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Abstract

The meaning of conjugate prior densities for a linear regression model is
examined when we venture outside the ususl realm of exponentiel models.
For a non-Normal elliptical family of data densities, we define a class of
semi-conjugate prior densities, fully coherent with the uncontroversial
conjugate prior in a Normal framework.
We discuss results from the literature on the particular case of Student t
errors, and derive a semi-conjugate prior for such models.
Since the transformation used to obtain this prior does not affect the
regression coefficient vector, any semi-conjugate prior leads to exactly
the same marginal Student t prior and posterior densities for this vector
as in the reference case of a Normal regression model with conjugate
prior.
It is shown that these semi-conjugate prior densities allow us to obtain
most posterior results analytically under informative prior assumptions at
the cost of putting a finite upper bound on the unknown error precision
parameter, and thus restricting the original paremeter space.

Keywords:

Bayesian econometrics, Student t errors, linear regression, conjugate
prior densities, posterior inference.
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1. Introduction

Part of the literature in Bayesian econometrics has been directed towards
broadening the distributional assumptions on the error terms of the mul-
tiple regression model.
Zellner (1976) considers Student t errors and concludes that inference
still remains relatively simple with diffuse priors. Jammalamadaka, Tiwari
and Chib (1987), henceforth denoted by JTC, consider spherically distri-
buted errors and state that under diffuse prior assumptions prediction is
unaffected by such departures from Normality. Chib, Tiwari and Jammalama-
daka (1988) extend these results to a case of elliptical errors and
Osiewalski (1989) examines posterior and predictive inference in ellipti-
cal cases for possibly nonlinear models and general prior structures.

An intríguing aspect of such excursions outside the exponential family of
distributions, is whether one can still find "conjugate" prior distribu-
tions, and, if so, in which sense of the word.
A quick perusal of the literature shows that the concept of conjugate
prior distributions is not always defined in the same way.
Traditionally, a conjugate Family is defined either by the property of
proportionality to the likelihood (or, more generally, having the same
functional form) or by being closed under sampling. Where Raiffa and
Schlaiffer (1961) stress that the latter property is very desirable, they
base their actual definition of conjugate priors on the former charac-
teristic, a definition also adopted by e.g. Zellner (1971, p. 21) and
Press (1972, p. 76).
Berger (1985, p. 130) uses the term "conjugate family" for a class of
prior distributions that is closed under sampling, and reserves the term
"natural conjugate" for priors with the seme functional form as the like-
lihood. The latter property is stressed as being crucial for the construc-
tion of conjugate families in DeOroot (1970, p. 164), yet he defines these
families as being closed under sampling.
Both concepts coincide for exponential (and uniform) families of data
distributions, where the dimension of the sufficient statistics remains
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fixed under independent sampling (see e.g. DeGroot 1970, pp. 159-164).
Views only start to differ when we venture outside these standard cases.

Diaconis and Ylvisaker (1979. 1985) claim that these "traditional" con-
cepts are essentially vacuous, and Hartigan (1983. P. 72) dismisses the
concept of conjugate priors altogether, as a"chimera" (in his index,
p. 142). It is shown by Diaconis and Ylvisaker (1979) that the "usual"
conjugate families can be characterized unambiguously by a posterior mean
that is linear in the observations. Goel and DeGroot (1980) investigate
this linearity in a more general form for linear regression models, and
suggest that "perhaps one should use linear posterior expectation as the
defining property of a conjugate distribution" (p. 895). Outside the expo-
nential family setting, this concept was elaborated for location parameter
problems by Diaconis and Ylvisaker (1985).

In spite of the general theoretical debate, the restrictive Normal linear
regression framework (with a covariance matrix known up to a scalar factor
2a) allows a widely accepted form of conjugate prior, namely the Normal-
inverted gamma distribution, or, equivalently, the Normal-gamma distribu-
tion if we parameterize in terms of i2 - a-Z. Such priors have the same
functional form as the likelihood, are closed under sampling and give
linear posterior means of regression coefficients.
For a regression model with multivariate t errors, however, the meaning of
the term "conjugate prior" is not so straightforward. References to this
question in the literature are fairly scarce and usually remain rather
vague. Zellner (1976, p. 403) proposed a t-F prior structure as a natural
conjugate distribution, since its functional form corresponds to the like-
lihood, but showed in an appendix that the posterior density will not
retain the t-F structure, but will rather be a continuous mixture of t-F
densities.
The commonly used conjugate prior for Normal linear regression, i.e. the
Normal-gamma distribution, is the starting point for JTC (their Section 3)
who suggest that the conjugate prior density for the spherical family is
given by their formulae (6)-(8). They also state that for the specific
multivariate t regression model considered by Zellner (1976), their ap-
proach gives his t-F prior as a conjugate one.
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However, as we shall show in Sections 2 and 3, the correspondence between
such "conjugate" priors in non-Normal elliptical models and Normal-gamma
priors in Normal models is not as simple as it seemed in JTC, and, fur-
thermore, this strategy cennot result in finding Zellner's (1976) t-F
prior for his model. We borrow from JTC the basic idea of relating a"con-
jugate" prior for regression with spherical (or elliptical) errors to the
Normal-gamma prior for regression with Normal errors. In Section 2 we
formalize this idea by defining a semi-conjugate prior as the prior which,
under s certain transformation, is equivalent to the standard conjugate
prior in the Normal regression framework. Since our definition requires
coherency with the uncontroversiel reference case, but neither proportio-
nality to the likelihood nor being closed under sampling, we use the term
"semi-conjugate prior". There is another good reason to do so. Our semi-
conjugate priors imply multivariate Student t marginal distributions of
the regression coefficients a priori as well as a posteriori, so the func-
tiont~l form of the joint prior is (at least) partially preserved in the
posterior.
Section 3 slightly broadens Zellner's (1976) t-F prior family, examines
the conjugate properties of these priors in Zellner's model, and shows
that the t-F prior is semi-conjugate, but for a different model. In Sec-
tion 4 we find, after the appropriate transformation, a semi-conjugate
prior for the standard multivariate t regression model considered by
Zellner. This will allow us to conduct marginal posterior inference on the
regression coefficients analytically under informative prior densities for
the multivariate t model, an analysis which required numerical integration
in Zellner (1976).

Some concluding remarks are grouped in a final section.
Appendix A explains our notation for probability density functions, and
gives some useful properties, whereas Appendix B contains the posterior
analysis for Zellner's model under the slightly generalized t-F prior.
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2. Semi-Conjugate Prior Densities

Consider the standard linear regression model

y - Xp . u, (2.1)

where we observe the n dimensional vector y, X is an nxk known design
matrix of rank k, end p is a vector of k unknown regression ccefficients.
In line with the literature, we take X to be a given matrix of observa-
tions, although we fully realize that in actual prsctice X will typically
be random. The latter case can easily be incorporated within our present
framework if X is independent of all the parameters in the implied condi-
tional model, and we remark that such a condition holds under the slightly
stronger assumption of a Bayesian cut (see Florens and Mouchart 1985). The
stochastic nature of the model, however, does not follow from the ususl
practice of assuming a Normal distribution for the error vector u. In-
stead, we take a scale mixture of Normal densities, leading to the follo-
wing sampling model

P(YIR.T2) - J PN(YIXP.W(z)2 12 V) P(zI~.T2)dz,
0 i

(2.2)

where V is a known nxn PDS matrix, z is a continuous positive random
variable, that introduces the mixing on the scale parameter W(z)2~t2, and
where W(.) is differentiable in (O,m). T2 ~ 0, finally, is the "standard"
unknown scalar precision parameter. For the notation of density functions,
as well as certain useful properties, we refer to Appendix A.
If we choose V- In, we are in the class of spherical distributions as in
JTC, and for any constant W(z) the model simplifies to the ususl Normal
case.
However, for nonconstant W(z). P(YIS.T2) is some non-Normal elliptical
density. In particular, if we choose W(z) -(vC~z)~ and z as a X2 density
with v degrees of freedom (thus independent of s and TZ), then0

P(YIS.T2) - PS(ylvo,xA.~2~-1). (2.3)
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which is an n-variate Student t density with v0 degrees of freedom (v0
known, v0 ) 0), location vector X~e (the mean if v0 ~ 1), and precision
matrix Z2V-1 (i.e. with covariance matrix v0(v0-2)-1T-2V if v0 ~ 2). In
(2.3) both p and t2 are unknown parameters, on which we wish to conduct
Bayesian inference. With V- In the data density in (2.3) corresponds to
the one in Zellner (1976), who paremeterizes in terms of the variance
parameter a2 - i-2. The role of scale mixtures of Normal diatributions
follows from Kelker's (1970) Theorem 10, discuased in Dickey and Chen
(1985. P. 169).

Let us first consider the elliptical model in (2.2), and specify a prior
density p(p,T2) on its parameters. The joint density then becomes

P(Y.z.P.t2) - PN(YIXA.W(z)2 12 V) P(zIP,t2) P(P.T2), (2.4)
T

and we shall use the transformation (t2,z) ~(p2,z) with

~2 - w(z)-2T2. (2.5)

i.e. p~2 is just the inverted scale parameter of our Normal density in
(2.2). This leads to

P(Y.z.P.p2) - PN(YIXP.Y~-2V) P(H,P2.z).

where y and z are independent given (p,g~2), and

p(1~.9~2.z) - w(Z)2P(zld.T2) P(R.i2)

(2.6)

(2.7)

with i2 - w(z)2~2.

Remark that where p(ylg,t2) is Student t in (2.3) since z had to be in-
tegrated out, p(yl~B,iv2) is simply Normal and independent of z in (2.6), as
the entire effect of z is included in g~2. This, of course, implies that
if, in (2.7), p(s,~o2) happens to be in the well-known Normal-gamma form,
which is conjugate (in all three sensea mentioned in the introduction) for
the Normal linear regression model, end is denoted by
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pN0(P.~Z) - pN(PIP.p-2A-1) pG(V2I2,2), (z.8)

with e) 0, f) 0, P E Rk and A a PDS kxk matrix, then the posterior
2p(P,y Iy) will have the same functional form, given e.g. in (A.7). In the

case that (2.8) applies, we can write prior and posterior densities for
our original parameters (P,TZ) as, respectively,

P(P.T2) - fmpNG(P.V2)m(z.P.4~Z)dz,
0

and

P(P.T2IY) - JmpNO(P.S~2IY)m(z.P.G2)dz,
0

with pz expressed as in (2.5) and using the same mixing function

m(z.P.P2) - W(z)-Zp(zIP.P2)

in both cases, where z 2p( IP,p ) is derived from (2.~).
These considerations lead to the following definition.

(2.9)

(2.10)

(2.11)

Definition: For a given data density (2.2), every prior density p(P,TZ)
that corres nds to 2po p(P,~ ) in the Normal-gamma form ( 2.8) is called a
semi-conjugate prior density.

Note that our definition of a semi-conjugate prior for scale mixtures of
Normal distributions is coherent with the usual notion of the conjugate
prior for the Normal regression model. It also gives three obvious neces-

y p((3,t ) is a semi-conjugate prior, thensar conditions; if 2

(i) p(P) - pSÍPIe.P.f A).

e„
(ii) p(PIY) - PS(PIer.Pr.fr Ar).

where



A~ - A a X'V-1X, Ar - A~1(AÁ4X~V-lY).

fr - f t~'A~ t y'V-ly - ~wA.P.. and er - e t n.

(iii) E(~IY) - f3r - Aw1AH . Arl}('V-lY.

i.e. the posterior expectation of g ia linear with respect to y.
For non-Normal distributions, (iii) may appear to be in conflict with the
results in Goel end DeGroot (1980). In fact, our elliptical densities in
(2.2) are not covered by their fremework, which assumes that the covarian-
ce matrix of the errors is fully known. In addition, their asaumption of
independence can not be satisfied by non-Normal jointly elliptical errors
(see Kelker 1970, Lemma 5).
Although a semi-conjugate prior density implies a Student t form for both
the marginal prior end the marginal posterior of p, it need not preserve
the form of the joint prior on (g,i2) in the posterior analysis, nor does
it necessarily possess the functional form of the likelihood.

JTC's description of a"conjugate prior for the spherical family", given
by their formulae (6)-(8), only corresponds to our (2.8), (2.9) and (2.11)
under independence between (g,~2) and z. Note that JTC implicitly imposed
two conflicting independence conditions: between z and (g,T2) in their
formulation of the data density, and between z and (~8,9~2) in their
description of a"conjugate prior". They did not explicitly distinguish
between the conditional distributions of z given (g,p2) and given (~,t2),
using G(z) (in their notation) for both. Therefore, they were led to the
conclusion that Zellner's (1976) t-F prior results from (2.9) as e"conju-
gate" prior for his multivariate t model.
That the latter conclusion is not warranted will be seen in the next sec-
tion, which will address the specific case of Student t errors.

3. Conjugate and Semi-Conjugate Properties of the t-F prior

From the form of the likelihood function in (2.3) (with V- I) Zellner
(1976) deduced the following prior atructure on p and a2 - T-2.n
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k
2 IX ~v0624f~-2P(sI6 ) l y

v
v~k

(P-P)'A(S-fl) 2
(3.1)

a
v0a2~f

v0 v

P(62) a ~Y~a2~2

-1~1 4 LOa21-2
(3.2)

with the hyperparameters v) v0, f) 0, p E Rk and A any PDS matrix of
dimension kxk, while v0 ) 0 is defined in (2.3). Note that Zellner wrote

2the prior in terms of va - v-v0 and sa - f~va.
Zellner (19~6, p. 403) stated that (3.1)-(3.2) constitutes a natural con-

jugate prior for the multivariate t case, and called it the product of a

conditional multivariate t density in (3.1) and a marginal F density in

(3.2). This accounts for the term t-F prior, which we shall use in spite

of the fact that not a2 itself, but rather 62(v-v0)~f is F distributed

with (v0,v-v0) degrees of freedom. Formally, a2 has the following three-

parameter inverted beta (IB) distribution (also known as beta prime):

v-v v
P(o2) ' PIB~Q2I 2 0. 20. y

~ o
(3.3)

By construction, the t-F prior has a similar functional form as the like-
lihood, and is thus natural-conjugate in this sense. In fact, exactly the

same functional form would require that the exponent of the first factor
in (3.2) be v0~2 instead of (v0~2)-1.
In order to cover this case as well, we slightly extend the class of

priors to nonzero .i in

2 k v I 2 v-v0-~ v04~ fP(P.a )- PS (PIv,P. 2 Al plBlo I 2. 2, v . (3.4)
I v0o ~f J l 0

where now v) v0 t~) 0(end still v0 ) 0), so that no links between v
and v0 remain. Taking ~. - 0 leads to (3.1)-(3.2), while ~- 2 ensures
exactly the same functional form as the likelihood.

However, irrespective of the value we choose for ~, (3.4) is not a semi-
conjugate prior structure for the model in (2.3), since e.g. the necessary
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condition (ii) is not satisfied: although the marginal prior of S has a
Student t form, the posterior does not. Appendix B proves that p(p~y) is,
instead, a continuous mixture of t densities. In fact, this was essential-
ly shown in Zellner's (1976) appendix, but only for .~ - 0 and subject to
slight errors. Therefore, we have to conclude that the t-F prior in (3.1)-
(3.2) [or (3.4)] cannot correspond to a Normal-gamma structure p(g,p2)NG
for (2.3), contrary to JTC's statement in their Section 3.

The reason why the posterior does not preserve the functional form of the
prior is rather obvious: the conditional posterior density p(pla2,y) is in
the 2-0 poly-t form with one t kernel coming from the likelihood and one
from the prior ín (3.1). Since both kernels are usually different, they do
not reduce to a single t density. Of course, this should not surprise us,
since the model we treat is outside the exponential femily of data densi-
ties. In order to obtain the marginal posterior density of p, we thus
require numerical integration. Note also that the t-F prior in (3.4) can
not be called conjugate in the sense of "giving linear posterior expecta-
tions" either, since neither E(~~a2,y) nor E(g~y) are linear in y.

We now set out to examine whether, within the class of linear regression
models with Student t errors, we can find one for which the t-F prior in
(3.4) is semi-conjugate and thus leads to analytical marginal posterior
inference [condition (ii) ín Section 2].

Using the definition from Section 2 we know that a~ prior on (p,T2) that
implies a Normal-gamma prior structure for p(p,p2) will be semi-conjugate

for an elliptical model from the class in (2.2). Of course, the variable
transformation from t2 to ~2 in (2.5) will have consequences for the
mixing density, and thus for the model.
Let us specify y(z) -(vG~z)~ as in Section 2, but let now z have a x2

density with vG~.~ degrees of freedom, conditional on (p,~2) and not on
(p,z2), which led to the model in (2.3) for .~ - 0. Under these assump-
tions, it can be shown [using (A.1)-(A.4)] that the t-F prior in (3.4) is
implied by the following Normal-gamma prior structure on (p,9~2):

U-v -.L l

P(S.p2) - PN(PIA.~-2A-1) PG P2 2G . ZJ . (3.5)
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which makes the prior in (3.4) semi-conjugate for (~,t2). It is, however,
important to realize that the independence between z and (S,p2) now assu-
med introduces a dependence of z on (~,T2), expressed in

( v td i2
P(z~~.T2) - PGIzlv2k. 0~ (3.6)

l o

where ~ no longer appears and we have defined

d~ - f ' (~-~)'A(~-~). (3.7)

Note that, for ~- 0, (3.5)-(3.7) strictly corresponds to the assumptions
in Section 3 of JTC. However, JTC implicitly treat different models in
their Sections 2 and 3, corresponding to different choices of the mixing
density. For their Section 3 the relevant model is (2.2) mixed with the
density in (3.6), which becomes (in terms of c2 - j-2)

P(yla.Q2) - Pn fylv.k,xs. v.k v 1 (3.8)
SI v0o2.ds

-

instead of (2.3). So (3.8) is the Student t model for which the t-F prior
in (3.4) is semi-conjugate, which does not hold for (2.3), nor for
Zellner's (1976) model. This semi-conjugate prior can not be proportional
to any likelihood following from (3.8), since the latter has a 1-1 poly-t
form in ~, given a2, and p(~~o2) is just a Student t density. Note, how-
ever, that the fixed constants appearing in (3.8) are also the hyperpara-
meters of the prior in (3.4). This particular feature implies that the
kernel appearing in the denominator of the 1-1 poly-t likelihood will
exactly cancel out with the Student t kernel of the prior for ~ given o2.
Instead of a 2-1 poly-t density, the posterior p(~~o2,y) will then simpli-
fly to a Student t form. The joint posterior density p(~,o2~y) will retain
the t-F form of (3.4), but with the updated hyperparameters (vw,AM,~~,f~)
instead of (v,A,~,f), where vM - vtn and the rest was defined in Section
2. Note that v0 and ~, also appearing in (3.4), are not affected by the
semple information. The fact that the functional form is here retained for
02 as well is due to the assumed independence of z and ~2, given ~.
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4. Semi-Conjugate Priors for the Standard Multivariate t Model

Let us now reparameterize the data density (3.8), obtained in the previous
section, in the following way: define ~-(vCaZtd~)~(vtk) and consider

P(Yls.ó) - PS(Ylvtk,X~,(yV)-1). (4.1)

We now have a Student model with v.k ) k degrees of freedom (k is the
dimension of ~), ruling out very fat (e.g. Cauchy) tails.
Apart from that restriction, however, we have a standard multivariate
Student t with the same location vector and relative precision matrix V-1
as in (2.3), but with a different variance parameter y, now related to ~
through the inequality ~) d~~(v4k). The precision parameter is now b-
y-1, instead of t2, and note that for any given value of ~ it is restric-
ted to lie in the bounded interval (O,vák). If we take the t-F prior in

~
(3.4), then the reparameterization to (~,b) leads to a beta distribution
for b given ~:

P(bIs) - PB(bl~. ~. Uák).
~

(4.2)

where we have defined x- v-vp-~ ~ 0, in order to neutralize one of the
hyperparameters (v0,~). Due to the reparameterization from (S,a2) to (~,b)
only the sum vp.~ affects data and prior densities now, so that k replaces
both vC and ~. Since coherency was the principle underlying our definition
of a semi-conjugate prior, it should not be affected by changes in the
parameterization. Therefore, the combination of (4.2) with the marginal
prior on ~, resulting from (3.4), namely

P(~) ' PS(~IH.~.f A). (4.3)

is still semi-conjugate for (~,b) in (4.1). The implied marginal density
of b is nonzero over (0,(vtk)~f) and the conditional densities of S, given
values of b E(0,(vtk)~f), are nonzero over ellipsoids (~-~)'A(S-~) (
((v~k)~b)-f.
The semi-conjugate structure in (4.2)-(4.3) puts a lower bound f~(v~k) on
the variance parameter y and allows ~ values far from the prior mean (in
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the metric induced by A) only for large values of y, i.e. for noisy data
processes. Contrary to the case considered in the previous section, the
hyperparameters of the prior do not appear in the data density, so that
there is room for prior elicitation. Apart from the obvious restrictions
that A be PDS, N) 0 end f~ 0, there is however, an upper bound on the
degrees of freedom in (4.3) induced by (4.2), nemely H C v. If the model
in (4.1) has relatively fat tails, then the prior on ~ must have even
fatter tails (with a difference of more than k degrees of freedom). In
addition, we assume that N) 2, which provides us with an easy way of
eliciting the hyperparameters (u,f,~,A) in the t-beta prior (4.2)-(4.3),
given values of v chosen for the data density. Indeed, from (4.3) we can
then directly assign values to N, ~ and A, given f, based on the prior
mean and variance of ~ and the desired tail behaviour (e.g. through the
existence of prior moments). More importantly, a choice for f can then be
made on the basis of the prior mean for the varisnce parameter r implied
by (3.4):

E(X) - v.k-2 f.
- (v.k)(N-2) (4.4)

So, provided we are willing to choose H ~ 2 and to accept more than Nrk
degrees of freedom for the multivariate t errors, we have an entirely
analytical marginal posterior analysis for ~ and we know both prior and
posterior means of y.
In particular, we obtain for S the Student t posterior

Nw
p(~IY) - PS(~Iuw.~w.fw Aw). (4.5)

where the hyperparameters Aw, Sw and fw are defined in Section 2 and yy~ -
N.n. The posterior mean of ~ will be given by

1 v-Httr(AAM1)
E(~IY) - y~k f` H.-2 fw (4.6)
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from the t-F osterior densit of 2p y (p,o ). However, the t-beta prior in
(4.2)-(4.3) is only semi-conjugate, so that the conditional posterior
density of b is no longer in e simple beta form, but is given by

yy~~k vM,k
r l

P(bIP,Y) -~1 t á 2 1~~ b- 2 PR bl2k. ~. vák J . (4.7)
s ~

on the support (0,(vik)~d~), where we have defined

B~ - (Y-X~)~V-1(Y-XF3). (4.8)

Remark that the density in (4.7) can also be written as proportional to a
product of a beta and an inverted beta kernel. In particular, we can

single out the beta density corresponding to the prior p(b~s) in (4.2) to

obtain:

P(b~á.Y) ~ P(b~P) PIB(blvzk -1. z 41, vgk).
~

(4.9)

where the correct support is induced by the prior. Note that, for b- y-1,
the Student t model (4.1) can be presented as a mixture of Normal distri-
butions pN(y~Xp,[(vtk)~zb]V) with the mixing density

P(z~P.b) ' PO(z~v2k. 2). (4.10)

independent of (p,b). If we define the inverted scale parameter ;-
bz~(vtk), which is the counterpart of p2 in Section 2, then the prior
density (4.2)-(4.3) and the mixing density (4.10) correspond to a Normal-
gemma prior for (g,;) [i.e. (4.2)-(4.3) i s semi-conjugate] and to

P(z~R.;) - PO(z-id~~~. Z). (4.11)

which is only nonzero when z);d~, i.e. in the support of (p,b), and

implicitly imposes the other prior constraint that k C v. Clearly, now z

depends on ;, given p, which results in e difference between prior and

posterior functional forms for b in (4.2) end (4.9), reapectively.
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5. Concluding Remarks

In the general case of a linear regression model with errors distributed
as a scale mixture of multivariate Normal densities, we have defined a
semi-conjugate prior structure as the prior which, under a certain trans-
formation, corresponds to the Normal-gemma (i.e. conjugate) prior for the
Normal regression model. Since the transformation used does not affect the
regression coefficient vector, eny semi-conjugate prior leads to the same
Student t marginal prior and posterior densities for this vector as in the
reference case of a Normal regression model with conjugate prior.
Focusing on multivariate Student t errors in particular, the semi-conju-

gate prior (4.2)-(4.3) allows us to conduct a fully analytical marginal
posterior analysis of the regression coefficients under informative (i.e.
non-diffuse) prior assumptions. In addition, we can easily evaluate the

posterior mean of the varience parameter y.

The price to pay for this is that we have to restrict ourselves to a

specific subset of the parameter space Rk X Rt. The. latter is a direct
analogue of the pitfells usuelly encountered in the natural conjugate
framework for Normal models. These pitfalls can generally lead to a decep-
tively strong influence of the prior (see Richard 1973, p. 181), if we do
not carefully assess all its (implicit) consequences.

Of course, our definition of semi-conjugate prior densities in Section 2

was formulated in terms of a broader class of elliptical models in (2.2),
but it is by no means obvious that a semi-conjugate prior exists for any

specific member of this class. For example, we have found the semi-conju-

gate t-beta prior for the multivariate t model, but only when the amount
of degrees of freedom exceeds the dimension of the regression coefficient

vector. Once we are willing to accept the latter restriction, we can ana-
lytically obtain the marginal posterior density of g and the posterior
mean of the variance, which will suffice for most practical purposea.
However, implicit restrictions on our semi-conjugate prior structures
should not be overlooked.

Due to its internal coherency and its ensuing invariance with respect to
reparameterizations, the concept of semi-conjugate prior densities seems
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intuitively appealing. It is also relatively easy to check and has in-
teresting consequences [(i)-(iíi) in Section 2]. It only coincides with
one of the three definitions of "conjugate" mentioned in the introduction,
namely the linearity of posterior expectations for the regression coeffi-
cients. Fully preserving the functional form of the prior typically seems
a hopeless cause outside the exponential framework, and we do not suggest
taking the same functional form as the likelihood in these cases. The
latter property, rather useless in itself, is traded in for the possibili-
ty to conduct analytical inference on part of the parameters. In addition,
we feel that the semi-conjugate concept has considerable scope for theore-
tically interesting results.
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Appendix A. Probability density functions

A.1. Definitions

A k-variate Normal density on x E Rk with mean vector b E Rk and PDS kxk
covariance matrix C:

PN(x~b.C) - C(Zrt)kICI~-}exP - 2(x-b)'C-1(x-b).

A k-variate Student t density on x E Rk with r ) 0 degrees of freedom,
location vector b E Rk and PDS kxk precision matrix A:

r(r.k) rtk
PS(x~r.b,A) - r 2 k~2 ~A~~C1 4 r(x-b)'A(x-b)]- Z.

r(2)( rrt)

A gamma density on z) 0 with e,f ) 0:

P~(z~e.f) - fe[r(e)~-lze-leXP(-fz).

which becomes a xv for e- 2 and f- z.

A beta density on v E(O,c) with a,b ) 0:

P (v~a,b,c) - C(atb) (v)a-1(1- v)b-1
B cr(a)ï(b) c c

A three-parameter inverted beta or beta prime density on w) 0 with a,b,
c) 0(see Zellner 1971, p. 3~6):

P (w~a.b.c) ' i(atb) (w)b-1(1{ w)-(atb)
IB cï(a)ï(b) c c

a special case of which is an F density:

v2 vl v2
PF(wlvl.v2) ' PIB w 2' 2' v 1
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An m-0 poly-t density has a kernel which is composed of the product of m
Student t kernels, whereas an m-n poly-t density is defined as the ratio
of an m-0 poly-t to an n-0 poly-t density. Such densities, based on the
work of Dickey (1968), are presented in Drèze (197~), whereas algorithms
for their analysis are discussed in Richard and Tompa (1980).

A.2. Some-ero~erties

PN(x~b.~ A-1) PO(v~Z. Z) -

- PS(x~e,b.f A) PO(~Ie2k
f,(x-b2'A(x-b)). (A.1)

PS(x~a'e.b,a~ef A) PIB(~~e2~. aZ~. a) -

k e-~ k.e-~ a~~ f.(x-b)'A(x-b)
- PS(x~e-~.b,f A) PIB(v~ 2. 2. g ),

-a ( ~ ( e. (A.2)

If P(v.z) ' P(~)P(z) - PG(~~Z. 2) P~(z~2, 2) and w - hZ (h is a positive

constant), then

e c fh c~e fh~dwP(w.z) ' PIB(w~2. 2. á) P~(z~2, 2h ). (A-3)

This is e simple genecalization of the well-known theorem that the ratio

of two independent x2 variables (both divided by their degrees of freedom)

has en F distribution.

If p(w) - pIB(w~a,b,c) and v- W, then

P(v) - PIB(vlb.a.~).

If p(w) - PIB(w~a,b,c) and v- bc w, then

P(~) - PF(v12b,2s).

(A.4)

(A.5)

pN(xlb Ws A-1) p0(wle2~, Zá) PO(sla2~, g) '
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x' PS(xIe-~.b.ef~ A) PIB(wlaz~, kiZ-~. ft(x-b)'A(x-b)

x pG(slk.Z.a aR4[f.(x-2á'A(x-b)lw). -a ~ ~ ~ e. (A.6)

pNÍYIX~.~-2V) pN(SIS.~-2A-1) pG(PZIZ, z) -

eM fM
- pNÍ~I~w.~-ZA.1) P~(~ZI2 . 2 ) PS(YIe.X~.fíVrXA-1X,)-1). (A-7)

where:

ew - e'n. Aw - A r X'V-1X, ~w - Awl(AHfX'V-lY)

fw - f ' ~'A~ t y'V-ly - ~~A.Sw - f . (Y-XH)'(V,XA-1X,)-1(Y-XS)

This identity summarizes the standard Bayesian calculations in the case of
Normal linear regression with Normal-gamma ( i.e. conjugate) prior. See
also Raiffa and Schlaifer (1961, p. 58).

Appendix B. Posterior corresponding to Zellner's (1976) model and a t-F
prior

Consider the data density

PÍYI~.T2) - PS(YIvC.X~.TzV-1) - f~pN(YI~.v~2 V) pG(zI20. 2)dz,
0 zT

and the prior density [using the hyperparemeters (vC,~,K.f.S.A)]

v .~ v
P(~.T2) - PS(SIu.~.f A) pIB(T2I ~2 . k~. á).

S

When expressed in terms of 62 -(TZ)-1 and using (3.7), these densities
strictly correspond to (3.4). According to (A.6) one can write

v v 4~
PÍ~.TZ) ' OfmpN(SI~.v02 A-1) pG(T2I2' 2v~ v) P~(vI ~2 . Z)dv.
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Now p(y,~e,T2) - p(yls,,~z) p(~,t2) can be treated as a marginal density
from the joint denaity

Y U
P(Y.R.t2.z.v) - PN(YIXH, ~2 V) PN(f~IA. ~2 A-1) PG(T2I2'

2v v)zt vT 0

~
x PG(vIyOZ , 2) P~(zlvo. 2),

where v and z are (marginally) independent. Replacing v by a- Z , with the
use of (A.3), and applying (A.~) conditionally on (a,z), one obtains the
following factorization:

P(Y.~.T2.z.a) - P(X) P(zIA) P(P.TZIY.z.X) P(YIz.X)

where

v v f.C
P(X) - PIB(XI 0. ~Z . 1).

~
PÍzIX) - P~(zI2v04 . 12X).

v ytr f z
P(~.TZIY.a.z) - PN(PISX.~2 MX1) PC(T2I 2' 2v ).

zT 0

P(YIz.X) - PS(YIH.X~.f(XVvXA-1X,)-1) - P(YIX).

MX - X,V-1X t aA, sX - M~1(aAR~3C'V-lY).

f~ - Af ~ (Y-XA)'(V a ~ XA-1X,)-lÍY-XS).

and N. - utn.
Integrating out z, with the use of (A.6), leads to

u.
P(Y.P.Z2.X) - PSÍPII.4.SX, f MX) x

a

2 ,~ k{1;. v~(1,~)

PIB(~ Iv~42~ 2 ~ fX'(A-SX)'M~(R-Sa)) P(YIX) P(a). (B.1)
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Using (A.4) and (A.2), one can equivalently write

2 k 2v0.u..~
P(Y.~.6 ,~) - PSÍ~I2v~~Nwt~.~~. 2 M~) '

vOQ (laa)if~

y.,, f
pIB(62I 2' v0} 2' v0(lr~)) P(YI~) P(~)~ (B.2)

Note that, conditionally on y and J~, (p,a2) has a t-F distribution, thus
the posterior density p(~B,a2~y) is a continuous mixture of t-F densities
with the following míxing density:

}4M Í[tyOaKi.t 2Yor~
-1

P(A~Y) a PÍYI~) P(a) a IM~I-~f~ 2~ 2 (laa)- 2.

The first factor on the r.h.s. of (B.1) equals p(Sly,a), and the second
factoc on the r.h.s. of (B.2) is p(62~y,~). For ,C-O, implying that u- va
in Zellner's notation, these two densities, as well as p(a~y), are expec-
ted to correspond strictly to those obtained by Zellner (19~6, appendix).
Yet, they differ, mainly in degrees-of-freedom parameters. These differen-
ces are caused by slight errors in Zellner's calculations. After his
(A.5), Zellner states that the Jacobian of the transformation from
(a2,Y,8) to ( a2,t,a), where a- T2~92, i s proportional to a3~2~T; obvious-
ly, it is proportional to 2~~3,2. ( Differences 3n notation: Zellner's T, 8
and vs2tg(~) are equal to our z-~, v-~ and f~, respectively; thus, Zell-
ner's a- T2~92 is the seme as our ~- v~z). In addition, the factoriza-
tion of Zellner's (A.8a) into (A.8b) and (A.Bc) is not fully correct;
(A.Sc) should be divided by [(lta)v0]~[vs2tg(a)], from the normalizing
constant of (A.8b). When one takes into account the true value of the
Jacobian and the correct factorization of p(a2,a~y), one will obtain the
same p(o2ly,~) and p(~Iy) as we do for ,~-0. The remaining differences are
due to obvious misprints; in Zellner's formula for cA, after (A.9), g'Ap
should be multiplied by ~, as it is in his (A.4), and the exponent of
(l~a) in (A.10) should read -v0, not v0. Correcting these misprints one
obtains from Zellner's (A.10) the same p(ply,a) as ours for i-0.
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