}$$
(7)

where ρ_{XC} denotes the correlation coefficient between X and C. Because $Cov\{X, C\}$ is unknown, the optimal control coefficient α^* must be estimated from the simulation. Estimating both Cov(X, C) and $Var\{C\}$ means that linear regression analysis is applied to estimate α^* . Estimation of α^* implies that the variance reduction becomes smaller than (7) suggests, and that the estimator may become biased. This VRT can be easily extended to multiple control variables (simulation input variables) and multiple response variables (simulation outputs). See Kleijnen and Van Groenendaal (1992, pp. 200-201); Lavenberg, Moeller and Welch (1982); Rubinstein and Marcus (1985); and Wilson (1984).

Importance Sampling: Let g(y) be a pdf that dominates f(y,v) in the absolutely continuous sense:

$$supp\{f(y, v)\} \subset supp\{g(y)\}. \tag{8}$$

Using g we can represent $\ell(v)$ in (1) as

$$\ell(v) = \int \varphi[L(z)] \frac{f(z,v)}{g(z)} g(z) dz = IE_g \left\{ \varphi[L(Z)] \frac{f(Z,v)}{g(Z)} \right\}, \tag{9}$$

where the subscript g means that the expectation is taken with respect to g. Hence, an unbiased estimator of $\ell(\nu)$ is

$$\overline{\ell}_{N}(v) = \frac{1}{N} \sum_{i=1}^{N} \varphi[L(Z_{i})] W(Z_{i})$$
(10)

where W(z) = f(z,v)/g(z) is called the likelihood ratio (LR); Z_i is sampled from g(z).

The choice of g(y) is crucial. Consider the problem of minimizing the variance of $\overline{\ell}_N$ with respect to g:

$$\min_{g} Var_{g} \left\{ \varphi[L(Z)] \frac{f(Z)}{g(Z)} \right\}.$$
 (11)

It is well known (e.g. Kleijnen (1974)) that the solution of this problem requires knowledge of ℓ . But ℓ is precisely the quantity we want to estimate from the simulation!

However, in many applications one can obtain drastic variance reduction by choosing a g(y) of the form $g(y) = f(y, v_0)$; in other words, g(y) comes from the same parametric family as does the distribution f(y). The parameter vector v_0 is called the *reference* parameter. In this case, the likelihood ratio W in (10) reduces to

$$W(Z_{i}, v, v_{0}) = f(Z_{i}, v)/f(Z_{i}, v_{0}),$$
(12)

and, instead of the problem (11), one can consider the following simpler problem:

$$\min_{\mathbf{v}} Var_{\mathbf{v}} \{ \varphi[L(\mathbf{Z})] W(\mathbf{Z}, \mathbf{v}, \mathbf{v}_0) \}. \tag{13}$$

Rubinstein and Shapiro (1993) discuss variance reduction, emphasizing the case $v_0 = v_0^*$ where v_0^* is the optimal solution of (13).

Unlike the crude estimator, (10) allows us to estimate the response surface $\ell(v)$ essentially at any point v from a single simulation run (that is, from N replicates of a single factor combination). Moreover the gradient $\nabla \ell(v)$ and higher order derivatives (such as Hessians) can be estimated simultaneously with $\ell(v)$ (see Rubinstein and Shapiro 1993).

Until now we considered importance sampling for static models. Assume now that $\{L_i\}$ is a discrete time regenerative process with a renewal cycle length τ . An example is the waiting time process in a stable GI/G/1 queue with FIFO discipline. The expected steady-state performance can then be written as

$$\ell(\nu) = \frac{E_{\nu}X}{E_{\nu}\tau} \tag{14}$$

where $X = \sum_{i=1}^{\tau} L_{i}$. Note that when $\{L_{i}\}$ is a continuous time process, then the sum in $X = \sum_{i=1}^{\tau} L_{i}$ is replaced by the corresponding integral.

Assume again that g(z) dominates f(z, v) in the absolutely continuous sense (see (8)). It can be shown that

$$\ell(v) = \mathbb{E}_{g}\left\{\sum_{1}^{\tau} L_{t} \tilde{W}_{t}\right\} / \mathbb{E}_{g}\left\{\sum_{1}^{\tau} \tilde{W}_{t}\right\} \tag{15}$$

where

$$\tilde{W}_i = \prod_{j=1}^t W_j, \quad W_j = f(Z_j, v)/g(Z_j),$$

and Z_j is distributed according to g(z); see Rubinstein and Shapiro (1993).

Let $Z_{11},...,Z_{\tau,1},...,Z_{1,N},...,Z_{\tau,N}$ be a sample of N regenerative cycles generated from g(z). Then a consistent estimator of $\ell(\nu)$ is

$$\bar{\ell}_{N}(v) = \sum_{i=1}^{N} \sum_{j=1}^{\tau_{i}} L_{ii} \tilde{W}_{ij} / \sum_{j=1}^{N} \sum_{j=1}^{\tau_{i}} \tilde{W}_{ii}.$$
(16)

Note that (as in the static case) the response surface $\ell(\nu)$ can be estimated from a single

simulation run, and so can derivatives of arbitrary order. Assuming again that $g(y) = f(y, v_0)$, Rubinstein and Shapiro (1993) discuss how to choose the reference parameter vector v_0 in order to obtain variance reduction.

Finally we briefly discuss *rare events*. Assume that one wants to estimate the probability $\ell(x, v) = P_v\{L > x\} = I\!\!E_v\{\varphi(L)\}$ with $\varphi(L) = I_{\{L > x\}}$ and $I_{\{L > x\}}$ the indicator of the event $\{L > x\}$. If x is large, then $\ell(x, v)$ is small, for example, 10^{-25} .

Asmussen, Rubinstein and Wong (1993) discuss how to choose a 'good' reference parameter v_0 in (16). Consider the following modification of \tilde{W}_i :

$$\tilde{W}_{t} = \frac{\prod_{j=1}^{t} W(Z_{j}, \nu_{0}) \quad \text{if} \quad t \leq \varsigma,}{\prod_{j=1}^{c} W(Z_{j}, \nu_{0}) \quad \text{if} \quad \varsigma < t \leq \tau}$$

$$(17)$$

where ς is the random stopping time defined as $\varsigma = \inf\{t: L_t = x\}$ with fixed integer x. For example, L_t may be the queue length just prior to customer arrivals and x = b the buffer size in the GI/G/1/b queue. The basic idea is to introduce more congestion at the beginning of the cycle, by making the queue unstable (choosing $\rho(v_0) > 1$), until the level x is crossed; then the cycle is finished by switching back to the original traffic intensity. Heidelberger (1993) demonstrates that this estimator yields high accuracy, provided v_0 is properly chosen: say, chose v_0 according to large deviation theory (see Buklew, Ney and Sadovsky (1991)), or select v_0 such that it minimizes the estimated variance of $\overline{\ell}_N(x, v)$ with respect to v.

Kriman and Rubinstein (1993) introduce the notion of *complexity* of estimators, as follows. An estimator $\overline{\ell}_N(x) = \overline{\ell}_N(x, \nu)$ of ℓ is called ϵ, δ accurate if

$$Pr\left\{\left|\frac{\overline{\ell}_{N}(x)}{\ell(x)}\right| < 1 - \epsilon\right\} > 1 - \delta.$$
(18)

If this inequality is guaranteed by a sample size N = O(p(x)) for some polynomial function p, then the estimator $\overline{\ell}_N(x)$ is called ϵ, δ polynomial. They show that in order for an estimator to be polynomial, it suffices that the squared coefficient of variation of $\overline{\ell}_N(x)$ is bounded in x by a polynomial function p(x). Furthermore, with a "properly" chosen reference parameter vector v_0 , the estimator defined by (16) and (17) is a polynomial one, whereas the crude estimator is an exponential one, meaning that the required sample size grows exponentially with x.

References

- Asmussen, S., Rubinstein, R.Y. and Ch. Wang (1993). "Estimating rare events via likelihood ratios: from M/M/1 queues to bottleneck networks", To be published in *Journal* of Applied Probability.
- [2] Bucklew, J.A., Ney, P. and Sadowsky, J.S. (1991). "Monte Carlo simulation and large deviations theory for uniformly recurrent Markov chains", *Journal of Applied Probability*,

- 27, 44-59.
- [3] Donohue, J.M., Houck, E.C. and R.H. Myers (1992). "Simulation designs for quadratic response surface models in the presence of model misspecification", *Management Science*, 38, 1765-1791.
- [4] Heidelberger, P. (1993). "Fast simulation of rare events in queueing and reliability models", Manuscript, IBM Research Center, Yorktown Heights, New York, 10598.
- [5] Glasserman, P. and D.D. Yao (1992). "Some guidelines and guarantees for common random numbers", Management Science, 38, 884-908.
- [6] Glynn, P.W. and D.L. Iglehart (1988). "Simulation method for queues: an overview", Queueing Systems, 3, 221-256.
- [7] Kleijnen, J.P.C. (1974). Statistical Techniques in Simulation, Part I, Marcel Dekker, New York.
- [8] Kleijnen, J.P.C. and W. Van Groenendaal (1992). Simulation: a Statistical Perspective, John Wiley & Sons, Chichester.
- [9] Kriman, V. and R. Rubinstein (1993). "The complexity of Monte Carlo estimators with applications to rare events", Manuscript, Technion, Haifa, Israel.
- [10] Lavenberg, S.S., Moeller, T.L. and P.D. Welch (1982). "Statistical results on control variables with application to queueing network simulation", *Operations Research*, 30, 182-202.
- [11] Rubinstein, R.Y. and R. Marcus (1985). "Efficiency of multivariate control variates in Monte Carlo simulation", *Operations Research*, **33**, 661-667.
- [12] Rubinstein, R.Y., G. Samorodnitsky and M. Shaked (1985). "Antithetic variates, multivariate dependence and simulation of complex stochastic systems", *Management Science*, 31, 66-77.
- [13] Rubinstein, R.Y. and A. Shapiro (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization via the Score Function Method, John Wiley & Sons. New York.
- [14] Schruben, L.W. and B.H. Margolin (1978). "Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments", *Journal of the* American Statistical Association, 73, 504-525.
- [15] Wilson, J.R. (1984). "Variance reduction techniques for digital simulation", American Journal of Mathematical Management Science, 4, 277-312.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No.	Author(s)	Title
9248	K. Wärneryd	Partisanship as Information
9249	H. Huizinga	The Welfare Effects of Individual Retirement Accounts
9250	H.G. Bloemen	Job Search Theory, Labour Supply and Unemployment Duration
9251	S. Eijffinger and E. Schaling	Central Bank Independence: Searching for the Philosophers' Stone
9252	A.L. Bovenberg and R.A. de Mooij	Environmental Taxation and Labor-Market Distortions
9253	A. Lusardi	Permanent Income, Current Income and Consumption: Evidence from Panel Data
9254	R. Beetsma	Imperfect Credibility of the Band and Risk Premia in the European Monetary System
9301	N. Kahana and S. Nitzan	Credibility and Duration of Political Contests and the Extent of Rent Dissipation
9302	W. Güth and S. Nitzan	Are Moral Objections to Free Riding Evolutionarily Stable?
9303	D. Karotkin and S. Nitzan	Some Peculiarities of Group Decision Making in Teams
9304	A. Lusardi	Euler Equations in Micro Data: Merging Data from Two Samples
9305	W. Güth	A Simple Justification of Quantity Competition and the Cournot-Oligopoly Solution
9306	B. Peleg and S. Tijs	The Consistency Principle For Games in Strategic Form
9307	G. Imbens and A. Lancaster	Case Control Studies with Contaminated Controls
9308	T. Ellingsen and K. Wärneryd	Foreign Direct Investment and the Political Economy of Protection
9309	H. Bester	Price Commitment in Search Markets
9310	T. Callan and A. van Soest	Female Labour Supply in Farm Households: Farm and Off-Farm Participation
9311	M. Pradhan and A. van Soest	Formal and Informal Sector Employment in Urban Areas of Bolivia

No.	Author(s)	Title
9312	Th. Nijman and E. Sentana	Marginalization and Contemporaneous Aggregation in Multivariate GARCH Processes
9313	K. Wärneryd	Communication, Complexity, and Evolutionary Stability
9314	O.P.Attanasio and M. Browning	Consumption over the Life Cycle and over the Business Cycle
9315	F. C. Drost and B. J. M. Werker	A Note on Robinson's Test of Independence
9316	H. Hamers, P. Borm and S. Tijs	On Games Corresponding to Sequencing Situations with Ready Times
9317	W. Güth	On Ultimatum Bargaining Experiments - A Personal Review
9318	M.J.G. van Eijs	On the Determination of the Control Parameters of the Optimal Can-order Policy
9319	S. Hurkens	Multi-sided Pre-play Communication by Burning Money
9320	J.J.G. Lemmen and S.C.W. Eijffinger	The Quantity Approach to Financial Integration: The Feldstein-Horioka Criterion Revisited
9321	A.L. Bovenberg and S. Smulders	Environmental Quality and Pollution-saving Technological Change in a Two-sector Endogenous Growth Model
9322	KE. Wärneryd	The Will to Save Money: an Essay on Economic Psychology
9323	D. Talman, Y. Yamamoto and Z. Yang	The $(2^{n+m+1}$ - 2)-Ray Algorithm: A New Variable Dimension Simplicial Algorithm For Computing Economic Equilibria on $S^n \times R^m_+$
9324	H. Huizinga	The Financing and Taxation of U.S. Direct Investment Abroad
9325	S.C.W. Eijffinger and E. Schaling	Central Bank Independence: Theory and Evidence
9326	T.C. To	Infant Industry Protection with Learning-by-Doing
9327	J.P.J.F. Scheepens	Bankruptcy Litigation and Optimal Debt Contracts
9328	T.C. To	Tariffs, Rent Extraction and Manipulation of Competition
9329	F. de Jong, T. Nijman and A. Röell	A Comparison of the Cost of Trading French Shares on the Paris Bourse and on SEAQ International
9330	H. Huizinga	The Welfare Effects of Individual Retirement Accounts
9331	H. Huizinga	Time Preference and International Tax Competition

No.	Author(s)	Title
9332	V. Feltkamp, A. Koster, A. van den Nouweland, P. Borm and S. Tijs	Linear Production with Transport of Products, Resources and Technology
9333	B. Lauterbach and U. Ben-Zion	Panic Behavior and the Performance of Circuit Breakers: Empirical Evidence
9334	B. Melenberg and A. van Soest	Semi-parametric Estimation of the Sample Selection Model
9335	A.L. Bovenberg and F. van der Ploeg	Green Policies and Public Finance in a Small Open Economy
9336	E. Schaling	On the Economic Independence of the Central Bank and the Persistence of Inflation
9337	GJ. Otten	Characterizations of a Game Theoretical Cost Allocation Method
9338	M. Gradstein	Provision of Public Goods With Incomplete Information: Decentralization vs. Central Planning
9339	W. Güth and H. Kliemt	Competition or Co-operation
9340	T.C. To	Export Subsidies and Oligopoly with Switching Costs
9341	A. Demirgüç-Kunt and H. Huizinga	Barriers to Portfolio Investments in Emerging Stock Markets
9342	G.J. Almekinders	Theories on the Scope for Foreign Exchange Market Intervention
9343	E.R. van Dam and W.H. Haemers	Eigenvalues and the Diameter of Graphs
9344	H. Carlsson and S. Dasgupta	Noise-Proof Equilibria in Signaling Games
9345	F. van der Ploeg and A.L. Bovenberg	Environmental Policy, Public Goods and the Marginal Cost of Public Funds
9346	J.P.C. Blanc and R.D. van der Mei	The Power-series Algorithm Applied to Polling Systems with a Dormant Server
9347	J.P.C. Blanc	Performance Analysis and Optimization with the Powerseries Algorithm
9348	R.M.W.J. Beetsma and F. van der Ploeg	Intramarginal Interventions, Bands and the Pattern of EMS Exchange Rate Distributions
9349	A. Simonovits	Intercohort Heterogeneity and Optimal Social Insurance Systems
9350	R.C. Douven and J.C. Engwerda	Is There Room for Convergence in the E.C.?

No.	Author(s)	Title
9351	F. Vella and M. Verbeek	Estimating and Interpreting Models with Endogenous Treatment Effects: The Relationship Between Competing Estimators of the Union Impact on Wages
9352	C. Meghir and G. Weber	Intertemporal Non-separability or Borrowing Restrictions? A Disaggregate Analysis Using the US CEX Panel
9353	V. Feltkamp	Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values
9354	R.J. de Groof and M.A. van Tuijl	Aspects of Goods Market Integration. A Two-Country-Two -Sector Analysis
9355	Z. Yang	A Simplicial Algorithm for Computing Robust Stationary Points of a Continuous Function on the Unit Simplex
9356	E. van Damme and S. Hurkens	Commitment Robust Equilibria and Endogenous Timing
9357	W. Güth and B. Peleg	On Ring Formation In Auctions
9358	V. Bhaskar	Neutral Stability In Asymmetric Evolutionary Games
9359	F. Vella and M. Verbeek	Estimating and Testing Simultaneous Equation Panel Data Models with Censored Endogenous Variables
9360	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm Extended to the BMAP/PH/1 Queue
9361	R. Heuts and J. de Klein	An (s,q) Inventory Model with Stochastic and Interrelated Lead Times
9362	KE. Wärneryd	A Closer Look at Economic Psychology
9363	P.JJ. Herings	On the Connectedness of the Set of Constrained Equilibria
9364	P.JJ. Herings	A Note on "Macroeconomic Policy in a Two-Party System as a Repeated Game"
9365	F. van der Ploeg and A. L. Bovenberg	Direct Crowding Out, Optimal Taxation and Pollution Abatement
9366	M. Pradhan	Sector Participation in Labour Supply Models: Preferences or Rationing?
9367	H.G. Bloemen and A. Kapteyn	The Estimation of Utility Consistent Labor Supply Models by Means of Simulated Scores
9368	M.R. Baye, D. Kovenock and C.G. de Vries	The Solution to the Tullock Rent-Seeking Game When $R \ge 2$: Mixed-Strategy Equilibria and Mean Dissipation Rates
9369	T. van de Klundert and S. Smulders	The Welfare Consequences of Different Regimes of Oligopolistic Competition in a Growing Economy with Firm-Specific Knowledge

No.	Author(s)	Title
9370	G. van der Laan and D. Talman	Intersection Theorems on the Simplotope
9371	S. Muto	Alternating-Move Preplays and vN - M Stable Sets in Two Person Strategic Form Games
9372	S. Muto	Voters' Power in Indirect Voting Systems with Political Parties: the Square Root Effect
9373	S. Smulders and R. Gradus	Pollution Abatement and Long-term Growth
9374	C. Fernandez, J. Osiewalski and M.F.J. Steel	Marginal Equivalence in ν-Spherical Models
9375	E. van Damme	Evolutionary Game Theory
9376	P.M. Kort	Pollution Control and the Dynamics of the Firm: the Effects of Market Based Instruments on Optimal Firm Investments
9377	A. L. Bovenberg and F. van der Ploeg	Optimal Taxation, Public Goods and Environmental Policy with Involuntary Unemployment
9378	F. Thuijsman, B. Peleg, M. Amitai & A. Shmida	Automata, Matching and Foraging Behavior of Bees
9379	A. Lejour and H. Verbon	Capital Mobility and Social Insurance in an Integrated Market
9380	C. Fernandez, J. Osiewalski and M. Steel	The Continuous Multivariate Location-Scale Model Revisited: A Tale of Robustness
9381	F. de Jong	Specification, Solution and Estimation of a Discrete Time Target Zone Model of EMS Exchange Rates
9401	J.P.C. Kleijnen and R.Y. Rubinstein	Monte Carlo Sampling and Variance Reduction Techniques

P.O. BOX 90153, 5000 LE TILBURG, THE NETHERLANDS

Bibliotheek K. U. Brabant