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Thie paper preaente a noncooperative model that forcea playere to

coordinate on the riak dominant equilibrium in every 2-perwn 2 x 2

nonnal form game. Specifically, in the model it ie aeaumed thst, when

playing a game, playera may make amall observation errore eo thst

the actual payoffe will not be common knowledge. It is shown thst

all equilibria of the incomplete information game thst incorporates

this uncertainty prescribe to play the risk dominant equilibrium of

the underlying 2 x 2 game as the noise vanishes.
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1 Introduction

These authors are confident that, when asked to play the game Gl from
Table 1 in a purely noncooperative fashion, and without receiving any out-
aide guidance about how to play, each reader would choose "2".

1
1 0

0

0

0
2

2

Table 1: Game Gl

Common sense dictates that one should play the game in thia way, but
up to now there is no formal, purely noncooperative 1 theory that singlea
out "2,2" as the unique rational solution of ~ GI. Indeed, also the strat-
egy pair "l,lr is a Nash equilibrium. In fact, this is a atrict equilibrium
(each player strictly looses by deviating unilaterally) so that it satisfies the
conditions imposed by the most refined noncooperative equilibrium notions
propoaed today, such as, for example, atability à la Kohlberg and Mertens
[1986]. Our aim in this paper is to develop a fully noncooperative the-
ory that forces players to choose "2,2" in Gl. Specifically, we conatruct a
model that embeda G~ into a collection of 'nearby' perturbed games with
incomplete information of which in the limit all Bayeaian Nash equilibria
prescribe to play "2,2" in Gl.

1 We emphasise the term 'purely noncooperative' by which we mean 'based solely on
considerations of individual utility mazimisation'. There ezist theories that single out
"2,2" aa the unique solntion, the most prominent eismple being the selection theory from
Harsanyi and Selten [1988], but all these ndopt aa a principle that one should noL play a
Pareto inferior equilibrium, hence, they essume awny the ditRculty in Gl.

~Aumann aad Sorin [1989] s.nd Matsui [1989] have eonstructed models that force players
to choose "2,2" when Gl is repeated sntRciently often.
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Let us stress at the outset that our theory does not always juatify play-
ing the Pareto dominant equilibrium. For example, in game G~ (Table 2),
our model forcea playera to choose "2,2" even though the strategy pair „1,1"
Pareto dominates "2,2".

3
3 2

2

0

0
2

2

Table 2: Game Gz

In Gz, playing "2" is safe whereas "1" is risky. Uaing the terminol-
ogy of Harsanyi and Selten [1988] we may say that "2,2" risk dominates
3"1,1" in Ga and the main reault of this paper states that, for the aub-
clasaes of games considered, our theory always aelects the riak dominant
equilibrium. Of course, it is not surprising at all that the same aolution is
obtained in both games: This result is dictated by ordinality considerations
(see Mertens [1987]). From a noncooperative point of view, the games are
isomorphic since they have the same beat reply atructure: Gt results from
Gz by substracting 2 from player 1's (resp. player 2's) payoffs in the first
column (reap. first row).

Our theory is based on the idea that players will not analyse each game
in isolation, rather they will analyse clasaes of games with similar char-
acteriatics aimultaneously. Hence, one can solve a particular game only if
one simultaneoualy also determines the solutions of aimilar gamee and re-
lates the respective solutions to each other. It should be clear that this
idea is motivated by Nash's seminal work on bargaining. A similar ap-

3The product of the deviation losses is larger st "2,2" l6an at "1,1", eee Section 2 for
the formal deflnition.
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proach has also been followed in Harsanyi and Selten (1988], Section 3.8]
where an axiomatic characterization of risk dominance in 2 x 2 games is
derived. Harsanyi~Selten do not provide a noncooperative underpinning of
their axioms; as atated before, we remain entirely within the noncoopera-
tive framework.

As an illustration of our general approach and to provide the intuition
for our main reaulta, let us consider the special caee of games with common
payoffs such as the game from Table 1. This class is special since risk domi-
nance coincides with payoff dominance in this case, however, the symmetry
displayed by the class allows for a very simple heuristic argument which is
worthwhile giving. We picture players as analyaing the game from Table 1
as embedded within the class of all 2 x 2 unanimity gamea with common
payoffs. The latter may be parametrized as in Table 3.

1-B

0
01-e

B
B

Table 3: Common intereat game g(B) (Note Gl - 39(9).)

In our model, the mechanism that forcea players to analyse all such
common interest games simultaneously is that the true value of B may be
observed only with some slight noise. Hence, although it will be common
knowledge that players have the same payoffs, the actual payoffs will only
be approximately known. Loosely apeaking, when the actual game ia g( 9),
a player may actually think he ia playing g( 3 f e) and he also does not know
exactly what game the opponent thinks he is playing. To keep the aituation
amenable to game theoretic analyais, it will be asaumed that playera have
a common prior concerning B and that the distributions of the obaervation
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errors are common knowledge. Hence, the clasa of common intereat gamea
as a whole will be embedded into a game of incomplete information, a so
called global game. The program we carry out in this paper ia to analyse
the Bayesian Nash equilibria of the global game and to atudy their limita ae
the observation errora vaniah, i.e. we study what happens when the players
become completely sure which game they are playing. We ahow that in the
limit all equilibria of the global game associated with Table 3 prescribe to
play "1" if B G z and "2" if B~;. Hence, in the limit the Pareto domi-
nant equilibrium is obtained in every game. In general, the risk dominant
equilibrium is obtained.

To get some intuition for how this result comea about, conaider the
special case where players have a uniform prior on B and where players'
observation errors are independent, identically diatributed with bounded
support. In this case the global game constructed from Table 3 is aymmet-
ric, hence, it will admit a symmetric equilibrium, i.e. both players follow
the same strategy. Let us restrict attention to auch equilibria. If a player
observea B sufficiently negative, he knows that "1" dominatea "2", hence,
he will play "1". Similarly, each equilibrium prescribes to play "2n if B is
aufficiently large. Intuitively it is clear that the reaidual uncertainty forcea
equilibria of the global game to be simple, i.e. there can exist only finitely
many awítching pointa. Assume that there is only one awitching point, say
B, hence, we have a atep function equilibrium. The assumptions imply that,
if I observe B, it is just as likely that my opponent has observed a higher
B as that he has observed a lower one. Hence, I expect my opponent to
choose both actions with probability 2 when I observe B. By continuity, a
player must be índifferent between playing "1" and "2" at B. If errors are
small, then, at B, the expected payoff resulting from my firat (resp. sec-
ond) atrategy is approximately equal to (1 - B)~2 (resp. B~2), hence, in the
limit B- i. We conclude that in the limit all (symmetric step function)



equilibria prescribe to play the Pareto dominant equilibrium for every 2 x 2
common interest game.

The remainder of the paper ie devoted to formalization and extension
of the above argument. In Section 2, we introduce one- parameter classes
of games to which the argument can be applied. In Section 3 some basic
propertiea are derived for the global game in which the parameter can only
be observed with aome noiae. Section 4 atudiea the limit propertiea of
the Bayesian Nash equilibria of the global game as the noise vaniahes. In
Section 5 it is ahown that such equilibria indeed exist. Section 6 concludea
by diacuesing the relationahip of our work with that of Harsanyi [1973], by
illustraling the role of common knowledge, and by pointing out exteasions
and limitations of the present approach.
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2 The class of games

We consider one-parameter families of games G -{g(B); B E O} with the
property that a higher value of B makes playing the first strategy less attrac-
tive for each player, i.e. the region where the first strategy is a beat response
decreases continuously from the full strategy aet of the opponent until it
eventually becomes empty. To simplify the existence proof for Bayesian
Nash equilibria in Section 5 somewhat, we make slightly stronger assump-
tions.

Formally, let O be an interval on the real line with (0,1~ C int O and,
for B E O, let g(B) be a 2-person 2 x 2 normal ïorm game that (in the metric
on payoffs) depends continuously on B. We write g(B) -(g~(B),g2(B)) with
g;(B, k,1) being the payoff to player i if player 1 chooses the pure strat-
egy k and player 2 chooses l(i,k,l E {1,2}). Let d;(B) be the loss that
player i incurs if he deviates unilaterally from the strategy pait „1,1" in g(B)

di(B) - 9i(8,1,1) - 9i(8,2,1) ,

d2(B) - g~(8,1,1) - gs(8,1,2).

Similarly, the deviation losses from "2,2" are defined by

~(B) - 9i(8,2,2) - 9i(B,1,2),

~(B) - 9s(8,2,2) - 9:(B,2,1).

It will be assumed that C~ -{g(B); B E O} satisfiea the following condi-
tions
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(A1) d;(B) is decreasing" on O for all i,

(A2) d?(B) is increasing on O for all á,

(A3) min {d;(1)} - 0, and

i

(A4) min {d?(0)} - 0.

i

These assumptions imply that, for B G 0, there exists some player i
with d;(B) 1 0 and d?(B) G 0, hence, this player's first strategy dominates
his second. Since, for B G 0, the opponent's unique best response against
"1" is also to play "1~, we have that ~1,1" is the unique Nash equilibrium

of g(B) if B G 0. Similarly, "2,2r is the unique equilibrium if B~ 1. If
B E (0,1), then both "1,1" and "2,2" are strict equilibria of g(B). For such
B, there also exists a mixed strategy equilibrium, viz. player i chooses his
first strategy with probability a; (B) given by

e:(B) - d;(B)~~di(B) f d~(B)~-' (i ~` j)

Note that the RHS of (2.1) is increasing in B. Also note that, if we write
B; (B) for the set of mixed strategies of player j against which player i'a
first strategy is a best response, then

B;(B) - {s~ : ei ~ ei(B)}, (2.2)

hence, B~(B) is decreasing in B and the class G has the property mentioned

'This means 'strictly decreaeing'.
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in the introductory paragraph. Finally, note the usual, counterintuitive,
property that even though for higher B the first strategy becomes lesa at-
tractive, the probability that the mixed sttategy equilibrium assigna to
"1,1" is increasing in B.

To conclude this section, let us introduce the risk dominance notion
from Harsanyi and Selten [1988]. We just define the concept, the reader is
urged to read Harsanyi and Selten's seminal book for the intuitive juatifi-
cation. In g(B), the equilibrium "1,1" is said to risk dominate "2,2" if its
associated 'Nash product' is larger, that is

di(B)di(B) ~ ~(B)di(B) (2.3)

If the reverse inequality is satiafied, "2,2" is said to riak dominate nl,l".
Our assumptions imply that, in the relevant range, the Nash product of
"1,1" ia decreasing, whereas that of "2,2" increases. Hence, there exiats a
unique B' such that

di(B~)di(B~) - di(B~)~(B~) (2.4)

The equilibrium "1,1" risk dominatea "2,2" if and only if B C B'. In Sec-
tion 4 we will show that the perturbed game model from Section 3 forces
players to chooae "1,1" if and only if B G B', hence, our model provides a
noncooperative justification for equilibrium selection according to the riak
dominance criterion in 2 x 2 games.
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3 Global games

We now picture players in the situation where it is common knowledge
that eventually a game from ~ will have to be played but where it is not
yet known which one, and a priori players consider all possible games to
be equally likely. Both players make an independent obeervation of which
game is to be played, but observationa aze noisy. The diatributione of the
measurement errors are assumed to be common knowledge so that the over-
all situation can be modeled as a game with incomplete information. We
are particularly interested in the situation where measurements are almoat
correct, i.e, we will inveatigate sequences of global games in which the noiae
vanishes.

Formally, let B, el, ez be independent random variables with B being uni-
formly distributed on O and e; having a continuous density f; with aupport
contained in [-1, 1]. The situation with vanishing noiae may then be mod-
eled by the sequence of global gamea {G`}~lo where G` is played according
to the following rules

B is drawn, (3.1)

player i receives the signal B; - B f ee;, (3,2)

based on their reapective obeervations, the players simultaneously chooae
mized actiona s;(B;), (3.3)

player i receivea the payoff g;(B,a~(B~),az(Bz)). (3.4)

It will be clear that player i will chooae "ln (resp. "2") if B; ia aufficiently
small (resp. large), (aee Lemma 4.1) so that attention may be reatricted to
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B; near [0, 1]. Let us first derive the posterior beliefa of player i in G` after
having observed such B;. For 6 1 0, write O(ó) for those parameters that
are at least ó within O, hence

O(ê) -{8; [B - Á, B f ó] C O}

First of all note that the joint density function of the triple ( B, Bl, Bi) is
given by

~G(B,e~,ez) - f~(B~ - B)f~(Bz - B)~ I o I

where f,` is the density of Ee;

fi (2) - E-~f:(E-lx)-

for B E O,

which has support contained in [-E, E]. It is easily checked that the marginal
density of B; is constantly equal to ~ O ~'' for B; E O(E), hence, for such B;
the posterior denaity of (B,B~) is given by

r(~;(B, B~ ~B;) - fl (B~ - B) f~ (B~ - 6) if B; E O(E). (3.5)

We will write tY;(B,B~~B;) for the associated distribution function; the de-
rived marginal density for B~ is denoted by zli;(B~~B;) with associated distri-
bution ~Y;(B~~B;). Note that ezpression (3.5) is symmetric, so that

~i(B,B~~9~) - ~i:(B,Bi~ez) if B~,B: E O(E). (3.6)

Furthermore, the posterior beliefs are translation invariant

r(~~(9,ez~et) - ~t(e f Q,B2 -F a~B~ f a) if 8~,91 -F a E O(E). (3.7)
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Obviously, similar symmetry and translation invariance properties hold
for the marginal densities ~i;(Bi~B;). The latter allow us to derive the fol-
lowing fundamental property which states that, in the relevant range, the
probability that player 1 assigns to player 2 having an observation below
Bz after having observed B3 is equal to the probability that player 2 assigns
to player 1 having an observation above Bl after having observed Bi.

LEMMn 3.1. If 171i B~ E ~(3e), then

~~(B~IB~) f ~z(B~le:) - 1. (3.8)

PROOF. Keeping in mind that ~(ii(t~Bi) - 0 if ~t - Bi ~ 1 2e, we may
write using (3.6), (3.7)

`Y~(e:~e~) - f~~Gi(t~e~)dt

- f~,~,(6,~t)dt - f~,,~,,(9, f Bz - t~BZ)dt

- .Íe,o~z(a~Bs)da - 1 - ~Yz(Bi~e~).

To conclude this section, let us turn to equilibria in G`. Write 6; for
the support of B;. (We will assume O C O;.) A strategy for player i is a
measurable function a; : O; -~ R~ with a;(9;) f s?(B;) - 1 for all B;. (We
write a;'(B;) to denote the probability with which player i chooses action
k if he observes B;). Let E;`(ei~B;) denote player i's ezpected payoff if he
observes B; and plays action k, in case the opponent uses strategy ai. Fur-
thermore let D;(si~B;) - E;(ai~8;) - E?(ai~B;), hence

D~(ai~et) - f f~ai(ei)d:(B) - ai(Bi)d:(e)~d~:(e,ei~e:) (3.9)
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The strategy pair s-( s1,s2) is a(Bayesian Nash) equilibrium of G` if
for all i and all B; E O;

if D;(s~~B;) 1 0, then s;(B;) - 1, and (3.10)

if D;(s~~9;) C 0, then a;(B;) - 0. (3.11)

The set of all equilibria of G` is denoted as E(G`). The proof that
E(G`) is nonempty is defered to Section 5. In the next section we atudy
the limit of E(G`) as e tends to zero.
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4 Limit equilibria and risk dominance

In this scction we prove our main result (Proposition 4.2) which etates that,
when observation errors are sufficiently small, players will always coordi-
nate on the risk dominant equilibrium of the game g(B) where B is the true
value of the parameter selected in (3.1). First we derive

LetYtMn 4.1. If s E E(G`), then

D;(s;~B;) 1 0 if B; G-3e, and

D;(s;~B;) G 0 if B; 1 1~ 3e.

PEtooF. Let s E E(G`). It sufHces to demonstrate the first assertion.
Assume d?(0) - 0. If B; c-e, player i knows that B C 0, hence, that his
first action dominates his second, therefore, D;(a;~B;) ~ 0 and s;(B;) - 1 for
all B; C-e. Next, consider j ~ i and let B; G-3e. Then player j knows
that B; G -e and he is sure that player 1 chooses "1". Since d~(B) ~ 0 for
all B in the support of ~i;(B~B;) we have D;(a;~B;) ~ 0. ~

Since D;(s; ~B;) depends continuously on B; for each a E E(G`), the above
lemma implies that the function has a zero on [-3e,1 ~ 3e]. Let B`, resp.
8; be defined by

B` - inf {B;; D;(s;~B;) - 0 for some s E E(G`)}, (4.1)

B~ - sup {B;; D;(s;~B;) - 0 for some s E E(G`)}. (4.2)

(In the next section we show that E(G`) ~ 0). Lemma 4.1. and ( 3.10),
(3.11) imply that for any s E E(G`)
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- J 1 if B; C B` anda'(B;) 1 0 ií B; 1 B`~

We will show that

lim 9` - lim B; - B`
.lo .lo

where B' is defined by (2.4). This result immediately implies

PROPOSITION 4.2. Let B E O. If s E E(G`) and if e ia au,~ciently
amall, then

s;(B) 1 if B G B',
- 0 ifB1B',

that ia, in the limit, each equilibrium of the global game preacribea to play
the riak dominant equilibrium of the game g(B) for each poaaible obaervation
B.

PROOF. It suffices to show that (4.4) holde. Assume, without loss
of generality that the limits in (4.4) indeed exist. Write Q; for the LHS-
limit and B; for the limit of the RHS. If ~ G B~, then for e eufFiciently

small, player í is sure that the opponent plays „1" if he observes Q,`, hence,
D;(s; ~~) ~ d~(~` f e), and (A1), (A3) and (4.1) imply that ~; - 1. Since
B~ C 1, we obtain a contradiction. Hence, Br - Bz. A symmetric agrument

yielde that Bl - Bs. Write B- Bl and B- Bl. Let a E E(G`) be such a that

aThe careful reader will notice that we did not prove that auch a exiats. The uaual
upper hemicontinuity of the equilibrium correapondence guaranteea euatence. If the reader
remains auspicioua he may easily provide a tormal proof following the linea outlined bdow
by looking at a sequence of equilibria with D;(a, ~) y 0
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D;(s~B;) - 0. Rewriting ( 3.9) yields that we must have

II e,(Bi)fd:(e) f d:(e)ld~.(e,eih:) (4.5)

- .Í J d?(B)d~Y;(B, Bi ~e`)

As e tends to zero, the RHS of (4.5) converges to d?(~), whereas, since

g(B) depends continuously on B, the LHS has the same limit as

f .Í si(Bi)~d:(~) } d:(~)~d~.(B,Bi~~`). (4.6)

If E is amall, d; (B) f da(B) ~ 0, and (4.3) implies that ( 4.6) is at least
equal to

~d~(B) f d:(B)~~Y;(B;~B`)

Hence, from (4.5) we may conclude that

lilo ~.(B,I~`) ~ d:(B)fd.(e) f d.'(B)1-~

Combining this latter inequality with Lemma 3.1, we obtain

s
~ d:(Q)~d: (~) f d: ( ~)~-' ? 1
.-i

which is equivalent to
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di~e)dá~e) C di~e)dá~e),

hence, ~~ B'. A symmetric argument eetabliehes that B C B', hence
B- 9- B', which completes the proof. p



19

5 Existence of equilibrium

In this section it is ahown that the reeulta ubtained above are not vacuous.

Specifically, we ahow that the global game C` admits a atep functioa equi-

librium if e ia amall, i.e. each player i chooses "1", if B; is amall and "2"

otherwise.

Let e be small and let C-[g, c] be a closed interval with [-5e,1 {- 5e] C

C C O(e), such that d;(9) i- d'(6) 1 0 for all Q in an e-neighbourhood of

C. For x~ E C, write X~i for the characteriatic function of the set (-oo,x~],

let a~ be the atrategy with a~(6~) - x~~(B~) and write D;(x~~B;) inatead of

D;(a~~B;). For a fixed cut-off level x~ of player j, if player i observea a higher

B; it becomes more likely that player j plays "2". A higher B; also makes a

higher B more likely. Both properties contribute to make playing "2" more

attractive for player i. Hence, we have

LEMtYta 5.1. For fixed x~ E C, the function D;(x~~B;) ia deereaaing in B;

on C.

PROOF. Let B; E C and let ó E(O,e) be such that B; f ó E O(e). We

will show that

D;(x;~9; f é) C D;(x;~B;).

The assumptions (A1), (A2) imply that for all B E supp~i;(.~8; f ó)

d;(B) G d;(B - ó) and d'(B) ~ d?(B - b),

while the choice of C guarantees that
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[d:(B - ó) f d;(B - a)]x:;(B;) s [d:(B - ó) f d'(B - b )]x:;(B; - ó)

in the relevant range. Combining these inequalities yields

D;(x;~B; } ó) -

j j[di (B) f~(B)]xm; ( B; )d~~(B, B; I B: -F- a) - j j d; (B)d~,(B, B; IB~ f ó)

~ j j[d; (B - ó) f d?(B - ó)]xe~ ( B; - 6)d~Y;(B, B; ~B; f 6)

- I j[~(B - ó)xs; (e; - ó)d~;(B, e; I B; f ó)

- j Í[d: (B) f d: (B)]x:; ( B; )d`~.(B ~- ó, B; f ê~B; f ó)

- j jd;(B)d~Y;(B f ó,B; f 6~8; f ó)

- D:(x;~B;),

where the last equality follows from (3.7). O

Denote by F;(x;) that point in C where player i optimally switches from
"1" to "2" if his opponent ewitches at x;, hence

~ ií D;(x;~~) C 0,
F,'(x;) - c ií D;(x;~~) ~ 0, (5.2)

x; if D;(x;~x;) - 0.

Since D;(x;~B;) is jointly continuous in x; and B;, F; is well-defined and
continuous. By using an argument as in Lemma 4.1., the properties listed
in Lemma 5.2. are easily derived.
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LeMMn 5.2.

if d;(o) - 0, then F;(x~) 1 -e for all x„

if d~(1) - 0, then F,(x~) G 1 ~-e for all x„

if x~ ~-e, then F;(x~) ~-3e, and

if x~ G 1 f E, then F,(x~) C 1-~ 3e.

Consider the continuous map F1Fa from C into C, and let xi be a fized
point. Write x7 - Faxi. Lemma 5.2. implies that -3e G x; G 1~-3e, hence
x; E intC. In particular, therefore

Di(xi~xi) - Da(xi~xi) - 0

The choice of C guarantees that D;(x~~B;) G 0 if B; ~ c and that
D;(x~~B;) 1 0 if B; G c. Thia observation combined with Lemma 5.1. im-
plies that the strategy pair ( ai,a~) induced by the cut-off levels ( xi,x~) is
a Bayesian Nash equilibrium of G`. We have shown

PROPOSITION 5.3. If E ia au,~ciently amall, the global game G` haa a
Bayeaian Naah equilibrium.
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6 Concluding remarks

Cames, like all models, are idealizations of real life situations. Sometimes
the game theorist abstracts away from too many relevant aspects. Mul-
tiplicity of equilibria may be viewed as a manifestation that the model is
overidealized and the refinements program, at least in part, is motivated by
the consideration that, by including additional elements into the model (by
perturbing the game slightly) one may cut down on the number of solutions.
Our model slightly relaxes the standard assumption that all parameters are
common knowledge. As auch, the present paper fits into the refinemente
program.

The question that naturally arises in thie context is in what sense the
global game G` is a slight perturbarion of the game in which B is observed
without noise. (Call the latter game Go and note that Go contains each
g(B) as an actual aubgame). Obviously, in G`, if player i observea B;, then
he knows that payoffs are almost as in g(B;). In particular, if e ia small and
B; ~ 0, then player i knows that "2" ia a best reply againat "2" for each
player, and he also knows that the opponent knowa this. Hence, looeely
speaking, in terms of knowledge, G` is close to Ga. When it comea to com-
mon knowledge (Aumann [1976]), however, G` may well considered to be
far away from Go. Namely , the event B~ 0, that is, the event "2" is a best
reply against "2" for each player is at no state of the world common knowl-

edge e. Loosely speaking, in G`, the best reply etructure is not common
knowledge. Given the observation B;, it does not suffice to analyse gamea
g(B) with B close to B;, one also has to analyse games that are far removed

from B;. It is this property that drives our results. (The same property also

sFor nn event E, let KE be the event "both playera know E" and write Kn}1E -
KX"E. The event E ia common knowledge nt states of the world in j~,~ K"E. If E-
{6 ~ 0}, then K"E -{B; ~ nc for all i}, hence, K"E - 0 for n sufliciently large; E
cannot be common knowledge.
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justifies the term 'global' game).

Superficially, the model presented in this paper, resembles the one with
which Harsanyi provided a rationale for mixed strategy equilibria (Harsanyi
(1973f ). There are, however, fundamental differences as we will argue
now. Mathematically, the main difference is that in Harsanyi's model
each player's payoffs are subject to small independent random fluctuations,
whereas in our model the fluctuations of different players are correlated '.
The distinction indeed is crucial, since Harsanyi's main reault states that
generically each equilibrium of the underlying game can be approximated
by equilibria of the perturbed games. Furthermore, in Harsanyi's model,
equilibria have a different interpretation than in our model. Loosely speak-
ing, in Harsanyi's model they are beliefs, whereas in ours they are actions.
Let us illustrate these differences by an example.

1-B,
1-BZ

0
0

0
0

B1
Bz

Table 4: Game g(B1iB2).

Consider the game from Table 4 which is a slight modification oí that
of Table 2. Let B,,Ba be independent, identically distributed random vari-
ables and assume that player á observes the outcome of 9;. Let f~ be the
density of B; and assume lim~-,o f`(B) - 0 if B~ 3. Hence, in the limit, the
players are sure that they play the game from Table 1. If B; has bounded
support, then for E small, it is common knowledge that "k" is a best re-
ply against "k" (k E 1,2) for each player, a property that never holds in

~Haraanyi alao easumea that each player can obaerve hia own payoffa accurately. Adding
noisy measurements on top of Hareanyi'a atructure would not change hia reeulte.
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our global game C`. It is easily verified that in this case, for e small, the
perturbed game has three equilibria, which converge, as e-. 0 to the equi-
libria of g(3, 3). Therefore, assume that the support of B; is R. Let us look
for symmetric step function equilibria of the game with random payoffa, i.e.

-~ 1 if B;Gx
''(B') 0 if B; ~ x (6.1)

The condition that a player be indifferent at x may be written as

(1 -- x)F`(x) - x(1 - F`(x))

hence

F`(x) - x (6.2)

By continuity, this equation has at least 3 solutíons, viz. x ti 0, x~?.., ,
and x ti 1, and all three of these induce equilibria. Hence, the multiplicity
oí equilibria persists. Furthermore, if x~ 0, then, irrespective of his own
observation, player i believes that the opponent will almost surely play "2",
hence, the beliefs associated with x ti 0 converge to the equilibrium "2,2"
of the game g(3, 3). Similarly, the beliefs associated with x: 3(resp.
x ti 1) converge to the mixed equilibrium (resp. the equilibrium "1,1") of
this game. Note that in Harsanyi's setup the equilibrium beliefs converge,
whereas in the model of this paper the equilibrium actions converge.

The most important limitaticn of the approach of this paper ia that it
only covers 1-parameter families of games. It ie comforting, however, and
indicative of a more general theory that the solution obtained for any spe-
cific 2 x 2 game is independent of in which 1-parameter class the game is
embedded. Still an extension of the approach to multi-parameter families
of games, as well as to games of Iarger size is urgently called for. (The
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reader ia refered to Carlsaon (1989) for firat results in this direction s).
Let ua conclude by giving a simple example indicating that, even for 3 x 3
gamea with common interesta, the one-parameter approach does not yield
the desired reault. (The result we of course would like to obtain ie that
players should coordinate on the Pareto beat equilibrium).

Let g(B) be a 3 x 3 game in which both players receive 0 if they do
not choose the same pure strategy and in which both receive gk(B) if both
choose "k". Let gk(B) be given by

9'(B) - 4 - ( B -F 1)a

g~(B) - 5 - 5(B f 1)~

g3(B) - 4 - (B - 1)2

In any equilibrium of the global game, players will coordinate on "1,1"
if B is small, while they will play "3,3" if B is large. An argument as in the
introduction ehows that players will switch from "k, k" to "l, l" at B only
if gk(B) - g~(B). Now, the Pareto dominant equilibrium of g(B) is n2,2" if
B ti-1, however, there ia nothing that forces players to switch from "1,1"
to "2,2" at some B C-1. In fact, it may be verified that the atrategy pair
"play "1,1" if B C 0 and play "3,3" if B~ 0" is a symmetric equilibrium if
playere' observation errors have the same diatribution.

sln Carlsson's model, nll payoffs are random and then both playera get an indepeadent
aignal about what the payoffa ot both plnyers are. Hence, in the cme oí 2 x 2 games,
the parameter and aignal apaces are B-dimensional. Carlason provm that a resnlt as in
Propoaition 4.2. still holds in this setup.
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