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Evolutionary Stability in Repeated Games
Played by Finite Automata

by Ken Binmore and Larry Samuelson

1 Preview

Although the results in Lhis paper are applicable in general, atlention will often
be focused on the Prisoners’ Dilemma in the form given on the left of Figure
I. The shaded region in the diagram on the right of Figure 1 is the set of
payoll pairs that the ‘Folk Theorem’ (Aumann [3]) shows to be achievable by
equilibrium play in the infinitely repeated version of the Prisoners’ Dilemma
with ‘dimit-of-the-means’ payofls (which we call ‘profits’ in thisﬁpapg:r).
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Figure 1: The Prisoners’ Dilemma

Abreu and Rubinsiein [1} study a model in which each of two ‘metaplayers’
choose a finile automaton to play the infinitely repeated Prisoners’ Dilemma
on their behalf. In one specification of this model, the metaplayers have lexi-
cographic preferences. They seek to maximize their profit; but if two automata
achicve the same profit, a metaplayer prefers whichever is less complex. Nash
equilibriuvm outcomes in this automaton selection game are the rational points
lying on the cross shown on the right of Figure |, o .

Abreu and Rubinstein interpret their result in terms of decision-makers of
unbounded rationality who must delegate authority to subordinates who can
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only reliably execute simple decision rules. The interpretation to be explored in
this paper is that the metaplayers are & metaphor for an evolutionary process.
That is to say, the aulomata represent rules-of-thumb that have evolved during
past plays of the {infinitely repeated) game. If metaplayers are to be seen as a
metaphor for an evolutionary process, then it is natural to replace the notion
of  Nash equilibrium by an appropriate version of the idea of an evolutionarily
atable strategy. This paper examines the evolutionary viability of strategies in
automaton selection games of the Abreu/Rubinstein varietly.

With the nolion of evolutionary viability thal we employ, only {2,2) in the
diagram on the right of Figure 1 survives as a possible equilibrium outcome
of the infinitely repeated Prisoners’ Dilemma. The same argument, applied to
a gencral two-player, normal-form game! shows that only ufililarian outcomes
are sustainable as evolutionary viable equilibria. However, we are anxious that
the paper not be scen as a slylized defense of utlilitarianism valid {or all societies
without qualification. Some of our assumptlions neced to be irealed with great
reserve for the reasons explained in Section 4.

The idea behind our argument is of ancient vintage. Recent papers that
use the idea include Binmore [8], Fudenberg and Maskin {13] and Robson [23].
An initially nonutilitarian population is vulnerable Lo invasion by mutants who
recognize each other by means of what Robson [23] calls a ‘secret handshake’.
This private signal allows the mutants to form an insider group who cooperate
among themnselves but treal outsiders as outsiders treat each other. As a result,
insiders earn a higher average payofl than outsiders, and so the latier are dis-
placed. Only utilitarian machines can be immune to such invasions and so they
are the only possible candidates for evolutionary viability.

Axelrod and Hamilton [6] are perhaps the most notable of the contribu-
tors to what is now a large lilerature on the ‘evolution of cooperation’. Their
evolutionary defense of TIT-FOR-TAT as a sirategy for the infinitely repeated
Prisoners’ Dilemma is much cited.

Figure 2 shows a representation of TIT-FOR-TAT as a finite aulomaton?
along with a number of other strategies for the infinitely repeated Prisoners’
Dilernma? Each circle in a diagram of Figure 2 indicates a possible sfate of
the machine. The letler wrilten inside the circle shows the action the machine
will take in the Prisoners’ Dilemma when in that state. The arrows indicate
how machines make {ransifions {rom one state to another. For-example; after
TIT-FOR-TAT has just defected {D), it will rernain in ita D state if the opponent
just played D, but will shift to its C state if the opponent just tmperated {C).
The intlial siafe of a machine is shown by an arrow with no source. -

’Tim purllculnr type nf autnmatun wWe use in calied & Munm machine {ancruﬂ anci Uilmnn
[£4}}. Appendix B discusses some of the formal lssues, but the papcr u:an !:m rea.d wlthuut
pencirating these mysteries,

JAppendix A coniaing a listing of all one and two state machines capable nf piaying the
infinitely repeatsd Prisoners' Dilernma.
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Figure 2: Some Automata

When on&y pmﬁts are cunaadered all Lhe atmtegzeq repreﬂented by the &u-

TIT- F‘{}R-—'l AT i8 a N‘ash cqutllbrmm agamﬁi. ltaelf Hnwever, two FIT- FGR-TAT
machines do not constitute a Nash equilibriam for the automaton selection g game

of Abreu and Rubinslein based on the Prisoners’ Dilemma. COUPER&TE isa
better reply to TIT- FOR-TAT than TIT- FE}R m'r m to tt&eif becauﬁe coapmm’rm

TIT- F‘t}r-t TAT. In our evoiuhonary model, this rmpheﬂ that a pcpu!atmn cnnma!.—
ing entirely of TIT-FOR-TAT machines can be invaded by COOPERATE mutants,

' Appendix A contains a payolf table for sl pairs of one and two state machines,



In Axelrod's [5} terminology, a8 nice machine is one that is never the first
{o defect. TIT-FOR-TAT is therefore a "nice’ machine. Axelrod [5] emphasizes
the success of ‘nice’” machines in his setting. However, in our model Lthe same
reasons that destabilize TiT-FOR-TAT also apply to any population consisting
entirely of ‘nice’ machines.® A population therefore cannot be evolutionarily
viable in our mode! unless it contains at least some machines that are nasly
(i.e. nol nice). To this extent, our work is at variance with Axelrod’s.

The machine TAT-FOR-TIT of Figure 2 is a nasty machine. ]i begms by
riei'ect&ng and treats a corrcqpnndmg defactmn by the oppnnent m; & ‘secrel

mam:bmes achmve the utilitarian outcome (2 2) and 80 de} no wmse than two
TIT-FOR-TAT machines.

The fact thal two TAT-FOR-TIT machines are a Nash ethbrmm r:!m':s not
guarantee that a populalion of TAT-FOR-TITs is evolutionarily Btabie in the
Abreu-Rubinstein automaton selection game. In fact, the gamghﬁs_g_ﬁg ﬁ_t;_‘__;_i_i,gg:e:a
that are evolulionarily stable according to the s!,aru:iard definition. This is not a
nroblem that is special to Abreu and Rubinstein’s model. Exnetenca pmblems for
cvolutionanly stable sirategies have been well- documented in a number of other

variants of the infinitely repeated Prisoners’ Dilemma (Boyd and Lorberbaum
[9], Farrell and Ware [11] and Kim [16]). The nonexistence prnblem nrises
because the standard definition requires that any mutnni bndgehead w;l! be

cnt;rrly Phtnm'&tmi Hewevcr, a mutant piayar whc}ae behav;or wﬂuld dlﬂ'er

cmmnt be drwan out.
Umng a modified definition of emlutionary Biabshty that takeg accnunt of

ca—ex;st in a symbrut:c reiatmnshfp Exbencimg our analysis to mclud& sm:h pop-
ulations, we show in general that only ulilitarian autmmea are eva]utmnarily
viable.

The paper is organized in the following way. Sections 2 and 3 provide a
discussion of the issues thal motivate our work. Section 4 wnmdera some of
the modeling problems that our approach entails and expimns how we deal
with some of theﬂe problema and ev&de others Sectmns 5 and 6 mtroduce the:

stable strategy. Senuﬂn T eatabhshes ﬂmt & populatmn mnmstmg of only one

5 Any population of nice machines is vulnerable Lo invasion by cnq:a-ate rnutants except &
population consisting entirely of coopetale machines. Bul such a population in vulnerable to
invasion by defect mutanta.



type of machine must be utilitarian if it is Lo be evolutionarily siable according
to our modifled definition. Section 8 seeks to explain why such a result needs
to be generalized to the case of polymorphous populations of machines. Section
3 provides such a generalization. -

2 Equilibrium Selection

When more than one equilibrium exists, the problem of ﬂeiectmg one from

among. them is not easy. But progress on t}llﬁ front is necessary if game theory
18 Lo brmk uut of tha bcachh{md it has eatablaﬂhcd in the aoczal acsences

nﬁ.cn aacma g!armgly abvmus and it may b& easy to gwe laata ﬂf piauqsble ad
hoc reasons why the “right” equilibrium should be selected. Tlowever, such
prmc:pies are nntormus!y unreliable when applied in general. The purpose of
the enterprise is not to pluck a sel&ctwn criterion from the air that happens to
he rntuztwely sa.l.mfymg in particular cases. It is to find aei&r.tmﬁ criteria that
are defensible Jrom ﬁrs! principles. Our selection criteria, for exampie ‘choose
the uhhtana:n ontcnmc One cmzld gwe a htmdmd rea.sans dmwn I'mm pnhtami

Our ﬁppmach Lo the cqmilbrmm selection problem is based on studying
*trembles”, as is the widely adverlised ’ reﬁnementa of Nash eqml:brmm liter-
ature. Inéf:ed i.hts seems mevztahle En Eradltmna! anaEyses, playera use thmr

D. Lewzs [IB]} diﬂcus& the mﬁamng of such ceunterfﬂctuals in te:‘ms ol' posanb!&
worlds”. 1L is Lrue that no player will deviate from his eqm%zbrmm ﬁtrategy in
this world, but there are posaibie worlds | in which he would. QOur Laak i8-to find
the clnaest pmﬁbie world Lo our own i whlah the dev:atton nccusﬁ A Lremble

about the tloﬂest ;maa!bie wurEd in wlnth the deviation occurs. Fqualsbrmm
sclection proceeds by retaining only those equilibria that remain equtlgbna in
the analyst’s favored closest possible world. :
But the word “closent” haa no a priorf definilion in Lthis context. An equi-
librium selection theory thal employs this met?mdefngy must assign’the word a

meaning by choosing the nature of the trembles it takes as being relevant. It

$Qur alms are the eame aan the even more easily nﬁ_stmderﬂ'tm& work of Aumann and
Sorin {4} or Anderlini [2] who are concerned with equilibrium selection in games of pure
coordination in which ene equilibrium Pareto-dominates the sihers. Nothing could be easier
or less relevant than to solve the probilem they set for Lthemselves by inventing “collective
ratfonality” principles like: refect any equilibrium Parelo-dominated by another.



is natural that economists should be reluctant to abandon the paradigm of an
economic agent as a “perfectly rational” optimizer. Traditionally, trembles are

therefore imposed only on the rules of the game, the preferencea of the players,
or the beliefs that the players hold. A strong bias exists in favor of the first
of these, This is explicit in Selten’s [25] “trembling-hand perfect” equilibrium,
which is obtained by adding appropriate chance moves to the original game. A
similar attitude pervades the refinements htemiure bemg implicit, for example,
in the definitions of sequeniml or subgamewpﬁrl'ec!. equilibrium.”

Uﬁltk{t the refinements literature and the otherwise closely related work of
Fudenberg and Maskin {13], we see the traditionsl types of tremble only as
epiphenomena. Such trembles will indeed be significant in many cases, especiaily
in evolutionary animal biology, but they are scen here as secondary in games
playecf by humms. For this reason, we do not consider envitonmental trembles
in this paper.® |

The trembles this paper takc& AS primary are thaﬁe in ihe thinking pro-
cesses of the players. The idea is that, if an opponent plays irrationally, the
expianation of first resort should be -that he or she reasoned irrationally {and
therelore may perhaps reason irrationally in the future). The trembles we wish
o study are therefore infernal Lo the players rather than exfernal, as in tradi-
tional trealments.” Such an approach requires modeling the thinking processes
of the players explicitly. :

How are the thinking processes nf a player to be modeled? The avenue
of investigalion that we regard as most promising abandons the theory that
people think deeply about their behavior when interacting with-others 1n game-
like situalions. [Instead, they are geen as hosts for ‘memes”.- Dawkins [10)
usca the term “meme” to include rules-ol-thumb, social-norms, convenlions or
other more complex idea systems Lhal a human being may.use in {ranslating a
stimulus into a response. Evolution is seen as being responsible for a selection
being made ﬁpm the pool of possible memes. After evolution has operated,
non-selected memes play a role in interpreting caunterfattunls much. like that
played by trembles i in tmd;tm’nal refinement theory. In brief, the non-selected
mermes serve as explanatmna for what would happen il selected memes were
to deviate from equilibrium play.

TEven the successive deletion of weakly dominated strategies requires a similar treatment
of counterfactiala,

5The common criticiam of Axelrod's work, that » pair of hil-for-{lat strategics is not subgame-
perfect, is therefore not relevant to our concerne. Nor s Kalsi and Neme's{15) similar eriticiam
of the resulis of Abren and Rublinstein [i]

?With the notable exception of the “gang of four” paper {17)and relsted work.



3 Bounded Rationality

The previous section explaing why we seek to model the thinking processes of
the players in a game explicitly. The device used for this purpose ig the idea
of a finite automaton as outlined in Section 1 and, more formally, in Appendix
B. The exposilion is often less clumsy if players are identified with the finite
automaton that represents the strategy they are using. However, a more gen-
erally applicable paradigm sees the finite automatc}n as mmething Iikﬂ & virus
spremﬂs al a rale determmed by how well the atr&teg}' perfmmﬂ relatwe to other
strategies currently in use.

One virtue of working with finite automata is that they focus. attcntmn
on the complcmty of strategies and the possible cost of cﬂmp!cxst}* 14 is not,
however, obvious how such costs are Lo be mcnrpnmted into a formal model.
1t is ﬂfLen taken for granted in the literature on “bounded rationality” that
one should work with & fixed, exogenously determined upper bound on the
complexily of the automata to be studied. We would prefer to characlerize
work in which this assumption is made notably that of Neyman [22] a8 bemg
concerned with amformly hounded ratmnahly With such an assumption, it is
m.ﬁy Lo see that a pmr of GRIM machlncs (F:gurc 2)isa Nash Ethhnum for an
promdcd that machmﬁa with more than 99 states are excluded Thm: cmperatmn
is achieved because a machine that plays better against GRIM than GrIM itself
will necessarily cooperale in every round but the last, when it will defect. Such
a machine must be able to count to 100 in order to know when the last round
has arrived, but a machme with only 99 states can count {:mly 1o 89.1

Thc dnﬂicu]ty w;th mnde!a mcerporatmg an exugennusly determmed upper

......

hy anoihﬂr machine with just one addstmnal siate. Bﬂcaum of this dtﬂicu%l‘;y*
we follow Abrea and Rubinstein {1] in studying models in which the bound on
complexity is endogenously determined.!! Such an assumption always petmits a
machine Lo be displaced by another machine of ﬁltghtiy grealer comp?exlt}' if the
resulting improvement in game payofls is sufficiently large. (One may always
“think a hittle hardcr if the prospective benefits make it seem worthwhile.)

YONeyman {22] shows that a clever construction of the implicit messages that the machines
setid each olher through thelr behavior In the enrly stages of the game allows equilibrium
payolls very close to the ulllitarian outcome to be achieved in a 100 times repeated Prisoners’
Dilemma, even when the uniforms bound on the complexity of a machine l# very much higher
than 899,

114 is sometimes argued that such models are not properly models of “bounded rationality”,
If this argument Is thought persuasive, then one can refer to “imperfect rationality™ or “costly
rationality™ to describe our approach.




In measuring complexity, we simply count states. The complexily ja} of &
machine a is therefore how many states it has. All the machines of Figure 2
have complexity 2 except for DEFECT and COOPERATE which have complexity
I. A discussion of this complexity measure, which is arbitrary to a considerable
degree, is postponed until the next section.

4 Modeling Issues

In evolutionary game theory, a game G 'is seen as being played repestedly.
Fach time it is played, Nature chooses its players from a population whose
composition changes over time. T'he players do not think aboul hew to play G.
‘They are’endowed with strategies by a process of mutation and seleetion that
Lends to eliminate stralegies that are relatively less successful. In the literature,
G 13 usually a normal-form game, but in our paper it in'ilsell the repeated game

Ideally, one would evaluate the players’ income streams in G* using a dis-
count [actor p that represents the probability that-the game will cointinue be-
yond any stage reached in G, Thus, although G* would be modeled as an in-
tfinite game, it would end in finite Lime with probability one, so that no difficulty
arises In constructing an evolutionary model in which the “infinitely repeated’
game (™ 18 repeatedly played: Within this conlext, we are’interested in cases
in which p is relatively large, so that the future is relatively important. In order
to construct a mathematically simple model, however, we first assign payoffs Lo
income streams using the limit-of-the-means criterion rather than discounting.
This can be viewed aa focussing on the case in which p approaches unity while
glossing over the problems that arise in going to the limil. Appendix C exam-
ines these limiting problems in the course of extending the resulis to the case of
discounting. Whether discounting ot limit-of-the- means payolls are used, il is

esssential to our analysis that players be patient. This ensures that the mutants
we construct can deliver Ltheir secret handshakes without suffering undue payoff

The strategies that players use in G™ are modeled as finite automaia. Our
basic intuition is that interesting evolutionary processes will lend to select
against complex machines unless their complexity generates real gaing compared
wilh less complex machines. We mode} this by introducing costs of complexity
into players’ utility functions.

The crudeness of such an approach is compounded by our Measuring com-
plexity by simply counting states. 1t is important to our analysis Lthat slates be
costly, as this ensures that existing machines wil} not contain states that are not
used in equilibrium but could be used to inflict harsh punishments on machines
which offer secret handshakes. As Banks and Sundaram {7} have shown, how-
ever, other measures of complexily may lead to different conclusions. Moreover,
we look at the extreme case in which costs of complexity are ranked lexico-



graphically behind profits. We should stress that this allows us much freedom
in constructing possible mutants when testing the stability of populations. Suc-
cessful mutants may be vastly more complex than the population they invade
provided only that they succeed in achieving a slightly higher profit.

We follow the standard practice of evading a study of the dynamics of the
evolutionary process by appealing to the idea of an evolutionarily stable strat-
egy. Our modification of this definition to suit our special circumstances, though
essential to our resuits by allowing us to avoid the difficulties arising out of the
nonexistence of an evolutionarily stable strategy, will probably ‘not:be contro-
versial. However, it is important to stress that evolutionarily stable strategies
are desgined for use in a biological context. Mutations are then rare, so that
after each mutant invasion, the system has time to atisin a new equilibrium
before the next mutant invasions. Is such a model appropriate in our context?
We think that socio-economic evolution would be better modeled by supposing
that mutations are sufficiently frequent that the systems does nof have time to
adjusl to the last mutation before the next appears. In particular, we plan a fu-
Lure paper in which there is a steady stream of mutations consisting of simplified
versions of those machines that are currently present in the population.!?

In pointing out this last possible inadequacy in our model, we are agreeing
with Fudenberg's [12] criticism that our model is overly restrictive in the type
of trembles that equilibrium strategies must confront. Notice, however, that our
remedy does not lie in appealing to Selten’s trembling hand but in expanding
the set of mutations to be considered.

5 Formalities

Only two-player games are considered. The underlying game G is specified by
a quadruple (Sy, Sz, ¥y, x2) in which S and S are strategy sets and’ the payoff
functions are 7 : Sy x Sy — R (i =1,2). The Pnsoners Dllemma on ‘the left
of Figure 1 will he the principal example

A repealed game G = (R,, Ra, Py, P2) with the underlying game G as its
stage-game, i8 constructed in the usual way. The payoff functions P; and P,
are defined as ‘limits of the means’.!® (Discounting is discussed in Appendix C.)
Thus

T-1
.1
Pi(ry,ra) = Tliﬂgn T E xi(ri{h), ra(hy))
t=0

}2We believe that such a model may lead to markedly different conclusions. Linster {19]
provides some support for such a conjecture while pursuing Nachbar's §21) eriticisma of Ax-
elrod’s " Olympiad” simulations. He find that grimdoes exceedingly well, much better than
tit-far-tat, in simulations of evolutionary competition between one- and two-state machines
provided that the inflows of mutants is sufficlently rich and varied,

}3Since only sirategies implementable by finite automata are considered, Pi{ry,ry) will
always be defined.
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where h, denotes the history of the game up to and including time ¢, and r;(h)
s the action in S5; taken by player ¢ at time ¢ 4 1. The number Pi(ry,ry) will
be called a profit. |

An automaton selection game G¥ is defined as in Abreu and Rubinstein [1].
The strategy space A; consists of & set of finite automata {Moore machines)
described formally in Appendix B. An automaton ¢ in the set A; is capable
of occupying the role of player ¢ in the repeated game G*. No confusion will
result from using a to denote the strategy implemented by the automaton a in
G as well as the automaton a itself.

‘The automaton selection game G# = (A4, A,, U, Us) is played by two meta-
players. The payofl functions U; reflect the fact that the metaplayers are as-
sumed to care, not only about profits in G*, but also about the complexitly
la] of the machine to which they delegate the duty of playing G*. The precise
assumption to be made attributes lexicographic preferences to the metapiayers,
More precisely

Ui(a,e) > Uy{b, e} & {Pi(a,c) > Py(b,c}} or
{P](ﬂ,c) = P;(b,r:) and |“| < Ib” s

with a similar requirement for U;. (Recall that la] is the number of states in
the machine a.)!*

6 Evolutionary stability

In Abreu and Rubinstein [1] a metaplayer’s choice of an automaton is interpreted
as an act of delegating responsibility for the play of G* to a stimple-minded
underling. In this section, the choices atiributed to the metaplayers sre assumed
to emerge from an evolulionary process.

The case when G is symmeltric will be studied first. Then G# is also 8y mi-
metric and we may write A = 4) = A; and Uy(a,b) = U(a,b) = Ua(b,a}. For
the moment, forget that U represents lexicographic preferences If, instead, U
rneasures fitness, then the standard criteria (Maynard Smith [20] for a to be an
evolutionarily slable strategy (ESS) are:

(I) U(a,a) > U(b,a}, |
or (I1) U(a,a) = U{b,a)and Ula,b)> U(b,b),

for all possible mutants 5. These conditions imply that a is a best response to
itself, and hence (a,a) is & symmetric Nash equilibrium for G¥. In addition,
the Es3 conditions incorporate a stability requirement. For any alternative best
response b to a, a must be a better response to b than b is itsell, The Ess

"We choose to represent the lexicographic preferences here with a utility function (which

exisls because the set of finite automts Iz countable) in order to ease comparison of our
modified definition of evolutionary stability with the stsndard definition.
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requurements are intended to caplure the idea that a population of replicas of a
should be invulnerable Lo invasion by sufficiently small groups of mutant b’s.

With lexicographic preferences, {1) and (11} need to be modified. The mod-
ified requirements for a to be an ESS are:

(1} P(a,a} > P(b,a),

or (it} P(a,a) P{b,a) and P{a,b) > P(b, ), |
or (111} Pla,a) = P{ba)and Pla,b) = P(5,}) and |al < }}],

{}

for all possible mutants b. The principle is that profits are always counted before
compiexity.

Various authors have commented on the existence problem for an evolution-
arily stable strategy in the repeated Prisoners’ Dilemma, including Boyd and
Lorherbaum {9], Kim {16] and Robson [23]. Existence is also . prablem for the
modified definition of an E58 given above. Since it is easy -to see that .coop-
ERATE and DEFECT can both be invaded, the lollowing result:shows that no
automaton satisfies this definition of an £s55 when & 18 the P’riﬁnnerﬁ‘Diiemma

Lommn 6.1 For any G, an aulomalon a that salisfies (l), (n) or (m} for all
aulomala b has only one stole.

Proof. This is obvious if G has only one action. If G has two actions; consider
an aulomaton e with more than one state that satisfies (i}, {ii} and (iit). Suppose
that a uses action = in its initial state. Now construct a mutant b that'is’identical
to a except that, if its opponent plays something other than z when bisin its
intitial state, then b switches to a different state from that to 'which ‘a would
gwitch. Then [a] = [b] and P(a g} = P(b,a) = P(a,b) = P(b,b). The reason for
the latter set of equations’is that a and b always use z in their initial siate, and
a and b are indistinguishable in play provided that their nppﬂnent uses r in its
initial state. Thus the hypothesis that a has more than one state leads‘to the
conclusion that none of (i), (ii) or {ii1) hold. - »

Existence problems of this Lype seem to us to be an artificial construet; ariging
{rom a definition of an E55 that is not entirely appropnate {o the situation.!®
The standard definition of an ESS demands that any sufficiently small mvadmg
group of mutants be eventualiy emdrcated One certamly vmuld W!Sh ‘L-ca use'a

hndgehead expands at the expense of the original nﬂrmal pﬁpulatmn Eutwhat
of mutant invasions after which the original bridgehead neither expands nor
contracta? The original normal population and the mutant invaders will then
survive together in a state of peaceful co-existence. In particular; the observed
behavior of bolh natives and invaders may be precmeiy the same, their diflering

15 The existence problem does not ariae becmmn sulomata are. uacri .f".ny pure atrntegy w il
always yield n host of out-of-equilibrium paths in 8 repested game, and inveding mutania can
be constructed by altering behavior on these patha.
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strategies leading to different behavior only under unrealized contingencies. As
regards putative applications to human societies, who cares il different people
would behave slightly differently under cerlain unrealized contingencies if, in
fact, they all cooperate in sustaining a uwlililarian outcome?

To accommodale this issue we introduce a further modification inlo the
evolulienary viability requirement to be studied. A machine a will be called a
modificd evolutionary stable strategy {MEss) if, for all possible mutants b:

(1) P(a,a)
or {2} P{a,a)
or {3} P{a,a)

P(b, a)
P(b,n) and P(a,b) > P(b,b)
P(b,a) and P{a,b) = P(b,b) and o] < |} .

v

As will become clear, one cannot dispense with the definition of a MESS
simply by considering & mixed BSS or a polymorphous extension of the ESs
idea.t® On the other hand, poly:ﬁmphouﬁ MESSES will be important for the
reasons given in Section 7. Ilowever, in thia and the following seclion, the
polymorphy issue is put Lo one side is an attempl Lo ease the exposition.

Complexitly is importaniin the requitements for & MESS because its inclusion
means that & MESS a can have no states that are not used when a plays G#
against itself.}” If an unused state existed, an antomaton b could be constructed
that is similar to a but which dispenses with the unused state so that [b] < |al.
The automaton b plays G exackly s a plays G™ provided that its opponent has
always played G°° exactly as a plays G in the past. It follows that P(a,a) =
P{b,a) = P(a,b) = P(b b), and hence condition (3) for a MESS is violated.
This is one of the easier arguments of Abreu and Rubinstein {1} adapted to our
purpose. Appendix B {Lemma B.1) provides the formal detatils.

Note that it follows lrom the fact that all states must be used in equilibrium
let nezther TIT-FOR-TAT nor GRIM can be a MESS (although this does not

So far, ﬂniy the case ofa symmcfnc un&erly:ng game G haa been considered.
This section concludes by describing how asymmetric games may be addressed.
in the symmetrac case, automata do not ‘know® whether they are player 1 or
player 2. Even if the pa}'uﬁ maleix for G is symmetric, this lack of information
may be a lmndwa;} Fc:r example, if the 3s in the version of the Prisoners’
Dilemma of Figure ! are replaced by 6s, it ceases to be true that the sum of
the payoffs is'mnaximized at (C, C). The sum is maximized instead at (C, D) or
(D, C) (or some mixture of these).

I this problern arises or Lhe payoff natrix of G is asymmetric, we will follow
the standard practice in evolutionary game theory of introducing a symmetrized

18 A mixed em8ocouras when no sufficlently small group of mutants can Invade a population
whose members all play the same mixed strategy. A polymorphy occurs when no member of
the population randomizes, but the effect is the same for an invading mutant because different
members of the original population use different pure sirategies.

1THubinstein's [24] original work on automata used & criterion that called for all states to
be used infinifely offen. We see no grounds for imposing such a constraint here.
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version of G¥ to be denoted by G¥#. The first event in G## consisls of Lhe
automata receiving a signal indicating whether they are to be player 1 or player
2, where cach signal is received with probability 1/2. An sulomaton a can then
be seen as a pair (a;, ag) of simpler sutomata in which ay is used when a acts
ng player I, and ay is used when a acts as player 2.

The profit for player | in the symmetrized game G¥# ig given by

Pla,d) = L(Pi(a1, b2} + Pa(br,82).

The complexily of the machine a = {a;, a3} in the Eymmeﬁriz_ed game i8 taken
to be lal = lay| + |aq]. These definitions allow a uttlity function V' Lo be defined
texicographically by wriling

V{a,e) > Vb, c)& {T(a,c) > P(b,c}} or
[P{a,c) = P{b,c) andla] < |bl}.

One may then take G¥# to be the quadruple
(A1xAg, AyxAz, W, V),

in which Vi and V4 are defined by Vi{a, b} = V{a,b) = Va(b,a}.

7 Utilitarian automata
When a plays itsell in G¥# the largest value its profil can be is

Pla®, a") = {r:.lfﬁgtﬁz L(my(51,82)+ wa(81,82)). (1)

An aulomalon a° Lhat achieves this maximum will be called n utilitarian au-
fomaton for G## because it acts Lo maximize the sum of payoffs.in:the under-
lying game G.18 L

A utilitarian automaton a* in G¥# is defined to be one that satisfies {1}, but
with the maximizalion subject to the addilional constraint that s; = s5. This
constraint reflects the fact that no mechanism is provided in G# for breaking
the symmetry of . Of course, when & is the Prisoners’ Dilemma of Figure 1,
the utilitarian profits for G# and G*# are the same. Uniess this is the case,
the definition of a utilitarian autlomaton for G# is of no great interest.

Theorem 7.1 An gutomalon a can be a MESS in G*# only if & is utililarian.

Proof. Leta® be avtilitarian automaton and, for the purposes of contradiction,
let a be an automaton which is & MESS but is not ulilitarian. It will be shown

1B Rt nne must recall that P in & ‘limit of means'. Thus ¢® need not maximize the sum of
nayolls in every stage garne,
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that a population consisling entirely of replicas of a can be displaced by a
inutrnl 5. The mulant § will be mote complex than a, butl complexity counls
alter profit in the lexicographic preferences described by U

The mutarnt b is constructed to have the following properties:

e Initially,; by outputs a strategy for G that differs from a¢’s initial output.

e if the initial output of the opposing machine differs from a_;'s initial
output, then b; ‘knows’ that it is playing a replica of itsell. It therelore
contlinues by mimicking the atililarian automaton o}

e If the initial oulput of the opposing machine is the same as a_;'s initial
output, then b ‘knows’ that it is playing a. It therefore emits an output
in Lthe next period that ‘convinces’ a that ita opponent is a replica of itself,
and then continues by mimicking o;, and so achieves a profit of P(a, a).

If such a machine b can be constructed, then it follows from the third prop-
erty that P{b,a) = P(a,a) = Pla, ). But P{b,b} = P(e*,a*) > P(a,a}. Thus
none of the criteria (1}, {2) or {3) for a MESS are salisfied and the theorem
[nilows.

[t remains Lo confirm that the third property for the mutant b can be satis-
fied, and so P(b,a) = P(a,a) = P{a,b). This is not entirely obvious. For exam-
ple, il @ were the GRiM slrategy of Figure 2 and G were the Prisoners’ Dilemma
of Figure 1, then &'s playing differently from a at the first stage of G would
push a inlo its punishment phase for ever. Thus P{b,a) = 0 < 2 = P(a,a).
Notice, however, that the GRiM strategy is not a MESS because 1t has a state
that is unused in equilibrium, This observation is the key in establishing that
P(b,a) = P(a,a) = P(a,b). o

Suppose that b;'s initial action switches a_; from its initinl state g to another
state ¢. Since all of a_;'s stales are used in equilibrium, a_; would eventually
reach stale ¢ when playing a;. At that time, let a; be in slate g* generaling
output r, The antomaton & should thercfore be constructed so that, il the
npponent’s initial output is the same as a_,’s, then b swilches to a state which
we will label ¢° and emits the outpul r. Aflter thatl, b can mimic a; without
difficulty. Appendix B {Lemma B.2) provides the details. A machine designed in
this way satisfies the third of the three properties atiributed to b. In particular,
P{b,a) = P{a,a} = P{a,b). 0

Theorem 6.1 provides & necessary condition for an automaton to be a MESS
in G*#%. The same necessary condition,of course, holda for G¥.

Sufficient conditions for the existence of a MESS are easily obtained using
Folk Theorem arguments. We again quote only the result for G##,

Theorom 7.2 Lel 7ii denole the pure stralegy minimaz point of the underlying
game G. Lef u be ifs witlslorion oulcome. Then o sufficient condilion for the
erisience of a MESS in G## {s that u > ¥#.
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Notice that the sulficient condition of Theorem 6.2 need not be satisfied.
fts failure will somelimes be a consequence of the exclusion of mixed stralegies
from the analysts. Qur results can be extended to machines that oulput mixed
strategies for G rather than just pure sirategies.'® One can then replace ¥ in
Theorem 6.2 by ils mixed strategy equivalent U < /. However, there remains
no guaraniee that u 2 3. If this inequalily fails, 8 MESS [ails to exist.

8 Polymorphous populations

The definition of an evolutionarily stable strategy i designed for the case when
mntations come at avfliciently infrequent intervals that the syalem can fully
recover from the effects of repelling one mutation before the next appears. The
definition of a MESS 18 inconsistent with such a story hecause it allows for the
posaibility that certain mutations may not be repelled at all. After an invasion
by such a mulant, the system will therefore not revert to its original state. This
section iljustrates the Sig!‘t’&ﬁﬂﬂﬂtﬁ of this feature of the definition.

Appendix A summarizes the relevant propertics of all one and two state
machines that are capable of playing the infinitely rr:peated Prisoners’ Dilemma.
Obscrve that a population conststing entirely of TIT-FOR-TAT machines will be
displaced by an invasion of muiant COOPERATE machines. Afler Lhe invasion, all
machines will be getting the uiilitarian profit, but COOPERATE has an advantage
in that it is less complex. With the exceptlan of a populatmn consisting only of
copies of the coOPERATE machine, the same goes for any population of ‘nice’
machines. |

This argument shows that no ‘nice’ machine can be a8 MESS.*® A machine
cAn he arn ﬂphmal mply to stﬁelf i our frame:wurk t:mij,’ if it cxhabttﬂ some nasi.y
nol 8 MESS becauﬁe an mvaﬂmrg 33)«' TIT FOR-TAT wnil expanc! from ite tmtmf
bridgehead.

The simplest machine that is 8 MESS is TAT- FGR-T:T (Figure 2) But the
fact that no invading mutant can ezpand at the expense of TAT-FOR-TIT does
not imply that TAT-FOR-TIT cannot be invaded. In Lhe nolalion of Appendix
A, TAT-FOR-TIT can be invaded by ‘ec’, fed’, "AA’, “AC or ‘CAY. (Small letters
indicate machines that begin by cooperaling; large leliers indicale machines
that begin by defecting.} A liny invading group of one of these machines will
not expand, bul neither will it be driven to extinction.

The inability of a MESS to repel all invaders implies that the purity of a
MESS in which the whole populiation consists of copies of a single machine wiil
eventually be sullied. This makes it necessary Lo study. polymorphous popula-

19 An alternative would he to allow the machines access Lo random inpuls, but to continue
to insist on pure outputs. This approach creates difficulties for our analysis.

20This argument slso shows that, with the definition of & polymorphous Tre88 given In the
next section, no population consisting entirely of ‘nice’ machines can be & IMERR
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tions. The next section offers a definition of & polymorphous MESS, and proves
an appropriate generalization of Theorem 6.1. This section continues with a
simple example thal i intended o indicale some of the complexities that this
analysis evades.

In a population consisting of positive fractions of TAT-FOR-TIT, TWEEDLE-
DUM (cc) and TWEEDLEDEE (cd) all machines will always earn the utilitarian
profit. The population cannol be invaded by any one or two state machine
except TWEETYPIE (CA). Nor can any machine of complexity greater than two
invade. However, after an atiemptled invasion has been repelled, the propor-
tions of the three types of machine may be allered. For example, an attempted
invasion by ‘AC’ will increase the relative numbers of TWeEDLEDUM and an
attermpled invasion by ‘AA” will reduce the relative numbers of TWEEDLEDEE.
In the long run, the proportions of the different Lypes in the population will
Lherefore be subject to drift in the face of mulations.

Not only this, none of the three machines are equipped to repel TweeT-
YPIE. TWEETYPIE can thereflore invade the population. Alter the invasion, all
machines will still always earn the utilitarian profit. However, once TWEET-
YPiE gels established, its toothlessness allows suitable machines (of complexity
grealer than two) to gain a temporary foothold. Such machines will get more
than the utilitarian payofl when playing TWEETYPIE who will consequently get
less than the utilitarian payofl. Eventually, the invading machines will lose their
edge when their exploitation of TWEETYPIE results in its being eliminated. They
will then, in turn, be eliminated themselves because their greater complexily no
longer generates any extra advaniage. This restores a population of TAT-FOR-
TIT, TWEEDLEDUM and TWEEDLEDEE in which all machines earn the ulilitarian
payofl.

A population consisting of suitable fractions of TAT-FOR-TIT, TWEEDLEDUM,
TWEEDLEDEE and Lransient numbers of TWEETYPIE can therefore co-exist in a
relationship whose stability is somewhat precarious. The proportions in which
they are present will driflt depending on the shocks the system receives ag differ-
ent mutants sppear. Although the symbiotic relationship may persist for long
periods of time, it will be siressed Lo the point of cn]lapﬁe if a sufficiently adverse
scquence of mutations is encountered. |

Perhaps more satisfactory stability situations exist at higher complexity lev-
eis. At the two-stale level, little more can be said without information about
how mutalions arise.

9 Polymorphous messes

It remains to confirm that the conclusion of Theorem 6.1 is valid in the presence
of polymorphy. To Lhis end, lel F denote a population in which the automaton
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a” occurs with frequency f, > 0{n=1,2.. . N). Define

N
Pla, Fy=Y faPla,a").
n=]

A population F will be said to be a polymorphous MEss if, for all possible
mutants b and all a™ 1n F,

()Y Pl F)y > P, F)
or (2) P(a™, F) = P(b, F)and P(a",b) > P(b,b)
or (3) P({a”,F) = P(b,F)and P(a",b) = P(b,b) and Ja"]| < [B].

The conditions for a polymorphous MESS ensure thal each machine in the
population docs at least as well a8 any potential invader, provided Lhe latter
appears in sufliciently small numbers. Some examples for the case when the
underlying game G s the Prisoners’ Dilemma of Figure 1 may help to clarify the
definition. We have scen that a population consisting entirely of TIT-FOR-TAT is
ot a MRS5S, However, a popualnlion consigting entirely of TAT-#OR-TIT ja & MESS,
S0 is any populalion consisting of specimens of TAT-FOR-TIT, TWERDLEDUM and
TWEEDLEDEE. But the addition of small numbers of TWEETYPIE generates a
population that i3 not a MESS. .

Since any member of the population can itself appear as a mutant b, »
polymorphous MESS must have the property that P{a™, F) = P(a”, F) for all
a™ and a™ in F. It follows from part (2) of the definition of a polymorphous
MESS that, for all @™ and a® in F,

P(a™,a%) 2 P(a",a"). (2)

We define |
z = “}j“ P(a",a") = P(at, at). (3)

It follows from parts (2) and (3) of the definition of & polymorphous MESS that,
for all @™ and a™ mn F,

Pla™, a") >z, {4)

A population F will be saitd Lo be wtilitarian if, for all a™ and a” in F,
P(a™,a™) > P{a*,a*) = u, where a® is & utilitarian automaton.3!

Theorem 8.1 If the underlying gamie G is symmeldric, then a populaiion F can
be a polymorphous MESS for G#* only if F is ulililarian.

211 the automaton selection game in G## | then it §s also true that P{a™,a”} < P{a*,a")
for all @™ and 6" in F. This also holds when & iz aymmetric and the automaion selection
game is G# provided that, as in the Prisoners’ Dilemma of Figure 1, the utilitarian profit in
G# coincides with that of G#F¥, H thig provizo does not hold, the definition of & utilitarian
population ls not very interesting for G#,
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Proof. Let F be a population that 18 & polymorphous MESS. The theorem will
follow from (4} if it can be shown that 1 > u.
The firat step 8 to prove that, for any a™ in F,

Pa™,a*) > u or (P(a* a™), P(a™, a")) = (z,1), (5)

where af satisfies {3).
Suppose that (5) fails. Then there exiats af in F for which

Plal,a*y < u and {P{a*,a’), P(af,a*}} # {z,1). {6}

it will be shown that (§) allows the conslruction of a mulant b that does better
than a’. The mutant plays as follows:

o Initially, b mimics ¥, and contintes to do so unless a cycle is established

that generates a profit pair of (z, ). (Because each automaton in F is
finite, b can be programmed to detect the occurrence of one of the finitely
many cycles generated by the automnola in F which yields the profit pair

(2,2)).

o If such a cycle is cstablished, b sends an identifying signal. If this is
reciprocated, b ‘knows’ il is playing itself and thereafter mimics a*.

e If the signal is not reciprocaled, b experiments until it learns the identity
of the automaton a™ in F' that if is playing.

¢ This will leave g™ in some state g. For familiar reasons, a" must use ¢ in
playing against al least one automaton a™ in F. Thus b may now mimic
a™ thereafter, and hence, by {4), secure a profit of at least 2.

To see Lhat Lthe mutant b so constructed does better than af, first observe
that, for all @™ in F 22

P(b,a") > P(a*, a™). {7)

it follows that (b, F) > P{a*, 'Y = P(af, F). The first of the conditions for
a polymorphous M£ss is therefore not satisficd. The second and third condi-
tions are not satisfied either because P(b,d) = P(a",a") = u, and P(a’, b)) =
P(af,a*) < u, by (6). Thus, P(af,b) < P(b,b). It follows thal {5} must hold
if F'is a MESS. It remains to complele Lthe proof by showing that z > u follows
from {b} and the fact that F is a MESS. A mutant b 15 constructed exaclly as
in the firsi part of the proof, bul we now examine how this mutant performs in
comparison to a* rather than a/. As before, the mutant safisfies (7) for all a”
tn F.

22T establish (7}, notice that if a™ s the sulomatom that & mimica against a™ in the
Inst part of the description of b, then P{b,a"} = P{a™,a"} > P{a*,a"), since otherwise
P{ak,a™) > P{a™,e¢™) > z {from {2)-{3}}, precluding the ability of b and o™ to yicld a cycle
of profits (z, ¢} and yielding a contradiction.
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When playing a®, the mutant b eventually behaves like some machine a™
in F. Suppose that P(b,a?) = P(a™,a*) > u. If u > z = P(a*, a"), then (7)
holds with sirict inequsalilty when n = k. It follows that P{b, F) > P(a*, F).
This contradicts the assumptlion thal F is & MESS. Thus, either z > u as we are
trying to prove, or else P{a™, af) < u.

We therefore consider the case when P(a™,a*} < u. Then (5) implies that
Plak b) = P(e*,a™) = r. Since P(b,F) > P(a*, F), the second and third
conditions for a polymorphous MEss yield that P{a*,b) > P{b,b) = u. On
combining these results, we thereflore obtain again that » > u. a

Theorem 9.2 A4 population F can be a polymorphous MESS Jor G## oply if F
is ulililarian.

Proof. We nole only that, in adapting the proof of Theorem 8.1, one need not
construct a mutant that signala its idenlily under certain contingencies both
when in the role of player | and in the role of player 2. It 18 enough to do betler
than a mackhine in the current population in one of the two roles. 3

10 Conclusion

We have examined circiimstances under which the only evolutionarily viable
outcome in an infinilely repeated game is utilitarian. The argument depends
on Lhe players being boundedly rational, but no uniform bound is imposed on
the complexity of their thinking processes.

QOur notion of evolutionary viabilily, captured by the modified evolutionarily
stable sirategy {MESS) permils players operaling different strategies to co-exist
in a symbiotic relationship that sustains the utilitarian outcome against any
single potential disrupting mutant invasion. However, questions remain aboul
the viability of such populations in the presence of repeafed invasion attempts.
We feel that the examination of more stringent stabilily requirements than those
studied in this paper is an important aren for further research. In particular, it is
nol clear that one should follow the biologists in supposing that the interval be-
Lween suceessive invasion attempts is sufficiently large thal a non-viable mutant
will be entirely eliminated before the appearance of a new mutant. Overlapping
invasions would secem more suited Lo a social context.
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A Appendix

This appendix contains a listing of all 26 one and two state Moore machines
capable of playing the the mfinitely repeated Prisoners’ Dilemma. The entry
in row r and column ¢ in the tables that follow give the profit {the limit-of-
the-meana payofl) that machine r gets when it plays machine ¢. Machines that
cooperate in their initial state are labeled with lower case letters. Machines that
defect in their initial state are labeled with upper case letters.

Figure 3: All one and two state machines.
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B Appendix

This appendix discusses some formal issues in the theory of finite automata that
are neglected in the text. For more details, see Hoperaft and Ullman [14]. We
work with a particular type of finite automaton called a Moore machine. A
Moore machine capable of serving as player ¢ in the epeated game G has the
set S5; of player ¢'s actions in the underlying game G as its oulput {or response)
set. The set §_; of actions jointly available to the other players in G is its input
(or stimulus) set.

Formally, a Moote machine with these input and output sets is a quadruple
(Q.q0,t, ). The set Q is fintte. An element ¢ € @ is interpreted as a stafe of
the machine. The oufpui funclion t: { — 5; describes the action {(q) used by
the automaton when il is in state ¢. The firsl time that the machine plays G,
it is in ils inilial siale gg. The fransition funciton u: Q x S_; — Q describes
how other states are reached. If the machine is in state ¢, it will play t{g} in the
current repetition of G. The other players will use some joint action s_;. This
shifis the sutomaton Lo state u{g, s_;}, where 1t will remain until after the next
repetition of G.

For simplicity, the following results are confined to the case when G is sym-
melric,

LEMMA-B.1. If an automaton a is a MESS for G# . then every stale of a is used
when ¢ plays C¥#¥ against itself.

Proof. Suppose that ¢ = {{J,¢0, !, u) has a state ¢° that is not reached when
it plays itself. A machine b = {Q’, ¢5, &', ¥’} is then constructed as follows. Take
Q' =Q\{¢ tandgo =g (£ ¢°). Define v’ : Q x S_; — Q' so that u/{g,s_;) =
u{q, 5..¢), unless u(q,s_;) = ¢*. In the latter case, take u'{g,s.;) = ¢. The game
G will then be played the same whether the players are two a machines, two b
machines, or an ¢ machine and a b machine. Thus, P{a,a) = P(b,a) = P(a,b) =
(b,6). All the conditions for a to be 8 MESS then [ail because Jb| < |al. 0

LEmMMA B.2. If an automaton a is a MESS for G# and u is the utilitarian payoff,
then there exists a machine b such that P(b,b) = u and P(b,a) = FP(a, a).

Proof. Suppose that a = {J, g0, 1, u). Let {{go} = z. The lemma is immediate
unless G admits a second action y. Let u{gq, y) = ¢*. Take @ = QU {r, s}, and
define b = (@, r.{, i) so that I(r} = y and I{s) = z, where z is the utilitarian
action in G. Define {(g) = t(q), for all ¢ € Q. Define i(r,y) = s and i(r. w) = ¢°
for all w # y. Define (s, w) = = for all w. Define {i{q, w} = u{q, w) for all w
and all g € Q).

Then P(b,b) = u because, after observing the opponent play y, the automa-
ton b switches {rom state r to state 5, where it rernaing thereafter using action
z. Why is P(b,a) = P{a,a)? After b plays y and a plays z in their respective
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inttial states, bolh automata then swilch to state ¢° and play like a thereafter.
Since all of a's states are used when a plays itself (by Lamma B.1), it follows
that P{b,a) = P(a,a). O

The formahties for the corresponding results for polymorphous MESses and
for asymmetric underlying games G are similar but have longer proofs.

C Appendix

The main body of the paper looks only at limit-of-the-means profits in the
repeated game G, This appendix indicates some extensions to the discount-
ing case. Only pure populations and a symmetric underlying game G will be
considered. |

Il an automaton a plays G with a second automaton b, denote the stage-
game payofl to the former al time ¢ by n'{a, ). Denote the “continuation payoff”
at the Tth stage of G by

Pl %)= (1-8) 3.8 Tn'(ab).
=F

where § 1s a discount factor satislying 0 < § < 1. The function Ps{a,b) =
Pl{a, b) then replaces the profit function of the text. Complexity considerations
remain unchanged.

More liberties will be taken with the definition of evolutionary stability. If
0<d <1 and ¢ >0 apopulation will be said to be {§ ¢)-viable if a mutant
bridgehead consisting of a fraction £ of the population cannet expand when the
discount factor 13 6. An automaton a will be said to be a gUESS if, whenever
¢ = Ol - §) aa & — 1, a population consisting entirely of specimens of a is
{8, ¢)-viable for all é sufficiently close to 1.

The following theorem is a limiting result. Away from the limit, one can-
not guarantee thal machines are utilitarian. One can only ask that they be
approximately utilitarian,

TieoreM C.1. If a is 8 GUESS, then
Pila,a) —uasé — |,
where u is the utilitarian payoff.

Proof. If a is 2 GUESS, then i has no unused states for familiar reasons. Let
t = T be the first stage at which P{a, a} achieves its minimum. Assume for the
moment that T > 0. Construct a mutant b with the following properties:

e Until time T — i, the mutant b mimics a.
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o At time T — 1, the mutant b outputls something different from a.

o If the signal is reciprocated, b continues by mimicking the utilitarian ma-
chine a {from period T onwards,

¢ If the signalis not reciprocated, b returns to mamicking a from T onwards,
but starting {rom the state to which o was switched by b's deviation at
tim& T — i.

The expected continuation profit from time T — | to the a automaton after
an invasion by a fraction £ of b mutants is

(1-8){{1~ eyrT " Ha,a) + ex? “Ha, b)) + 6 {(1 - )P (a,a) + EPE‘(EJ,}} _
(8
The expected continuation profit from time T — 1 to the b automaton after thg
INVasion is

(1-8) ((1 = O " (bia) + ex” T} {b, )} +8 {(1 = )] (5, a) + P (3,8)} . (9)

Both a and b get the same profit flow up to time T ~ 1, and so a will get
displaced if {9) exceeds {8}). H m and M are the minimum and maximum values
in the payofl matrix for G, we obtlain the following sufficient condition for {9}
to exceed (8) and hence for a to be displaced by b:

(1 — )PT(a,0) + <P (a,b) — (1L - )P (b,a) < ¢P](b,b) - (L%E) (M —m).

A simpler sufficient condition is obtained by noting that P/ (4,4} = u, and that
Pl (a.b) = Pf(b,a) > Pl{a,a).

The latter observation follows from the fact that & mimics a from time T on-
wards, and hence Pf(a,b) = Pf(b,a) > P!{a,a) > P]{a,a), for some {. On
substituling, we obtain our final sufficient condition that b be able to displace
a. The sufficient condition is

¢P](a,8) < eu — (37“5-'5) (M - m). (10)

Suppose that it is false that Py{a,a) — u as § — 1. Then there exists an
n > 0 and a sequence § — 1 such that Py.{a,a) € u—n. I follows that,

| I - & .
P;:féslimﬂ} < Pﬁ;(ﬂ,&) Cu-—-np<u-— (T;i) (M - :m)1F (11)

nrovided that

(luéf)(Mum)<q.

5;‘('1
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To obtain a contradiction, it remains to select

_2(1=4)
tf;-_l!;F [5; .

Then ¢ = O(1 - &}, but (11} and hence (10} hold. Therefore b can displace «
for each value of {. Thus a is not & GUESS.

This proves the theorem provided that it is never true that T = 0. H T = 0,
b is constructed to screen at time 0. Then Pj(b,a) = Pf(a, b} > P{a,a), and
{10} must be replaced by

(1 - )P} {a,a) ~ (1 — 2¢)PP(a, a) < €u - (-lu-%ﬁ) (M - m).

Since Pj{a,a) = P{{a,a) + O(1 — §), the result still follows after a little extra
algebra.
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