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Abstract

In this paper we consider the equal gain splitting rule and the split core. Both are
solution concepts for sequencing situationsand were introduced by Curiel, Pederzoli
and Tijs (1989) and Hamers, Quijs, Tijs and Borm (1994) respectively. Our god is
a characterization of these solution concepts using consistency properties. However,
to do this we need a more subtle ook at the alocations assignhed by both solution
concepts. In the current definitions they assign aggregated allocations, i.e. only the
total reward is assigned to each agent. To use consistency in sequencing situations,
aggregated solution concepts do not provide sufficient information. What we need
is afurther specification of thistotal reward of an agent. Therefore we introduce so
called non-aggregated solution concepts. A non-aggregated solution concept assigns
avector to each agent, in some way representing the specification of histotal reward.
Consequently, a non-aggregated sol ution concept assignsto each sequencing situation
a matrix instead of a vector. In this paper we introduce the non-aggregated counter-
parts of the equal gain splitting rule and the split core and characterize them using
consistency.
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1 Introduction

Consistency properties arise in both cooperative and non-cooperative game theory. For
surveys we refer to Thomson (1990) and Driessen (1991) for the first and Peleg and Tijs
(1992), Peleg, Potters and Tijs (1994) and Norde, Potters, Reijnierse and Viermeulen (1993)
for the latter. Roughly speaking, a solution concept is called consistent if renegotiation of
the subsolution by subcoalitions on the basis of the same solution concept applied to an
intuitively appealing reduced situation, will lead to the same suboutcome.

A property closely related to consistency is converse consistency. This property ap-
peared for the first time in Peleg (1985) in characterizing the core. The main idea behind
converse consistency is the following. Given a situation on an agent set NV and a solution
concept, if it is the case that the prescribed outcomes for the reduced situations on all
appropriate subsets of agents fit in the sense that each player receives the same payoff in
each reduced situation in which heisinvolved, the corresponding payoff (if feasible) should
be prescribed by the solution concept for the original non-reduced situation.

For the class of combinatorial optimization Situations consistency and/or converse
consistency has aready appeared in assignment situations (Owen (1992)), flow situations
(Reijnierse, Maschler, Potters and Tijs (1994)) and minimum cost spanning tree situations
(Feltkamp, Tijs and Muto (1994)). In this paper we deal with consistency properties of
solutions for one machine sequencing situations.

In one machine sequencing situations a finite number of agents are lined up in front
of a single machine, with each agent having exactly one job that has to be processed on
this machine. Further each agent incurs costs for every time unit heisin the system. One
problem arising from these situations is how to determine the processing order of the jobs
which minimizes total costs. This problem was solved by Smith (1956) in case all cost
functions are linear.

For the class of one machine sequencing situations Curiel, Pederzoli and Tijs (1989)
defined combinatorial optimization games called sequencing games. Moreover, they intro-
duced the Equal Gain Splitting (EGS) rule, which assigns to each sequencing situation a
vector that is in the core of the corresponding sequencing game. They characterized this
rule using an efficiency, dummy, switch and equivalence property.

The split core, introduced by Hamers, Suijs, Tijs and Borm (1994), is a generalization
of the EGS rule and assigns to each sequencing situation a non-empty subset of the core
of the corresponding sequencing game. They provide a characterization of the split core
using efficiency, the dummy property and a kind of monotonicity.

In this paper we give characterizations of the EGS rule and the split core using certain
consistency properties. However, to achievethese characterizations, we haveto takeamore



subtle look at the allocations assigned by both solution concepts. Usually these alocations
are aggregated. But here we will consider non-aggregated allocations corresponding to
both solution concepts. This means that the payoff for each agent is decomposed into
payoffs corresponding to cooperation with agents separately. Asaresult, anon-aggregated
allocation isamatrix instead of a vector.

The paper is organized as follows. One machine sequencing situations are formally
described in section 2. We also recall the definitions of the aggregated EGS rule and the
aggregated split core and introduce their non-aggregated counterparts. In section 3 effi-
ciency, symmetry and consistency are used to characterize the non-aggregated Equal Gain
Splitting rule and efficiency, consistency and converse consistency are used to characterize
the non-aggregated split core.

2 Sequencing and solution concepts

In a one machine sequencing situation a finite number of agents, each having one job, are
lined up in front of a single machine, waiting for their jobs to be processed. We denote
with N C IN the finite set of agents and n the number of agents. Further, we describe the
queue formed by the agentswith abijectiono : N — {1,2,...,n}, where o (i) denotesthe
position of player ¢ in the queue. Particularly we denote by o theinitial order of the agents
and with ITy the set of all such bijectionso. Without loss of generality we may assume that
oo(i) =i forall i € N. The processing time p; is the time the machine needs to process
thejob of agent i. Finally we assume that agent ¢ has an affine cost functione; : R, — R
defined by ¢;(t) = a;t + 8; witha; > 0 and 5; € R,. So ¢;(t) are the costs for agent i
when he spends ¢ time unitsin the system.

A sequencing Situation as above is denoted by (N, p, a,0¢), where N C N, p =
(pi)ien € R}, o = (a4)ien € R andog : N — {1,2,...,n}. Thevector 5 = (5;)ien €
R’} representing fixed costs is omitted in the description of a sequencing situation since
these costs are independent of the positions of the agentsin the queue. Inthe remainder we
denote with S EQ) the set of al sequencing situationswith player set any finite subset of the
natural numbers. For ease of notation an element of SEQ is denoted with I'( V), where N
isthe set of agents.

Given the processing order of thejobso : N — {1,2,...,n} the completion time of
jobiequals C(o,i) = X;.,(j)<o(:) P @d the costsincurred by player i equal c;(C(o,i)) =
a;C(0,1) + B;. By rearranging the agents the total costs can be reduced. Smith (1956)
showed that the total costs are minimal if the agents are placed in decreasing order with
respect to «; /p;. In the remainder of this paper we call such a cost minimizing order an



optimal order.
The Equal Gain Splitting (EGS) rule of a sequencing situation T'(V) isfordl i € N
defined by

BOSTN) =5 Y s@0W)t+s Y uT(V)
J:o0 (i) <oo() k:oo(k)<oo(d)

where ¢;;(I'(N)) = max(0, p;co;; — pjou) represents the gain agents ¢ and j can obtain if
agent ¢ is directly in front of agent j. An optimal order can be obtained from the initial
order by consecutive switches of neighbours: and 5 with g;;(I'(/V)) > 0. The EGS rule
then divides the gain obtai ned with a neighbour switch equally among both agentsinvolved
inthe neighbour switch. Notethat the EG S rule only assigns the final payoff to each agent.
So the allocation corresponding with the EGS rule is aggregated. Curiel et al. (1989)
showed that for every sequencing situation (N, p, «, 0¢) the EGS rule results in a core
allocation of the corresponding sequencing game.

Based on a generaization of the EGS rule Hamers et al. (1994) introduced the split
core of a sequencing game. The split core consists of all gain splitting alocations. One
obtains a gain splitting allocation by dividing the gain obtained with a neighbour switch
not equally but arbitrarily among the agents involved in the neighbour switch. Formally, a
gain splitting allocation of I'( V) isdefined foral i € N and all A € A by

GSHEN) = >0 AyggTOV)+ > (1= M)gr(T(N)) (1)

J:o0 (i) <oo() k:oo(k)<oo(i)

with A = {{\;;}ijen|0 < Ai; < 1}. Then the split core of a sequencing situation I'(V) is
equal to

SPC(T(N)) = {GS*T(N))|X € A}.

Hamers et al. (1994) showed that the split core is a subset of the core. Moreover, if
Nij =1/2foradl i,j € N wehave GS*(I'(N)) = EGS(I'(N)). Finally, note that the split
coreisaset of aggregated allocations.

Example2.1l Let N = {1,2,3}, p = (1,1,1), a = (1,2,4) and 0¢(i) = ¢ forall i € N.
It follows that g12(T'(N)) = 1, g13(T'(N)) = 3 and go3(I'(N)) = 2. Then GS}T'(N)) =
A2 + 3Ais, GSH(T(N)) = (1 — A12) + 293 and GSH(T(N)) = 2(1 — Ags) + 3(1 — Ais)
with0 < \;; < 1fordli,j € N. Inparticular EGS(I'(N)) = (2,3/2,5/2).

We will now define solution concepts on sequencing situations in a dightly different
manner. Instead of assigning an aggregated allocation of the total cost savings, we assign



to each sequencing situation a non-aggregated allocation. In this context, non-aggregated
means that a specification of the total reward an agent obtains is assigned to that agent.
Moreformally, anon-aggregated solution ¢ isamap assigning to each sequencing situation
I'(N) € SEQ amatrix W € RY*Y, where an element w;; of W represents the non-
negative gain assigned to agent ¢ for cooperating with agent j. The aggregated allocation
corresponding with a solution W can be found by multiplying W with the vector e =
(1,1,...,1)T € R". Now we can define the non-aggregated counterparts of the Equal Gain
Splitting rule and the split core.

The non-aggregated Equal Gain splitting solution £GS assigns to each sequencing
situationT'(N) € SEQ asolution EGS(T'(N)) € RY "V such that

L9 (D(N)), if 0o(i) < 00(j)

Lgi(M(N)), if oo(i) > o0(j)

forall i, j € N. Notethat thealocation EGS(T'(N)) - e isequal to the equal gain splitting
allocation EGS(I'(N)).

EGS(L(N))y; = {

Example 2.2 Take the sequencing situation of example 2.1. The optimal order for this
situation is 3,2,1. The gain splitting matrix EGS(I'(IV)) and the corresponding allocation
equal respectively

0 1/2 3/2 2
EGSM(N) =|1/2 0 1 EGS(D(N)) e = | 3/2
3/2 1 0 5/2

The non-aggregated split core SPC assigns to each sequencing situation I'(N) €
SEQ anon-empty subset SPC(I'(N)) € RY*Y such that for each gain splitting matrix
GS(I'(N)) € SPC(I'(N))

9;;(T(N)), if oo(i)
9;:i(L(N)), if oo(i)
foral i, j € N. Anadlocation corresponding with an element GS

(
equalsGS(I'(N)) - e and isan element of the split core. SPC(I'(IV)). Thisiseasily checked
by taking

Ay = { GS(T(N)))ij /955(T(N)), if 00(i) < o0(j) and gi;(T(V)) > 0

GS(L(N))ij +GS(T(N))zi = {

0, otherwise

foral ¢,j € N and substituting in expression (1). We conclude this section with another
example.



Example 2.3 Take the sequencing situation of example 2.1. The optimal order for this
situationis 3,2,1. Then the split core SPC(T'(N)) equals

0 A12 A13
3— A13 2— A23 0

Note that the set of alocations {1V - e|lW € SPC(I'(N))} coincides with the split core
SPC(T'(N)).

3 Axiomatizationsof the SPC and £GS solutions

In this section we characterize both the non-aggregated split core SPC and the non-
aggregated £G S rule. For these axiomatizationswe need the notionsof connected coalitions
and reduced sequencing situations. A coalition S is connected if for al 7,7 € S and al
k € N withoy(i) < og(k) < 0o(7) itholdsthat & € S. The set of al non-empty connected
coalitions with respect to the initial processing order o is denoted with con(oy).

A sequencing situation reduced to a connected coalition S is the sequencing situation
remaining when the agents outside coalition S are left out of consideration. The situation
which remainsis described by T'(N|s) = (S, p%, o, o5) with p° = (pi)ies, @® = ()ies
and 0§ € Ilg, where the latter is such that for al 7,7 € S it holds that o3 (i) < o5 (5)
whenever o (i) < oo(j). We will clarify thiswith the following example.

Example3.1 Teke N = {1,2,3,4,5},p = (1,2,2,1,3),a = (1,1,3,2,7) and o¢(i) = ¢
for al i € N. Notethat the total cost savings are maximal when the jobs are processed in
the order 54,3,1,2. The codlition S = {2,3,4} is a connected coalition. This situation
reduced to S isthesituation with S = {2,3,4},p° = (2,2,1),0° = (1,3,2) and 05 (2) =
1,05(3) =2,05(4) = 3.

Let ¢ be a non-aggregated solution concept that assignsto eachI'( N) € SEQ amatrix
Y(T(N)) € RY*N and let 6 denote an optimal order for I'(V). For the characterization
of the non-aggregated equal gain splitting solution £GS we introduce the following three
properties.

(i) Efficiency : ¢ isefficientif for al I'(NV) € SEQ it holds that

> (T(N))iy = D c(Cloo, i) =Y a(C(6,1))] -

i,jEN iEN iEN



(i) Symmetry : ¢ iscalled symmetric if for al T'(IV) € SEQ the matrix ¢)(T'(N)) €
RY " is symmetric.

(iii) Consistency: LetI'(IV) € SEQ. Thenv iscalled consistentif foral I'(N) € SEQ
and al S € con(oy) it holdsthat »(I'(N))|s = ¥(I'(N]s)), wherep(I'(N))|s isthe
matrix with all columns and rows of members outside S deleted.

Efficiency meansthat exactly the maximal total cost savingsisallocated over the agents.
Symmetry tells us that the gain two agents can obtain by cooperating is divided equally
among both of them. Consistency of a solution concept means that subcoalitions obtain
the same outcome if they renegotiate the (sub)solution on the basis of the same solution
concept to an intuitively appealing reduced situation To explain consistency more specific
for sequencing situations we use the following example, based on the situation described
in example 3.1.

In this situation we have N = {1,2,3,4,5}, p = (1,2,2,1,3), a = (1,1,3,2,7) and
oo(i) =i forali € N. Next, consider the coalition S = {2,3,4}. The members of S
form a connected coalition. Hence, the agentsin coalition S can rearrangetheir processing
order without the cooperation of agents outside S. This problem can be considered as
a reduced sequencing situation (S, p°, o, o5) with agents S = {2,3,4}, p° = (2,2,1),
o’ =(1,3,2)andoy (i) = i—1forali € S. Note, however, that the agentsoutside S have
not left the queue. But since al cost functions are affine, the processing times of the agents
in front of coalition S do not influence the cooperation of coalition S. Hence, we may
consider theinitia order o5 (i) = i — 1, (for al i € S) intheabove reduced situationinstead
of theorder o5 = i, (for al i € S), which describesthe real positions of the members of .S
intheinitia processing order oy. The allocation assigned by the non-aggregated £GS rule
then equals for this reduced situation

1 0 4 3
EGS(T(N|s)) = 5| 4 0 1 @
310
Wewill now show that for coalition S = {2, 3,4} and the non-aggregated £GS solution

consistency isindeed satisfied in this example. For the situation with agent set NV the non-
aggregated £GS allocation equals

00 112

00 431
EGST(N)=5-|1 4 0 15
13 101

411 510




The reduced matrix EGS(I'(IV))|s can then be found by deleting the columns and rows of
agents outside S of the matrix EGS(I'(V)), that is deleting columns 1 and 5 and rows 1
and 5. Theresulting matrix equals EGS(I'(S)). Hence, the allocation of the gain obtained
by coalition S is not influenced by the agents 1 and 5.

Why only reductions to connected coalitions are considered is a result of the model
introduced in Curiel et al. (1989). In this paper the authors introduce cooperative games
which correspond with the sequencing situations described in section 2. In these games
two membersof acoalition S can only cooperateif the agents standing between themin the
processing order are also members of this coalition, that is, coalition S is connected. Asa
consequence, connected coalitions are the only coalitions which have to be considered.

We will now state our characterization of the non-aggregated £GS solution.

Theorem 3.2 The £GS solution is the unique non-empty solution satisfying efficiency,
symmetry and consistency.

PRrROOF: First wewill show that £GS satisfies these properties. ThereforeletI'(V) € SEQ
be a sequencing situation and denote with 6 an optimal order for I'( V). Symmetry follows
from the definition of £GS. Efficiency followsfrom

Wy = > gT(N)) = > ci(Cloo,1)) — > ai(C(5,7)).

i,jEN 1,j:00(%)<o0(J) iEN iEN
Finally, for consistency it is again sufficient to show that for all connected coalitions
S € con(6) we have g;;(I'(N|s)) = gi;(I'(N)) fordl i, j € S. Thisfollows from the fact
that o5 (i) < o5 (4) if and only if o4 (i) < oo(j) foral i,j € Sandal S € con(5).

Thereversewill be proved withinductionto the number of agents. Let ¢ beanon-empty

solution concept satisfying symmetry, efficiency and consistency. If |[N| = 1 efficiency
yields ¢(I'(N)) = EGS(I'(N)) = [0] for al ['(N) € SEQ. Now assume that ) = £GS
foral |N| < m. Take |[N| = m and choose I'(N) € SEQ. Reducing I'(N) to S = {1}
and S = {n} respectively, applying consistency and using the induction hypothesis yields

Lgis(D(N)), if oo(i) < o0(j)
Lgi(D(N)), if oo(i) > o0(j)

for al pars (i, j) # (1,n) and (3, j) # (n,1). Efficiency and symmetry then gives

591(T(N), if 00(1) < o0(n)

YT (N)1n = YO (N))m = { 191 (T(N)), if 09(1) > oo(n)



Hence, ¥(I'(N)) = EGS(I'(N)) foral I'(N) € SEQ. O

Before weturn to the characterization of the non-aggregated split core, we show that the
propertiesintheorem 3.2 are logically independent. First consider the solution assigning to
each sequencing situation the null matrix. It isobvious that this solution is not efficient but
sati sfies symmetry and consistency. Aswe will show later, anon-aggregated Gain Splitting
solution with fixed {\;; }; je v satisfies efficiency and consistency but not necessarily sym-
metry. Finally, the solution concept assigning to each sequencing situationT'(N) € SEQ
the matrix W (I'(IV)) with

% Skien gr(L(V)) ifi=j 3)
0 ifi#j
satisfies efficiency and symmetry but violates consistency.

For the characterization of the non-aggregated split core, let ¢ be a non-aggregated

solution concept that assigns to each I'(N) € SEQ anon-empty subset of RY*" and let
¢ denote an optimal order for I'( V). Consider the following three propertiesfor .

W(L(N))ij = {

(i) Efficiency : v isefficientif foral I'(V) € SEQ andal W € (I'(N)) it holds that

Yo W= Y a(C(o0,7) — > ai(C(6,1)).
i,jEN iEN ieN
(i) Consistency: LetI'(N) € SEQ. Theny iscalledconsistentif forall I'(N) € SEQ),
al S € con(op) andal W € ¢(I'(NV)) it holdsthat W s € ¢(I'(N|s)), where W |
is the matrix W with all columns and rows of agents not in S deleted.

(iif) Converse consistency : ¢ is converse consistent if for all W € RY*Y and all
['(N) € SEQwith Y, ;cy Wij = Yien ci(C(00,1)) — Yien ci(C(6, 1)) the follow-
ing statement istrue. If W|s € ¥(I'(N|s)) for al connected coalitions S € con(oy)
then W € ¢(T(N)).

The efficiency property states that exactly the maximal total cost savings are allocated
over the agents. For the multifunction case, consistency can also be seen as a stability
condition. To see this, consider again the situation described in example 3.1. Next, reduce
this sequencing situation to the connected coalition S = {2,3,4}. The non-aggregated
split core equalsfor this reduced situation

0 493 3 o4
SPC(F(N|S)) - 4(1 - /\23) 0 /\34 |/\23, A24, /\34 & [0, 1]
3(1 - /\24) 1-— /\34 0
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Although the allocations differ for the several choices of Ay3, Aog, A34, the total which is
alocated to coalition S is constant and equal to 8. So a possible allocation GS(I'(N)) €
SPC(T'(N)) will only be accepted by coalition S if the total cost savings assigned to the
agents of S for cooperating with membersof S isnot lessthan 8. The consistency property
guarantees that coalition S gets exactly 8. Hence, coalition S will accept an alocation
satisfying consistency. For the split core this property is satisfied for coalition S in this
example. This can easily be checked by computing the total cost savings assigned by the
non-aggregated split coreto agentsin S for cooperating with other agentsin S. The split
core equals

_0 0 )\13 )\14 2>\15 ]

0 0 4)\23 3)\24 11)\25

v _ Aij € [0,1], JEN
SPCIL(N) =4 | A3 4Xa3 0 Ass 5A35 s €01, 4

)\14 35\24 5\34 0 )\45
_4X15 1195 5Ass Ag5 O

and the total cost savings for coalition S equals Y-, ;cs GS(I'(NV))s; = 8 for all
GS(T'(N)) € SPC(T'(N)).

So a consistent solution concept assigns to each connected coalition exactly the gain
this coalition can obtain in its reduced situation. Thus, consistency guarantees a form of
stability which differs from the stability guaranteed by the core of a cooperative game.
Because the core consists of allocations for which each coalition, connected or not, gets
at least the gain this coalition can obtain without the cooperation of agents outside this
coalition.

Finally, converse consistency meansthat when each all owed reduced matrix of afeasible
matrix (that is, the maximal cost savings are allocated over the agents) is an element of the
solution of the corresponding reduced situation, then this gain splitting matrix must also be
an element of the solution of the non-reduced situation. Note that for sequencing situations
only reductions to connected coalitions are allowed.

With the three aforementioned properties we can characterize the non-aggregated split
core.

Theorem 3.3 The non-aggregated split core SPC is the unique non-empty solution satis-
fying efficiency, consistency and converse consistency.

Proor: We will first show that SPC satisfies all three properties. Therefore, let I'(V) €
SEQ and let 6 be an optimal order for I'( V). Efficiency followsfrom

> Wiy = Y. gg(T(N)) = Y ci(C(oo,9) — Y ci(C(3,1)).

i,jEN 1,j:00(3)<o0(J) iEN iEN
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Next, consider consistency. From the definition of the non-aggregated split core SPC,
it issufficient to show that for al connected coalitions.S € con(oy) wehaveg;;(I'(N|s)) =
gi;(T(N)) forali, j € S. Butthisfollowsfromoy (i) < o5 (4) if andonly if o0 (i) < o0(j)
fordli,j € Sanddl S € con(oy).

For converse consistency, take I'(N) € SEQ and a solution W € RY*" such that
Yijen Wij = Yien ¢i(C(00,1)) — Yien ¢i(C(0,1)). Reducing the situation to S = {1}
and § = {n} respectively and using I¥|s € SPC(T(N1s)) and gi;(T(N]s)) = gi; (D))
forali,j € Sandal S € con(oy) gives

: ) 9i(L(N)), if o0(z) < 00(5)
HER { g;s(T(N)), if a0(i) > o0 (j)

for al pairs (i, 7) # (1,n) and (i, j) # (n,1). Efficiency then implies that

gin(D(N)), if oo(1) < 00(n)
gn(D(N)), if o0(1) = 00 (n)

Hence, W € SPC(I'(N)).

So we are left to prove that if a non-empty solution satisfies these three axioms this
solution concept must be the split core SPC. Therefore take anon-empty solution concept
1) satisfying efficiency, consistency and converse consistency. We prove by inductionto the
number of agentsthat ¢» = SPC. Take |N| = 1andletT'(N) € SEQ. Efficiency implies
that ¢(I'(N)) = SPC(I'(N)) = [0]. Sofor |[N| = 1 wehave = SPC.

Now suppose that v = SPC for |[N| < m. Teke |[N| = mandletI'(N) € SEQ. Let
W € ¢(I'(N)), then consistency of ¢ implies that W|s € (I'(V|s)) for al connected
coalitions S € con(og) with S # N. Using the induction hypothesis yields W|s €
SPC(T'(Nls)). Applying the converse consistency of SPC gives W € SPC(T'(N)).
Hence, v(I'(N)) € SPC(I'(N)) for al I'(N) € SEQ. Interchanging the roles of ¢ and
SPC yields SPC(I'(N)) C (I'(N)) for dl I'(N) € SEQ, so ¢ = SPC, which proves
the result. O

Wln + Wnl - {

To conclude this paper we will show that these properties are logically independent.
As showed before, the set-valued solution {£GS} sdatisfies al properties but converse
consistency. The solution assigning to each sequencing situation the null matrix satisfies
both consistency properties but not efficiency. And finally, the solution concept defined in
(3) satisfies efficiency and converse consistency and violates consistency.
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