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Abstract
We propose a new triangulation of arbitrary refinement of grid

sizes of (O,1J x Rn for simplicial homotopy algorithms for comput-
ing solutions of nonlinear equations. On each level this triangual-
tion, called the Dz-triangualtion, subdivides Rn according to the Dl-
triangulation introduced earlier by the author. It is showed that the
Dz-triangulation is superior to the well-known Kz-triangulation and
the well-known Jz-triangulation when counting the number of sim-
plices between any two levels.
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1 Introduction
Simplicial homotopy algorithms for computing solutions of nonlinear equa-
tions, which were originally introduced by Eaves and Saigal in [8], are estab-
lished with triangulations of continuous refinement of grid sizes of (0, 1] x
R". Examples are Eaves and Saigal's If3-triangulation in [8], Todd's J3-
triangulation in [14], the author's D3-triangulation in [4], the triangulations
of van der Laan and Talman in (10], of Shamir in [12], of Kojima and Ya-
mamoto in [9], of Broadie and Eaves in [2], and of Doup and Talman in [6].
All these triangulations were derived from the well-known Kl-triangulation of
R" or from thc well-known J~-triangulation of R" except the D3-triangulation
which was derived írom the D~-triangulation of R". The latter triangulation
was proposed by the author in an earlier paper [3) and it is superior to the K~-
triangulation and the Jl-triangulation according to all measures of efficiency
of triangulations. The D3-triangulation subdivides (0, 1] x R" with a fixed
refinement factor of 2. In this paper, we construct a triangulation of con-
tinuous refinement of grid sizes of (0, 1] x R" by using the Dl-triangulation.
The factor of grid refinement of the new triangulation, which we call the
Dz-triangulation, can be any positive integer. In addition, in order to com-
pare with the Dz-triangulation we present also the K~-triangulation and the
JZ-triangulation. It is showed that the D2-triangulation is superior to the
If2-triangulation and the J2-triangulation when counting the number of sim-
plices.

In Section 2, the Dz-triangulation is constructed. Its algebraic defini-
tion is given in Section 3. Its pivot rules are described in Section 4. The
corr~parison of these triangulations is presented in Section 5.

2 The Construction of the D2-Triangulation

Let n be a positive integer and let N-{ 1, 2, ..., n}. Let Q denote the set
of vectors in R" whose components are all integers and let w E Q be given.
Then lo(w) and I~(w) denote the sets

Io(w) -{i E N ~ w; is odd} and I~(w) -{j E N ~ w~ is even} .
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Fw~thc~rmorc, A(w) dc~notcs the set

A(w) -~x E R" I w; - 1 C x; c w; -F 1 for i E I,(w) and 1
x; - w; for i E 1~(w) 1

and B(w) denotes the set

B(w)-jxER"~ x'-w;foriElo(w)and 1
l w;-1Cx;Gw;tlfortEl~(w) 1

Let k be a nonnegative integer. Then Dk(w) denotes the set

Dk(w) - convexhull {({2-k} x A(w)) U({2-~kt'~} x B(w))} .

Lemma 2.1(see (4] or [9]). We have

Dk(w) - S d E[2-lkti~ 2-k] x R., I ~ dt - w; ~G 2kti~ i 1 for á E lo(w) l.l ~d;-w;~G2-2 daforiEl~(w) J

Lemma 2.2(see [4] or [9]). UwEQDk(w) -[2-(kt'),2-k] x R".

Lemma 2.3(see [4] or [9]). For w', w~ E Q, Dk(w~)nDk(w~) is either empty
or a common face of both Dk(w') and Dk(w~), and when Dk(w') n Dk(w~)
is not empty,

Dk(w') n Dk(w~) - convexhull {({2-k} x (A(w') n A(w~)))

U ({2'~kt~l} x (B(wl) n B(w~)))} .

For convenience, we first give the definitions of the D~-triangulation, of
the Iíl-triangulation, and of the J~-triangulation. For more details, see (3)
and (11].

Let e' be the i-th unit vector in R" for i- 1, 2, ..., n.
Let either

D-{x E R" ~ all components of x are odd}
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or
D-{x E R" ~ all components of x are even} .

Let x denote a permutation of the elements of N and let s denote a sign
vector. Let p denote an integer such that 0 C p G n- 1.

The Definition of the Dl-Triangulation:
Take y E D, and let a, s, and p be taken as above.

If p- 0, let yo - y, and

y' - y f sx(i)e'(i),J - 1,2,...,n.

Ifp~ l,letyo-y-}-s,and

y' -Y'-~ - s.(i)e~(~),7 - 1,2,...,p- 1,
y' - y f s,.li)e`(i),J - RP f 1,... , n.

Let Dl denote the collection of all simplices Dl(y, x, s, p) that are the convex
hull of ya, y', .. ., y", as obtained from the above definition. Then D~ is a
triangulation of R".

Let
K-{x E R" ~ all components of x are integers} .

Let a denote a permutation of the elements of N.

The Definition of the K~-Triangulation:
Take y E K, and let a be taken as above.

Let yo - y, and
yi - yi-i ~ ex(i),7 - 1, 2, . .., n.

Let Kl denote the collection of all simplices Kl(y, ~r) that are the convex
hull of yo, y', ..., y", as obtained from the above definition. Then K~ is a
triangulation of R".

Let either

J-{x E R" ~ all components of x are odd}

or
J-{x E R" ~ all components of x are even} .
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Let n denote a permutation of the elements of N and let s denote a sign
vector.

The Definition of the J~-Triangulation:
Take y E J, and let x and s be taken as above.

Let yo - y, and

y' - y'-1 -~ sx(i)e'(i),7 - 1, 2, . .., n.

Let J~ denote the collection of all simplices J~ (y, a, s) that are the convex
hull of yo, y~, ... , y", as obtained from the above definition. Then Jl is a
triangulation of R".

Take G to be one of these triangulations of R". Let G denote the set of
all faces of all simplices in G. Take ~o E(0,1] and J~; E {l~j ~ j - 1,2,...}
for á - 0,1, . ... Choose ~~ such that a~~l - a~Q~, for j - 0, 1, .. ..

Let

akG ~ akA(w) - {o C akA(w) ~ v E akG and dám(o) - dim(A(w))}

and

akt1G ~ akB(w) - {o C okB(w) ~ v E ak}iG and dám(a) - dim(B(w))} .

For the D~-triangulation, the Kl-triangulation, and the Ji-triangulation, it is
obvious that akG ~ nkA(w) is a triangulationof akA(w) and ak~~G ~ ~kB(w)
is a triangulation of akB(w).

Let a denote the number oí elements in the set la(w) and 6 the number
of elements in the set I~(w). Take

oq - convexhull {yá, yá, ..., yá } E okG ~ akA(w)

and
oB - convexhul!{yá, yé, ..-, yá} E oktiG ( akB(w).

Let
o- convexhull {({2-k} X aq) U({2-(k}1)} X aB)} .

It can easily be obtained that o is a simplex and that

a- convexhul!{(2-k yÁ)T 12-k ylA)T (2-k yÁ)T

(2-(kt~),yé)T,(2-(kti)l,yá)T, ..,(2-(kti),yé)T}-
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Let T(k, k~ 1) denote the collection of all such simplices a. Clearly, we
have that for o', 02 E T(k, k f 1), o' fl o~ is either empty or a common face
of both o' and a~. Moreover,

UoET(k.ktl)0 - ~2-(ktl) 7-k]
X iin.

Hence T(k, k f 1) is a triangulation of (2-(kt'), 2-k] x R".

Theorem 2.4. U~oT(j, j-f 1) is a triangulation of (0, 1] x fi`.

Proof. From the choice of ct~ and Q~ for j- 0, 1, .. . , we have this conclusion.

We call the triangulation constructed in Theorem 2.4 the Ga-triangula-
tion. In this way we obtain the KZ-triangulation, the JZ-triangulation, and
the DZ-triangulation of (0,1] x R". In case of the D~-triangulation, each level

k k2- for k- 0, 1, ..., the set 2- x R" is triangulated according to the Dl-
triangulation. Similarly for t e 2-triangulation and the Jz-triangulation.

3 The Description of the D2-Triangulation
Let No - {0,1, ... , n}. Let u' be the i-th unit vector in R"}' for i-

Take a permutation a- (a(0), a(1), ..., a(n)) of the elements of No. Let q
denote an integer such that ~r(q) - 0. Take a vector y in (0, 1] x R" such that
for some nonnegative integer k, yo - 2'(kt') and yx(;)~akt~ is an integer for
i- 0, ..., q- 1 and yx(;)~ctk is an integer for i- q-} 1, ..., n. Define

~yx(;)~ak~ f 1 if ~y„(;)~ak~ is odd,
w~(`) - ly„(;)~ak} otherwise,

for i- O, l, ..., q- 1, and

r y„(;)~~k f 1 if y„(;)~ak is even,
~~(') - Sl y„(;)~ak otherwise,

fori-qfl,...,n.



Definition 3.1.
Take y and ~r as given above. Then y-', yo,. .., y" are defined as follows.

y-~ - ~~-o yx(i)ux(i) ~ ak ~~-oti wx(i)ux(i)
y' - y`-~ t nktiux('),i - O,l,...,q - 1,
y' - ok ~i-o wx(i)ux(i) ~~i-vti yx(i)T'x(i) t 2youo

y' - y'-' f aku"('), i- 9 t 1, ..., n.

Let y-' , yo, ..., y" be obtained in the above manner. Then it is obvious
that they are affinely independent. Thus their convex hull is a simplex. Let
us denote this simplex by KZ(y, a). Then the Kz-triangulation is the set of
all such simplices If2(y, a). Following the conclusions in the previous section,
we have that this triangulation is a simplicial subdivision of (0,1] x R" such
that its factor of refinement can be chosen arbitrarily.

Take a permutation a-(a(0),n(1),...,a(n)) of the elements of No. Let q
denote an integer such that ~r(q) - 0. Take a vector y in (0,1] x R" such that
for some nonnegative integer k, yo - 2-(kt') and either yx(;)~~k is even for
i- q f 1, ..., n and yx(;)~ak~r is even for i- 0, . .., q- 1 or yx(;)~ak is odd
for i- q-}. 1, ..., n and if 1~Qk is even, yx(;)~akt~ is even for i- 0, ..., q- 1
and if 1~Qk is odd, yx(;)~aktl is odd for i- 0, . .., q- 1. Take s to be a sign
vector. If yx(i)~ak is odd for j- q-{- 1, ..., n, define

if ~yx(;)~~kJ is odd and
either yx(i)~ok 7E ~yx(i)~~kJ
or both ~yx(;)~akf - yx(;)~ak and sx(;) - 1,
if ~yx(;)~nkJ is even,
otherwise,

for i- 0, 1, ..., q - 1 and if yx(i)~ak is even for j - q f 1, ..., n, define

Lyx(i)~~kJ
Lyx(i)~~k~ - 1

if ~yx(;)~akJ is even and
either yx(:)~~k ~ ~yx(i)~~kJ
or both Lyx(;)~akJ - yx(;)~ok and sx(;) - 1,
if ~yx(;)~akJ is odd,
otherwise,

fori - O,l,...,q - 1.



ti

Definition 3.2.
Take y, ~r and s as given above. Then y-', yo, ..., y" are defined as follows.

y-' - y,
y~ - y~-~ f aktis„(;)u'('), i- 0, 1, ..., q- 1,
yQ - at ~~-á t~.(i)u"(i) ~

~i-vti (y.li) - crksxl~) )u~(i) ~. 2youo.
y~ - y~- ~-1~ nks„(;)u'l'), i- q f l, ..., n.

Let y-', yo, . .., y" be obtained in the above manner. Then it is obvious
that they are affinely independent. Thus their convex hull is a simplex.
Let us denote, this simplex by Jz(y, n, s). Then the Jz-triangulation is the
set of all such simplices Jz(y, ~r, s). Then following the conclusions in the
previous section, we have that this triangulation is a simplicial subdivision
of (0, I] x R" such that its factor of refinement can be chosen arbitrarily.

Take a permutation ~r -(~r(0), a(1), ...,~t(n)) of the elements of No. Let q
denote an integer such that n(q) - 0. Take a vector y in (0, 1] x R" such that
for some nonnegative integer k, yo - 2'(kt') and either y„l;)~ak is even for
i- q f 1, ..., n and y„(;)~ak~~ is even for i- 0, . .., q- 1 ot y„(;)~ak is odd
for i- q{ 1, ..., n and if 1~~3k is even, yx(;)~akt~ is even for i- 0, . .., q- 1
and if l~pk is odd, yx(;)~aktl is odd for i- 0, ..., q- 1. Take s to be a sign
vector. If y„(;)~ak is odd for j- q f 1, ..., n, define

lyxcalakJ f 1

lyx(~,~akJ
lyx,;,lakJ -1

if ly„(;)~akJ is odd and
either y„(~)~ak iE ~y„(;)~akJ
or both ~y„(;)~akJ - yxl;)~ak and s„(;) - 1,

if ~y„l;)~akJ is even,
otherwise,

for i- 0,1, . .. , q- 1 and if y„(;)~ak is even for j - q t 1, ..., n, define

~yx(;)~akJ t 1 if `y„(;)~akJ is even and
either yx(;)~ak ~ lyx()~akJ

wxl;) - or both l yx(;)~akJ - y„(;)~ak and sx(;) - 1,
~yx(i)~akJ if ~y„(;)~akJ is odd,
ly„(;)~akJ - 1 otherwise,

for i - O,l,...,q - 1.
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Let p~ and pz denote two integers such that -I C pl c q- 2 and 0 c
pzcn-q-1. -

Definition 3.3. Take y, a, s, p~ and pj as given above. Then y-', yo, ...,
y" are defined as follows.

When p~ --1, let y'' - y,

y` - y t aktis„(;)u'('), i- 0, 1, ... , q- 1,

and when p~ ? 0, let

y-1 - y f akti ~i-o sx(i) u'(i)

y' - y`-1 - aktisx(;)u~`'), i- 0, 1, . .., Pi - 1,

and if p~ G q- 2, let

y` - y f aktis,.(r)u'('),: - Pi, ..., q- 1,

and if p~ - q- 2, let

y9-1 - yq-3 - aktisx(a-2)u~(v-2)

~f9-1 - 1Jq-3 - a'k}18x(9-1)iLx(9-~)'

When pZ - O,let

yQ - ak ~i-o wx(i)T'x(i) ~~~-yti~yx(i) - aksx(i)~u~(i) ~ 2youo,
y' - y' f aksx(.)ux('), 2 - 9 t 1, . .., n,

and when pz 1 1, let

y9 - ak ~~-óTUx(i)ux(i) ~ ~i-vti y.(i)n~(i) ~ 2youo

y' - y'-~ - aksx(;)nx(`), i- 9-f- 1, ..., q f pZ - 1,

andifp2Cn-q-l,let

y~ - ak ~i-aw~(i)nx(i) ~ ~~-afi~yx(i) - aksx(i))u"(i) .{. 2youo,
y` - y~ f aksx(~)u'('), t- 9 f Ps, ..., n,

and if pz - n - q- 1, let

yn-~ - y~-~ - aksx(n-ijux("-~),
yn - yn-~ - aksx(n)u'(n).
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Let y-', yo, ..., y" be obtained in the above manner. Then it is obvious
that they are af6nely independent. Thus their convex hull is a simplex. Let us
denote this simplex by Dz(y, A, s,p~, pz). Then the D2-triangulation is the set
of all such simplices D2(y, x, s, p~, pz). Then following the conclusions in the
previous section, we have that this triangulation is a simplicial subdivision
of (0,1] x R" such that its factor of refinement can be chosen arbitrarily.

4 The Pivot Rules of the DZ-1i'iangualtion

Let J: R" ~ R" be a continuous function. Suppose that we want to compute
a zero point of j, i.e., a vector x' E R" such that f(x') - 0. Let v be an
arbitrary point in R". Then the function g:(0, 1] x R" ~ R" is defined by
g(t, x) - f(x) if 0 G t C 1 and g(t, x) - x- v if t- 1. Let (0,1] x R" be
triangulated according to one of the G~-triangulations defined before. Next,
let H be the piecewise linear approximation of g with respect to one of the
G2-triangulations. More precisely, let x-~--~ a;y' be a vector in some
simplex of one of the Gz-triangulations with vertices y-', yo, ..., y", where
a; ~ 0 for all i and ~"- ~ a; - 1. Then H(x) is defined by

H(x) - ~ ai9Íy~)-
~--i

Clearly H(l,v) - 0 and H(l,w) ~ 0 for w~ v. Now the simplicial ho-
motopy algorithm follows the piecewise linear path, P, of zero points of H
originating at (1, v). The path P is linear on each simplex a of one of the
G2-triangulations it passes. Such a linear piece can be generated by making
a linear programming ( l.p.) pivoting step in the system of linear equations

n

~ a;(9(y~),l)T - (0,1)T.
i--1

When implementing a(l.p.) pivoting step, some a; becomes zer0, then the
ve~rtex y' of o must be replaced by a new vertex of a simplex, say ó, of une
of the G~-triangulations, adjacent to a and sharing with it the facet opposite
to y'.



Table 1: The Pivot Rules of the Ks-Trianeulation
i q y x y k
-1 0 y r 1,. .,x n,x(0 n k- 1

q~ 1 Y. o- trk(w o t 1) Y-( Y,.(o - orkw o)u' (x(1), ... , x(n)~ x(~)) 9- 1 k
Y:(o) ~ ak(w.(o) t 1) Y -~ orktiu (x(1), -... x(9 - 1), x(0)~ q k

x(q)~ . ... x(n
o C i Y (x(U), ... , x(i t 1), q k
G y- 1 x i, ., x(n
q- 1 q~ 1 Y,.(v-~) - a4(w.(v-i) - 1) y (x(0), ... , x(4)~ q- 1 k

x q- 1, ., x n
Y,.(v-~) ~ ak(w,.(v-i) - 1) Y- akttu` v- (x(4 - 1), x(0), ... ~ x(9 - 2), 4 k

x q , . , x n
9 4 G n Y~(vti) - ak(w.(vti) t 1) y (x(0), ... ~ x(9 t 1), q f 1 k

x q , . , x n

Yx(ati) ~ trk( wx(9f1) ~ 1) y~ OkY~ 9~F1 (x(0), ... ~ x(q)~ q k

x(qf2,...,x n ,x(q~l)
q G t Y Íx(~), ... , x(i t 1), q k
G n x i),. .,x n
n qGn Y,,,, -ak(w,,,, -]) y xn,x(0),...,x(n-1)) qt] k

Y.(~) ~ ak(w,.(~) - 1) y - akux ~ (x(~), .-- ~ x(9)~ x(n)~ 9 k
x(qtl ,. .,x n-1

n Y xn),x(U),...,x(n-1)) o k~l



Table 2: The Pivot Rules of the Jz-Triangulation

i q y 3 ir q k
-1 0 y-aka a (x 1),...,x(n),x(0)) n k-1

q~ 1 y t~aktia. o u~ ~- 2a„ o
u,r a x q ~

0 G i y e (x(0),...,x(i-~ 1). q k

G 9 x(~), . - . , x(n))
-1
q- 1 q~ 1 yx(v-1) - ak(w.(v-~) Y J- Z!r(9-~) (x(0), .. ., x(9 -~), y- 1 k

-~,. -i ) u ~(v-1) x 9), ... , x(n), x~4 - 1))
31,r(v-1) ~ trk(w.(v-~) y ~- 2s,r(v-1) x 9 A
-s. -i ) u~(ri) .

4 4 C n y ~- 2a.(vti) x q ~
u~(vti)

q G i y a (x(0), . .., x(i t 1). q k
G n x i),...,x(n))

n q G n y e- 2ex(~)u„ .. (x(0), .. ., x(4 - 1). x(n), 9 t 1 A
x(q)....,x(n - 1))

n yfOkflD J (x~n),x(Q),. .,x~n-))) ~ k~ )



TaGle J(1): The Piovt Rulea of the Dy-Trian~ulation

i 9 t Y Y ~ ~T á P V k
-1 0 - a, s a x I, ., ~( n, ~ 0 n y- 1 U k- 1

1 Y t~oatl ~- Za.(p) z 9 Pl Y? k .
a~ p u~(p) u~lp)

9- -1 a r q t] Y ~
0 a r -1

-J
k

Y.(p) - ai w.(p) Pi - 1 0 y a - 2a ~(p) ~ 1,.., i n, r 0 9- 1 PI - 1 PY
k

~-, ~(p)) u'(p) I I

PY ~ 1 y s- 2s ~(p) r 1,.., T( 9, i U , 4- 1 D] - 1 D] t 1
t

~

u `íp) r .~ 1 , , , r(n ~
-

Y.(p) at w.(p) Y a- i.(o) ~ 9 PS P1
.

-a: 0 ) u~p)
0 C i Y.(:) - ak w.(:) -1 0 y a- 2a~(,) x 0, .., r i- 1, 9- 1 Pl P7

. ..
k -

~ q -,~( )) u`(~) r(i t 1),...,r(n),r(i))

-1 P~ ~ 1 y a- 2a ~(,) r 0, .., r~- 1, 9- 1 P l P4 t 1
-

k .I

u`(') r(i t 1),.. - , r(q), ~(i),
r q t 1 a(n ~

Y.(.) ~ ak w~(~) Y a-~a.(.) ~ 9 Pl P1 k

-~. , ) u.(~)
~ G Pl Y a r , .., r ~ t 1 , 9 P] PZ
-1 r i , ,r n

i- Dl Y a r 9 Pl - 1 P7 k
-1
i~ Pl Y a r.) , ... , i Pl - 1, x i, 9 P1 t 1 y7 k
-1 x(F1 ) , . - - , x(s - 1).
0 G pi r(i t 1),..., t(n))
~ q - 2
i- Pl Y t?akt] a- 2a~(,) r 9 Pl P~
0 C p] a~(,)u`(') u`(')
- -2



Table 3(2): The Piovt Rules of the Dy-T~ian
i
9

9
p C n

P
0 y

á
a

;
r VI V2 k

-2 1 a r p t P t 1

- 1
k
k

-1 PY 7 2 Y a- 2a.(v}l ) r 0, .., r 9 t 1, 9 t 1 P1 P2 - 1 Y
u~(vtl) r . r n

p ~Pl-0 Y a-2a.(v}1) r 1,r0, .. ,r4,9t - 9t1 P1 t 1 PZ - 1~v}1)
u' r9t2, .,rn

n- 1 y a - 2a (.ti) r . p Pl P7 k
u ~(.t 1)

p G i -1 0 Y a- 2a~ u' 'í.) r 0, .. r(()~ ,( 9 - 1), r(~), 4 t 1 Dl P2 kG n- r(p),...,r(~ - 1),
r i t 1 r n

Pl ~ ~ Y a- 2a~~~)u. .
, .,

( r(~), x(~),..., r(i - 1)~ 9 t 1 PI t 1 P4 k
r i t 1 , ., r n

i G 4 Y a r 0, .., r i t 1, 9 Pl P2 kt - 1 r i , ., r n

i-9t -1 Y a r 9 Pl P~-1 k

~ 1 9 Y a r 0 ,..., r p t Py - 1, 9 P1 D~ t 1tP2 - 1 r(i),r(4 t Ps),...,r(i - 1),
1 G PY G r(i i 1),...,r(n))
n - - 1
i 1 P2 t p Y a- 2a~(,)u' ~ r 9 Pl PY k
P2-n-9-1

n n Y t ot a a r n, r 0,. ., r n- 1 0 - 1 ~ t 1 k t 1
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Let a simplex of the Kz-triangulation, a- Iíz(y, a), be given with vertices
y-',yo y" We wish to obtain the simplex of the líz-triangulation, ó-
ICz(y, á), such that all vertices of a are also vertices of ó except the vertex
y'. Table 1 shows how j and ir depend on y, a and i.

Ni~xt, Ic.t o- J.!(y,a,s), be a sirnplex of the Jz-triangulation with ver-
tices y-' yu y" Suppose that we want to obtain the simplex of the Jz-
triangulation, ó- Jz(y, á, s), such that all vertices of a are also vertices of Q
exccpt the vertex y'. 'I'able 2 shows how j, á and s depend on y, ~r, s and á.

Finally, let a simplex of the Dz-triangualtion, a- Dz(y, ~r,s,pl,pz), be
given with vertices y-', yo, ... , y". If we want to obtain a simplex of the
Dz-triangulation, ó- Dz(y, á, s, p~, p~), such that all vertices of o are also
vertices of v except the vertex y', tlien Table 3 shows how y, ~r, s, pr and pz
depned on y, n, s, pl, pz and á.

In these tables,

yo - 2-(ktil and y - (yi,yz,...,y")T
and

yo - 2-(kti) and y - (yr,yz,...,yn)T.

5 The Comparison of Triangulations for Sim-
plicial Homotopy Algorithms

Let H" denote the set H" -{x E R" ~ 0 G x; G 2 for i- 1, 2, ..., n} . Let
ao - 1 and a denote 1~~30.

Theorem 5.1. The number of simplices of the liz-triangulation and one of
the Jz-triangulation in the set [2-', 1] x H" are both equal to pn(a), where

~ r(1 - a"ti)2"n!I(1 - o) ~f Qo ~ 1
p"( )- Sl (n f 1)2"n! otherwise.

The number of simplices of the Dz-triangulation in the set [2-1, 1] x H" is
equal to q"(o), where

qn(~) - Zn ~ (amcn dmdn-m)
m-0



1'l

where

di-j-l-j(J-1)f---fj(j-1)...4.3i-2
for j~ 2, do - d, - 1, and C~ - n!~m!(n - m)!.

Proof. Let Q denote the set

Q-{wER"~w;E{0,1,2} fori-l,2,...,n}.

Take w E Q. Let A(w) denotethe set

A(w)- xER"~
w'-lCx'Cw;~lforiElo(w)and
x; - w; for i E I~(w) }

and let B(w) denote the set

-~ x; - w; for i E lo(w) and ~
B(w) xER"~ w;Gx;cw;~lforiEl~(w)andw;-0

w;-1 Cx;Cw;foriEl~(w)andw;-2

Let D(w) denote the set

D(w) - convexhull {({1} x A(w)) U({2-'} x B(w))}.

Then it is obvious that

[2-~,1~ x H" - UwE~D(w).

Let m denote the number of elements in 1~(w). Then there are 2mC~
elernents in Q such that m components of each of them are even. Thus the
numbers ot simplices of the Kz-triangulation and of the J.1-triangulation in
the set UwE~,II~~w~1-mD(w) are both equal to

2m2n-mQmCn m!(n - m)!.

The number of simplices of the D2-triangulation in the same set is equal to

2m2n-mQ'm~in (jm(!n-m.

Since
Um-o(UwEG,I~.(w)1-mD(w)) - I2-', 1~ x Hn.
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the theorem follows immediately.

Theorem 5.2. When n~ 3, y„(a) G p„(a). As n gces to infinity,
q„(a)~p„(a) converges to some number p such that p G e- 2.

Proof. The conclusion is obvious, the proof is omitted.

From Theorem 5.2, we have that the number of simplices of the Dz-
triangulation is the smallest of ones of these triangulations for simplicial
homotopy algorithms. The author conjectures that the average directional
density of the D2-triangulation is the smallest of ones of these triangulations.
For details on the average directional density of a triangulation, we refer to
Todd [14].

References

(1] Allgower, E.L. and Georg, K.(1980). Simplicial and continuation meth-
ods for approximating fixed points and solutions to systems of equations,
SIAM Review 22, 28-85.

[2] Broadie, M. N. and Evaes, B. C.(1987). A variable rate refining trian-
gulation. Mathematical Programming 38, 161-202.

[3] Dang, C.(1989).The D~-triangulation of N" for simplicial algorithms for
computing solutions of noulinear equations. Discussion paper 8928, Cen-
ter for Economic Research, Tilburg University, Tilburg, The Nether-
lands. To appear in Mathematics of Operations Research.

[4] Dang, C.(1989). The D3-triangualtion for simlicial deformation algo-
rithms for computing solutions of nonlinear equations. Discussion paper
8949, Center for Economic Research, Tilburg 1Jniversity, Tilburg, The
Netherlands.

[5] Doup, T.M.(1988). Simplicial Algorithms on The Simplotope. Lec-
ture Notes on Economics and Mathematical Systems, Springer-Verlag,
Berlin.



14

[6] Doup, T.M. and Talman, A.J.J.(1987). A continuous deformation algo-
rithm on the product space of unit simplices. Mathematics of Operations
Research 12, 485-521.

(7] Eaves, B.C.(1984). A Course in Triangulations for Solving Equations
with Deformations. Lecture Notes on Economics and Mathematical Sys-
tems, Springer-Verlag, Berlin.

[8] Eaves, B. C. and Saigal, R.(1972). Homotopies for the computation of
fixed points on unbounded regions. Mathematical Programmíng 3, 225-
237.

[9] Kojima, M. and Yamamoto, Y.(1982). Variable dimension algorithms:
Basic theory, interpretation, and extensions of some existing methods.
Mathematical Programming 24, 177-215.

[10] van der I.aan, G. ar~d Talman, A.J.J.(1980). A new subdivision for com-
puting fixed points with a hornotopy algorithm. Mathematical Program-
ming 19, 78-91.

[11] Mizuno, S.(1981). A simplicail algorithm for finding all solutions to poly-
nomial systems of equations. Thesis, Department oí System Sciences,
Tokyo Institute of Technology, Tokyo, Japan.

[12] Shamir, S.(1980). Two triangulations for homotopy fixed point algo-
rithms with an arbitrary refinement factor. To have appeared in Analysis
and Computation of Fixed Points, Academic Press, New York.

[13] Todd, M.J.(1976). The Computation of Fixed Points and Applica-
tions. Lecture Notes on Economics and Mathematical Systems, Springer-
Verlag, Berlin.

[14] Todd, M.J.(1976). On triangulations for computing fixed points. Math-
ematical Programming 10, 322-346.



Discussion Paper Series, CentFF, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No. Author(s)

8916 A. Kapteyn, P. Kooreman
and A. van Soest

Title

Quantity Rationing and Concavity in a
Flexible Household Labor Supply Model

891~ F. canova
8918 F. van der Plceg

8919 W. Bossert and
F. Stehling

8920 F. van der Plceg

8921 D. canning

8922 C. Fershtman and
A. Fishman

8923 M.e. Canzoneri and
C.A. Rogers

8924 F. Groot, C. Withagen
and A. de Zeeuw

8925 O.P. Attanasio and
G. Weber

8926 N. Rankin

8927 Th, van de Klundert

8928 C. Dang

8929 M.F.J. Steel and
J.F. Richard

8930 F. van der Ploeg

Seasonalities in Foreign Exchange Markets

Monetary Disinflation, Fiscal Expansion and
the Current Account in an Interdependent
World

On the Uniqueness of Cardinally Interpreted
Utility Functions

Monetary Interdependence under Alternative
Exchange-Rate Regimes

Bottlenecks and Persistent Unemployment:
Why Do Booms End?

Price Cycles and Booms: Dynamic Search
Equilibrium

Is the European Community an Optimal Currency
Area7 Optimal Tax Smoothing versus the Cost
of Multiple Currencies

Theory of Natural Exhaustible Resources:
The Cartel-Versus-Fringe Model Reconsidered

Consumption, Productivity Growth and the
Interest Rate

Monetary and Fiscal Policy in a'Hartian'
Model of Imperfect Competition

Reducing External Debt in a World with
Imperfect Asset and Imperfect Commodity
Substitution

The D-Triangulation of Rn for Simplicial
Algor~thms for Computing Solutions of
Nonlinear Equations

Bayesian Multivariate Exogeneity Analysis:
An Application to a UK Money Demand Equation

Fiscal Aspects of Monetary Integration in
Europe

8931 H.A. Keuzenkemp The Prehistory of Rational Expectations



No. Author(s)

8932 E, van Damme, A. Selten
and E. Winter

8933 H. Carlsson and
E. van Damme

8934 H. Huizinga

8935 C. Dang and
D. Talman

8936 Th. Nijman and
M. Verbeek

8937 A.P. Barten

8938 G. Marini

8939 w. Guth and
E. van Damme

8940 G. Marini and
P. Scaramozzino

8941 J.K. Dagsvik

8942 M.F.J. Steel

8943 A. Roell

8944 C. Hsiao

8945 R.P. Gilles

8946 W.B. MacLeod and
J.M. Malcomson

8947 A. van Soest and
A. Kapteyn

8948 P. Kooreman and
B. Melenberg

Title

Alternating Hid Bargaining with a Smallest
Money Unit

Global Payoff Uncertainty and Risk Dominance

National Tax Policies towards Product-
Innovating Multinational Enterprises

A New Triangulation of the Unit Simplex for
Computing Economic Equilibria

The Nonresponse Bias in the Analysis of the
Determinants of Total Annual Expenditures
of Households Based on Panel Data

The Estimation of Mixed Demand Systems

Monetary Shocks and the Nominal Interest Rate

Equilibrium Selection in the Spence Signaling
Game

Monopolistic Competition, Expected Inflation
and Contract Length

The Generalized Extreme Value Rendom Utility
Model for Continuous Choice

Weak Exogenity in Misspecified Sequential
Modela

Dual Capacity Trading and the Quality of the
Market

Identification and Estimation of Dichotomous
Latent Variables Models Using Panel Data

Equilibrium in a Pure Exchange Economy with
en Arbitrary Communication Structure

Efficient Specific Investments, Incomplete
Contracts, and the Role of Market Alterna-
tives

The Impact of Minimum Wage Regulations on
Employment and the Wage Rate Distribution

Maximum Score Estimation in the Ordered
Response Model



No. Author(s)

8949 C. Dang

895o M. Cripps

8951 T. Wansbeek and
A. Kapteyn

8952 Y. Dai, G. van der Laan,
D. Talman and
Y. Yamamoto

8953 F. van der Ploeg

8954 A. Kapteyn,
S. van de Geer,
H. van de SY,adt and
T. Wensbeek

8955 L. zou

8956 P.Kooreman and
A. Kapteyn

8957 E. van Damme

9001 A. van Soest,
P. Kooremen end
A. Kapteyn

9002 J.R. Magnus and
B. Pesaran

9003 J. Driffill and
C. Schultz

9004 M. McAleer,
M.H. Pesaran and
A. Bera

9005 Th. ten Raa and
M.F.J. Steel

9006 M. McAleer and
C.R. McKenzie

Title

The D -Triangulation for Simplicial
Defor~ation Algorithms for Computing
Solutions of Nonlinear Equations

Dealer Behaviour and Price Volatility in
Asset Markets

Simple Estimators for Dynamic Panel Data
Models with Errors in Variables

A Simplicial Algorithm for the Nonlinear
Stationary Point Problem on an Unbounded
Polyhedron

Risk Aversion, Intertemporal Substitution and
Consumption: The CARA-LQ Problem

Interdependent Preferences: An Econometric
Analysis

Ownership Structure and Efficiency: An
Incentive Mechanism Approach

On the Empirical Implementation of Some Game
Theoretic Models of Household Labor Supply

Signaling and Forward Induction in a Market
Entry Context

Coherency and Regularity of Demand Systema
with Equality and Inequslity Constraints

Forecasting, Miaspecification and Unit Roots:
The Case of AR(1) Versus ARMA(1,1)

Wage Setting and Stabilization Policy in a
Game with Renegotiation

Alternative Approaches to Testing Non-Nested
Models with Autocorrelated Disturbances: An
Application to Models of U.S. Unemployment

A Stochastic Analysís of an Input-Output
Model: Comment

Keynesian and New Classical Models of
Unemployment Revisited



No. Author(s)

9007 J. Osiewalski and
M.F.J. Steel

9008 G.W. Imbens

9009 G.W. Imbens

9010 P. Deschamps

9011 W. GiSth and
E. van Damme

9012 A. Horsley and
A. Wrobel

9013 A. Horsley and
A. Wrobel

9014 A. Horsley and
A. Wrobel

9015 A. van den Elzen,
G. van der Laan and
D. Talman

9016 P. Deschamps

9017 B.J. Christensen
and N.M. Kiefer

9018 M. Verbeek and
Th. Nijman

9G19 J.R. Magnus and
B. Pesaran

9020 A. Robson

9021 J.R. Magnus and
B. Pesaran

Title

Semi-Conjugate Prior Densities in Multi-
variate t Regression Models

Duration Models with Time-Varying
Ccefficients

An Efficient Method of Moments Estimator
for Discrete Choice Models with Choice-Based
Sampling

Expectations and Intertemporal Separability
in an Empirical Model of Consumption and
Investment under Uncertainty

Gorby Games - A Game Theoretic Analysis of
Disarmament Campaigns and the Defense
Efficiency-Hypothesis

The Existence of an Equilibrium Density
for Marginal Cost Prices, and the Solution
to the Shifting-Peak Problem

The Closedness of the Free-Disposal Hull
of a Production Set

The Continuity of the Equilibrium Price
Density: The Case of Symmetric Joint Costs,
and a Solution to the Shifting-Pattern
Problem

An Adjuatment Process for an Exchange
Economy wíth Linear Production Technologies

On Fractional Demand Systems and Budget
Share Positivity

The Exact Likelihood Function for an
Empirical Job Search Model

Testing for Selectivity Bias in Panel Data
Models

Evaluation of Moments of Ratios of Quadratic
Forms in Normal Variables and Related
Statistlcs

Status, the Distribution of Wealth, Social
and Private Attitudes to Risk

Evaluation of Moments of Quadratic Forms in
Normal Variables



No. Author(s) Title

9022 K. Kemiya and Linear Stationary Point Problems
D. Talman

9023 W. Emons Good Times, Bad Times, end Vertical Upstream
Integration

9024 C. Dang The D2-Triangulation for Simplicisl Homotopy
Algorithms for Computing Solutions of
Nonlinear Fquationa



P(~ R(~X ~[715~ ~~~n i F Ti~BURG. THE NETHERLAND~
Bibliotheek K. U. Brabant

N I C~I~h I II 111 ~ I III IN~I III I N II IIII I


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

