

No. 9024

THE D_{2}-TRIANGULATION FOR SIMPLICIAL HOMOTOPY ALGORITHMS FOR COMPUTING SOLUTIONS OF NONLINEAR EQUATIONS R 5

by Chuangyin Dang
517.958

April 1990

The D_{2}-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations

Chuangyin Dang CentER for Economic Research
Tilburg University
The Netherlands

April 20, 1990

Abstract

We propose a new triangulation of arbitrary refinement of grid sizes of $(0,1] \times R^{n}$ for simplicial homotopy algorithms for computing solutions of nonlinear equations. On each level this triangualtion, called the D_{2}-triangualtion, subdivides R^{n} according to the D_{1} triangulation introduced earlier by the author. It is showed that the D_{2}-triangulation is superior to the well-known K_{2}-triangulation and the well-known J_{2}-triangulation when counting the number of simplices between any two levels.

Keywords: Triangulations, Measures of Efficiency of Triangulations, Simplicial Homotopy Algorithms

Acknowledgement: The author would like to thank Dolf Talman for his remarks on an earlier version of this paper, and Gerard van der Laan, He Xuchu, and Chen Kaizhou for their encouragement.

1 Introduction

Simplicial homotopy algorithms for computing solutions of nonlinear equations, which were originally introduced by Eaves and Saigal in [8], are established with triangulations of continuous refinement of grid sizes of $(0,1] \times$ R^{n}. Examples are Eaves and Saigal's K_{3}-triangulation in [8], Todd's J_{3} triangulation in [14], the author's D_{3}-triangulation in [4], the triangulations of van der Laan and Talman in [10], of Shamir in [12], of Kojima and Yamamoto in [9], of Broadie and Eaves in [2], and of Doup and Talman in [6]. All these triangulations were derived from the well-known K_{1}-triangulation of R^{n} or from the well-known J_{1}-triangulation of R^{n} except the D_{3}-triangulation which was derived from the D_{1}-triangulation of R^{n}. The latter triangulation was proposed by the author in an earlier paper [3] and it is superior to the K_{1} triangulation and the J_{1}-triangulation according to all measures of efficiency of triangulations. The D_{3}-triangulation subdivides $(0,1] \times R^{n}$ with a fixed refinement factor of 2 . In this paper, we construct a triangulation of continuous refinement of grid sizes of $(0,1] \times R^{n}$ by using the D_{1}-triangulation. The factor of grid refinement of the new triangulation, which we call the D_{2}-triangulation, can be any positive integer. In addition, in order to compare with the D_{2}-triangulation we present also the K_{2}-triangulation and the J_{2}-triangulation. It is showed that the D_{2}-triangulation is superior to the K_{2}-triangulation and the J_{2}-triangulation when counting the number of simplices.

In Section 2, the D_{2}-triangulation is constructed. Its algebraic definition is given in Section 3. Its pivot rules are described in Section 4. The comparison of these triangulations is presented in Section 5.

2 The Construction of the D_{2}-Triangulation

Let n be a positive integer and let $N=\{1,2, \ldots, n\}$. Let Q denote the set of vectors in R^{n} whose components are all integers and let $w \in Q$ be given. Then $I_{o}(w)$ and $I_{e}(w)$ denote the sets

$$
I_{o}(w)=\left\{i \in N \mid w_{i} \text { is odd }\right\} \text { and } I_{e}(w)=\left\{j \in N \mid w_{j} \text { is even }\right\}
$$

Furthermore, $A(w)$ denotes the set

$$
A(w)=\left\{x \in R^{n} \left\lvert\, \begin{array}{l}
w_{i}-1 \leq x_{i} \leq w_{i}+1 \text { for } i \in I_{o}(w) \text { and } \\
x_{i}=w_{i} \text { for } i \in I_{e}(w)
\end{array}\right.\right\}
$$

and $B(w)$ denotes the set

$$
B(w)=\left\{x \in R^{n} \left\lvert\, \begin{array}{l}
x_{i}=w_{i} \text { for } i \in I_{o}(w) \text { and } \\
w_{i}-1 \leq x_{i} \leq w_{i}+1 \text { for } i \in I_{e}(w)
\end{array}\right.\right\}
$$

Let k be a nonnegative integer. Then $D_{k}(w)$ denotes the set

$$
D_{k}(w)=\text { convexhull }\left\{\left(\left\{2^{-k}\right\} \times A(w)\right) \cup\left(\left\{2^{-(k+1)}\right\} \times B(w)\right)\right\}
$$

Lemma 2.1(see [4] or [9]). We have

$$
D_{k}(w)=\left\{d \in\left[2^{-(k+1)}, 2^{-k}\right] \times R^{n}| | \begin{array}{l}
\left|d_{i}-w_{i}\right| \leq 2^{k+1} d_{0}-1 \text { for } i \in I_{o}(w) \\
\left|d_{i}-w_{i}\right| \leq 2-2^{k+1} d_{0} \text { for } i \in I_{e}(w)
\end{array}\right\}
$$

Lemma 2.2(see [4] or [9]). $\cup_{w \in Q} D_{k}(w)=\left[2^{-(k+1)}, 2^{-k}\right] \times R^{n}$.
Lemma 2.3(see [4] or [9]). For $w^{1}, w^{2} \in Q, D_{k}\left(w^{1}\right) \cap D_{k}\left(w^{2}\right)$ is either empty or a common face of both $D_{k}\left(w^{1}\right)$ and $D_{k}\left(w^{2}\right)$, and when $D_{k}\left(w^{1}\right) \cap D_{k}\left(w^{2}\right)$ is not empty,

$$
\begin{aligned}
D_{k}\left(w^{1}\right) \cap D_{k}\left(w^{2}\right)= & \text { convexhull }\left\{\left(\left\{2^{-k}\right\} \times\left(A\left(w^{1}\right) \cap A\left(w^{2}\right)\right)\right)\right. \\
& \left.\cup\left(\left\{2^{-(k+1)}\right\} \times\left(B\left(w^{1}\right) \cap B\left(w^{2}\right)\right)\right)\right\} .
\end{aligned}
$$

For convenience, we first give the definitions of the D_{1}-triangulation, of the K_{1}-triangulation, and of the J_{1}-triangulation. For more details, see [3] and [11].

Let e^{i} be the i-th unit vector in R^{n} for $i=1,2, \ldots, n$.
Let either

$$
D=\left\{x \in R^{n} \mid \text { all components of } x \text { are odd }\right\}
$$

or

$$
D=\left\{x \in R^{n} \mid \text { all components of } x \text { are even }\right\}
$$

Let π denote a permutation of the elements of N and let s denote a sign vector. Let p denote an integer such that $0 \leq p \leq n-1$.

The Definition of the D_{1}-Triangulation:

Take $y \in D$, and let π, s, and p be taken as above.
If $p=0$, let $y^{0}=y$, and

$$
y^{j}=y+s_{\pi(j)} e^{\pi(j)}, j=1,2, \ldots, n
$$

If $p \geq 1$, let $y^{0}=y+s$, and

$$
\begin{aligned}
& y^{j}=y^{j-1}-s_{\pi(j)} e^{\pi(j)}, j=1,2, \ldots, p-1 \\
& y^{j}=y+s_{\pi(j)} e^{\pi(j)}, j=p, p+1, \ldots, n
\end{aligned}
$$

Let D_{1} denote the collection of all simplices $D_{1}(y, \pi, s, p)$ that are the convex hull of $y^{0}, y^{1}, \ldots, y^{n}$, as obtained from the above definition. Then D_{1} is a triangulation of R^{n}.

Let

$$
K=\left\{x \in R^{n} \mid \text { all components of } x \text { are integers }\right\}
$$

Let π denote a permutation of the elements of N.

The Definition of the K_{1}-Triangulation:

Take $y \in K$, and let π be taken as above.
Let $y^{0}=y$, and

$$
y^{j}=y^{j-1}+e^{\pi(j)}, j=1,2, \ldots, n
$$

Let K_{1} denote the collection of all simplices $K_{1}(y, \pi)$ that are the convex hull of $y^{0}, y^{1}, \ldots, y^{n}$, as obtained from the above definition. Then K_{1} is a triangulation of R^{n}.

Let either

$$
J=\left\{x \in R^{n} \mid \text { all components of } x \text { are odd }\right\}
$$

or

$$
J=\left\{x \in R^{n} \mid \text { all components of } x \text { are even }\right\}
$$

Let π denote a permutation of the elements of N and let s denote a sign vector.

The Definition of the J_{1}-Triangulation:

Take $y \in J$, and let π and s be taken as above.
Let $y^{0}=y$, and

$$
y^{j}=y^{j-1}+s_{\pi(j)} e^{\pi(j)}, j=1,2, \ldots, n .
$$

Let J_{1} denote the collection of all simplices $J_{1}(y, \pi, s)$ that are the convex hull of $y^{0}, y^{1}, \ldots, y^{n}$, as obtained from the above definition. Then J_{1} is a triangulation of R^{n}.

Take G to be one of these triangulations of R^{n}. Let \bar{G} denote the set of all faces of all simplices in G. Take $\alpha_{0} \in(0,1]$ and $\beta_{i} \in\{1 / j \mid j=1,2, \ldots\}$ for $i=0,1, \ldots$. Choose α_{j} such that $\alpha_{j+1}=\alpha_{j} \beta_{j}$, for $j=0,1, \ldots$.

Let

$$
\alpha_{k} \bar{G} \mid \alpha_{k} A(w)=\left\{\sigma \subseteq \alpha_{k} A(w) \mid \sigma \in \alpha_{k} \bar{G} \text { and } \operatorname{dim}(\sigma)=\operatorname{dim}(A(w))\right\}
$$

and

$$
\alpha_{k+1} \bar{G} \mid \alpha_{k} B(w)=\left\{\sigma \subseteq \alpha_{k} B(w) \mid \sigma \in \alpha_{k+1} \bar{G} \text { and } \operatorname{dim}(\sigma)=\operatorname{dim}(B(w))\right\} .
$$

For the D_{1}-triangulation, the K_{1}-triangulation, and the J_{1}-triangulation, it is obvious that $\alpha_{k} \bar{G} \mid \alpha_{k} A(w)$ is a triangulation of $\alpha_{k} A(w)$ and $\alpha_{k+1} \bar{G} \mid \alpha_{k} B(w)$ is a triangulation of $\alpha_{k} B(w)$.

Let a denote the number of elements in the set $I_{o}(w)$ and b the number of elements in the set $I_{e}(w)$. Take

$$
\sigma_{A}=\text { convexhull }\left\{y_{A}^{0}, y_{A}^{1}, \ldots, y_{A}^{a}\right\} \in \alpha_{k} \bar{G} \mid \alpha_{k} A(w)
$$

and

$$
\sigma_{B}=\text { convexhull }\left\{y_{B}^{0}, y_{B}^{1}, \ldots, y_{B}^{b}\right\} \in \alpha_{k+1} \bar{G} \mid \alpha_{k} B(w) .
$$

Let

$$
\sigma=\text { convexhull }\left\{\left(\left\{2^{-k}\right\} \times \sigma_{A}\right) \cup\left(\left\{2^{-(k+1)}\right\} \times \sigma_{B}\right)\right\}
$$

It can easily be obtained that σ is a simplex and that

$$
\begin{array}{r}
\sigma=\text { convexhull }\left\{\left(2^{-k}, y_{A}^{0}\right)^{\top},\left(2^{-k}, y_{A}^{1}\right)^{\top}, \ldots,\left(2^{-k}, y_{A}^{a}\right)^{\top},\right. \\
\\
\left.\quad\left(2^{-(k+1)}, y_{B}^{0}\right)^{\top},\left(2^{-(k+1)}, y_{B}^{1}\right)^{\top}, \ldots,\left(2^{-(k+1)}, y_{B}^{b}\right)^{\top}\right\} .
\end{array}
$$

Let $T(k, k+1)$ denote the collection of all such simplices σ. Clearly, we have that for $\sigma^{1}, \sigma^{2} \in T(k, k+1), \sigma^{1} \cap \sigma^{2}$ is either empty or a common face of both σ^{1} and σ^{2}. Moreover,

$$
\cup_{\sigma \in T(k, k+1)} \sigma=\left[2^{-(k+1)}, 2^{-k}\right] \times R^{n}
$$

Hence $T(k, k+1)$ is a triangulation of $\left[2^{-(k+1)}, 2^{-k}\right] \times R^{n}$.
Theorem 2.4. $\cup_{j=0}^{\infty} T(j, j+1)$ is a triangulation of $(0,1] \times R^{n}$.
Proof. From the choice of α_{j} and β_{j} for $j=0,1, \ldots$, we have this conclusion.

We call the triangulation constructed in Theorem 2.4 the G_{2}-triangulation. In this way we obtain the K_{2}-triangulation, the J_{2}-triangulation, and the D_{2}-triangulation of $(0,1] \times R^{n}$. In case of the D_{2}-triangulation, each level 2^{-k} for $k=0,1, \ldots$, the set $\left\{2^{-k}\right\} \times R^{n}$ is triangulated according to the $D_{1^{-}}$ triangulation. Similarly for the K_{2}-triangulation and the J_{2}-triangulation.

3 The Description of the D_{2}-Triangulation

Let $N_{0}=\{0,1, \ldots, n\}$. Let u^{i} be the i-th unit vector in R^{n+1} for $i=$ $0,1, \ldots, n$.

Take a permutation $\pi=(\pi(0), \pi(1), \ldots, \pi(n))$ of the elements of N_{0}. Let q denote an integer such that $\pi(q)=0$. Take a vector y in $(0,1] \times R^{n}$ such that for some nonnegative integer $k, y_{0}=2^{-(k+1)}$ and $y_{\pi(i)} / \alpha_{k+1}$ is an integer for $i=0, \ldots, q-1$ and $y_{\pi(i)} / \alpha_{k}$ is an integer for $i=q+1, \ldots, n$. Define

$$
w_{\pi(i)}= \begin{cases}\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor+1 & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is odd, } \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor & \text { otherwise }\end{cases}
$$

for $i=0,1, \ldots, q-1$, and

$$
w_{\pi(i)}= \begin{cases}y_{\pi(i)} / \alpha_{k}+1 & \text { if } y_{\pi(i)} / \alpha_{k} \text { is even } \\ y_{\pi(i)} / \alpha_{k} & \text { otherwise }\end{cases}
$$

for $i=q+1, \ldots, n$.

Definition 3.1.

Take y and π as given above. Then $y^{-1}, y^{0}, \ldots, y^{n}$ are defined as follows.

$$
\begin{aligned}
& y^{-1}=\sum_{i=0}^{q} y_{\pi(j)} u^{\pi(j)}+\alpha_{k} \sum_{j=q+1}^{n} w_{\pi(j)} u^{\pi(j)}, \\
& y^{i}=y^{i-1}+\alpha_{k+1} u^{\pi(i)}, i=0,1, \ldots, q-1, \\
& y^{q}=\alpha_{k} \sum_{j=0}^{q-1} w_{\pi(j)} u^{\pi(j)}+\sum_{j=q+1}^{n} y_{\pi(j)} u^{\pi(j)}+2 y_{0} u^{0}, \\
& y^{i}=y^{i-1}+\alpha_{k} u^{\pi(i)}, i=q+1, \ldots, n .
\end{aligned}
$$

Let $y^{-1}, y^{0}, \ldots, y^{n}$ be obtained in the above manner. Then it is obvious that they are affinely independent. Thus their convex hull is a simplex. Let us denote this simplex by $K_{2}(y, \pi)$. Then the K_{2}-triangulation is the set of all such simplices $K_{2}(y, \pi)$. Following the conclusions in the previous section, we have that this triangulation is a simplicial subdivision of $(0,1] \times R^{n}$ such that its factor of refinement can be chosen arbitrarily.

Take a permutation $\pi=(\pi(0), \pi(1), \ldots, \pi(n))$ of the elements of N_{0}. Let q denote an integer such that $\pi(q)=0$. Take a vector y in $(0,1] \times R^{n}$ such that for some nonnegative integer $k, y_{0}=2^{-(k+1)}$ and either $y_{\pi(i)} / \alpha_{k}$ is even for $i=q+1, \ldots, n$ and $y_{\pi(i)} / \alpha_{k+1}$ is even for $i=0, \ldots, q-1$ or $y_{\pi(i)} / \alpha_{k}$ is odd for $i=q+1, \ldots, n$ and if $1 / \beta_{k}$ is even, $y_{\pi(i)} / \alpha_{k+1}$ is even for $i=0, \ldots, q-1$ and if $1 / \beta_{k}$ is odd, $y_{\pi(i)} / \alpha_{k+1}$ is odd for $i=0, \ldots, q-1$. Take s to be a sign vector. If $y_{\pi(j)} / \alpha_{k}$ is odd for $j=q+1, \ldots, n$, define

$$
w_{\pi(i)}= \begin{cases}\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor+1 & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is odd and } \\ & \text { either } y_{\pi(i)} / \alpha_{k} \neq\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \\ & \text { or both }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor=y_{\pi(i)} / \alpha_{k} \text { and } s_{\pi(i)}=1, \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is even, } \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor-1 & \text { otherwise, }\end{cases}
$$

for $i=0,1, \ldots, q-1$ and if $y_{\pi(j)} / \alpha_{k}$ is even for $j=q+1, \ldots, n$, define

$$
w_{\pi(i)}= \begin{cases}\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor+1 & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is even and } \\ & \text { either } y_{\pi(i)} / \alpha_{k} \neq\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \\ & \text { or both }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor=y_{\pi(i)} / \alpha_{k} \text { and } s_{\pi(i)}=1 \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is odd, } \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor-1 & \text { otherwise, }\end{cases}
$$

for $i=0,1, \ldots, q-1$.

Definition 3.2.

Take y, π and s as given above. Then $y^{-1}, y^{0}, \ldots, y^{n}$ are defined as follows.

$$
\begin{aligned}
& y^{-1}=y, \\
& y^{i}=y^{i-1}+\alpha_{k+1} s_{\pi(i)} u^{\pi(i)}, i=0,1, \ldots, q-1, \\
& y^{q}=\alpha_{k} \sum_{j=0}^{q-1} w_{\pi(j)} u^{\pi(j)}+\sum_{j=q+1}^{n}\left(y_{\pi(j)}-\alpha_{k} s_{\pi(j)}\right) u^{\pi(j)}+2 y_{0} u^{0}, \\
& y^{i}=y^{i-1}+\alpha_{k} s_{\pi(i)} u^{\pi(i)}, i=q+1, \ldots, n .
\end{aligned}
$$

Let $y^{-1}, y^{0}, \ldots, y^{n}$ be obtained in the above manner. Then it is obvious that they are affinely independent. Thus their convex hull is a simplex. Let us denote this simplex by $J_{2}(y, \pi, s)$. Then the J_{2}-triangulation is the set of all such simplices $J_{2}(y, \pi, s)$. Then following the conclusions in the previous section, we have that this triangulation is a simplicial subdivision of $(0,1] \times R^{n}$ such that its factor of refinement can be chosen arbitrarily.

Take a permutation $\pi=(\pi(0), \pi(1), \ldots, \pi(n))$ of the elements of N_{0}. Let q denote an integer such that $\pi(q)=0$. Take a vector y in $(0,1] \times R^{n}$ such that for some nonnegative integer $k, y_{0}=2^{-(k+1)}$ and either $y_{\pi(i)} / \alpha_{k}$ is even for $i=q+1, \ldots, n$ and $y_{\pi(i)} / \alpha_{k+1}$ is even for $i=0, \ldots, q-1$ or $y_{\pi(i)} / \alpha_{k}$ is odd for $i=q+1, \ldots, n$ and if $1 / \beta_{k}$ is even, $y_{\pi(i)} / \alpha_{k+1}$ is even for $i=0, \ldots, q-1$ and if $1 / \beta_{k}$ is odd, $y_{\pi(i)} / \alpha_{k+1}$ is odd for $i=0, \ldots, q-1$. Take s to be a sign vector. If $y_{\pi(j)} / \alpha_{k}$ is odd for $j=q+1, \ldots, n$, define

$$
w_{\pi(i)}= \begin{cases}\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor+1 & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is odd and } \\ & \text { either } y_{\pi(i)} / \alpha_{k} \neq\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \\ & \text { or both }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor=y_{\pi(i)} / \alpha_{k} \text { and } s_{\pi(i)}=1, \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is even, } \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor-1 & \text { otherwise, }\end{cases}
$$

for $i=0,1, \ldots, q-1$ and if $y_{\pi(j)} / \alpha_{k}$ is even for $j=q+1, \ldots, n$, define

$$
w_{\pi(i)}= \begin{cases}\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor+1 & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is even and } \\ & \text { either } y_{\pi(i)} / \alpha_{k} \neq\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \\ & \text { or both }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor=y_{\pi(i)} / \alpha_{k} \text { and } s_{\pi(i)}=1, \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor & \text { if }\left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor \text { is odd, } \\ \left\lfloor y_{\pi(i)} / \alpha_{k}\right\rfloor-1 & \text { otherwise }\end{cases}
$$

for $i=0,1, \ldots, q-1$.

Let p_{1} and p_{2} denote two integers such that $-1 \leq p_{1} \leq q-2$ and $0 \leq$ $p_{2} \leq n-q-1$.

Definition 3.3. Take y, π, s, p_{1} and p_{2} as given above. Then y^{-1}, y^{0}, \ldots, y^{n} are defined as follows.

When $p_{1}=-1$, let $y^{-1}=y$,

$$
y^{i}=y+\alpha_{k+1} s_{\pi(i)} u^{\pi(i)}, i=0,1, \ldots, q-1,
$$

and when $p_{1} \geq 0$, let

$$
\begin{aligned}
& y^{-1}=y+\alpha_{k+1} \sum_{j=0}^{q-1} s_{\pi(j)} u^{u^{\pi(j)}} \\
& y^{i} \quad=y^{i-1}-\alpha_{k+1} s_{\pi(i)} u^{\pi(i)}, i=0,1, \ldots, p_{1}-1,
\end{aligned}
$$

and if $p_{1}<q-2$, let

$$
y^{i}=y+\alpha_{k+1} s_{\pi(i)} u^{\pi(i)}, i=p_{1}, \ldots, q-1,
$$

and if $p_{1}=q-2$, let

$$
\begin{aligned}
& y^{q-2}=y^{q-3}-\alpha_{k+1} s_{\pi(q-2)} u^{u^{\pi(q-2)}}, \\
& y^{q-1}=y^{q-3}-\alpha_{k+1} s_{\pi(q-1)} u^{\pi(q-1)} .
\end{aligned}
$$

When $p_{2}=0$, let

$$
\begin{aligned}
& y^{q}=\alpha_{k} \sum_{j=0}^{q-1} w_{\pi(j)} u^{\pi(j)}+\sum_{j=q+1}^{n}\left(y_{\pi(j)}-\alpha_{k} s_{\pi(j)}\right) u^{\pi(j)}+2 y_{0} u^{0}, \\
& y^{i}=y^{q}+\alpha_{k} s_{\pi(i)} u^{\pi(i)}, i=q+1, \ldots, n,
\end{aligned}
$$

and when $p_{2} \geq 1$, let

$$
\begin{aligned}
& y^{q}=\alpha_{k} \sum_{j=0}^{q-1} w_{\pi(j)} u^{\pi(j)}+\sum_{j=q+1}^{n} y_{\pi(j)} u^{\pi(j)}+2 y_{0} u^{0}, \\
& y^{i}=y^{i-1}-\alpha_{k} s_{\pi(i)} u^{\pi(i)}, i=q+1, \ldots, q+p_{2}-1,
\end{aligned}
$$

and if $p_{2}<n-q-1$, let

$$
\begin{aligned}
& y^{*}=\alpha_{k} \sum_{j=0}^{q-1} w_{\pi(j)} u^{\pi(j)}+\sum_{j=q+1}^{n}\left(y_{\pi(j)}-\alpha_{k} s_{\pi(j)}\right) u^{\pi(j)}+2 y_{0} u^{0}, \\
& y^{i}=y^{*}+\alpha_{k} s_{\pi(i)} u^{\pi(i)}, i=q+p_{2}, \ldots, n,
\end{aligned}
$$

and if $p_{2}=n-q-1$, let

$$
\begin{aligned}
y^{n-1} & =y^{n-2}-\alpha_{k} s_{\pi(n-1)} u^{\pi(n-1)} \\
y^{n} & =y^{n-2}-\alpha_{k} s_{\pi(n)} u^{\pi(n)} .
\end{aligned}
$$

Let $y^{-1}, y^{0}, \ldots, y^{n}$ be obtained in the above manner. Then it is obvious that they are affinely independent. Thus their convex hull is a simplex. Let us denote this simplex by $D_{2}\left(y, \pi, s, p_{1}, p_{2}\right)$. Then the D_{2}-triangulation is the set of all such simplices $D_{2}\left(y, \pi, s, p_{1}, p_{2}\right)$. Then following the conclusions in the previous section, we have that this triangulation is a simplicial subdivision of $(0,1] \times R^{n}$ such that its factor of refinement can be chosen arbitrarily.

4 The Pivot Rules of the D_{2}-Triangualtion

Let $f: R^{n} \rightarrow R^{n}$ be a continuous function. Suppose that we want to compute a zero point of f, i.e., a vector $x^{*} \in R^{n}$ such that $f\left(x^{*}\right)=0$. Let v be an arbitrary point in R^{n}. Then the function $g:(0,1] \times R^{n} \rightarrow R^{n}$ is defined by $g(t, x)=f(x)$ if $0<t<1$ and $g(t, x)=x-v$ if $t=1$. Let $(0,1] \times R^{n}$ be triangulated according to one of the G_{2}-triangulations defined before. Next, let H be the piecewise linear approximation of g with respect to one of the G_{2}-triangulations. More precisely, let $x=\sum_{i=-1}^{n} \lambda_{i} y^{i}$ be a vector in some simplex of one of the G_{2}-triangulations with vertices $y^{-1}, y^{0}, \ldots, y^{n}$, where $\lambda_{i} \geq 0$ for all i and $\sum_{i=-1}^{n} \lambda_{i}=1$. Then $H(x)$ is defined by

$$
H(x)=\sum_{i=-1}^{n} \lambda_{i} g\left(y^{i}\right)
$$

Clearly $H(1, v)=0$ and $H(1, w) \neq 0$ for $w \neq v$. Now the simplicial homotopy algorithm follows the piecewise linear path, P, of zero points of H originating at $(1, v)$. The path P is linear on each simplex σ of one of the G_{2}-triangulations it passes. Such a linear piece can be generated by making a linear programming (l.p.) pivoting step in the system of linear equations

$$
\sum_{i=-1}^{n} \lambda_{i}\left(g\left(y^{i}\right), 1\right)^{\top}=(0,1)^{\top}
$$

When implementing a (l.p.) pivoting step, some λ_{i} becomes zero, then the vertex y^{i} of σ must be replaced by a new vertex of a simplex, say $\bar{\sigma}$, of one of the G_{2}-triangulations, adjacent to σ and sharing with it the facet opposite to y^{i}.

Table 1: The Pivot Rules of the K_{2}-Triangulation

i	q		\bar{y}	$\bar{\pi}$	\bar{q}	\bar{k}
-1	0		y	$(\pi(1), \ldots, \pi(n), \pi(0))$	n	$k-1$
	$q \geq 1$	$y_{\pi(0)}^{0}=\alpha_{k}\left(w_{\pi(0)}+1\right)$	$y-\left(y_{\pi(0)}-\alpha_{k} w_{\pi(0)}\right) u^{\pi(0)}$	($\pi(1), \ldots, \pi(n), \pi(0))$	$q-1$	k
		$y_{\bar{\pi}(0)}^{0} \neq \alpha_{k}\left(w_{\pi(0)}+1\right)$	$y+\alpha_{k+1} u^{\boldsymbol{\pi}}(0)$	$\begin{aligned} & (\pi(1), \ldots, \pi(q-1), \pi(0), \\ & \pi(q), \ldots, \pi(n)) \end{aligned}$	q	k
$\begin{aligned} & 0 \leq i \\ & <q-1 \end{aligned}$			y	$\begin{aligned} & (\pi(0), \ldots, \pi(i+1), \\ & \pi(i), \ldots, \pi(n)) \end{aligned}$	q	k
$q-1$	$q \geq 1$	$y_{\pi(q-1)}=\alpha_{k}\left(w_{\pi(q-1)}-1\right)$	y	$\begin{aligned} & (\pi(0), \ldots, \pi(q) \\ & \pi(q-1), \ldots, \pi(n)) \end{aligned}$	$q-1$	k
		$y_{\pi(q-1)} \neq \alpha_{k}\left(w_{\pi(q-1)}-1\right)$	$y-\alpha_{k+1} u^{\pi(q-1)}$	$\begin{aligned} & (\pi(q-1), \pi(0), \ldots, \pi(q-2) \\ & \pi(g), \ldots, \pi(n)) \end{aligned}$	q	k
q	$q<\boldsymbol{n}$	$y_{\pi(q+1)}^{q+1}=\alpha_{k}\left(w_{\pi(q+1)}+1\right)$	\boldsymbol{y}	$\begin{aligned} & (\pi(0), \ldots, \pi(q+1) \\ & \pi(q), \ldots, \pi(n)) \end{aligned}$	$q+1$	k
		$y_{\pi(q+1)}^{q+1} \neq \alpha_{k}\left(w_{\pi(q+1)}+1\right)$	$y+\alpha_{k} u^{\boldsymbol{\pi}(\varphi+1)}$	$\begin{aligned} & (\pi(0), \ldots, \pi(q) \\ & \pi(q+2), \ldots, \pi(n), \pi(q+1)) \end{aligned}$	g	k
$\begin{aligned} & q<i \\ & <n \end{aligned}$			y	$\begin{aligned} & (\pi(0), \ldots, \pi(i+1), \\ & \pi(i), \ldots, \pi(n)) \end{aligned}$	q	k
n	$q<n$	$y_{\pi(n)}=\alpha_{k}\left(w_{\pi(n)}-1\right)$	y	$(\pi(n), \pi(0), \ldots, \pi(n-1))$	$q+1$	k
		$y_{\pi(n)} \neq \alpha_{k}\left(w_{\pi(n)}-1\right)$	$y-\alpha_{k} u^{\pi(n)}$	$\begin{aligned} & (\pi(0), \ldots, \pi(q), \pi(n) \\ & \pi(q+1), \ldots, \pi(n-1)) \end{aligned}$	\boldsymbol{q}	k
	n		y	$(\pi(n), \pi(0), \ldots, \pi(n-1))$	0	$k+1$

Table 2: The Pivot Rules of the J_{2}-Triangulation

i	q		\bar{y}	\bar{s}	$\bar{\pi}$	\bar{q}	\bar{k}
-1	0		$y-\alpha_{k} s$	3	$(\pi(1), \ldots, \pi(n), \pi(0))$	n	$k-1$
	$q \geq 1$		$y+2 \alpha_{k+1} s_{\pi(0)} u^{\pi(0)}$	$s-2 s_{\pi(0)} u^{\pi(0)}$	π	q	k
$\begin{aligned} & 0 \leq i \\ & <q \\ & -1 \\ & \hline \end{aligned}$			y	s	$\begin{aligned} & (\pi(0), \ldots, \pi(i+1), \\ & \pi(i), \ldots, \pi(n)) \end{aligned}$	9	k
$q-1$	$q \geq 1$	$\begin{aligned} & y_{\pi(q-1)}=\alpha_{k}\left(w_{\pi(q-1)}\right. \\ & \left.-s_{\pi(q-1)}\right) \end{aligned}$	y	$\begin{aligned} & s-2 s_{\pi(q-1)} \\ & u^{\pi(q-1)} \end{aligned}$	$\begin{aligned} & (\pi(0), \ldots, \pi(q-2) \\ & \pi(q), \ldots, \pi(n), \pi(q-1)) \end{aligned}$	$q-1$	k
		$\begin{aligned} & y_{\pi(q-1)} \neq \alpha_{k}\left(w_{\pi(q-1)}\right. \\ & \left.-s_{\pi(q-1)}\right) \end{aligned}$	y	$\begin{aligned} & s-2 s_{\pi(q-1)} \\ & u^{\pi(q-1)} \end{aligned}$	π	q	k
q	$g<n$		y	$\begin{aligned} & s-2 s_{\pi(q+1)} \\ & u^{\pi(q+1)} \end{aligned}$	π	q	k
$\begin{aligned} & q<i \\ & <n \end{aligned}$			y	s	$\begin{aligned} & (\pi(0), \ldots, \pi(i+1), \\ & \pi(i), \ldots, \pi(n)) \end{aligned}$	q	k
n	$q<n$		y	$s-2 s_{\pi(n)} u^{\pi(n)}$	$\begin{aligned} & (\pi(0), \ldots, \pi(q-1), \pi(n), \\ & \pi(q), \ldots, \pi(n-1)) \end{aligned}$	$q+1$	k
	n		$y+\alpha_{k+1} s$	s	$(\pi(n), \pi(0), \ldots, \pi(n-1))$	0	$k+1$

Table 3(1): The Piovt Rules of the D_{2}-Triangulation

Table 3(2): The Piovt Rules of the D_{2}-Triangulation

i	9	p_{1}	P_{2}	\bar{y}	5	\#	$\overline{9}$	\vec{p}_{1}	\bar{p}_{2}	k
9	$\begin{aligned} & q \leq n \\ & -2 \end{aligned}$		0	y	3	π	9	p_{1}	$\frac{p_{2}}{p_{2}+1}$	k
			1	y	3	π	9	P_{1}	$\frac{p_{2}+1}{p_{2}-1}$	k
		-1	$p_{2} \geq 2$	y	$\begin{aligned} & s-2 s \pi(q+1) \\ & u=(q+1) \end{aligned}$	$\begin{aligned} & \pi(0), \ldots, \pi(q+1), \\ & \pi(q), \ldots, \pi(n)) \end{aligned}$	$\frac{q}{q+1}$	$\frac{P_{1}}{p_{1}}$	$\frac{p_{2}-1}{p_{2}-1}$	k
		$p_{1} \geq 0$		y	$\begin{aligned} & s-2 s \pi(q+1) \\ & u^{*(q+1)} \end{aligned}$	$\begin{aligned} & (\pi(q+1), \pi(0), \ldots, \pi(q), \\ & \pi(q+2), \ldots, \pi(n)) \end{aligned}$	$q+1$	$p_{1}+1$	$p_{2}-1$	k
	$n-1$			y	$\begin{aligned} & s-2 s \\ & u(q+1) \\ & u(q+1) \end{aligned}$	π	9	p_{1}	p_{2}	k
$\begin{aligned} & q<i \\ & \leq n \end{aligned}$		-1	0	y		$\begin{aligned} & (\pi(0), \ldots, \pi(q-1), \pi(i), \\ & \pi(q), \ldots, \pi(i-1), \\ & \pi(i+1), \ldots, \pi(n)) \end{aligned}$	$q+1$	p_{1}	P_{2}	k
		$p_{1} \geq 0$		y	$s^{-2 s} x^{(1)^{4 *}}$	$\begin{aligned} & (\pi(i), \pi(0), \ldots, \pi(i-1) \\ & \pi(i+1), \ldots, \pi(n)) \end{aligned}$	$q+1$	$p_{1}+1$	p_{2}	k
			$\begin{aligned} & i<q \\ & +p_{2}-1 \end{aligned}$	y	3	$\begin{aligned} & (\pi(0), \ldots, \pi(i+1), \\ & \pi(i), \ldots, \pi(n)) \end{aligned}$	9	p_{1}	P2	k
			$\begin{aligned} & i=q \\ & +p_{2}-1 \\ & \hline \end{aligned}$	y	3	π	9	p_{1}	$p_{2}-1$	k
			$\begin{aligned} & i>q \\ & +p_{2}-1 \\ & 1 \leq p_{2}< \\ & n=q-1 \end{aligned}$	y	s	$\begin{aligned} & \left(\pi(0), \ldots, \pi\left(q+p_{2}-1\right)\right. \\ & \pi(i), \pi\left(q+p_{2}\right), \ldots, \pi(i-1), \\ & \pi(i+1), \ldots, \pi(n)) \end{aligned}$	9	p_{1}	$p_{2}+1$	k
			$\begin{aligned} & i>p_{2}+q \\ & p_{2}=n-q \\ & -1 \end{aligned}$	y	$3-2 s \pi(0)^{\text {m(i) }}$	π	q	p_{1}	p_{2}	k
n	n			$y+\alpha_{k+1}{ }^{3}$	\%	$(\pi(n), \pi(0), \ldots, \pi(n-1))$	0	-1	$p_{1}+1$	$k+1$

Let a simplex of the K_{2}-triangulation, $\sigma=K_{2}(y, \pi)$, be given with vertices $y^{-1}, y^{0}, \ldots, y^{n}$. We wish to obtain the simplex of the K_{2}-triangulation, $\bar{\sigma}=$ $K_{2}(\bar{y}, \bar{\pi})$, such that all vertices of σ are also vertices of $\bar{\sigma}$ except the vertex y^{i}. Table 1 shows how \bar{y} and $\bar{\pi}$ depend on y, π and i.

Next, let $\sigma=J_{2}(y, \pi, s)$, be a simplex of the J_{2}-triangulation with vertices $y^{-1}, y^{0}, \ldots, y^{n}$. Suppose that we want to obtain the simplex of the J_{2} triangulation, $\bar{\sigma}=J_{2}(\bar{y}, \bar{\pi}, \bar{s})$, such that all vertices of σ are also vertices of $\bar{\sigma}$ except the vertex y^{i}. Table 2 shows how $\bar{y}, \bar{\pi}$ and \bar{s} depend on y, π, s and i.

Finally, let a simplex of the D_{2}-triangualtion, $\sigma=D_{2}\left(y, \pi, s, p_{1}, p_{2}\right)$, be given with vertices $y^{-1}, y^{0}, \ldots, y^{n}$. If we want to obtain a simplex of the D_{2}-triangulation, $\bar{\sigma}=D_{2}\left(\bar{y}, \bar{\pi}, \bar{s}, \bar{p}_{1}, \bar{p}_{2}\right)$, such that all vertices of σ are also vertices of $\bar{\sigma}$ except the vertex y^{i}, then Table 3 shows how $\bar{y}, \bar{\pi}, \bar{s}, \overline{p_{1}}$ and $\overline{p_{2}}$ depned on y, π, s, p_{1}, p_{2} and i.

In these tables,

$$
y_{0}=2^{-(k+1)} \text { and } y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\top}
$$

and

$$
\bar{y}_{0}=2^{-(\bar{k}+1)} \text { and } \bar{y}=\left(\bar{y}_{1}, \bar{y}_{2}, \ldots, \bar{y}_{n}\right)^{\top} .
$$

5 The Comparison of Triangulations for Simplicial Homotopy Algorithms

Let H^{n} denote the set $H^{n}=\left\{x \in R^{n} \mid 0 \leq x_{i} \leq 2\right.$ for $\left.i=1,2, \ldots, n\right\}$. Let $\alpha_{0}=1$ and α denote $1 / \beta_{0}$.

Theorem 5.1. The number of simplices of the K_{2}-triangulation and one of the J_{2}-triangulation in the set $\left[2^{-1}, 1\right] \times H^{n}$ are both equal to $p_{n}(\alpha)$, where

$$
p_{n}(\alpha)= \begin{cases}\left(1-\alpha^{n+1}\right) 2^{n} n!/(1-\alpha) & \text { if } \beta_{0} \neq 1 \\ (n+1) 2^{n} n! & \text { otherwise }\end{cases}
$$

The number of simplices of the D_{2}-triangulation in the set $\left[2^{-1}, 1\right] \times H^{n}$ is equal to $q_{n}(\alpha)$, where

$$
q_{n}(\alpha)=2^{n} \sum_{m=0}^{n}\left(\alpha^{m} C_{n}^{m} d_{m} d_{n-m}\right)
$$

where

$$
d_{j}=j+j(j-1)+\cdots+j(j-1) \cdots 4 \cdot 3+2
$$

for $j \geq 2, d_{0}=d_{1}=1$, and $C_{n}^{m}=n!/ m!(n-m)!$.
Proof. Let \bar{Q} denote the set

$$
\bar{Q}=\left\{w \in R^{n} \mid w_{i} \in\{0,1,2\} \text { for } i=1,2, \ldots, n\right\} .
$$

Take $w \in \bar{Q}$. Let $\bar{A}(w)$ denote the set

$$
\bar{A}(w)=\left\{x \in R^{n} \left\lvert\, \begin{array}{l}
w_{i}-1 \leq x_{i} \leq w_{i}+1 \text { for } i \in I_{o}(w) \text { and } \\
x_{i}=w_{i} \text { for } i \in I_{e}(w)
\end{array}\right.\right\}
$$

and let $\bar{B}(w)$ denote the set

$$
\bar{B}(w)=\left\{\begin{array}{ll}
& \left.\begin{array}{l}
x_{i}=w_{i} \text { for } i \in I_{o}(w) \text { and } \\
x \in R^{n} \mid \\
w_{i} \leq x_{i} \leq w_{i}+1 \text { for } i \in I_{e}(w) \text { and } w_{i}=0 \\
w_{i}-1 \leq x_{i} \leq w_{i} \text { for } i \in I_{e}(w) \text { and } w_{i}=2
\end{array}\right\} . . . ~ . ~
\end{array}\right\}
$$

Let $\bar{D}(w)$ denote the set

$$
\bar{D}(w)=\text { convexhull }\left\{(\{1\} \times \bar{A}(w)) \cup\left(\left\{2^{-1}\right\} \times \bar{B}(w)\right)\right\} .
$$

Then it is obvious that

$$
\left[2^{-1}, 1\right] \times H^{n}=\cup_{w \in Q} \bar{D}(w)
$$

Let m denote the number of elements in $I_{e}(w)$. Then there are $2^{m} C_{n}^{m}$ elements in \bar{Q} such that m components of each of them are even. Thus the numbers of simplices of the K_{2}-triangulation and of the J_{2}-triangulation in the set $\cup_{w \in \bar{Q},\left|I_{e}(w)\right|=m} \bar{D}(w)$ are both equal to

$$
2^{m} 2^{n-m} \alpha^{m} C_{n}^{m} m!(n-m)!.
$$

The number of simplices of the D_{2}-triangulation in the same set is equal to

$$
2^{m} 2^{n-m} \alpha^{m} C_{n}^{m} d_{m} d_{n-m}
$$

Since

$$
\cup_{m=0}^{n}\left(\cup_{w \in \Phi,\left|I_{e}(w)\right|=m} \bar{D}(w)\right)=\left[2^{-1}, 1\right] \times H^{n}
$$

the theorem follows immediately.
Theorem 5.2. When $n \geq 3, q_{n}(\alpha)<p_{n}(\alpha)$. As n goes to infinity, $q_{n}(\alpha) / p_{n}(\alpha)$ converges to some number μ such that $\mu \leq e-2$.

Proof. The conclusion is obvious, the proof is omitted.
From Theorem 5.2, we have that the number of simplices of the D_{2} triangulation is the smallest of ones of these triangulations for simplicial homotopy algorithms. The author conjectures that the average directional density of the D_{2}-triangulation is the smallest of ones of these triangulations. For details on the average directional density of a triangulation, we refer to Todd [14].

References

[1] Allgower, E.L. and Georg, K.(1980). Simplicial and continuation methods for approximating fixed points and solutions to systems of equations, SIAM Review 22, 28-85.
[2] Broadie, M. N. and Evaes, B. C.(1987). A variable rate refining triangulation. Mathematical Programming 38, 161-202.
[3] Dang, C.(1989).The D_{1}-triangulation of R^{n} for simplicial algorithms for computing solutions of nonlinear equations. Discussion paper 8928, Center for Economic Research, Tilburg University, Tilburg, The Netherlands. To appear in Mathematics of Operations Research.
[4] Dang, C.(1989). The D_{3}-triangualtion for simlicial deformation algorithms for computing solutions of nonlinear equations. Discussion paper 8949, Center for Economic Research, Tilburg University, Tilburg, The Netherlands.
[5] Doup, T.M.(1988). Simplicial Algorithms on The Simplotope. Lecture Notes on Economics and Mathematical Systems, Springer-Verlag, Berlin.
[6] Doup, T.M. and Talman, A.J.J.(1987). A continuous deformation algorithm on the product space of unit simplices. Mathematics of Operations Research 12, 485-521.
[7] Eaves, B.C.(1984). A Course in Triangulations for Solving Equations with Deformations. Lecture Notes on Economics and Mathematical Systems, Springer-Verlag, Berlin.
[8] Eaves, B. C. and Saigal, R.(1972). Homotopies for the computation of fixed points on unbounded regions. Mathematical Programming 3, 225237.
[9] Kojima, M. and Yamamoto, Y.(1982). Variable dimension algorithms: Basic theory, interpretation, and extensions of some existing methods. Mathematical Programming 24, 177-215.
[10] van der Laan, G. and Talman, A.J.J.(1980). A new subdivision for computing fixed points with a homotopy algorithm. Mathematical Programming 19, 78-91.
[11] Mizuno, S.(1981). A simplicail algorithm for finding all solutions to polynomial systems of equations. Thesis, Department of System Sciences, Tokyo Institute of Technology, Tokyo, Japan.
[12] Shamir, S.(1980). Two triangulations for homotopy fixed point algorithms with an arbitrary refinement factor. To have appeared in Analysis and Computation of Fixed Points, Academic Press, New York.
[13] Todd, M.J.(1976). The Computation of Fixed Points and Applications. Lecture Notes on Economics and Mathematical Systems, SpringerVerlag, Berlin.
[14] Todd, M.J.(1976). On triangulations for computing fixed points. Mathematical Programming 10, 322-346.
(For previous papers please consult previous discussion papers.)

No.	Author(s)
8916	A. Kapteyn, P. Kooreman and A. van Soest
8917	F. Canova
8918	F. van der Ploeg

8919 W. Bossert and
F. Stehling
D. Canning
C. Fershtman and
A. Fishman

8923 M.B. Canzoneri and
C.A. Rogers

8924 F. Groot, C. Withagen and A. de Zeeuw

8925 0.P. Attanasio and G. Weber

Title

Quantity Rationing and Concavity in a Flexible Household Labor Supply Model

Seasonalities in Foreign Exchange Markets
Monetary Disinflation, Fiscal Expansion and the Current Account in an Interdependent World

On the Uniqueness of Cardinally Interpreted Utility Functions

Monetary Interdependence under Alternative Exchange-Rate Regimes

Bottlenecks and Persistent Unemployment: Why Do Booms End?

Price Cycles and Booms: Dynamic Search Equilibrium

Is the European Community an Optimal Currency Area? Optimal Tax Smoothing versus the Cost of Multiple Currencies

Theory of Natural Exhaustible Resources: The Cartel-Versus-Fringe Model Reconsidered

Consumption, Productivity Growth and the Interest Rate

Monetary and Fiscal Policy in a 'Hartian' Model of Imperfect Competition

Reducing External Debt in a World with Imperfect Asset and Imperfect Commodity Substitution

The D_{1}-Triangulation of R^{n} for Simplicial Algorithms for Computing Solutions of Nonlinear Equations

Bayesian Multivariate Exogeneity Analysis: An Application to a UK Money Demand Equation

Fiscal Aspects of Monetary Integration in Europe

The Prehistory of Rational Expectations

No.	Author (s)	Title
8932	E. van Damme, R. Selten and E . Winter	Alternating Bid Bargaining with a Smallest Money Unit
8933	H. Carlsson and E. van Damme	Global Payoff Uncertainty and Risk Dominance
8934	H. Huizinga	National Tax Policies towards ProductInnovating Multinational Enterprises
8935	C. Dang and D. Talman	A New Triangulation of the Unit Simplex for Computing Economic Equilibria
8936	Th. Nijman and M. Verbeek	The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data
8937	A.P. Barten	The Estimation of Mixed Demand Systems
8938	G. Marini	Monetary Shocks and the Nominal Interest Rate
8939	W. Guth and E. van Damme	Equilibrium Selection in the Spence Signaling Game
8940	G. Marini and P. Scaramozzino	Monopolistic Competition, Expected Inflation and Contract Length
8941	J.K. Dagsvik	The Generalized Extreme Value Random Utility Model for Continuous Choice
8942	M.F.J. Steel	Weak Exogenity in Misspecified Sequential Models
8943	A. Roell	Dual Capacity Trading and the Quality of the Market
8944	C. Hsiao	Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data
8945	R.P. Gilles	Equilibrium in a Pure Exchange Economy with an Arbitrary Communication Structure
8946	W.B. MacLeod and J.M. Malcomson	Efficient Specific Investments, Incomplete Contracts, and the Role of Market Alternatives
8947	A. van Soest and A. Kapteyn	The Impact of Minimum Wage Regulations on Employment and the Wage Rate Distribution
8948	P. Kooreman and B. Melenberg	Maximum Score Estimation in the Ordered Response Model

No.	Author(s)	Title
8949	C. Dang	The D_{3}-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations
8950	M. Cripps	Dealer Behaviour and Price Volatility in Asset Markets
8951	T. Wansbeek and A. Kapteyn	Simple Estimators for Dynamic Panel Data Models with Errors in Variables
8952	Y. Dai, G. van der Laan, D. Talman and Y. Yamamoto	A Simplicial Algorithm for the Nonlinear Stationary Point Problem on an Unbounded Polyhedron
8953	F. van der Ploeg	Risk Aversion, Intertemporal Substitution and Consumption: The CARA-LQ Problem
8954	A. Kapteyn, S. van de Geer, H. van de Stadt and T. Wansbeek	Interdependent Preferences: An Econometric Analysis
8955	L. Zou	Ownership Structure and Efficiency: An Incentive Mechanism Approach
8956	P.Kooreman and A. Kapteyn	On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply
8957	E. van Damme	Signaling and Forward Induction in a Market Entry Context
9001	A. van Soest, P. Kooreman and A. Kapteyn	Coherency and Regularity of Demand Systems with Equality and Inequality Constraints
9002	J.R. Magnus and B. Pesaran	Forecasting, Misspecification and Unit Roots: The Case of AR(1) Versus ARMA (1,1)
9003	J. Driffill and C. Schultz	Wage Setting and Stabilization Policy in a Game with Renegotiation
9004	M. McAleer, M.H. Pesaran and A. Bera	Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment
9005	Th. ten Raa and M.F.J. Steel	A Stochastic Analysis of an Input-Output Model: Comment
9006	M. McAleer and C.R. McKenzie	Keynesian and New Classical Models of Unemployment Revisited

No.	Author(s)	Title		
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multi- variate t Regression Models		
9008	G.W. Imbens		\quad	Duration Models with Time-Varying
:---				
Coefficients				

No. Author(s)
9022 K. Kamiya and
D. Talman

9023 W. Emons

9024
C. Dang

Title
Linear Stationary Point Problems

Good Times, Bad Times, and Vertical Upstream Integration

The D_{2}-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations

PO BOX 901535000 LE TILBURG. THE NETHERLANDS Bibliotheek K. U. Brabant

17000011175685

