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Abstract

In this paper we consider the equal gain splitting rule and the split core. Both are

solution concepts for sequencing situations and were introduced by Curiel, Pederzoli

and Tijs (1989) and Hamers, Suijs, Tijs and Borm (1994) respectively. Our goal is

a characterization of these solution concepts using consistency properties. However,

to do this we need a more subtle look at the allocations assigned by both solution

concepts. In the current definitions they assign aggregated allocations, i.e. only the

total reward is assigned to each agent. To use consistency in sequencing situations,

aggregated solution concepts do not provide sufficient information. What we need

is a further specification of this total reward of an agent. Therefore we introduce so

called non-aggregated solution concepts. A non-aggregated solution concept assigns

a vector to each agent, in some way representing the specification of his total reward.

Consequently, a non-aggregated solution concept assigns to each sequencing situation

a matrix instead of a vector. In this paper we introduce the non-aggregated counter-

parts of the equal gain splitting rule and the split core and characterize them using

consistency.
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1 Introduction

Consistency properties arise in both cooperative and non-cooperative game theory. For
surveys we refer to Thomson (1990) and Driessen (1991) for the first and Peleg and Tijs

(1992), Peleg, Potters and Tijs (1994) and Norde, Potters, Reijnierse and Vermeulen (1993)

for the latter. Roughly speaking, a solution concept is called consistent if renegotiation of

the subsolution by subcoalitions on the basis of the same solution concept applied to an
intuitively appealing reduced situation, will lead to the same suboutcome.

A property closely related to consistency is converse consistency. This property ap-
peared for the first time in Peleg (1985) in characterizing the core. The main idea behind
converse consistency is the following. Given a situation on an agent set N and a solution

concept, if it is the case that the prescribed outcomes for the reduced situations on all
appropriate subsets of agents fit in the sense that each player receives the same payoff in
each reduced situation in which he is involved, the corresponding payoff (if feasible) should
be prescribed by the solution concept for the original non-reduced situation.

For the class of combinatorial optimization situations consistency and/or converse

consistency has already appeared in assignment situations (Owen (1992)), flow situations
(Reijnierse, Maschler, Potters and Tijs (1994)) and minimum cost spanning tree situations
(Feltkamp, Tijs and Muto (1994)). In this paper we deal with consistency properties of
solutions for one machine sequencing situations.

In one machine sequencing situations a finite number of agents are lined up in front

of a single machine, with each agent having exactly one job that has to be processed on
this machine. Further each agent incurs costs for every time unit he is in the system. One
problem arising from these situations is how to determine the processing order of the jobs
which minimizes total costs. This problem was solved by Smith (1956) in case all cost
functions are linear.

For the class of one machine sequencing situations Curiel, Pederzoli and Tijs (1989)

defined combinatorial optimization games called sequencing games. Moreover, they intro-
duced the Equal Gain Splitting (EGS) rule, which assigns to each sequencing situation a
vector that is in the core of the corresponding sequencing game. They characterized this
rule using an efficiency, dummy, switch and equivalence property.

The split core, introduced by Hamers, Suijs, Tijs and Borm (1994), is a generalization
of the EGS rule and assigns to each sequencing situation a non-empty subset of the core
of the corresponding sequencing game. They provide a characterization of the split core
using efficiency, the dummy property and a kind of monotonicity.

In this paper we give characterizations of the EGS rule and the split core using certain

consistency properties. However, to achieve these characterizations, we have to take a more
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subtle look at the allocations assigned by both solution concepts. Usually these allocations
are aggregated. But here we will consider non-aggregated allocations corresponding to
both solution concepts. This means that the payoff for each agent is decomposed into

payoffs corresponding to cooperation with agents separately. As a result, a non-aggregated
allocation is a matrix instead of a vector.

The paper is organized as follows. One machine sequencing situations are formally
described in section 2. We also recall the definitions of the aggregated EGS rule and the
aggregated split core and introduce their non-aggregated counterparts. In section 3 effi-
ciency, symmetry and consistency are used to characterize the non-aggregated Equal Gain
Splitting rule and efficiency, consistency and converse consistency are used to characterize

the non-aggregated split core.

2 Sequencing and solution concepts

In a one machine sequencing situation a finite number of agents, each having one job, are
lined up in front of a single machine, waiting for their jobs to be processed. We denote
with N ⊆ IN the finite set of agents and n the number of agents. Further, we describe the

queue formed by the agents with a bijection σ : N → {1, 2, ..., n}, where σ(i) denotes the
position of player i in the queue. Particularly we denote by σ0 the initial order of the agents
and with ΠN the set of all such bijections σ. Without loss of generality we may assume that
σ0(i) = i for all i ∈ N . The processing time pi is the time the machine needs to process

the job of agent i. Finally we assume that agent i has an affine cost function ci : IR+ → IR+

defined by ci(t) = αit + βi with αi > 0 and βi ∈ IR+. So ci(t) are the costs for agent i
when he spends t time units in the system.

A sequencing situation as above is denoted by (N, p, α, σ0), where N ⊆ IN, p =

(pi)i∈N ∈ IRn
+, α = (αi)i∈N ∈ IRn

+ and σ0 : N → {1, 2, ..., n}. The vector β = (βi)i∈N ∈

IRn
+ representing fixed costs is omitted in the description of a sequencing situation since

these costs are independent of the positions of the agents in the queue. In the remainder we

denote with SEQ the set of all sequencing situations with player set any finite subset of the
natural numbers. For ease of notation an element of SEQ is denoted with Γ(N), where N
is the set of agents.

Given the processing order of the jobs σ : N → {1, 2, ..., n} the completion time of
job i equals C(σ, i) =

∑
j:σ(j)≤σ(i) pj and the costs incurred by player i equal ci(C(σ, i)) =

αiC(σ, i) + βi. By rearranging the agents the total costs can be reduced. Smith (1956)

showed that the total costs are minimal if the agents are placed in decreasing order with

respect to αi/pi. In the remainder of this paper we call such a cost minimizing order an



4

optimal order.
The Equal Gain Splitting (EGS) rule of a sequencing situation Γ(N) is for all i ∈ N

defined by

EGSi(Γ(N)) =
1

2

∑
j:σ0(i)≤σ0(j)

gij(Γ(N)) +
1

2

∑
k:σ0(k)≤σ0(i)

gki(Γ(N))

where gij(Γ(N)) = max(0, piαj − pjαi) represents the gain agents i and j can obtain if

agent i is directly in front of agent j. An optimal order can be obtained from the initial
order by consecutive switches of neighbours i and j with gij(Γ(N)) > 0. The EGS rule
then divides the gain obtained with a neighbour switch equally among both agents involved
in the neighbour switch. Note that theEGS rule only assigns the final payoff to each agent.

So the allocation corresponding with the EGS rule is aggregated. Curiel et al. (1989)

showed that for every sequencing situation (N, p, α, σ0) the EGS rule results in a core
allocation of the corresponding sequencing game.

Based on a generalization of the EGS rule Hamers et al. (1994) introduced the split
core of a sequencing game. The split core consists of all gain splitting allocations. One
obtains a gain splitting allocation by dividing the gain obtained with a neighbour switch
not equally but arbitrarily among the agents involved in the neighbour switch. Formally, a
gain splitting allocation of Γ(N) is defined for all i ∈ N and all λ ∈ Λ by

GSλi (Γ(N)) =
∑

j:σ0(i)≤σ0(j)

λijgij(Γ(N)) +
∑

k:σ0(k)≤σ0(i)

(1− λki)gki(Γ(N)) (1)

with Λ = {{λij}i,j∈N |0 ≤ λij ≤ 1}. Then the split core of a sequencing situation Γ(N) is
equal to

SPC(Γ(N)) = {GSλ(Γ(N))|λ ∈ Λ}.

Hamers et al. (1994) showed that the split core is a subset of the core. Moreover, if
λij = 1/2 for all i, j ∈ N we have GSλ(Γ(N)) = EGS(Γ(N)). Finally, note that the split

core is a set of aggregated allocations.

Example 2.1 Let N = {1, 2, 3}, p = (1, 1, 1), α = (1, 2, 4) and σ0(i) = i for all i ∈ N.

It follows that g12(Γ(N)) = 1, g13(Γ(N)) = 3 and g23(Γ(N)) = 2 . Then GSλ1 (Γ(N)) =

λ12 + 3λ13, GSλ2 (Γ(N)) = (1− λ12) + 2λ23 and GSλ3 (Γ(N)) = 2(1− λ23) + 3(1− λ13)

with 0 ≤ λij ≤ 1 for all i, j ∈ N . In particular EGS(Γ(N)) = (2, 3/2, 5/2).

We will now define solution concepts on sequencing situations in a slightly different

manner. Instead of assigning an aggregated allocation of the total cost savings, we assign
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to each sequencing situation a non-aggregated allocation. In this context, non-aggregated
means that a specification of the total reward an agent obtains is assigned to that agent.
More formally, a non-aggregated solution φ is a map assigning to each sequencing situation

Γ(N) ∈ SEQ a matrix W ∈ IRN×N
+ , where an element wij of W represents the non-

negative gain assigned to agent i for cooperating with agent j. The aggregated allocation
corresponding with a solution W can be found by multiplying W with the vector e =

(1, 1, ..., 1)> ∈ IRN . Now we can define the non-aggregated counterparts of the Equal Gain

Splitting rule and the split core.
The non-aggregated Equal Gain splitting solution EGS assigns to each sequencing

situation Γ(N) ∈ SEQ a solution EGS(Γ(N)) ∈ IRN×N
+ such that

EGS(Γ(N))ij =

 1
2
gij(Γ(N)), if σ0(i) ≤ σ0(j)

1
2
gji(Γ(N)), if σ0(i) ≥ σ0(j)

for all i, j ∈ N . Note that the allocation EGS(Γ(N)) · e is equal to the equal gain splitting
allocation EGS(Γ(N)).

Example 2.2 Take the sequencing situation of example 2.1. The optimal order for this

situation is 3,2,1. The gain splitting matrix EGS(Γ(N)) and the corresponding allocation
equal respectively

EGS(Γ(N)) =


0 1/2 3/2

1/2 0 1

3/2 1 0

 EGS(Γ(N)) · e =


2

3/2

5/2


The non-aggregated split core SPC assigns to each sequencing situation Γ(N) ∈

SEQ a non-empty subset SPC(Γ(N)) ⊆ IRN×N
+ such that for each gain splitting matrix

GS(Γ(N)) ∈ SPC(Γ(N))

GS(Γ(N))ij + GS(Γ(N))ji =

 gij(Γ(N)), if σ0(i) ≤ σ0(j)

gji(Γ(N)), if σ0(i) ≥ σ0(j)

for all i, j ∈ N . An allocation corresponding with an element GS(Γ(N))) ∈ SPC(Γ(N))

equals GS(Γ(N)) ·e and is an element of the split coreSPC(Γ(N)). This is easily checked
by taking

λij =

 GS(Γ(N)))ij/gij(Γ(N)), if σ0(i) < σ0(j) and gij(Γ(N)) > 0

0, otherwise

for all i, j ∈ N and substituting in expression (1). We conclude this section with another

example.
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Example 2.3 Take the sequencing situation of example 2.1. The optimal order for this
situation is 3,2,1. Then the split core SPC(Γ(N)) equals

SPC(Γ(N)) =




0 λ12 λ13

1− λ12 0 λ23

3− λ13 2− λ23 0

 | 0 ≤ λij ≤ 1, i, j ∈ {1, 2, 3}


Note that the set of allocations {W · e|W ∈ SPC(Γ(N))} coincides with the split core

SPC(Γ(N)).

3 Axiomatizations of the SPC and EGS solutions

In this section we characterize both the non-aggregated split core SPC and the non-
aggregatedEGS rule. For these axiomatizations we need the notions of connected coalitions
and reduced sequencing situations. A coalition S is connected if for all i, j ∈ S and all

k ∈ N with σ0(i) < σ0(k) < σ0(j) it holds that k ∈ S. The set of all non-empty connected
coalitions with respect to the initial processing order σ0 is denoted with con(σ0).

A sequencing situation reduced to a connected coalition S is the sequencing situation
remaining when the agents outside coalition S are left out of consideration. The situation

which remains is described by Γ(N |S) = (S, pS , αS , σS0 ) with pS = (pi)i∈S, αS = (αi)i∈S
and σS0 ∈ ΠS, where the latter is such that for all i, j ∈ S it holds that σS0 (i) < σS0 (j)

whenever σ0(i) < σ0(j). We will clarify this with the following example.

Example 3.1 Take N = {1, 2, 3, 4, 5}, p = (1, 2, 2, 1, 3), α = (1, 1, 3, 2, 7) and σ0(i) = i

for all i ∈ N. Note that the total cost savings are maximal when the jobs are processed in
the order 5,4,3,1,2. The coalition S = {2, 3, 4} is a connected coalition. This situation
reduced to S is the situation with S = {2, 3, 4}, pS = (2, 2, 1), αS = (1, 3, 2) and σS0 (2) =

1, σS0 (3) = 2, σS0 (4) = 3.

Let ψ be a non-aggregated solution concept that assigns to each Γ(N) ∈ SEQ a matrix

ψ(Γ(N)) ∈ IRN×N
+ and let σ̂ denote an optimal order for Γ(N). For the characterization

of the non-aggregated equal gain splitting solution EGS we introduce the following three
properties.

(i) Efficiency : ψ is efficient if for all Γ(N) ∈ SEQ it holds that

∑
i,j∈N

ψ(Γ(N))ij =

[∑
i∈N

ci(C(σ0, i))−
∑
i∈N

ci(C(σ̂, i))

]
.
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(ii) Symmetry : ψ is called symmetric if for all Γ(N) ∈ SEQ the matrix ψ(Γ(N)) ∈

IRN×N
+ is symmetric.

(iii) Consistency : Let Γ(N) ∈ SEQ. Then ψ is called consistent if for all Γ(N) ∈ SEQ

and all S ∈ con(σ0) it holds that ψ(Γ(N))|S = ψ(Γ(N |S)), where ψ(Γ(N))|S is the
matrix with all columns and rows of members outside S deleted.

Efficiency means that exactly the maximal total cost savings is allocated over the agents.
Symmetry tells us that the gain two agents can obtain by cooperating is divided equally
among both of them. Consistency of a solution concept means that subcoalitions obtain
the same outcome if they renegotiate the (sub)solution on the basis of the same solution

concept to an intuitively appealing reduced situation To explain consistency more specific
for sequencing situations we use the following example, based on the situation described
in example 3.1.

In this situation we have N = {1, 2, 3, 4, 5}, p = (1, 2, 2, 1, 3), α = (1, 1, 3, 2, 7) and

σ0(i) = i for all i ∈ N . Next, consider the coalition S = {2, 3, 4}. The members of S
form a connected coalition. Hence, the agents in coalition S can rearrange their processing
order without the cooperation of agents outside S. This problem can be considered as
a reduced sequencing situation (S, pS , αS , σS0 ) with agents S = {2, 3, 4}, pS = (2, 2, 1),
αS = (1, 3, 2) and σS0 (i) = i−1 for all i ∈ S. Note, however, that the agents outside S have

not left the queue. But since all cost functions are affine, the processing times of the agents
in front of coalition S do not influence the cooperation of coalition S. Hence, we may
consider the initial order σS0 (i) = i−1, (for all i ∈ S) in the above reduced situation instead
of the order σS0 = i, (for all i ∈ S), which describes the real positions of the members of S
in the initial processing order σ0. The allocation assigned by the non-aggregated EGS rule

then equals for this reduced situation

EGS(Γ(N |S)) =
1

2
·


0 4 3

4 0 1

3 1 0

 (2)

We will now show that for coalitionS = {2, 3, 4} and the non-aggregated EGS solution

consistency is indeed satisfied in this example. For the situation with agent set N the non-
aggregated EGS allocation equals

EGS(Γ(N)) =
1

2
·



0 0 1 1 2

0 0 4 3 11

1 4 0 1 5

1 3 1 0 1

4 11 5 1 0


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The reduced matrix EGS(Γ(N))|S can then be found by deleting the columns and rows of
agents outside S of the matrix EGS(Γ(N)), that is deleting columns 1 and 5 and rows 1

and 5. The resulting matrix equals EGS(Γ(S)). Hence, the allocation of the gain obtained

by coalition S is not influenced by the agents 1 and 5.

Why only reductions to connected coalitions are considered is a result of the model
introduced in Curiel et al. (1989). In this paper the authors introduce cooperative games
which correspond with the sequencing situations described in section 2. In these games
two members of a coalition S can only cooperate if the agents standing between them in the

processing order are also members of this coalition, that is, coalition S is connected. As a
consequence, connected coalitions are the only coalitions which have to be considered.

We will now state our characterization of the non-aggregated EGS solution.

Theorem 3.2 The EGS solution is the unique non-empty solution satisfying efficiency,
symmetry and consistency.

PROOF: First we will show that EGS satisfies these properties. Therefore let Γ(N) ∈ SEQ

be a sequencing situation and denote with σ̂ an optimal order for Γ(N). Symmetry follows
from the definition of EGS . Efficiency follows from

∑
i,j∈N

Wij =
∑

i,j:σ0(i)<σ0(j)

gij(Γ(N)) =
∑
i∈N

ci(C(σ0, i))−
∑
i∈N

ci(C(σ̂, i)).

Finally, for consistency it is again sufficient to show that for all connected coalitions
S ∈ con(σ̂) we have gij(Γ(N |S)) = gij(Γ(N)) for all i, j ∈ S. This follows from the fact
that σS0 (i) < σS0 (j) if and only if σ0(i) < σ0(j) for all i, j ∈ S and all S ∈ con(σ̂).

The reverse will be proved with induction to the number of agents. Letψ be a non-empty
solution concept satisfying symmetry, efficiency and consistency. If |N | = 1 efficiency

yields ψ(Γ(N)) = EGS(Γ(N)) = [0] for all Γ(N) ∈ SEQ. Now assume that ψ = EGS

for all |N | < m. Take |N | = m and choose Γ(N) ∈ SEQ. Reducing Γ(N) to S = {1}

and S = {n} respectively, applying consistency and using the induction hypothesis yields

ψ(Γ(N))ij = ψ(Γ(N))ji =

 1
2
gij(Γ(N)), if σ0(i) ≤ σ0(j)

1
2
gji(Γ(N)), if σ0(i) ≥ σ0(j)

for all pairs (i, j) 6= (1, n) and (i, j) 6= (n, 1). Efficiency and symmetry then gives

ψ(Γ(N))1n = ψ(Γ(N))n1 =


1
2
g1n(Γ(N)), if σ0(1) ≤ σ0(n)

1
2
gn1(Γ(N)), if σ0(1) ≥ σ0(n)
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Hence, ψ(Γ(N)) = EGS(Γ(N)) for all Γ(N) ∈ SEQ. 2

Before we turn to the characterization of the non-aggregated split core, we show that the
properties in theorem 3.2 are logically independent. First consider the solution assigning to

each sequencing situation the null matrix. It is obvious that this solution is not efficient but
satisfies symmetry and consistency. As we will show later, a non-aggregated Gain Splitting
solution with fixed {λij}i,j∈N satisfies efficiency and consistency but not necessarily sym-
metry. Finally, the solution concept assigning to each sequencing situation Γ(N) ∈ SEQ

the matrix W (Γ(N)) with

W (Γ(N))ij =


1
n

∑
k,l∈N gkl(Γ(N)) if i = j

0 if i 6= j
(3)

satisfies efficiency and symmetry but violates consistency.
For the characterization of the non-aggregated split core, let ψ be a non-aggregated

solution concept that assigns to each Γ(N) ∈ SEQ a non-empty subset of IRN×N
+ and let

σ̂ denote an optimal order for Γ(N). Consider the following three properties for ψ.

(i) Efficiency : ψ is efficient if for all Γ(N) ∈ SEQ and allW ∈ ψ(Γ(N)) it holds that

∑
i,j∈N

Wij =
∑
i∈N

ci(C(σ0, i))−
∑
i∈N

ci(C(σ̂, i)).

(ii) Consistency : Let Γ(N) ∈ SEQ. Thenψ is called consistent if for all Γ(N) ∈ SEQ,
all S ∈ con(σ0) and all W ∈ ψ(Γ(N)) it holds that W |S ∈ ψ(Γ(N |S)), where W |S
is the matrix W with all columns and rows of agents not in S deleted.

(iii) Converse consistency : ψ is converse consistent if for all W ∈ IRN×N
+ and all

Γ(N) ∈ SEQ with
∑
i,j∈N Wij =

∑
i∈N ci(C(σ0, i))−

∑
i∈N ci(C(σ̂, i)) the follow-

ing statement is true. If W |S ∈ ψ(Γ(N |S)) for all connected coalitions S ∈ con(σ0)

then W ∈ ψ(Γ(N)).

The efficiency property states that exactly the maximal total cost savings are allocated

over the agents. For the multifunction case, consistency can also be seen as a stability
condition. To see this, consider again the situation described in example 3.1. Next, reduce
this sequencing situation to the connected coalition S = {2, 3, 4}. The non-aggregated
split core equals for this reduced situation

SPC(Γ(N |S)) =




0 4λ23 3λ24

4(1− λ23) 0 λ34

3(1− λ24) 1− λ34 0

 |λ23, λ24, λ34 ∈ [0, 1]


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Although the allocations differ for the several choices of λ23, λ24, λ34, the total which is
allocated to coalition S is constant and equal to 8. So a possible allocation GS(Γ(N)) ∈
SPC(Γ(N)) will only be accepted by coalition S if the total cost savings assigned to the
agents of S for cooperating with members of S is not less than 8. The consistency property
guarantees that coalition S gets exactly 8. Hence, coalition S will accept an allocation
satisfying consistency. For the split core this property is satisfied for coalition S in this
example. This can easily be checked by computing the total cost savings assigned by the
non-aggregated split core to agents in S for cooperating with other agents in S. The split
core equals

SPC(Γ(N )) =





0 0 λ13 λ14 2λ15

0 0 4λ23 3λ24 11λ25

λ̄13 4λ̄23 0 λ34 5λ35

λ̄14 3λ̄24 λ̄34 0 λ45

4λ̄15 11λ̄25 5λ̄35 λ̄45 0


∣∣∣∣∣ λij ∈ [0, 1], i, j ∈ N

λ̄ij = 1− λij, i, j ∈ N


and the total cost savings for coalition S equals

∑
i,j∈S GS(Γ(N))ij = 8 for all

GS(Γ(N)) ∈ SPC(Γ(N)).
So a consistent solution concept assigns to each connected coalition exactly the gain

this coalition can obtain in its reduced situation. Thus, consistency guarantees a form of
stability which differs from the stability guaranteed by the core of a cooperative game.
Because the core consists of allocations for which each coalition, connected or not, gets
at least the gain this coalition can obtain without the cooperation of agents outside this
coalition.

Finally, converse consistency means that when each allowed reduced matrix of a feasible
matrix (that is, the maximal cost savings are allocated over the agents) is an element of the
solution of the corresponding reduced situation, then this gain splitting matrix must also be
an element of the solution of the non-reduced situation. Note that for sequencing situations

only reductions to connected coalitions are allowed.
With the three aforementioned properties we can characterize the non-aggregated split

core.

Theorem 3.3 The non-aggregated split core SPC is the unique non-empty solution satis-
fying efficiency, consistency and converse consistency.

PROOF: We will first show that SPC satisfies all three properties. Therefore, let Γ(N) ∈

SEQ and let σ̂ be an optimal order for Γ(N). Efficiency follows from∑
i,j∈N

Wij =
∑

i,j:σ0(i)<σ0(j)

gij(Γ(N)) =
∑
i∈N

ci(C(σ0, i))−
∑
i∈N

ci(C(σ̂, i)).
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Next, consider consistency. From the definition of the non-aggregated split core SPC,
it is sufficient to show that for all connected coalitionsS ∈ con(σ0) we have gij(Γ(N |S)) =

gij(Γ(N)) for all i, j ∈ S. But this follows from σS0 (i) < σS0 (j) if and only if σ0(i) < σ0(j)

for all i, j ∈ S and all S ∈ con(σ0).
For converse consistency, take Γ(N) ∈ SEQ and a solution W ∈ IRN×N

+ such that∑
i,j∈NWij =

∑
i∈N ci(C(σ0, i))−

∑
i∈N ci(C(σ̂, i)). Reducing the situation to S = {1}

and S = {n} respectively and using W |S ∈ SPC(Γ(N |S)) and gij(Γ(N |S)) = gij(Γ(N))

for all i, j ∈ S and all S ∈ con(σ0) gives

Wij +Wji =

 gij(Γ(N)), if σ0(i) ≤ σ0(j)

gji(Γ(N)), if σ0(i) ≥ σ0(j)

for all pairs (i, j) 6= (1, n) and (i, j) 6= (n, 1). Efficiency then implies that

W1n +Wn1 =

 g1n(Γ(N)), if σ0(1) ≤ σ0(n)

gn1(Γ(N)), if σ0(1) ≥ σ0(n)

Hence, W ∈ SPC(Γ(N)).
So we are left to prove that if a non-empty solution satisfies these three axioms this

solution concept must be the split core SPC. Therefore take a non-empty solution concept
ψ satisfying efficiency, consistency and converse consistency. We prove by induction to the

number of agents that ψ = SPC. Take |N | = 1 and let Γ(N) ∈ SEQ. Efficiency implies
that ψ(Γ(N)) = SPC(Γ(N)) = [0]. So for |N | = 1 we have ψ = SPC.

Now suppose that ψ = SPC for |N | < m. Take |N | = m and let Γ(N) ∈ SEQ. Let
W ∈ ψ(Γ(N)), then consistency of ψ implies that W |S ∈ ψ(Γ(N |S)) for all connected
coalitions S ∈ con(σ0) with S 6= N . Using the induction hypothesis yields W |S ∈

SPC(Γ(N |S)). Applying the converse consistency of SPC gives W ∈ SPC(Γ(N)).
Hence, ψ(Γ(N)) ⊆ SPC(Γ(N)) for all Γ(N) ∈ SEQ. Interchanging the roles of ψ and
SPC yields SPC(Γ(N)) ⊆ ψ(Γ(N)) for all Γ(N) ∈ SEQ, so ψ = SPC, which proves
the result. 2

To conclude this paper we will show that these properties are logically independent.
As showed before, the set-valued solution {EGS} satisfies all properties but converse
consistency. The solution assigning to each sequencing situation the null matrix satisfies
both consistency properties but not efficiency. And finally, the solution concept defined in
(3) satisfies efficiency and converse consistency and violates consistency.
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