
8414
1993

6

for
mic Research

~,,~;

, i,
1~~0JQ~Ja ,

Discussion
paper

IINquInII IIIIII III InII I~IInqI INV lIU~ I



No. 9306

1fie Consistency Principle For Games
In Strategic Form

by Bezalel Peleg and
Stef Tijs

January 1993



THE CONSISTENCY PRINCIPLE FOR GANiES IN STRATEGIC FORM'

BEZALEL PELEGt AND STEF TI]S~

November, 1992

Abstract. We start with giving an axiomatic characterization of the ~lash equilibrium (NE)
correspondence in terms of consistency, converse consistency, and one-person rationality.
Then axiomatizations are given of the strong NE correspondence, the coalition-proof NE
correspondence and the semi-strong NE. In all these characterizations consistency and suit-
able variants of converse consistency play a role. Finally, the dominant tiE correspondence
is chsracterized. We also indicate how to generalize our results to Bayesian and extensive
games.

'We are grateful to R.J. Aumann, P. Borm, E. van Damme, W. Guth, ~l. `íaschler, J. Potters and J.
Zarzuelo for helpful discussions.
tDepartment of híathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
'.Department of Econometrics, Tilburg Cniversity, 5000 LE Tilburg, The Vetherlands



1. Introduction

The consistency property of solutions of cooperative games is well-known. For recent for-

mulations the reader is referred to 1vlaschler (1990] and Thomson [1990J. Harsanyi [1959j

was the first to use consistency in extending Nash's solution of two-person bargaining

problems to n-person problems. Lensberg [1988] characterized the Nash solution of the

bargaining problem by using consistency and three other standard properties. Additional

applications of the consistency principle to the theory of bargaining are collected in Thom-

son and Lensberg (1989]. Recently, Peters, Tijs, and Zarzuelo (1991] characterized the

Kalai-Smorodinsky solution by consistency.

Davis and IVlaschler [1965] started the investigation of consistency of the kernel. A

closely related solution, the prekernel, was axiomatized by Peleg (1986j by using consistency

and converse consistency. Also, consistency plays a central role in the axiomatizations of

the prenucleolus (Sobolev (19ï5]), the nucleolus (Potters [1991) and Snijders (1991)), the

generalized nucleolus (1~laschler, Potters, and Tijs [1992]), the core (Peleg [1986], [1985],

and Tadenuma (1992]), the r-value (Driessen [1992]), and the Shapley value (Hart and

Jías-Colel] (1989]).

The reader is now referred to Thomson's [1990] comprehensive survey of the consistency

principle, for further applications of consistency to bankruptcy and taxation problems,

quasi-linear cost allocation problems, and resource allocation problems. Driessen's survey

[1991J is also very instructive.

We now verbally describe the consistency principle for games in strategic form. If G

is a game, S is a subset of the set of players of G, and z is a strategy profile for the

grand coalition, then the reduced game G5~` is the game faced by the members of S, when

the members of :~ `S leave the game after choosing r.N`S (see Section 2 for the precise

definition). A~olution yz on a set I' of games assigns for every game in I' a set of strategy

profiles. yo is conaiatent if for every G E I', a coalition S of the players in G, and r E c,~(G),

the restiction of x to S. IS, is in ;~(GS~~). The foregoing definitions have already appeared

in Aumann (1987] and, less explicitly, in Bernheim, Peleg, and ~~-hinston [1987]. However,



3

as faz as we know, this paper is the first systematic study of the consistency prineiple for

solutions of games in strategic form.

We now review briefly the contents of the paper. Section 2 contains two axiomatiza-

tions of the Nash correspondence (see Theorem 2.12 and Corollazy 2.22). The main result,

Theorem 2.12, chazacterizes the Nash Equilibrium as the unique solution that satisfies

one-person rationality, consistency, and converse consistency. The three basic concepts:

reduced game, consistency, and converse consistency aze defined in the beginning of the

section. The strong Nash equilibrium is axiomatized in Section 3(see Theorem 3.2 and

Corollazy 3.9). We also characterize the strictly strong Nash equilibria (see Theorem 3.7).

Coalition- proof Nash equilibria and semi-strong Nash equilibria are characterized in Sec-

tion 4. Section 5 is devoted to an axiomatization of dominant strategies (see Theorem 5.6).

In Sectioas 6 and 7 we indicate how to generalize our results to Bayesian games and exten-

sive games respectively. Section 7 also contains an axiomatization of the subgame perfect

equilibria of games with perfect information. Concluding remarks and open problems

appear in Section 8.

2. Axiomatic Characterizations of the Nash Equilibrium Correspondence

In this section we introduce some properties of solutions of games in strategic form that

are satisfied by the Nash correspondence. The first three properties aze used to axiomatize
the set of Nash equilibria. Additional properties will be defined in subsequent sections in

order to characterize some refinements of the Nash equilibrium.

A game in strategic form is a system G-(N,(.4,);E,v, ( u;),E.v), where N is a finite set

of players; .~„ i E:Y. is the ( non-empty) set of strategies of i; and u, : II~E,~..4~ --y R

is the payoff function of player i E ~'. ( Here R denotes the set of real numbers.) Let

0~ S C.N. We denote .ds - II,ES.4,. also, we denote A- A,v. Let I' be a set of games.

A~olution on I' is a function y that assigns to each game G -(~Y,(r1;);EN, ( u;).eN) E I'

a subset ,~(G) of A.

Let I' be a set of games and let :~ be a solution on I'.
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Deflnition 2.1. ~ satisfies one-pereon rationality (OPR) if for every one-person game

C-({i}, A„ u;) in I'

~(G) -{x; E A,~u;(x,) ? u;(y,) for all y, E A;}.

OPR is a consequence of the rationality of the players. The Nash correspondence and all
its refinements satisfy OPR.

Let G-(N,(A;);Erv, (u;);E,v) be a game, let 0~ S C N, and let x E A. The reduced

game of G with respect to (w.r.t.) S and x is the game Gs~z -(S,(A;);ES, (u;);ES)

where u~ (ys) - u,(ys, x,v`s) for all ys E As and i E S. Our definition of reduced games

is simple and has a straightforward interpretation. Let 0~ S C N and x E A. If it is

common knowledge among the members of S that the members of N`S have chosen the

strategies t„ i E N`S, then the members of S aze faced with the game Gs,z

~Ve remark that the "usual" definitions of reduced games of cooperative games are more
complicated (see, e.g., Davis and íLlaschler (1965] and Hazt and Mas-Colell (1989]).

Now we shall define consistency of solutions of games in strategic form. A family I' of

games is cloeed if G-(.V,(.4;);E;v, (u;),E.v) E I', 0~ S C N and x E .4 imply that

Gs~z E I'.

Deftnition 2.2. Let i be a closed family of games and let y~ be a solution on I'. y~ is
conai~tent (CO`S) if for e~.ery G-(.V, (.-1,),E,v, ( u, ),E,v) in I', 0~ S C N, and x E;~(G),
xs E ~(Gs~z).

Consistency of solutions of cooperative games has been extensively investigated by many

authors (see the survey papers of Thomson [1990] and Driessen [1991]). .~lso, the reader

may find lucid explanations of the consistency principle for cooperative games in both

~faschler [1990] and Thomson [1990]. For games in strategic form consistency has a simple

interpretation. If G E r and x E y~(G), then for every 0~ S C N, xs is also prescribed by

.p to the game G restricted to S, that is, to the game Gs~z. Equivalently, if the members

of S know that the members of .Y `S have chosen x.v`s and left the game G, then they

do not have to revise their strategies.
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Although, as far as we know, consistency of solutions of games in strategic form is

systematically discussed here for the first time, in some definitions of such solutions the role

ofconsistency is implicit, or even explicit. For example, the "main part" of the definition of

Nash equilibria is the requirement that it will be "consistent" with its prescription to one-

person reduced games. However, the Nash equilibrium (NE) cleazly satisfies the stronger

consistency property of Definition 2.2. Reduced games and consistency appeaz explicitly

in Aumann [198ï] and in the definition of coalition-proof Nash equilibria (CPNE) (see

Bernheim, Peleg, and Whinston [1987]). However, the foregoing concepts were not further

studied in those papers.

Remark 2.3. Let I' be a closed family of games and let y~ be a solution on I'. The

following condition implies the consistency of ~: For every C-(N,(A;)~EN, ( u~)iEN) ~n

I', i E N, and x E y~(G), .rN`{;1 E y~(GN~{'1~:) The proof of this remark is left to the

reader.

Some refinements of NE do not satisfy consistency. This is shown by the following

example due to E. van Damme.

Example 2.4. Let the three-person game Go be given by the following pair of matrices:

T

R

0,1,0 0,0,0

1, 1, 0 0, 0, 0B B

U

Let I' consist of the mixed extension G, of Go and all its reduced games. Then I' is a

closed family of games. Further, for each G-(1~',(.4,),E;y,(u,),E,ti.) in I' let

PERF (G} - {x E.4~x is a perfect equilibrium of G}

1, 1,1 1,0, 1

1,1,1 0,0,1

(see Selten [19ï~] and ~fyerson [1978]). ~i~'e note that x -(B,L,D) E PERF (G,), but

(B,L) ~ PERF (G{''~1'~) Thus, PERF is not consistent. Thís example also shows that



6

the correspondences of proper equilibria (~Zyerson [19ï8]) and stable equilibria (ICohlberg

and Mertens [1956]) do not satisfy CONS.

Now we proceed to introduce converse consistency of solutions of games in strategic form.
Let I' be a closed family of games and let y~ be a solution on I'. If G -(N, ( A,);EN(u~)iEN)
is in I' and ~N~ ? 2, then we denote

(2.1) ~j(G) - {z E A~ for every S C.N, S~ O,N,xg E y~(GS'I)}

(if D is a finite set, then ~D~ denotes the number of inembers of D).

Deflnition 2.5. A solution y on a closed family of games I' satisfies conroerse conei~tency
(COCONS) if for every G E I" with at least two players, ~(G) C~(C).

We remazk that consistency can be defined by the reverse inclusion, namely ~p(G) C ~p(G)

for every G E I'. This explains our terminology. Converse consistency of solutions of

cooperative games was defined in Peleg ( 1986]. However, it was first used in Harsanyi

[1959]. Converse consistency may produce iterative algorithms that converge to solution

points ( see Thomson ( 1991] for a recent investigation and survey). Clearly, the NE solution

satisfies COCONS. In fact, it satisfies the following stronger property.

Deflnition 2.6. Let T be a closed set of games and let y~ be a solution on I'. yz satisfies

COCO`So if for every G-(.`',(A;),EN, ( u,);EN) in I' and x E A it is true that

(2.2) [U{S C N~S ~ 0 and as E Y(GS'z)} -;v] ~ z E~(G)

~~'e summazize our remarks on the `ash correspondence by the following proposition:

PROPOSITIOV 2.7. Let I' be a closed family of games. The NE solution on I' satisfies
OPR, CONS, and COCO~'S.

In fact, OPR, CONS, and COCOVS characterize the NE. This is shown by the following

two propositions.

PROPOSITIO~ 2.8. Let ~ be a solution on a closed family of games I'. If y~ satisfies OPR
and CONS, then y~(C) C NE(G) for every G E I'.
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PeooP: Let G-(:V,(A;);EN,(u,),e,v) E I' and x E y(G). By CONS, x; E ~p(G{'}~~) for
each i E N. By OPR u; ( x, ) ? u; ( y;) for all y; E A; and i E N. Thus

u,(x;,x,v`{,)) ? u,(y;,xtv`{~)) for all y, E A, and i E N.

Hence, x is an NE of G. Q.E.D.

Remark 2.9. By Proposition 2.8, every solution y~ that satisfies OPR and CO:VS on a

closed family of games I' is a refinement of the NE, that is c~(G) C NE(G) for all G E r.

The converse claim is not true (see Example 2.4).

PROPOSITION 2.10. Let I' be a closed family of games and ]et ,~ be a solution on I'. If ~

satisfies OPR and COCOtiS, then y(G) ~ NE(G) for every G E I'.

PROOF: We prove the foregoing inclusion by induction on the number of players. Let

G E I' be a one-person game. Then ~(G) ~ NE(G) by OPR. Now assume that NE(G) C

~(G) for all t-person games in I' where t C k and k? 1. Let Go E I' be a(k -~ 1)-

person game. Because the Nash solution satisfies CONS, tVE(G) C NE(G) ( see (2.1)).

By the induction hypothesis :1E(G) C~(G), and b}' COCOtiS, .j(G) C a(G). Hence,

,VE(G) C .~(G). Q.E.D.

Remark 2.11. Proposition 2.10 implies that every strict refinement of the NE solution

that satisfies OPR does not satisfy COCONS.

Combining Propositions 2. ï, 2.8, and 2.10 we obtain the following characterization of

the tiE correspondence.

THEORE~t 2.12. A solution .~ on a closed family of games I' satisfies OPR, CONS, and

COCONS, if and only if ~--~'E (i.e., ?(G) -.VE(G) for every G E I').

CoROLL.aRY 2.13. Let G be a game in strategic form and let I'(G) be the minimal closed
family that contains G(i.e., I(G) consists of G and all its reduced games). If a solution ~

on I'(G) satisfies OPR, C0~'S, and COCONS, then ~(G) -:VE(G).
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Corollazy 2.13 follows from the proof of Theorem 2.12. See Hart and h4as-Colell (1989]

for a similaz result on a minimal domain for which there is an axiomatization of the Shapley

value. See also Neyman [1989].

Remark 2.14. It is possible to replace COCONS by COCONSo in Theorem 2.12 (see ( 2.2)).

The proof is left to the reader.

We shall now pro~.e that the three axioms which characterize the NE aze logically inde-

pendent. For this purpose we consider the following families of games. Let I- { 1, 2, 3, ...}

be the set of natural numbers. Denote

(2.3)

P-{G -(N,(.4,),E;v. ( u,),EN)I0 ~ N C I, IN~ c oo and ~.4,~ c oo for all i E N}.

P is the ( closed) set of all finite games. Now let M be the ( closed) set of all mixed

extensions of games in P. ~Ve shall not deal with the question when a closed family of

games I' is rich enough so that our three axioms aze independent on I'.

Example 2.15. Let ~~ be defined on P(see (2.3))

i~~(1V,(.4i)~EN. (u~)iEN)) - n,E.1iA;.

Then ~1 satisfies COtiS and COCONS but not OPR.

Example 2.16. Let G -(N,(A;);E,v, ( u,);EN) E.11. For each i E:V let v;(C) be the
minmax payoff of i in G, that is

(2.4) t;(G) - min max u,(r„r,~-`{~}).
r.v`I~IEA,v`1~~ r~EA.

Clearly, for ecery 0~ S C N and r E.4, v,(Gs~s) ? v,(G) for all i E S. `ow define

y2(G) -{r E rl~u;(x) ? v;(G) for every i E N}.

Then yZ satisfies OPR and COCO`S on 1I. Because ,~~ ~.VE, ~Z does not satisfy
COtiS.
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Example 2.17. For each G E Af let SNE(C) be the set of strong Nash equilibriá of G

(see Section 3). Clearly, S1E satisfies OPR and CONS but not COCO~S.

Remark 2.18. The reader might ask what we achieved by Theorem 2.12. In order to reply,

let us notice that the definition of the NE is cyclic. Indeed, let G-({1,2}; Ai,Az,u~,uz)

be a two-person game and let x E A. Then r is a NE iff the following conditions are satis-

fied: (1) If 2 chooses r2, then 1 may choose rl because rl is a best reply to r~; (2) 2 may

choose r2 if 1 chooses z~, because rz is a best reply to zl. By Theorem 2.12 we decom-

pose this (cyclic) definition into three (independent) properties which have straightforwazd

formulations and aze intuitively acceptable.

The NE has well-known additional properties which do not appear in our axiomatiza-

tions. For example, it is independent of the names of the players (anonymity), and it is

invariant under permissible transformations of the payoff functions. We are now going to

discuss two additional properties of the NE solution.

Deflnition 2.19. Let r be a set of games and let ~ be a solution on r. ~ satis-

fies independence o~ irrelevant strategies (IIS) if the following claim is true. If G-

(N,(A,);eN,(u;)~e.v) E r, z E ~(G),x; E B; C A; for all i E N, and G' -(N,(B,);EN,

(u,);EN) E r, then r E y~(G').

Clearly, the ti E solution satisfies IIS. In order to find the relationship between IIS and our

previous axioms we need one more axiom. 41so, we note that if G -(N, (A;);EN, ( u;);E,v)

is a game, d E.V, and ~.4Q~ - 1, then d is a dummy in G.

Deflnition 2.20. Let r be a closed family of games and let .~ be a solution on r. y~

satisfies the dummy aziom (DU:~1) if for every game G -(N,(A;);E;v,(u,),EN) E r and

every dummy d in G, ~(G) - Ad x Y(Gw~ldl~z) where r may be any member of A.

The dummy axiom needs no explanation. Clearly the tiE correspondence satisfies DUlv1.

A family r of games is cloaed' if for every game G- (N,(A,),EN,(u,);E,v) E r and

0~ B; C A„ i E.V, the game G' -(1V,(B,),EN,(u,),E,~-) E r. r is cloaedz if it is both

closed and closed`. The family P(see ( 2.3)) is closed2. Also, the set of ordinal potential

games is closed~ ( see ,Llonderer and Shapley ( 1992]).
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PROPOSITIO~ 2.21. Let I' be a closed2 family ofgames and let y~ be a solution on I'. If y

satisfies IIS and DU'Ll, then yp also satisfies CONS.

PROOe: Let G-(N,(A;);EN,(u,),EN) E I', x E~(G), and 0~ S C N. By IIS

x E ~(N, {x,},~5, (A~)iES, (u;)~EN).

By DUM x E{xN`S} x y~(CS~~). Hence xs E~(GS~`). Q.E.D.

COROLLARY 2.22. Let I' be a closed2 family of games. The NE conespondence is the

unique solution on I' that satisfies OPR, COCONS, 115, and DUM.

Corollazy 2.22 follows from Theorem 2.12 and Proposition 2.21.

Remark 2.23. The axioms OPR, COCONS, IIS, and DUM are logically independent.

Indeed, Example 2.15 satisfies COCONS, IIS, and DUM, but not OPR. Example 2.17

satisfies OPR, IIS, and DU~1 but not COCONS. Example 2.16 satisfies OPR, COCONS,

and DU~1 but not IIS. Finally, the following example shows that DUM is independent of
OPR, COCONS, and IIS.

Example 2.24. Let the three-person game Go (in pure strategies) be given by the fol-

lowing matrix

L

B

1,-1,0 -1,1,0

-1, 1, 0 1, -1, 0

D

Furthermore, let I' - I'(Go) be the minimal closed~ family that contains Go. ~Ve define a
solution ~ on I' by the following rule. If G -(.N,(A;);E,v, ( u;);EN) is in I' and ~N~ C 2,
then ~(G) - NE(G); and if ~N~ - 3 then ~(G) -.4. As the reader may verify, y~ satisfies
OPR, COCO~'S, and IIS, but not DU!~1.
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3. Axiomatization of the Strong Nash Equilibrium

Strong Nash equilibria were defined in Aumann (1959]. In this section we shall give two

axiomatizations of strong equilibria. First we recall some definitions.

Let G-(N,(A,);E,v,(u;),EN) be a game in strategic form. r E A is a~irong Naeh

equiliórium (SNE) if for every 0~ S C N and every ys E As there exists i E S such that

u,(x) ? u,(ys,rN`S). r E.4 is weakly Pareto-optimal (WPO) if for every y E.4 there
exists i E N such that u;(r) ? u;(y). Finally, r E A is Pareto-optimal (PO) if there is no

y E A such that u;(y) ? u,(r) for all i E N and u~(y) ~ u~(r) for at least one j E N.

Let G be a game. We denote by SNE(G) the set of strong Nash equilibria of G. As

the reader may verify, the solution SNE satisfies OPR and WPO. Also, on closed domains

it satisfies CONS but not COCOtiS. We shall now {ormulate a weaket notion of converse

consistency which the SNE satisfies.

DeAnition 3.1. Let ~ be a solution on a closed family of games I'. y~ satisfies COCONS3
if for every G-(N,(-4,);EN,(u,),E,v) E I' with ~N~ ? 2 and r E A it is true that

(3.1) [r E y~(G) and r is WPO ] ~ r E y~(G)

(see (2.1)).

TxEOxE~t 3.2. Let I' be a closed family of games. There is a unique solution on I' that
satisfies CONS, COCO`S1, and lS'PO and ít is the S:1'E.

PROOF: As the reader may cerify, S`E satisfies CO~iS, COCOtiSS, and WPO. Now let y~

be a solution on I' that satisfies the foregoing three axioms. We prove by induction on the

number of players that y~(G) - S.1'E(C) for every C E I'. Clearly, WPO implies OPR.

Therefore ,~(G) - S.~'E(G) if G is a one-person game. `ow assume that Sa'E(G) -~(G)

for every m-person game G E I', where 1 G m C k and k? 1, and let Go E r be a

(k ~ 1)-person game. Further, let r E U(Go). By COtiS, r E~(Go), and by the induction

hypothesis ~(Go) - S:VE(Go). Hence, by WPO (of „~) and COCONS3 (of StiE), r E

SNE(Go). Thus ~(Go) C S,~'E(Go). Similarly, we may prove that SNE(Go) C ~(Go).

Q.E.D.

The proof of Theorem 3.2 implies the following corollary.
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CoROCLaRV 3.3. Let I' be a closed family ofgames. If y~ is a solution on I' that satisfies
CONS and WPO, then y(G) C SNE(G) for every G E I'.

~Ve shall now show that the three axioms in Theorem 3.2 are independent. Indeed,
WPO, that is the correspondence that assigns to each game its set of weakly Pareto-
optimal strategy profiles, satisfies on M(see Section 2 where !ll is defined) COCONS3
and WPO but not CONS. Also, Example 2.15 satisfies CONS and COCONS~ but not
WPO. The next two examples complete the proof of independence.

Example 3.4. Let DS(G) be the set dominant strategies of G for each G E M (see
Section 5). Then DS satisfies CONS and WPO but not COCONS3.

For the next example we need the following definition.

Deflnition 3.5. Let G-(1V,(A,),E,N,(u;);EN) be a game. r E A is a atrictly etrong
Naeh equiliórium (SSNE) if if there do not exist a coalition S and ys E As, such that
u,(ys, Itv`s) ~ u;(x) for all i E S, and for at least one j E S u~(ys, I,v`s) ~ u~(z).

The set of strictly strong Nash equilibria of a game G is denoted by SSNE(G). SSNE
satisfies CONS and WPO but not COCONS3. In order to characterize the SSNE we need
the following axiom.

Deftnition 3.6. Let y~ be a solution on closed family of games I'. y~ satisfies COCONS~
if for every G- (N,(.d,),E.v, ( u,),E.v) E I' with ~.V~ ? 2 and a E A it is true that

(3.2) (i E Y(G) and z is PO ]~ z E,~(G)

(see (2.1)).

THEORE~1 3.7. Let I' be a closed family of games. There is a unique solution on I' that
satisfies CONS, COCONS4, and PO and it is the SSNE. Furthermore, CONS, COCONS4,
and PO are independent.

SSNE is used in Borm and Tijs (1992]. The proof of Theorem 3.7 is left to the reader.
The reader may also formulate the analog of Corollazy 3.3 for the SSNE solution.
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Remark 3.8. Let G be a game. If x E S:~'E(G) then u(x) -(ui(x),...,u„(x)) belongs

to the Q-core of G(see, e.g., Lemma 2.36 of Moulin and Peleg [1982] for a proof of a similaz

result). Similazly, the solution SStiE is related to the strong Q-core of G(see Borm and

Tijs [1992]). On the role of the strong core in exchange mazkets see Wako [1991a,b].

We now observe that SNE satisfies IIS (see Definition 2.19). Thus, combining proposi-

tion 2.21 and Theorem 3.2 we obtain our second chazacterization of the S1E solution.

CoROLLaxY 3.9. Let I' be a closed~ family ofgames (see Section 2). There is a unique
solution on I' that satisfies IIS, ~VPO, COCONS3, and DUM, and it is the SNE.

4. Characterizations of Coalition-Proof I~1ash Equilibria and Semi-Strong Equi-
libria

In this section we shall axiomatize two additional refinements of the NE. We now intro-

duce the first. Let G-(tV,(A;);EN,(u;),EN) be a game, let x E N and let 0~ S C N.

An internally consistcnt improvemcnt (ICI) of S upon x is defined by induction on ~S~.

If ~S~ - 1, that is S-{i} for some i E N, then y; E A; is an ICI of i upon x if it is an

improvement upon z, that is, u;(y;,xN`1;1) ~ u,(r). If ~S~ ~ 1 then ys E AS is an ICI

of S upon x if (i) u,(ys, xN`s) , u;(x) for all i E S, and (ii) no T C S, T~ 0, S has an

ICI upon ( ys, x,v`s). x is a coalition-proof Nash equilibrium (CPNE) if no T C.N, T~ 0,

has an ICI upon x. The reader is referred to Bernheim, Peleg, and Whinston [1987] for

discussion and motivation.

As the reader may verify, the solution CPNE satisfies OPR and C0;~1S (on closed do-
mains). Because the set of CPNE's of a game may be a proper subset of the set of NE's,
CPtiE does not satisfy COCONS (see Definition 2.5). The right converse consistency
concept for the CP`E solution is the following.

Deflnition 4.1. Let ~ be a solution on a closed family of games. ~ satisfies COCONS1
if for every G-(N,(A,),E,v,(u;);EN) E I' with ~.'V~ ? 2, and every x E y~(G) (see (2.1))
the following condition holds. x E~(G) if and only if there exists no y E y~(G) such that

u,(y) 1 u,(z) for all i E.V.

We are now able to prove the following result.
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THEOREM -1.2. Let I' be a closed family of games. There is a unique solution on I' that

satisfies OPR, CONS, and COCONSI and it is the CPNE correspondence.

PROOF: We shall only prove the uniqueness pazt. Let y~ be a solution on I' that satisfies

the foregoing three axioms. We shall prove that y~(G) - CPNE(G) for every G E I' by

induction on the number of players. If G E I' is a one-person game then ~(G) - CPNE(G)

by OPR. If the number of pla}'ers in G is k? 2, then, by the induction hypothesis,

y~(G) - CPNE(G). Now let x E ~(G). By CONS x E~(G). Also, by COCONS1,

there exists no y E ~(G) such that u,(y) ~ u;(x) for all i E N. Again by COCONSt,

x E CPNE(G). Thus, CP:VE(G) ~ y(G). Similazly, ~(G) ~ CP:VE(G). Q.E.D.

We shall now show that the three axioms of Theorem 4.2 aze independent. Indeed, let

~(G) - 0 for each G E M (see Section 2 where !~l is defined). Then y~ satisfies CONS and

COCON1 but not OPR. Also, the NE solution on M satisfies OPR and CONS but not

COCONSt. The following example completes the proof of the independence of the three

axioms.

Example 4.3. Let G~ -(N~,(.4;);EN),(u;)~EN) E A1 satisfy 1Vt -{1,2,3} and

CPNE(G') - 0. Define Go -(~.o (,Io);EVo,(uo);E.No) in d1 by No -{1,2,3,4},

Ao - A;, i E N, and uo(a~,avos,aa) - u;(at,os,aa) for all o, E A; and all i E Nt.

Denote by I' the minimum closed family that contains Go. We now define a solution ~

on I' by the following rule. If G-(.V,(.4,);E,v), (u,),E,v) is in I' and ~N~ 5 3, then

~(G) - CPtb'E(G), and y~(Go) - Ao. As the reader may verify, ~ satisfies OPR and

COCONSi but not CONS.

Kaplan [1992j has introduced a new interesting solution concept, the semi-strong Nash

equilibrium. ~4'e shall now present ICaplan's definition.

DeRnition 4.4. Let G-(.V, (-4; ) ,E.v, (u; ),E,v) be a game. x E .4 is a eemi-atrong Na~h

equiliórium (S~1S:QE) if for every 0~ S C N and every ys E NE(GS~z) there exists i E S

such that u;(x) ? u,(yS,iN`s).

The reader is referred to Kaplan [1992~ for discussion and motivation.
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Remark 4.5. If G -(N,(A;);E,v,(u;);E,v) is a game in strategic form with coritinuous

payoffs and compact strategy sets, then

(4.1) CPNE(G) ~ Sb1SNE(G) ~ S,'VE(G)

We also notice that S1VíSNE satisfies OPR (if the utilities are continuous and the strategy
sets are compact), and CONS. In order to characterize Kaplan's solution, we need an
additional version of converse consistency.

Deflnition 4.6. Let I' be a closed family of games and let ~ be a solution on I'. ~ satisfies

COCOtiSz if for every G-(N,(A;);EN,(u;);eN) E I' with [N[ ? 2 and for every x E A

the following condition holds. If x E y~(C) and there exists no y E NE(G) such that

u,(y) ] u,(x) for all i E N, then x E~(G).

For the next theorem we assume continuity of the payoffs and compactness of the

strategy sets.

TxEOREM 4.7. Let I' be a closed family of games. There is a unique solution on I' that

satisfies OPR, CONS, and COCONS2 and it is the S:1~fSNE solution. Furthermore, the
foregoing three axioms are independent.

The proof of Theorem 4.7 is left to the reader.

Remark 4.8. The solution S:~IS'.VE may be useful because of the following two reasons:

(i) It may be non-empty when StiE is empty; ( ii) In some cases, it may be easier to

compute than the CP~'E (see Kaplan [1992J).

5. A Characterization of Dominant Strategies

In this section we shall axiomatize the solution ~vhich assigns to every game in strategic

form the (possibly empty) set of dominant strategies. ~Ve start with some definitions.

Deflnition 5.1. Let G-(.N, (A; );E,v, (u;);EN) be a game. d; E A; is a dominant (DOM)

strategy for player i if u;(d„aN`1,1) ? u;(e„a,v`};1) for all e; E A and a,v`t;} E AN`1;1.

We also denote

(5.1) D0.1~f(G) -{d E A~d, is a dominant strategy for all i E.4}.
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The solution D0~1 satisfies the following two new properties.

Deflnition 5.2. Let I' be a set of games and let ~p be a solution on I'. ~ is eolvable (SOL)

if for every G -(N,(A,);EN,(u,)~EN) E I' there exist sets (B,),EN, such that B; C A; for

all i E N and ~(G) - II;E,vB,.

Remark 5.3. Definition 5.2 is inspired by Nash (1951] ( see also Luce and Raiffa [1957,
Section 5.9J). However, we use sol~ability in a different meaning, namely as a property of
solutions, whereas Nash used it as a property of games.

Cleazly, DOM satisfies solvability. The next property is peculiar to DOM.

Deflnition 5.4. Let I' be a closed' family of games (see Section 2), and let ~ be a solution
on I'. y~ has the decompoeition property (DP) if for every G-(N,(A;);EN,(u~)~EN) E I',
i E N, and a paztition (AQ)oE~ of A„ the following condition is satisfied. Let GQ -
(N,(-9i )~EN,(ui)lEN) where A~ - Ai if j ~ i, let BQ, -{xN`{;} E.4f,r`1;}~x E~(Go)},
and B-; -{x~,`{;} E AN`1;}~x E~(G)}. Then B-; - É~Ba~.

DP is a strong condition. However, its interpretation is straightforward.

Remark 5.5. Let G E P (see (2.3)). Then a(pure) strategy is dominant in G if and only
if it is dominant in the mixed extension of C. Furthermore, G has a dominant strategy
if and only if its mixed extension has one. Hence, in studying dominant strategies, we
may restrict ourselves to pure strategies. In particular, the restriction to closed' families
of games in Definition 5.4 is not too restrictive.

The following theorem is the main result of this section.

THEORE:~t 5.6. Let I' be a closed2 family of games. There is a unique solution on I' that
satisfies OPR, DL:~I, SOL, and DP, and it is the D011 correspondence (see (5.1)).

PROOF: We have only to prove the uniqueness pazt. Let ~ be a solution on I' that satisfies
the foregoing four properties. We shall prove that ~ coincides with D0:~1 by induction on
the number of players. If G E r is a one-person game then ~(G) - DO.II(G) by OPR.
Now let G-(N,(A;);E,y,(u;);E,v) be a(k f 1)-person game where k? 1, let i E N,
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and let r; E A;. The game G(r;) -(N,(A~)jEN,(uj)~EN) where A~ - Aj if j~ i and

A; -{r;} is in I' because I' is closedZ. By DL'M

(5?) S~(G(r~)) - {r;} x y~(C',.v~{~)~~~)

(The notation GN~{'}~~~ is justified by the observation that GN~{'l ~y depends only on y; for

every y E A). Now let B-; -{xN`{~) I2 E ~(G)}, B~'; -{rN`{;) ~r E~(G(r;))}„Bz'; -

{rN`{;l~r E DOb1(G(x;))}, and ,B-; -{xN`{;}~r E DOb1(G)}. Then, by (5.2), Bz; -
~(GN`{;},:;) and ,Bz', - DOal(GN`{'},Z' ). Hence, by DP and the induction hypothesis

B-~ - n Bz' - n ~(GN`{'}.:~ ) - n DO,tif(GN`{,I:, ) - n .Bz' - .B-
z,EA; ' z;EA; z,EA; s,EA; ' '~

We may conclude now that the projection of y~(G) on every Aj, j ~ i, is equal to the

projection DO'v1(G) on Aj. Similarly, we can prove that y~(G) and DO:b1(G) have the

same projection on A;. Using solvability we conclude that y~(G) - DOM(G). Q.E.D.

Remark 5.7. We notice that DUlu1 and DP imply CONS. The proof follows from the

proof of Theorem 5.6.

Remark 5.8. The solution D0:~1 has the following additional properties: CONS, P0,

and IIS.

We shall now prove that the four properties of Theorem 5.6 aze independent. First we

notice that Example 2.15 satisfies DU`1, SOL, and DP, but not OPR. ~Ve continue with

the following examples.

Example 5.9. Define a solution ~ on P( see (2.3)) by the following rule. Let G-

(.V,(A,),EN,(u,),E.v) E P. If ~N~ - 1, let

:,~(G) -{x; E.4;~u;(r;) ? u;(y;) for all y; E.4;}

where N-{i}. If ~.V~ ? 2 let a(G) - 0. As the reader may verify, ~ satisfies OPR, SOL,

and DP but not DU~1.
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Example 5.10. Let I' be the minimum closedZ family that contains the following two-

person game Go (in pure strategies)

T

B

9,9

8, 6

6,8

7, 7

Define a solution y~ on I' by: ~(Ga) -{(T,L)}, and y~(G) - NE(G) if G E I', G~ Go.
Then y~ satisfies OPR, DUM, and SOL but not DP (because y~ ~ DO?L!).

Remark 5.11. Example 5.10 satisfies also PO and IIS.

Example 5.12. Let I' be the minimum closed family that contains the following two-

person game Go (in pure strategies)

B

0, 0

0, 0

0, 0

0, 0

Define a solution y~ on I' by: y~(Go) -{(T, L), ( B, R)}, and y(G) - NE(G) if G E I',
G~ Go. Then ~ satisfies OPR, DU?v1, and DP but not SOL.

6. Bayesian Games

All our results may be generalized to Ba}'esian games. The generalization of Theo-
rem 2.12 will be given in this section. In order to define reduced games of Bayesian games
we first have to modify the definition of Bayesian games.

DeBnition 6.1. An extended Bayesian game is a system

G - (-`~~(.~i)~EN,(T~)~EN~,(Pi)iEN.(ui)~EN)

where
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(i) N is the set of playera;

(ii) Nt ~ N and L- Nt `N is the set of outeide players ( L - 0 is possible);

(iii) A; is the set of actioru of i E N;

(iv) T; is the finite set of possible typea of i E Nf;

(v) p; : T; -ti p(T-;), where T-; - IIkENt`{,jTk and 0(T-;) is the set of all probability
distributions on T ;, represents the belief~ of i E N; and

(vi) u; : A x T-. R where T- IIkEN~Tk, is the utility function of i E N. (We recall that R
is the set of real numbers and A- IIkENA4.)

Definition 6.1 is due to Einy and Peleg [1991~. It is justified by the fact that a reduced

game of a Bayesian game is an extended Bayesian game ( and not an ordinary Bayesian

game).

Let G-(N,(A;);EN, (Ti);ENt, ( P~)~EN, ( u;)~EN) be an extended Bayesian game. A

atrategy of a player i E N is a function r; : T; ~ A;. We denote by X; the set of all

strategies of player i. For 0 ~ S C N, Xs - II;ESX;, and X- XN. Let I' be a set

of extended Bayesian games. A eolution on I' is a function ~ that assigns to each game

G-(N,(A;),EN, (T,);E,v,, (P~)~EN, (u ,);EN) E I' a subset y~(G) of X. We shall be

interested in the following solution.

Defínition 6.2. Let G-(N,(A;);E,v, (T;);ENt, (p;),E,v, (u;);EN) be an extended

Bayesian game. s E X is a Bayesian equilibrium (BE) of G if for all i E N, t; E T;,

and a, E .4,

~ Pi(t-ilt~)ui((~Ti(t1))JEN,t) c ~ Pt(t-Ilt~)u~(((~TJlti))I~~,a~),t).
i-iET-; t-~ET-;

We denote

BE(G)-{xEX~xisaBEofG}.

~i'e shall now extend the formulation of the properties that characterize the NE solution.
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Deflnition 6.3. Let ;~ be a solution on a set r of extended Bayesian games. y7 satisfies

one-person rationality (OPR) if for every one-person game G -({i},.4„ (T7)~E{;1;, p;,u;)

in r

~(G)-{s;EX;~U,(x;~t;)?U;(y;~t;)forallt;ET;andy,EX;}

where U;(z;~t;) for z; E.K; and f, E T; is defined by

U;(z;~t;) - ~ P;(t-,~t;)u;(z;(t;),t).
~-~ET-;

Now let G- (N,(A;);E~v, (T,),E,vf, ( P~)~EN, ( u;);EN) be an extended Bayesian game, let

0~ S C N, and let x E X. The nduced game of G w.r.t. S and r is the extended

Ba}'esian game

GS'i - (S,(A;)IES, ( T;),EN~, ( P1)IES, ( u; );ES)

where ( u; );ES are defined by the following rule.

Let as E AS and let t E T. Then

(6.1) u; (aS, t) - u,((aS, (i7(tl ))lEN`S), t)

A family r of extended Bayesian games is clo~ed if for every G-(:V, (A;);EN, (T;)iENt,
(p;);EN, (u;);EN) in r, 0~ S C N, and r E X, the reduced game GS~Z E r.

Let r be a closed family of games and let ~ be a solution on r. For a game G-

(N,(A,);EN, (T,)~EV,(P;),E,v, ( u;);E,v) in r with ~.N~ ? 2 we denote

(6.2) :~(G) -{z E X~ for every S C N,S ~ B,N,rs E~(GS'r)}

We are now able to define consistency and converse consistency.

Deflnition 6.4. :1 solution ~ on a closed family of extended Bayesian games r satisfies

con~i~tency (CO~S), ( converse con~iatency (COC0~1S)), if for every G E r with at least

two players ~(G) ~ ,~(G) (à(G) C ~(G)).

The generalization of Theorem 2.12 is now possible.
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THEOREM 6.5. Let I' be a closed family of extended Bayesian games. There is a unique

solution on I' that satisfies OPR, CONS, and COCONS, and it is the BE correspondence.

The proof of Theorem 6.5 is left to the reader.

Remark 8.8. The properties OPR, CONS, and COCONS refer to players and not to
types. Hence, it is impossible to use the type-agent representation of Bayesian games (see

Myerson [1991, Section 2.8]), in order to "translate" our former results on Nash equilibria
to Bayesian equilibria. As far as we can see, the introduction of extended Bayesian games
is esseatial for the generalization of our results in Sections 2-5.

7. Extensive Form Games

All the results in Sections 2-5 can be generalized to games in extensive form. We will
show this for Theorem 2.12. Also, we shall provide an axiomatic chazacterization of the
correspondence of subgame perfect equilibria on the set of games with perfect information.

Let G-(N, K, P, U, C, p, r) be an extensive game. N is the set of players, K is the

(finite) game tree, P is the player partition, U is the information partition, C is the choice

partition, p is the probability aaaignment, and r is the payoff function (see van Damme

[i987], Section 6.1]). We shall only deal with games with perfect recall. Hence, we may

restrict ourselves to behavior strategies (Kuhn [1953]). We shall denote by B; the set

of behavioral strategies of player i E N. Let i E N, let 6; E B;, and let u E U; be

an information set of i. Then we denote by b;,, the local strategy of i at u, that is, his

probability distribution on the set C„ of choices at u. Also, for 0~ S C N, BS - II;ESB;,

and B - BN.

Let I' be a set of games in extensive form (with perfect recall). A aolution on I' is a
function ~ that assigns to each game G- (N, K, P, U, C, p, r) E I' a subset ~(G) of B.
First, we shall be interested in the solution represented by the NE correspondence (in
behavior strategies). For the sake of completeness we repeat the following definition.

Deflnition 7.1. Let a be a solution on a set I' of games in extensive form. ~ is one-peraon
rational (OPR) if for every one-person game G-({i}, K, P, U, C,p, r) in I'

.,~(G) -{x, E B,~R,(r;) ? R;(y;) for y; E B,}
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where R;(z;), for z; E B;, is the expected payoff to i when he plays z;.

Reduced games of extensive form games were defined in Bernheim, Peleg, and Whin-

ston [1987J. Here we modify the original definition in order to get a more convenient

version. Let G -(N, K, P, U, C, p, r) be an extensive game, let 0~ S C N, and let

6-(b;);EN E B. The reduced game oj G w.r.t. S and 6 is the game in extensive form

Gs~b -(S, K', P',U', C', p', r' ) which is obtained from G in the following way. First, for

every i E N`S and u E U; we decompose u into ~u~ singletons and add them to Po(i.e.,

they belong to Pó `Po). To each x E u we now assign the probability distribution b;,.

Thus, we eliminate P;, i E N`S and U;, i E N`S and modify Po. Secondly, we also
replace r -(r;);EN by r' -(r;);ES. Furthermore, C' is the restriction to U;ESU; of C.
As the reader may verify, if G has perfect recall, then also GS~6 has perfect recall.

Remark 7.2. GS~6 may not be a game according to van Damme [1987J because of the

following reason. Let i E N`S, u E U; and x E u. If 6;,, is not completely mixed, then

an alternative at x E Pó may be assigned a zero probability, a violation of van Damme's

definition. However, some authors do not insist on positive probability at chance moves

(see, e.g., Myerson (1991]). Moreover, Kuhn's theorem, as formulated in Myerson [1991J

does not depend on it.

We now proceed to define consistency and converse consistency. A family I' of extensive

games is closed if for every G -(N, K, P, U, C, p, r) E I', 0~ S C N, and b E B, the

reduced game GS~6 E I'. Let I' be a closed family of games and let ~ be a solution on I'.

For a game G-(N, K, P, U, C, p, r) E I' with ~N~ ? 2 we denote

(7.1) Y(G) - {6 E B~6S E y~(GS~6) for every S C N, S~ 0, N}.

Deflnition 7.3. A solution ~ on a closed family of extensive games I' satisfies consistency

(CONS), (converse consisiency (COCONS)), if for every G E I' with at least two players

~(G) ~ ~(G)(v(G) C ~(G)).

We may now generalize Theorem 2.12.
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THEOREM 7.4. Let I' be a closed family of extensive games ( a-ith perfect recall). There

is a unique solution on I' that satisfies OPR, CONS, and COCOIVS and it is the NE

correspondence (in behavioral strategies).

The proof of Theorem 7.4 is left to the reader.

Let G-(N, K, P, U, C, p, r) be an extensive game with perfect recall. A behavioral

strategy b E B is a eubgame perfeci equilibrium (SPE) of G if for every subgame G. of G,

b., the restriction of b to G., is a NE of G.. Let I'p be the set of all games with perfect

information. The reader may verify that I'p is closed. ~Ve shall now chazacterize the SPE
solution on I'P. First we need to modify OPR.

Deflnition T.S. Let y~ be a solution on I'p. ~ is perfectly OPR (POPR) if for every

one-person game G- ({ i}, K, P, U, C, p, r) in I'

y~(G) -{x; E B,~a, is an SPE of G}.

As the reader may easily verify POPR is stronger than OPR even on I'y. POPR is,

simply, the principle of backward induction for one-person decision problems with perfect

information (i.e., if there are chance moves, then the player knows their outcomes with

certainty). ~Ve are now ready to prove the following theorem.

THEOREM 7.6. There is a unique solution on I'y that satisfies POPR, CONS, and
COCONS and it is the SPE correspondence.

PxoOF: SPE satisfies POPR by definition. CONS follows from our definition of reduced

games of extensive games. Thus, it remains to prove that the SPE solution satisfies

COCON S on I'p. Let G-(,V,1~, P, L', C,p, r) E I'P with ~,ti ~? 2 and !et x E SPE(G)

(see (7.1)). Furthermore, let G. be a subgame of G. Because a E SPE(G) for every i E N
z, E SPE(G{'1~:). Cleazly G{~1'` is a subgame of G{'l~i for each i E N. Hence x,',

the restriction of a, to the moves of i in G~~1'z, is an NE of G~~1'z. By COCONSa (see

Definition 2.6) of NE, x' -(x; );EN is an NE of G.. Thus, SPE satisfies COCONS.
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We shall now prove the uniqueness part of Theorem 7.6. Assume that ~p is a solution on
I'y that satisfies POPR, CONS, and COCONS. We will show that y~ - SPE by induction

of the number of players. Let G E rP. If G is a one-person game, the y~(G) - SPE(C)
by POPR. Thus, let the number of players of G be n? 2. By the induction hypothesis
y~(G) - SP'E(G). Hence, by CONS and COCONS

:~(G) - y(G) - SPE(G) - SPE(G) Q.E.D.

We conclude with the following example which shows that SPE does not satisfy CONS on
the set of all extensive games with perfect recall.

Example T.7. Let G be the game of Figure 1. Then ( al, 61, cl ) E SPE(G) (because G
has no subgames). However (a1,61) ~ SPE(GI~~ZI~t''~6'~"~) ( see, again, Figure 1).

8. Concluding Remarks

First we summarize our results for games in strategic form. We considered six solutions

which are ordered by inclusion in the following way

(8.1) NE ~ CPNE ~ S.11SNE ~ SNE ~ SS,VE ~ DOA1

(see Sections 2-5 for our abbreviations).

All the solutions in (8.1) satisfy the two basic axioms: one-person rationality (OPR), and

consistency (CONS). Each of the first five solutíons also satisfies some versions of converse

consistency (COCONS). For CPNE and S:~1SNE we weakened COCONS by combining it

with some version of restricted Pareto optimality (see Definitions 4.1 and 4.6). For SNE

and SSNE we have to add full WPO and PO respectively (see Definitions 3.1 and 3.6

and Theorems 3.2 and 3.7). The axiomatization of dominant strategies required the in-

troduction of two new strong properties: DP and SOL (see Definitions 5.2 and 5.4 and

Theorem 5.6). Two new axioms, IIS and DUM (see Definitions 2.19 and 2.20), which aze

simple and intuitive, were introduced in Section 2 and served to obtain alternative charac-

terizaiton of NE and SNE (see Corollaries 2.22 and 3.9). In each of our chazacterizations

the axioms which appear are independent.
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Secondly, we remark on possible generalizations of our results. As we indicated in
Sections 6 and 7, all our results may be generalized to Bayesian and extensive games.
Moreover, on the class of extensive games with perfect information we axiomatized the
SPE (subgame perfect equilibrium) cortespondence (see Theorem 7.6).

Finally, we mention some open problems. The axiomatization of the following solutions:

perfect equilibria (Selten [19ï5]), proper equilibria (~lyerson [1978]), persistent equilibria

(Kalai and Samet [1984]), and stable equilibria (Kohlberg and Mertens [1986]), have not

yet been obtained. However, we notice that all these solutions do not satisfy CONS (see

Example 2.4).
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