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Abstract

This paper presents a noncooperative model that forces players to
coordinate on the risk dominant equilibrium in every 2-person 2 X 2
normal form game. Specifically, in the model it is assumed that, when
playing a game, players may make small observation errors so that
the actual payoffs will not be common knowledge. It is shown that
all equilibria of the incomplete information game that incorporates
this uncertainty prescribe to play the risk dominant equilibrium of
the underlying 2 x 2 game as the noise vanishes.
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1 Introduction

These authors are confident that, when asked to play the game G; from
Table 1 in a purely noncooperative fashion, and without receiving any out-

side guidance about how to play, each reader would choose ”2”.

1 0

1 0
0 2

0 2

Table 1: Game G,

Common sense dictates that one should play the game in this way, but
up to now there is no formal, purely noncooperative ! theory that singles
out ”2,2” as the unique rational solution of 2 G,. Indeed, also the strat-
egy pair "1,1” is a Nash equilibrium. In fact, this is a strict equilibrium
(each player strictly looses by deviating unilaterally) so that it satisfies the
conditions imposed by the most refined noncooperative equilibrium notions
proposed today, such as, for example, stability @ la Kohlberg and Mertens
(1986]. Our aim in this paper is to develop a fully noncooperative the-
ory that forces players to choose ”2,2” in G,. Specifically, we construct a
model that embeds G, into a collection of 'nearby’ perturbed games with
incomplete information of which in the limit all Bayesian Nash equilibria
prescribe to play ”2,2” in G;.

!We emphasige the term 'purely noncooperative’ by which we mean ’based solely on
considerations of individual utility maximiszation’. There exist theories that single out
”2,2" as the unique solution, the most prominent example being the selection theory from
Harsanyi and Selten [1988], but all these adopt as a principle that one should not play a
Pareto inferior equilibrium, hence, they assume away the difficulty in G,.

? Aumann and Sorin [1989] and Matsui [1989] have constructed models that force players
to choose ”2,2” when G, is repeated sufficiently often.



Let us stress at the outset that our theory does not always justify play-
ing the Pareto dominant equilibrium. For example, in game G, (Table 2),
our model forces players to choose ”2,2” even though the strategy pair ”1,1”

Pareto dominates 72,2”.

3 0

0 2
Table 2: Game G,

In G,, playing ”2” is safe whereas ”1” is risky. Using the terminol-
ogy of Harsanyi and Selten [1988] we may say that ”2,2” risk dominates
¥ 71,1” in G; and the main result of this paper states that, for the sub-
classes of games considered, our theory always selects the risk dominant
equilibrium. Of course, it is not surprising at all that the same solution is
obtained in both games: This result is dictated by ordinality considerations
(see Mertens [1987]). From a noncooperative point of view, the games are
isomorphic since they have the same best reply structure: G, results from
G, by substracting 2 from player 1’s (resp. player 2’s) payoffs in the first

column (resp. first row).

Our theory is based on the idea that players will not analyse each game
in isolation, rather they will analyse classes of games with similar char-
acteristics simultaneously. Hence, one can solve a particular game only if
one simultaneously also determines the solutions of similar games and re-
lates the respective solutions to each other. It should be clear that this

idea is motivated by Nash’s seminal work on bargaining. A similar ap-

3The product of the deviation losses is larger at "2,2” than at "1,1”, see Section 2 for
the formal definition.



proach has also been followed in Harsanyi and Selten [1988], Section 3.8]
where an axiomatic characterization of risk dominance in 2 x 2 games is
derived. Harsanyi/Selten do not provide a noncooperative underpinning of
their axioms; as stated before, we remain entirely within the noncoopera-

tive framework.

As an illustration of our general approach and to provide the intuition
for our main results, let us consider the special case of games with common
payoffs such as the game from Table 1. This class is special since risk domi-
nance coincides with payoff dominance in this case, however, the symmetry
displayed by the class allows for a very simple heuristic argument which is
worthwhile giving. We picture players as analysing the game from Table 1
as embedded within the class of all 2 x 2 unanimity games with common
payoffs. The latter may be parametrized as in Table 3.

1-6 0
1-6 0
0 ]
0 /]
Table 3: Common interest game g(f) (Note G, = 39(3),)

In our model, the mechanism that forces players to analyse all such
common interest games simultaneously is that the true value of # may be
observed only with some slight noise. Hence, although it will be common
knowledge that players have the same payoffs, the actual payoffs will only
be approximately known. Loosely speaking, when the actual game is 9(2),
a player may actually think he is playing g(2+¢) and he also does not know
exactly what game the opponent thinks he is playing. To keep the situation
amenable to game theoretic analysis, it will be assumed that players have
a common prior concerning § and that the distributions of the observation



errors are common knowledge. Hence, the class of common interest games
as a whole will be embedded into a game of incomplete information, a so
called global game. The program we carry out in this paper is to analyse
the Bayesian Nash equilibria of the global game and to study their limits as
the observation errors vanish, i.e. we study what happens when the players
become completely sure which game they are playing. We show that in the
limit all equilibria of the global game associated with Table 3 prescribe to
play ”1” if < } and "2” if § > 1. Hence, in the limit the Pareto domi-
nant equilibrium is obtained in every game. In general, the risk dominant

equilibrium is obtained.

To get some intuition for how this result comes about, consider the
special case where players have a uniform prior on § and where players’
observation errors are independent, identically distributed with bounded
support. In this case the global game constructed from Table 3 is symmet-
ric, hence, it will admit a symmetric equilibrium, i.e. both players follow
the same strategy. Let us restrict attention to such equilibria. If a player
observes 6 sufficiently negative, he knows that ”1” dominates ”2”, hence,
he will play "1”. Similarly, each equilibrium prescribes to play 2" if 6 is
sufficiently large. Intuitively it is clear that the residual uncertainty forces
equilibria of the global game to be simple, i.e. there can exist only finitely
many switching points. Assume that there is only one switching point, say
8, hence, we have a step function equilibrium. The assumptions imply that,
if I observe 8, it is just as likely that my opponent has observed a higher
0 as that he has observed a lower one. Hence, I expect my opponent to
choose both actions with probability % when I observe 8. By continuity, a
player must be indifferent between playing ”1” and ”2” at . If errors are
small, then, at 8, the expected payoff resulting from my first (resp. sec-
ond) strategy is approximately equal to (1 —8)/2 (resp. §/2), hence, in the
limit 8 = 1. We conclude that in the limit all (symmetric step function)



equilibria prescribe to play the Pareto dominant equilibrium for every 2 x 2

common interest game.

The remainder of the paper is devoted to formalization and extension
of the above argument. In Section 2, we introduce one- parameter classes
of games to which the argument can be applied. In Section 3 some basic
properties are derived for the global game in which the parameter can only
be observed with some noise. Section 4 studies the limit properties of
the Bayesian Nash equilibria of the global game as the noise vanishes. In
Section 5 it is shown that such equilibria indeed exist. Section 6 concludes
by discussing the relationship of our work with that of Harsanyi [1973], by
illustrating the role of common knowledge, and by pointing out extensions
and limitations of the present approach.



2 The class of games

We consider one-parameter families of games G = {g(6);0 € O} with the
property that a higher value of § makes playing the first strategy less attrac-
tive for each player, i.e. the region where the first strategy is a best response
decreases continuously from the full strategy set of the opponent until it
eventually becomes empty. To simplify the existence proof for Bayesian
Nash equilibria in Section 5 somewhat, we make slightly stronger assump-

tions.

Formally, let © be an interval on the real line with [0,1] C int © and,
for 6 € O, let g(0) be a 2-person 2 x 2 normal form game that (in the metric
on payoffs) depends continuously on 6. We write g(6) = (91(8), 92(0)) with
gi(8,k,1) being the payoff to player i if player 1 chooses the pure strat-
egy k and player 2 chooses ! (i,k,l € {1,2}). Let d}(6) be the loss that
player i incurs if he deviates unilaterally from the strategy pair ”1,1” in g(8)

di(6) = 91(6,1,1) - 9:(6,2,1) ,
d3(8) = g2(6,1,1) — g2(6,1,2).
Similarly, the deviation losses from ”2,2” are defined by
d4i(6) = 91(6,2,2) - 9:(6,1,2),
d3(8) = 9:(6,2,2) — g5(6,2,1).

It will be assumed that G = {g(6);0 € ©} satisfies the following condi-

tions



(A1) d}(0) is decreasing* on © for all 1,

(A2) d}(@) is increasing on O for all i,

(A3) min {d!(1)} = 0, and

7

(A1) min {@?(0)} = 0.

1

These assumptions imply that, for § < 0, there exists some player i
with d}(6) > 0 and d}(6) < 0, hence, this player’s first strategy dominates
his second. Since, for § < 0, the opponent’s unique best response against
"1” is also to play "1”, we have that ”1,1” is the unique Nash equilibrium
of g(8) if & < 0. Similarly, ”2,2” is the unique equilibrium if § > 1. If
6 € (0,1), then both "1,1” and ”2,2” are strict equilibria of g(#). For such
0, there also exists a mixed strategy equilibrium, viz. player i chooses his
first strategy with probability s}(#) given by

5;(6) = dj(6)/(d;(6) + 3(8)]* (E#37) (2.1)

Note that the RHS of (2.1) is increasing in 6. Also note that, if we write
B}(0) for the set of mixed strategies of player j against which player i's
first strategy is a best response, then

B}(6) = {s; : s} > s}(0)}, (2.2)

§=3

hence, B}(0) is decreasing in § and the class G has the property mentioned

4This means ’strictly decreasing’.
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in the introductory paragraph. Finally, note the usual, counterintuitive,
property that even though for higher 6 the first strategy becomes less at-
tractive, the probability that the mixed strategy equilibrium assigns to

”1,1” is increasing in 4.

To conclude this section, let us introduce the risk dominance notion
from Harsanyi and Selten [1988]. We just define the concept, the reader is
urged to read Harsanyi and Selten’s seminal book for the intuitive Jjustifi-
cation. In g(6), the equilibrium ”1,1” is said to risk dominate ”2,2” if its
associated 'Nash product’ is larger, that is

d;(8)d;(6) > di(6)d3(6) (2.3)

If the reverse inequality is satisfied, ”2,2” is said to risk dominate L B0
Our assumptions imply that, in the relevant range, the Nash product of
"1,1” is decreasing, whereas that of ”2,2” increases. Hence, there exists a

unique #* such that
d}(6*)d3(6°) = d}(6*)d3(6") (2.4)

The equilibrium ”1,1” risk dominates ”2,2” if and only if 8 < 6*. In Sec-
tion 4 we will show that the perturbed game model from Section 3 forces
players to choose ”1,1” if and only if § < 8°, hence, our model provides a
noncooperative justification for equilibrium selection according to the risk
dominance criterion in 2 x 2 games.
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3 Global games

We now picture players in the situation where it is common knowledge
that eventually a game from G will have to be played but where it is not
yet known which one, and a priori players consider all possible games to
be equally likely. Both players make an independent observation of which
game is to be played, but observations are noisy. The distributions of the
measurement errors are assumed to be common knowledge so that the over-
all situation can be modeled as a game with incomplete information. We
are particularly interested in the situation where measurements are almost
correct, i.e. we will investigate sequences of global games in which the noise

vanishes.

Formally, let 6, ¢,, e; be independent random variables with 8 being uni-
formly distributed on © and e; having a continuous density f; with support
contained in [-1, 1]. The situation with vanishing noise may then be mod-
eled by the sequence of global games {G*}. o where G* is played according
to the following rules
0 is drawn, (3.1)

player i receives the signal §; = 6 + ee;, (3.2)

based on their respective observations, the players simultaneously choose
mixed actions s;(6;), (3.3)

player i receives the payoff g;(8,s:(6:),52(6:)). (3.4)

It will be clear that player i will choose "1 (resp. ”2”)if 6; is sufficiently
small (resp. large), (see Lemma 4.1) so that attention may be restricted to
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6; near [0, 1]. Let us first derive the posterior beliefs of player i in G after
having observed such 6;. For § > 0, write ©(8) for those parameters that
are at least § within ©, hence

O(8) = {6;[6 — 6,6 + 8] c ©)

First of all note that the joint density function of the triple (6,6:,6,) is
given by

¥(6,61,6) = fi(6: — 6)f;(6: - 6)/ | © | for6 €0,
where ff is the density of ee;

fi(z) =€ fi(e7'2).
which has support contained in [-¢,¢€]. It is easily checked that the marginal
density of 6; is constantly equal to | © |~* for 6; € O(¢), hence, for such 6;
the posterior density of (6, 6;) is given by

¥i(6,6;16:) = f5(6: — 8)f5(6: — 0) if 8; € O(e). (3.5)
We will write W;(6,6;|6;) for the associated distribution function; the de-

rived marginal density for 6; is denoted by 1;(6;|6;) with associated distri-
bution ¥;(6;]6;). Note that expression (3.5) is symmetric, so that

1/’1(9, 03'01) = 1/),(0, 01 |03) if 01,03 € 0(6). (8.6)
Furthermore, the posterior beliefs are translation invariant

$1(6,6200,) = ¥1(8 + @, 6, + a6, + a) if 6,6, + a € O(e). (3.7)
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Obviously, similar symmetry and translation invariance properties hold
for the marginal densities 1;(6;]6;). The latter allow us to derive the fol-
lowing fundamental property which states that, in the relevant range, the
probability that player 1 assigns to player 2 having an observation below
0, after having observed 6, is equal to the probability that player 2 assigns
to player 1 having an observation above 6, after having observed 6,.

LEMMA 3.1. If 6,,6, € 9(36), then
©1(616,) + W2(6,16;) = 1. (3.8)

PROOF. Keeping in mind that ;(¢(6;) = 0 if |t — 0; | > 2¢, we may
write using (3.6), (3.7)

W1(8216:) = [%_ 41 (2]6,)dt
= [ a(0:[t)dt = [*_ 15(6, + 6, — t]6;)dt
= I‘T ¢z(a|0,)da =1~ ‘II,(BIIG,) a

To conclude this section, let us turn to equilibria in G¢. Write ©; for
the support of 6;. (We will assume © C ©;.) A strategy for player i is a
measurable function s; : ©; — R3 with s}(6;) + 52(6;) = 1 for all 6;. (We
write s¥(6;) to denote the probability with which player i chooses action
k if he observes 6;). Let Ef(s;|6;) denote player i’s expected payoff if he
observes 6; and plays action k, in case the opponent uses strategy s;. Fur-
thermore let D;(s;|6;) = E}(s;]6;) — E?(s;]6;), hence

Di(s;16:) = | J1s3(8;)d} (6) — 3(6;)d?(6))d (6, 6;16;) (3.9)
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The strategy pair s = (s;,3,) is a (Bayesian Nash) equilibrium of G* if
for all 7 and all §; € ©;

if Dy(s;]6:) > 0, then s}(6;) = 1, and (3.10)
if D.’(J,'Io,') < 0, then a,‘(O.) =0. (3.11)
The set of all equilibria of G* is denoted as E(G®). The proof that

E(G*) is nonempty is defered to Section 5. In the next section we study

the limit of E(G*®) as ¢ tends to zero.



35

4 Limit equilibria and risk dominance

In this section we prove our main result (Proposition 4.2) which states that,
when observation errors are sufficiently small, players will always coordi-
nate on the risk dominant equilibrium of the game g(8) where 8 is the true

value of the parameter selected in (3.1). First we derive
LEMMA 4.1. If s € E(G*®), then
D;(s;16;) > 0 if 6; < —3e, and
Di(s;]6;) <0 if 6; > 1 + 3e.

PROOF. Let s € E(G®). It suffices to demonstrate the first assertion.
Assume d7(0) = 0. If 6; < —e, player i knows that § < 0, hence, that his
first action dominates his second, therefore, D;(s;|6;) > 0 and s}(6;) = 1 for
all 6; < —e. Next, consider j # i and let §; < —3e. Then player j knows
that 6; < —e and he is sure that player 1 chooses ”1”. Since dj(6) > 0 for
all 6 in the support of 9;(6|6;) we have D;(s;|6;) > 0. ]

Since D;(s;|6;) depends continuously on §; for each s € E(G*), the above
lemma implies that the function has a zero on [—3¢,1 + 3¢]. Let 6, resp.
¢ be defined by

8; = inf {6;; Di(s;]6;) = 0 for some s € E(G*)}, (4.1)
8 = sup {6;; Di(s;16;) = 0 for some s € E(G*)}. (4.2)

(In the next section we show that E(G*) # 0). Lemma 4.1. and (3.10),
(3.11) imply that for any s € E(G*)
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1 if 6; < 8%, and
BN 1 =)
s}(6:) = { 0 i, > 8 (4.3)

We will show that

it = gt = o

(4.4)
where 8" is defined by (2.4). This result immediately implies

PROPOSITION 4.2. Let 8 € ©. If s € E(G®) and if € is sufficiently
small, then

1 if6<6
1 — ’
"*(9)“{0 if > 6°,

that is, in the limit, each equilibrium of the global game prescribes to play
the risk dominant equilibrium of the game g(@) for each possible observation

0.

PRrROOF. It suffices to show that (4.4) holds. Assume, without loss
of generality that the limits in (4.4) indeed exist. Write @; for the LHS-
limit and 6; for the limit of the RHS. If §; < 8;, then for ¢ sufficiently
small, player i is sure that the opponent plays ”1” if he observes 8, hence,
Di(s; | 67) > d}(85 + €), and (A1), (A3) and (4.1) imply that 8; = 1. Since
8; < 1, we obtain a contradiction. Hence, 8, = 8,. A symmetric agrument
yields that 8, = 8,. Write § = 0, and § = §,. Let s € E(G*) be such ® that

5The careful reader will notice that we did not prove that such s exists. The usual
upper hemicontinuity of the equilibrium correspondence guarantees existence. If the reader
remains suspicious he may easily provide a formal proof following the lines outlined below
by looking at a sequence of equilibria with D;(s,8{) — 0
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D;(s|8;) = 0. Rewriting (3.9) yields that we must have
[ s3(8)[d2(6) + d2(8)]a (0, 6;165) (4.5)
= [ d}(6)d¥(6,6;]6;)

As € tends to zero, the RHS of (4.5) converges to d?(8), whereas, since
g(8) depends continuously on 8, the LHS has the same limit as

J 1 55(6;)[di(8) + di(8)]d¥(6, 6;16;). (4.6)

If € is small, d}(8) + d?(8) > 0, and (4.3) implies that (4.6) is at least
equal to

(4(8) + d(8)]¥:(85165)

Hence, from (4.5) we may conclude that
lim @;(0516;) < d(8)[d}(8) + d}(8))~*
(a.7)

Combining this latter inequality with Lemma 3.1, we obtain

i d;(0)(d; (8) + d}(8)] ' > 1

=1

which is equivalent to
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d1(8)d3(8) < dj(8)d3(8),

hence, § > 6°. A symmetric argument establishes that § < ‘0‘, hence
8 = § = 6*, which completes the proof. ]
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5 Existence of equilibrium

In this section it is shown that the results obtained above are not vacuous.
Specifically, we show that the global game G° admits a step function equi-
librium if € is small, i.e. each player i chooses ”1”, if 6; is small and ”2”

otherwise.

Let € be small and let C = [¢, ] be a closed interval with [—5¢,1+ 5¢] C
C C O(e), such that d}(8) + d?(8) > 0 for all @ in an e-neighbourhood of
C. For z; € C, write x.; for the characteristic function of the set (o0, z;],
let s; be the strategy with s}(8;) = x.;(0;) and write D;(z;|6;) instead of
D;(s;]6;). For a fixed cut-off level z; of player j, if player i observes a higher
8; it becomes more likely that player j plays ”2”. A higher 6; also makes a
higher 6 more likely. Both properties contribute to make playing ”2” more

attractive for player i. Hence, we have

LEMMA 5.1. For fized z; € C, the function D;(z;|6;) is de;:'rjeuing in 6;
onC.

PROOF. Let 8; € C and let § € (0,¢) be such that 6; + 6§ € O(e). We
will show that

D;(a:j|0,- + 6) < D.-(::,'|0.-). (5.1)
The assumptions (A1), (A2) imply that for all 8 € suppy;(-|6; + §)
di(6) < (6 — 6) and d2(6) > d2(8 - 5),

while the choice of C guarantees that
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(di(6 — 6) + d(8 — 8)]x=;(6;) < [d}(8 — 6) + d}(0 — 6)]x.,(6; — &)
in the relevant range. Combining these inequalities yields
Dy(z;|6; + 8) =
JJ(di(6) + di(8)]x=,(6;)dWi(8, 8;16: + &) — J [ d?(8)dW.(6, 6516, + &)
< JJ[di(8 — &) + di(6 — 8)]x=,(6; — 6)d¥i(8,6;]6; + &)
= J J1d}(8 — 8)x=;(6; — 6)d¥y(6,6;6; + 6)
= J J(di(6) + d}(6)]x=;(0;)d¥:(6 + 6,6; + 56; + 6)
— [ Jd(0)d¥;(6 + 6,6, + 66; + &)
= Di(z;l6:),
where the last equality follows from (3.7). o

Denote by Fi(z;) that point in C where player i optimally switches from

”1” to "2” if his opponent switches at z;, hence

¢ if D.'(E,'Iﬁ) <0,
F.'(zj) = ¢ if D;(zjlé) >0, (52)
z; if D.‘(Z,‘It.‘) = 0.
Since D;(z;|6;) is jointly continuous in z; and 6;, F; is well-defined and
continuous. By using an argument as in Lemma 4.1., the properties listed

in Lemma 5.2. are easily derived.
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LEMMA 5.2.

if d}(0) = 0, then Fi(z;) > —¢ for all z;,

if d}(1) = 0, then F(z;) <1+e¢ for all z;,

if z; > —¢, then Fi(z;) > —3¢, and

ifz; <1+e¢, then Fi(z;) <1+ 3e.

Consider the continuous map F} F; from C into C, and let z7 be a fixed
point. Write 23 = Fyz]. Lemma 5.2. implies that —3¢ < z} < 1+ 3¢, hence
z; € intC. In particular, therefore

Dy(z3|27) = Da(z3|z3) =0

The choice of C guarantees that Di(z3|6;) < 0 if 8; > & and that
D;(z;6;) > 0if 6; < c. This observation combined with Lemma 5.1. im-
plies that the strategy pair (s7,33) induced by the cut-off levels (z3,z}) is

a Bayesian Nash equilibrium of G*. We have shown

PROPOSITION 5.3. If € is sufficiently small, the global game G* has a

Bayesian Nash equilibrium.
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6 Concluding remarks

Games, like all models, are idealizations of real life situations. Sometimes
the game theorist abstracts away from too many relevant aspects. Mul-
tiplicity of equilibria may be viewed as a manifestation that the model is
overidealized and the refinements program, at least in part, is motivated by
the consideration that, by including additional elements into the model (by
perturbing the game slightly) one may cut down on the number of solutions.
Our model slightly relaxes the standard assumption that all parameters are
common knowledge. As such, the present paper fits into the refinements

program.

The question that naturally arises in this context is in what sense the
global game G° is a slight perturbarion of the game in which 6 is observed
without noise. (Call the latter game G° and note that G° contains each
g(8) as an actual subgame). Obviously, in G*, if player i observes ;, then
he knows that payoffs are almost as in g(6;). In particular, if € is small and
8; > 0, then player i knows that ”2” is a best reply against ”2” for each
player, and he also knows that the opponent knows this. Hence, loosely
speaking, in terms of knowledge, G* is close to G°. When it comes to com-
mon knowledge (Aumann [1976]), however, G* may well considered to be
far away from G°. Namely , the event § > 0, that is, the event ”2” is a best
reply against ”2” for each player is at no state of the world common knowl-
edge . Loosely speaking, in G, the best reply structure is not common
knowledge. Given the observation 6;, it does not suffice to analyse games
g(6) with @ close to 6;, one also has to analyse games that are far removed
from 6;. It is this property that drives our results. (The same property also

SFor an event E, let KE be the event "both players know E” and write K*+1E =
KK"E. The event E is common knowledge at states of the world in (), K"E. If E =
{6 > 0}, then K™"E = {f; > ne for all i}, hence, K*E = 0 for n sufficiently large; E
cannot be common knowledge.
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justifies the term ’global’ game).

Superficially, the model presented in this paper, resembles the one with
which Harsanyi provided a rationale for mixed strategy equilibria (Harsanyi
[1973]). There are, however, fundamental differences as we will argue
now. Mathematically, the main difference is that in Harsanyi’s model
each player’s payoffs are subject to small independent random fluctuations,
whereas in our model the fluctuations of different players are correlated 7.
The distinction indeed is crucial, since Harsanyi’s main result states that
generically each equilibrium of the underlying game can be approximated
by equilibria of the perturbed games. Furthermore, in Harsanyi’s model,
equilibria have a different interpretation than in our model. Loosely speak-
ing, in Harsanyi’s model they are beliefs, whereas in ours they are actions.

Let us illustrate these differences by an example.

1-6, 0

0 6,
0 9,

Table 4: Game g(6,,6,).

Consider the game from Table 4 which is a slight modification of that
of Table 2. Let 6,68, be independent, identically distributed random vari-
ables and assume that player i observes the outcome of 6;. Let f¢ be the
density of §; and assume lim, o f*(§) = 0 if 6 3 2. Hence, in the limit, the
players are sure that they play the game from Table 1. If §; has bounded
support, then for € small, it is common knowledge that "k” is a best re-
ply against "k” (k € 1,2) for each player, a property that never holds in

"Harsanyi also assumes that each player can observe his own payoffs accurately. Adding
noisy measurements on top of Harsanyi’s structure would not change his results.
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our global game G*. It is easily verified that in this case, for € small, the
perturbed game has three equilibria, which converge, as ¢ — 0 to the equi-
libria of g(g, g) Therefore, assume that the support of §; is R.. Let us look
for symmetric step function equilibria of the game with random payoffs, i.e.

1 if ;<=
1 L o .
.9"(01) = { 0 if o'. >z (6.1)

The condition that a player be indifferent at z may be written as

(1 —=2)F*(z) = 2(1 — F*(2))

hence
Fi(z) == (6.2)

By continuity, this equation has at least 3 solutions, viz. = ~ 0, z ~ %
and z &~ 1, and all three of these induce equilibria. Hence, the multiplicity
of equilibria persists. Furthermore, if z ~ 0, then, irrespective of his own
observation, player i believes that the opponent will almost surely play 2",
hence, the beliefs associated with z ~ 0 converge to the equilibrium ”2,2”
of the game g(2,2). Similarly, the beliefs associated with z ~ 2 (resp.
z ~ 1) converge to the mixed equilibrium (resp. the equilibrium "1,17) of
this game. Note that in Harsanyi’s setup the equilibrium beliefs converge,

whereas in the model of this paper the equilibrium actions converge.

The most important limitaticn of the approach of this paper is that it
only covers 1-parameter families of games. It is comforting, however, and
indicative of a more general theory that the solution obtained for any spe-
cific 2 x 2 game is independent of in which 1-parameter class the game is
embedded. Still an extension of the approach to multi-parameter families
of games, as well as to games of larger size is urgently called for. (The
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reader is refered to Carlsson (1989) for first results in this direction ® ).
Let us conclude by giving a simple example indicating that, even for 3 x 3
games with common interests, the one-parameter approach does not yield
the desired result. (The result we of course would like to obtain is that
players should coordinate on the Pareto best equilibrium).

Let g(6) be a 3 x 3 game in which both players receive 0 if they do
not choose the same pure strategy and in which both receive g*(8) if both
choose "k”. Let g*(8) be given by

g'(@)=4-(0+1)
9%(6) =5 5(6 + 1)
g%(8) =4—(6-1)

In any equilibrium of the global game, players will coordinate on ”1,1”
if 6 is small, while they will play ”3,3” if 6 is large. An argument as in the
introduction shows that players will switch from "k,k” to ”I,1” at 8 only
if g*(6) = ¢'(8). Now, the Pareto dominant equilibrium of g(0) is 2,2” if
6 ~ —1, however, there is nothing that forces players to switch from ”1,1”
to ”2,2” at some 6 < —1. In fact, it may be verified that the strategy pair
"play "1,1” if # < 0 and play ”3,3” if # > 0” is a symmetric equilibrium if

players’ observation errors have the same distribution.

®In Carlsson’s model, all payoffs are random and then both players get an independent
signal about what the payoffs of both players are. Hence, in the case of 2 x 2 games,
the parameter and signal sp are 8-di ional. Carlsson proves that a result as in
Proposition 4.2. still holds in this setup.
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