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1. Introduction

In an important regulatory innovation the Basel Committee on Banking Supervision has

allowed for banks to use their own internal models { so-called Value-at-Risk (VaR) mod-

els { for calculating the regulatory capital cushion needed to cover the market risk of

open positions in an institute's trading book. Compared with the standardized methods

the internal models approach o�ers a whole bunch of advantages within the process of

risk management, i.e., in measuring, monitoring and managing market risk for trading

portfolios. These advantages include the convergence of economic and regulatory capital

(Matten; 2000), the avoidance of duplicated e�orts for internal and regulatory risk mea-

surement and, among others, the signaling of competence to the market, especially to

rating agencies, by regulatory approval of an internal model.

Looking back on the year 2001 we recognize that a number of severe events took place

in the �nancial markets. Not only the terrorist attack from September 11, but also a

signi�cant number of interest rate decisions of central banks, the Enron case, the contin-

uing demise of the \new economy", and others, took place. Obviously, most of the events

mentioned were unpredictable but dramatic in some sense. That the year 2001 was spe-

cial is also highlighted by the fact that 13 German banks produced 33 VaR exceptions in

the year 2001 while 14 German banks produced 17 VaR exceptions in 2002. Given the

turbulences of that year, it is natural to ask whether the forecast quality of VaR mod-

els over the year 2001 turned out to be satisfactory. A second question is whether the

portfolios of the supervised banks behave similarly and whether the similarity increases

in stress periods. Put in another way, how well is the supervisor's portfolio diversi�ed

and is this a�ected by the special events of the year 2001? This is the �rst article to

provide a detailed empirical analysis of (1) the performance of the actual VaR forecasts

of all German banks that used internal models for regulatory purposes in 2001 and (2)

the interrelations among the pro�ts and losses (P&L) of these banks, especially during

the stress periods. Insofar, it is comparable to the empirical analysis of similar data from

six US banks by Berkowitz and O'Brien (2002). The methodology employed, however,

di�ers signi�cantly.

The Basel paper on backtesting describes in-depth the regulatory requirements on the

forecast quality of the trading book as a whole in order to ensure an adequate calcula-

tion of regulatory capital (Basel Committee on Banking Supervision; 1996b). Numerous

publications reect VaR forecast evaluation, starting with Kupiec (1995), who points

out the lack of statistical power of a backtesting that is based on a binomial test statis-

tic. Crnkovic and Drachman (1996) propose the use of the Kuiper statistic, which is

a goodness-of-�t type statistic based on the whole forecast distribution. Christo�ersen

(1998) draws the attention to backtesting based on speci�cation tests, focussing on the

independence property to evaluate forecast quality. Inspired by the ideas of Rosenblatt

(1952), Berkowitz (2000) proposed an approach that relies on conditioned forecast dis-

tributions. This is very much in the spirit of the papers of Dawid, see (Dawid; 1982a,b,

1984, 1986; Seillier-Moiseiwitsch and Dawid; 1993). This again is inuenced by the liter-

ature on wheather forecasting (Murphy and Winkler; 1987, 1992). A detailed overview of

backtesting issues is given by Overbeck and Stahl (2000). The empirical analysis of the

forecast quality in this paper is in the spirit of Dawid's forecast evaluation. The fact that

the whole forecast distribution is not available is bridged by the empirical observation
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that the ratio of P&L over VaR is surprisingly close to normal, in a certain sense. The

rigorous justi�cation of our approach is given in the appendix. The methodology used

to analyze the joint behavior of all banks includes a measure of co-movement and sev-

eral stress variables used to de�ne stress periods. Finally, we consider how distributional

parameters change conditional on stress.

Before describing the data set, let us introduce some notation. We denote by VaR(�t; �)

the Value-at-Risk of a portfolio �t, given the level of signi�cance �. Within the framework

of the Basel Committee, � is set to 99%. The VaR number VaR(�t; �) at time t denotes

the ��quantile of the distribution of the hypothetical, or clean, P&L

Ct = vt+1(�t)� vt(�t); (1)

where vt(�) is the value of a given portfolio � at time t. The random variable vt+1(�t)

denotes the at time t frozen portfolio, evaluated at prices of time t + 1. The VaR is

interpreted as an upper bound of losses that might be surpassed only with probability

1� �. In the sequel we will use the shorthand notation Vt to denote VaR(�t; 99%).

Within an observation period of 250 trading days 2.5 violations of the forecasts Vt are

to be expected on the average. Hence, if too many violations occur there is good reason

to doubt that the internal model's level of signi�cance is correctly covered. In order to

ensure a suÆcient forecast quality, the Basel Committee tied the amount of the capital

requirements to the number of VaR exceptions of the model (Basel Committee on Banking

Supervision; 1996a).

It is of great practical importance to note that freezing the portfolio { as stated in (1) {

is not imperative. The Basel Committee also acknowledges backtesting VaR that is based

on actual trading outcomes. In that case changes of the portfolio composition during the

holding period, fees etc. are superimposed on the hypothetical P&L. From a statistician's

point of view, the judgment of forecast quality should be based on the hypothetical P&L,

(1), because the VaR forecast assumes a static portfolio by construction. From a risk

managers point of view, however, the actual or economic P&L is actively managed and

reported. Obviously both ways to tackle the backtesting problem have their intrinsic mer-

its. German legislation prescribes a backtesting based on (1), whereas the US legislation

admits to base the backtesting on the economic P&L, see (Berkowitz and O'Brien; 2002).

2. Description of the Data Set

The data set considered here contains data from all thirteen German banks that used

internal models for regulatory purposes in the year 2001. The data set for each bank

consists of �rst, VaR forecasts and second, the so-called clean, or hypothetical P&L for

all 253 trading days of the year 2001. Most of the following �gures and tables are based

on the normalized P&L and VaR time series. I.e., they are divided by the banks' full

sample standard deviation of P&L to insure con�dentiality.

Table 1 shows summary statistics of each bank's data. The coeÆcient of variation (i.e.,

the ratio of the standard deviation and the mean) of VaR in column 5 shows that for

the majority of the banks the variability of the VaR is relatively small compared to its

mean. Only banks A, E, and I have a coeÆcient of variation that is two times larger than

the average coeÆcient of variation of all banks. The last column reports the average loss
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bank kurtosis skewness 99%-quantile average coeÆcient of average of the

name of losses VaR variation of VaR loss exceeding VaR

A 22.51 3.15 1.83 2.68 0.84 0.00

B 6.48 �0.00 2.62 4.51 0.29 1.34

C 5.98 0.61 2.18 4.05 0.14 0.00

D 5.58 0.19 2.55 3.29 0.26 0.00

E 7.79 0.43 2.56 1.69 0.87 0.56

F 16.99 �2.10 3.52 2.11 0.52 1.63

G 3.71 �0.20 2.42 2.15 0.23 0.24

H 5.72 0.01 2.12 2.25 0.23 1.49

I 15.03 �1.58 4.55 1.07 0.87 0.73

J 4.04 �0.67 2.98 3.03 0.39 0.37

K 5.28 0.00 2.24 2.20 0.11 1.37

L 4.57 �0.22 2.75 3.85 0.20 0.00

M 3.35 �0.12 2.45 2.58 0.18 0.00

Table 1: Summary statistics of standardized data. The columns give kurtosis, skew-

ness, minus the 1%-quantile of the P&L, the average VaR, the coeÆcient of vari-

ation of the VaR, and the average size of the loss exceeding VaR. Both P&L and

VaR are re-normalized in such a way that the standard deviation of the P&L is

1 for all banks.

exceeding VaR, i.e., the estimate of the expected shortfall E[�Ct � Vtj �Ct > Vt]. Note,

that for the standard normal distribution, the expected shortfall is approximately 0.34 for

the 99% con�dence level. The comparatively large average losses exceeding VaR indicate

the presence of outliers. Three out of the thirteen banks had more than four violations and

only four had no violations at all. For reasons of con�dentiality, the individual numbers

of violations are not reported here.

The six histograms in �gure 1 are representative for the dataset. The histograms are

fairly symmetric, which is in line with the skewness in table 1. Taking into account that

the data are standardized, the large range of the x-axis for bank I shows the presence

of extreme outliers. This suggests the use of robust estimates of location and scale. To

be speci�c, we use the median F
�1
0:5 as an estimate for the location parameter and the

interquartile range F�1
0:75 � F

�1
0:25 as an estimate of the scale parameter. In �gure 1 the

�tted normal densities use the median as a robust estimator of the mean and normalized

interquartile range (F�1
0:75 � F

�1
0:25)=(�

�1
0:75 � ��1

0:25) is a robust estimator of the standard

deviation. (��1
0:75��

�1
0:25 � 1:349 is the interquartile range of the standard normal distribu-

tion.) This improves the representation of the bulk of the data by a Gaussian distribution.

Furthermore, it is evident that the large excess kurtosis and skewness of bank I is caused

by a few extreme outliers relative to the normal distribution.

Figure 2 shows the time series of P&L and �VaR of the selected institutes. As can be

seen from banks B and F, for example, it is not reasonable to assume stationarity of the

P&L and VaR time series. Hence, the summary statistics given in table 1 as well as the

histograms in �gure 1 are to be interpreted with care. Banks B, D, and F give a picture

of the conservativeness of the VaR forecasts as mentioned in the interpretation of table 1.
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Figure 1: Histograms of the P&L and �tted normal densities. The mean and

standard deviation of the �tted normal density are estimated robustly by the

median and the (scaled) interquartile range.
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Figure 2: Time series of P&L and -VaR. The vertical dotted lines denote the date

2001-09-11. Diamonds are added to mark the violations.
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Figure 3: Lorenz curve of the average VaR of all banks. The largest three banks

in terms of average VaR capture 61% of the aggregated average VaRs.

As the descriptive statistics show, banks tend to be conservative in the sense that they

overestimate their VaR. The traÆc light approach is related to a one-sided loss function,

as reported in table 1. Hence, this backtest does not recover the information in the data

about forecast quality of a VaR-model as a whole. In the next section we will have a

closer look at forecast quality using more powerful tools.

We conclude this section with the Lorenz curve in �gure 3, which depicts the concentra-

tion of risks among the thirteen banks and gives some complementary information about

the relative \size" of the banks.

3. Analyzing VaR-Forecasts for Each Bank Individually

In their paper on backtesting, the Basel Committee on Banking Supervision (1996b)

encourages institutes to apply backtesting procedures beyond the so-called traÆc light

approach. In this section, we make proposals for possible re�nements. The proposed

tools have been used by the Bundesanstalt f�ur Finanzdienstleistungsaufsicht (BaFin), the

German single regulator for integrated �nancial services supervision, for a couple of years.

In the following, we use the term prediction-realization pair for the class of objects

(�(Ft); Ct), where Ft denotes the whole forecast distribution and �(Ft) a parameter

thereof, e.g., a quantile, or the distribution as a whole (� = id). The summary statistics

from section 2 give a description of the prediction-realization pairs (Vt; Ct). In order to

evaluate the forecast quality of VaR models we introduce a statistical model that allows

to incorporate additional information from the prediction-realization pairs (Ft; Ct).

The time plots displayed in �gure 2 show that neither of the time series Ct nor Vt are

stationary. For the evaluation of a forecast model it is natural to look for transformations

T such that the time series T (�(Ft); Vt) is nearly stationary. In the literature on forecast
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evaluation the transformation

T (Ft; Ct) = Ft(Ct) (2)

is used as a starting point. A forecast system is considered \good" (Dawid; 1984, p.281),

if the values Ft(Ct) are independent and uniformly distributed, i.e., Ft(Ct) iid U [0; 1].

This corresponds to the concepts \well-calibration" and \re�nement" (= \resolution")

as used in the literature on weather forecasting (Murphy and Winkler; 1987, 1992) insofar

as the condition Ft(Ct) � U [0; 1] essentially means \well-calibration" and the temporal

independence of Ft(Ct) is related to \re�nement" (Dawid; 1986; Seillier-Moiseiwitsch;

1993).

While it has been proposed (Berkowitz; 2000) that banks should report the realized

probabilities Ft(Ct) to the supervisory authorities, the current rules only require the

reporting of Ct and Vt = �F
�1(0:01). The forecast evaluation (backtesting) as laid down

in the Basel Amendment is de�ned in terms of the VaR-exceptions

T (Vt; Ct) = 1
fVt�Ctg

: (3)

The drawbacks of this approach are discussed by Kupiec (1995). See also Lopez (1999)

and (Jorion; 2001, chapter 6).

In this section, we suggest an approach that bridges the gap between the information

presented by the prediction-realization pairs (2) and (3). In the delta-normal RiskMetrics

framework, the VaR-forecast Vt is related to the forecast of the standard deviation of the

P&L, �t, as

Vt = z �t; (4)

where z is the standard normal 99%-quantile, �(z) = 0:99. There, the standardized

returns are de�ned as

Rt := T (Ct; Vt) = z Ct=Vt; (5)

(Longerstaey; 1996, chapter 11) and are iid standard normal under the speci�c model

assumptions of the delta-normal approach. This de�nition (5) of standardized returns is

useful even if (4) is invalid. A rigorous justi�cation of this statement and the following

approach is provided in the appendix. The standardized returns provide the basis of the

forecast evaluation in this paper.

We call a VaR forecast system well-behaved3 if

Rt iid F 2 U
G
" ;

where U" is the "-neighborhood of the set of Gaussian distributions with respect to the

Kolmogorov distance in the set of probability distributions:

U
G
" := fF j sup

x
jF (x)� �(�; �2)(x)j � "; F is pdf; � 2 R; �2 2 (0;1)g (6)

3Note that \well-behaved" is not to be interpreted as \favorable from a supervisory point of view". It

rather stands for \tractable from a statistical point of view".
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for some �xed, small probability ", say 5%. Note that the semiparametric model, known

as Huber's gross error model in the literature of robust statistics,

F
G
" := fF jF = (1� ")�(�; �2) + "H; � 2 R; �

2
2 (0;1)g; (7)

where H is an arbitrary probability distribution, is an important subset of UG
" . In fact,

if F 2 F
G
" , then exist �, �, and H such that F = (1 � ")�(�; �2) + "H. Then the

Kolmogorov distance between the distributions F and �(�; �2) is

d(F;�(�; �2)) = sup
x2R

jF (x)� �(�; �2)(x)j;

= " sup
x2R

jH(x)� �(�; �2)(x)j

= " d(H;�(�; �2)) � ":

In terms of the P-P plot of F against normal, which plots F (x) against �(�; �2)(x) for

x 2 R, this means that the graph is (vertically) within an "-band of the diagonal. On

the other hand, any point within that band can be reached by the graph of a distribution

F 2 U
G
" .

The Gaussian distribution with robustly estimated parameters �ts (by eye) remarkably

well to the center of standardized returns Rt, see �gure 4. The P-P plot against normal

(�gure 5) also shows that the distributions of the standardized returns are relatively close

to normal, in the sense that they are in the class UG
" with " = 0:05. (In fact, the empirical

distributions of all banks are in this class.)

The P-P plot (and the Kolmogorov distance) does not detect large deviations from

normality as long as they happen with small probabilities. A better picture of the �t in

the tails is provided by the Q-Q plot of F against normal, which plots F�1(t) against

��1(�; �2)(�) for � 2 (0; 1), see �gure 6. Another display with emphasis on the tails is

the boxplot, see �gure 7.

Diagnostics that illustrate serial (in-) dependence of Rt are provided by the cumulative

periodogram applied to both standardized returns and their absolute values. As expected,

�gure 8 shows that there is no signi�cant autocorrelation in the standardized return series.

Unlike the absolute returns of many �nancial securities, the absolute standardized returns

of the banking books show no marked heteroscedasticity, see �gure 9. Possibly reasons

are that the banks' VaR-forecasts successfully predict some of the heteroscedasticity of

their P&L-series. Another possible reason could be that the risk control limit system

�lters out some of the heteroscedasticity of the original returns.

The set of well-behaved VaR-forecasts contains forecasts that grossly over- or underes-

timate the respective quantile. Under the assumption that standardized returns are i.i.d.

standard normal, the inverse of the standard deviation of Rt can be interpreted as the

recalibration factor. The larger it is, the more the bank overestimates its VaR. We will call

a forecast well-calibrated, if the recalibration factor equals one4. Instead of looking only

at the empirical standard deviation of the standardized return Rt, one can alternatively

4The relation between this notion of \well-calibration" and its de�nition in the forecast evaluation

literature can be made rigorous in more general settings than the delta-normal method, which is

explained in appendix A.
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Figure 4: Histograms of the standardized return and �tted normal density. The

mean and standard deviation of the �tted normal density are estimated robustly

by the median and the (scaled) interquartile range.
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Figure 5: P-P plot of the distribution of the standardized return against a stan-

dard normal (dotted line) and a �tted normal distribution (fat dotted

line). The mean and standard deviation of the �tted normal distribution are

chosen to minimize the Kolmogorov distance to the empirical distribution func-

tion. D is that minimal distance. The dashed lines are the envelope of all

distributions in the 5%-neighborhood with respect to the Kolmogorov distance.
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Figure 6: Q-Q plot of the standardized return. The dotted line denotes the standard

normal distribution, the solid line denotes the normal distribution with mean

and variance estimated from the sample, and the small circles represent the

empirical distribution.
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look at di�erent estimates

�̂p(R) :=

 
1

T

TX
t=1

jRtj
p

!1=p

=cp (8)

of the standard deviation of Rt for powers p > 0. (cp is the constant cp = (EjXjp)1=p with

X being standard normal.) Using smaller powers p < 2 gives more robust estimates than

the usual estimate of the standard deviation. Using larger powers p > 2 gives estimates

of the standard deviation that are more sensitive, i.e., more dependent on the extreme

values of Rt, than the usual estimate of the standard deviation (p = 2). By looking at

�̂p(r) for di�erent powers p, one can observe whether banks are well-calibrated at the

center or at the tails, respectively.5

Table 2 shows estimates of the recalibration factor, as well as p-values from testing the

hypothesis that this factor equals 1. These results are further illustrated by �gure 10,

5Note that the various di�erent �̂p(r) are estimates of the standard deviation of Rt only if the Rt are

(approximately) i.i.d. standard normal. Otherwise, (8) provides estimates of scaled versions of di�erent

moments of jRtj.
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Figure 8: Cumulative periodogram of standardized returns. White noise is char-

acterized by equal probabilities for all frequencies, which shows as a straight

line in the cumulative periodogram. 95%-con�dence bands are given for the

null hypothesis of Gaussian white noise.
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Figure 9: Cumulative periodogram of absolute values of standardized returns.
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p=0.5 p=1 p=2

A 1:670�� 1:614�� 1:480��

B 2:162�� 2:053�� 1:849��

C 1:899�� 1:832�� 1:659��

D 1:805�� 1:690�� 1:552��

E 0:825�� 0:786�� 0:710��

F 1:147� 1:129� 1:055

G 0:938 0:946 0:940

H 1:074 1:037 0:980

I 0:831�� 0:808�� 0:769��

J 1:466�� 1:403�� 1:296��

K 1:004 0:992 0:944

L 1:838�� 1:765�� 1:625��

M 1:143� 1:110� 1:090

Table 2: Robust and sensitive estimates of the recalibration factor. The esti-

mates 1=�̂p(r) (see equation (8)) of the recalibration factor are computed for

powers p 2 f0:5; 1; 2g. p-values for the corresponding null hypothesis that the

recalibration factor is one (i.e., that the Rt are iid standard normal) are com-

puted by Monte-Carlo simulation. Signi�cance at the 5%-level is shown by one

star and signi�cance at the 1%-level with two stars.

showing the recalibration factor estimated with the empirical standard deviation (p =

2) and the interquartile range, respectively. Note that banks E and I are consistently

underestimating its VaR. Also note that all banks are close to the line with slope 0.84

and intercept 0. This means �rst, that the distributions of their standardized returns

have slightly heavier tails than the normal distribution. Second, the estimate of the

recalibration factor depends only moderately on how robustly it is estimated.

The local averages of the absolute values of the standardized returns (= estimates of the

inverse of the recalibration factor using p = 1) in �gure 11 show only moderate variation

in time, except for some unpredicted absolute returns of banks B and I.

In summary, the standardized return series of all trading books are remarkably close to

being \well-behaved" as de�ned in this section. I.e., they are close to normal in the sense

of the Kolmogorov distance and there are no obvious temporal dependencies. This is in

stark contrast to the conclusions drawn by Berkowitz and O'Brien (2002). They show that

the VaR-forecasts of the six US banks considered are inferior to that of a simple \reduced-

form" model, i.e., a univariate time series model applied directly to the individual P&L

series. Their conclusion is that the banks' forecasts \did not adequately reect changes

in P&L volatility". The conclusion from the empirical evidence presented in this section,

however, is that the VaR-forecasts of the considered German banks are \essentially OK":

the conservative VaR-forecasts of most banks can be corrected by simply re-calibrating

them. Much of the non-normality of the standardized return distributions in the view

of the tail-sensitive graphs (�gure 6) can be traced back to the essentially unpredictable

events in September 2001 (�gure 11).
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Figure 10: Sensitive and robust estimates of the recalibration factor, estimated

with the usual estimate of the standard deviation (p = 2) and the in-

terquartile range. Banks towards north east overestimate their VaR. Banks

towards south east have outliers or heavy tails. The black line represents the

best linear �t with intercept 0. Its slope is 0:84.

4. Analyzing P&L Series For All Banks Simultaneously

The analysis of the model quality for banks individually gives the supervisor important

information concerning the supervision of each bank. On the other hand, the analysis

of cross-sectional interrelations of the banks, e.g., co-movements, is at least as important

because it sheds light on the aspects of systemic risk. From the regulator's point of view,

two adverse scenarios are important. The �rst case is when the regulator's portfolio is

not well-diversi�ed in the sense that all portfolios behave similarly. A more speci�c case

is, when portfolios behave similarly in periods of stress.

The economic relevance of the P&L series dominates that of the VaR numbers. Hence

we perform our cross-sectional analysis from a P&L point of view. A natural point to

start with is the calculation of correlations, say. Yet tables for cross correlations quickly

get unmanageable for larger numbers of banks. Instead of looking at m(m � 1)=2 = 78

cross correlations, it may be more useful to look at the m = 13 correlations between the

individual P&L series and an aggregated P&L-series. The identity

mX
j=1

cov(Ci
; C

j) = cov(Ci
;

mX
j=1

C
j) = cov(Ci

;

X
j 6=i

C
j) + var(Ci)

motivates to consider the covariances cov(Ci
;
P

j 6=iC
j), as the covariance with the sum

of all P&L series is dominated by the last (variance) term for large banks.
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Figure 11: Local estimates of the inverse recalibration factor. The dots show the

absolute values of the standardized returns, jrtj=c1, rescaled such, that they can

be viewed as estimates of the inverse recalibration factor under the normality

assumption. The horizontal line shows the overall average and the other line

a sliding 60-day average of the values jrtj=c1. I.e., the horizontal line shows

the inverse of the estimated recalibration factor given in the column \p = 1"

of table 2.
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Pearson corr. Spearman corr.

A 0:114 0:070

B 0:206�� 0:154�

C -0:102 -0:096

D 0:527�� 0:431��

E 0:081 0:103

F 0:488�� 0:389��

G 0:242�� 0:213��

H -0:118 -0:076

I 0:475�� 0:333��

J 0:241�� 0:186��

K 0:244�� 0:163�

L 0:392�� 0:270��

M 0:289�� 0:264��

Table 3: Linear and rank correlations between individual banks' P&L with the

sum of the P&L of all other banks. The table shows Pearson's linear and

Spearman's rank correlations. The signi�cance in terms of the null hypothesis

of zero correlation is marked with one or two stars as before.

From table 3 we conclude that only bank H is noticably negatively correlated with the

rest, but this is not signi�cant at the 5%-level. It further tells that banks A, C, and E are

not signi�cantly correlated to the rest. All other banks have moderate, but signi�cantly

positive correlations with the rest.

In order to understand the common movement of the time series of P&Ls in real,

monetary terms, we performed a principal component analysis, i.e., an eigen value de-

composition of the covariance matrix of P&Ls. The results show, that (1) although the

three biggest banks dominate the principal component decomposition of P&Ls, the most

important factor only explains 46% of the variance, the second 27%, and the third 13%,

and (2) the dominant factor has the meaning \the big banks move in the same direction".

A di�erent question is what possible explanatory variables for explaining the co-movement

of standardized returns are. For this purpose, we performed an eigen value decomposition

of the correlation matrix of standardized returns. It shows that the common movement

of returns is remarkably \diverse" in the sense that the three most important factors

together explain only 47% of the variance (22%, 14% and 11% each) and there is no

dominant factor.

A natural way to measure the degree of diversi�cation is through the ratio of the

variance of the combined portfolio and the sum of the variances of its components:

It :=
(
Pm

i=1C
i
t)
2Pm

i=1(C
i
t)
2
; (9)

If we replace in

It =
(
Pm

i=1R
i
tV

i
t )

2Pm
i=1(R

i
tV

i
t )

2
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the time-dependent V i
t by its average �V i and de�ne wi := �V i

=
Pm

i=1
�V i, then we get

�It :=
(
Pm

i=1R
i
t
�V i)2Pm

i=1(R
i
t
�V i)2

=
(
Pm

i=1R
i
twi)

2Pm
i=1(R

i
twi)2

;

which in this context can be interpreted as an index of co-movement.

It is bounded below by zero and above as follows. If the banks' P&L-series would

be collinear, i.e., Ci
t = wiXt (with Xt =

Pm
i=1 C

i
t); wi > 0), then It =

1Pi
i=1

w2

i

. This

upper bound on I depends on the size distribution among banks and lies in the interval

[1;m]. For the 13 banks under consideration, this upper bound is about 5:23, when

wi is taken to be proportional to the average VaR of bank i. If the banks' P&L-series

would be stochastically independent, then It = 1. The other extreme occurs when the

banks' trading would be a zero sum game, i.e.,
Pm

i=1 C
i = 0 and consequently It = 0. In

summary, It > 1 stands for positively correlated P&Ls, It = 1 for \normal" diversi�cation,

and It < 1 for the partial o�setting of risks beyond \normal" diversi�cation.

Figure 12 shows that local estimates of It are above 1 most of the time, but well below

its upper bound 5:23. The dramatic stock market movements in September 2001 seem

to have had some impact, but the increases in medium-term interest rates beginning in

October a lot more. In our view, the index of co-movement shows that the portfolio of

the German regulator is quite well-diversi�ed in general. In periods of stress the index

increases, but only by a factor of about two, which lends support to the Basel safety

factor three.

Figure 12 suggests that in the latter part of the year 2001 there was a common \stress"

factor. In order to de�ne \stress" we have to distinguish between stress variables that

measure stress and stress events that denote periods of stress.

Consider the aggregate stress de�ned in terms of excess losses

Lt(c) :=

mX
i=1

(�
C
i
t

V i
t

� c)+V i
t =

mX
i=1

(�Ci
t � cV

i
t )

+ (10)

where c is a constant treshold and x
+ = max(0; x) denotes the positive part. Note, that

the aggregate stress in terms of excess losses has a monetary unit. Lt(1) is the sum of

excess losses at the VaR-level and Lt(0) is the sum of losses.

Given the notorious unpredictability of �nancial market returns, extremely high pro�ts

for some banks may also point to \stress". Hence, the aggregate stress de�ned in terms

of excess pro�ts

Gt(c) :=

mX
i=1

(
C
i
t

V
i
t

� c)+V i
t =

mX
i=1

(Ci
t � cV

i
t )

+ (11)

may also be interesting to look at.

In the absence of data on the counter party exposures of each bank and an analysis

of contagion risk based on such data, both Lt(c) and Gt(c) are stress variables that a

supervisory authority might want to monitor.

The lines in the two upper graphs of �gure 13 show 2-week averages of aggregate stress

for the tresholds c = 0, c = 0:5, and c = 1. The peaks show the excess losses at the
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Figure 12: Measure of co-movement. The graph shows the local (solid line) and global

(dotted line) estimate of the index of co-movement. The points are the squared

aggregated P&L divided by the sum of the squared individual P&Ls of a given

day. The local estimate is a 60-day sliding average of the points.

VaR-level (c = 1). The top graph is based on pro�ts while the graph in the middle is

based on losses. In order to see the relation to key risk factors, the bottom graph shows

a stock index and an interest rate. Several interesting aspects of the data appear:

� Periods of large excess pro�ts do not in general coincide with periods of large excess

losses, which is most pronounced in the �rst four months.

� There were three periods of \stress" in terms of losses: in April, in September, and

in November.

� The November stress was the largest.

� While the April stress was larger than the September stress in terms of aggregate

losses (c = 0), the September stress was larger than the April stress in terms of

more extreme losses (c = 0:5 and c = 1).

� Visual comparison between the two risk factors and the aggregate stress in terms

of losses suggests that losses may be related to increases in short to medium term

interest rates.

21



0
10

20
30

40
Excess Profits

m
ill

io
n 

E
U

R

03−19 06−27 10−05

0      
0.5      
1      

−
50

−
40

−
30

−
20

−
10

0

Excess Losses

m
ill

io
n 

E
U

R

03−19 06−27 10−05

0      
0.5      
1      

0.
7

0.
8

0.
9

1.
0

date

no
rm

al
iz

ed
 v

al
ue

MSCI Europe       
2Y EUR Swap Yields       

Key Risk Factors

Figure 13: Two-week averages of aggregate stress for the excess loss tresholds

0, 0.5, and 1. The lines in the �rst two graphs show 2-week averages of Gt(c)

(top) and �Lt(c) (middle) for the tresholds c 2 f0; 0:5; 1g. The peaks show

the sum of excess losses at the VaR-level (c = 1). The lower graph shows the

MSCI Europe and the euro 2-year swap rate.
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Figure 14: Stress periods. The stress periods de�ned by ft jLt(c) > qg with c = 0:5

und q being the 80%-quantile of Lt(c).

Any stress variable like Lt(c) can be used to de�ne a set of \stress days" ft jLt(c) > qg,

where q is some quantile of Lt(c). Figure 14 shows the thus de�ned stress period, using

the treshold c = 0:5 and q the 80%-quantile of Lt(c).

Having identi�ed periods of stress, the next question is \How do properties of V , C,

and R change under stress?". In other words, we compare empirical distributions from

the whole time interval with empirical distributions from the stress period as de�ned in

the previous section and depicted in �gure 14.

Figure 15 compares the conditional and unconditional densities of the banks' P&L. It

shows that the variance increases drastically for banks D and I under stress. Figure 16

is an alternative look at the conditional means and standard deviations. It shows that

while the standard deviations increase under stress, they do not exceed the Basel safety

factor 3.

Conclusion

The notion of a well-behaved forecast system is closely related to the established concepts

of well-calibration and re�nement. It generalizes the calibration criterion Ft(Ct) � U [0; 1]

to a neighborhood of the uniform distribution. We introduced exploratory statistical

tools (local estimates of the recalibration factor, the measure of co-movement, conditional

distributions under stress) in order to study this property for the VaR forecast systems

of German banks. In the light of the analyses based on these tools we can draw three

kinds of conclusions.

First, the VaR models of German banks that use these models for regulatory purposes

work surprisingly well, even for the special year under consideration. I.e., the forecast

systems are well-behaved and the forecast quality is good. The fact that many banks

estimate their VaR with a bias can simply be recti�ed by re-calibrating the forecasts, see

also (B�uhler et al.; 2002).

Second, we introduced empirical measures related to systemic risk. Their estimates

show that the regulator's portfolio is quite well diversi�ed.
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Figure 15: Conditional densities. The solid line shows a kernel estimate of the condi-

tional density of the banks' P&L under stress, while the dotted line shows the

unconditional density.
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Figure 16: Conditional means and standard deviations of clean P&L. The bank's

symbol represents the unconditional parameters, while the arrow points to

the parameters conditioned on stress. The x-axis shows the conditional and

unconditional mean divided by the unconditional standard deviation.

Third, our empirical analyses con�rm the architecture of the regulatory framework for

Value-at-Risk models. In particular, the main ingredients, i.e., the multiplication factor

three and the backtesting penalty function are justi�ed.

A. Well-Calibrated Forecasts

The literature on weather forecasting has developed an elaborate set of concepts and

diagnostics for the evaluation of probability forecasts (Murphy and Winkler; 1987, 1992).

The two main concepts are calibration and re�nement. This section shows how our

de�nition of \well-calibrated" is related to the established one.

Given the joint distribution of an event a and a probability forecast p for this event,

the forecast p is called well-calibrated, if the probability of a conditional on the fact that

the forecast p has been made, is p: E[ajp] = p. The constant forecast ~p := E[a] (the
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\climatological probability") is well-calibrated, but not \re�ned". The aspect how much

information the forecast p contains about the event a is called re�nement or resolution

and is formalized and measured in di�erent ways, see Dawid (1986). Partial orderings

among forecasts are based on the notion that pA is more re�ned than pB if the forecast

pB can be derived from pA in a certain way. Complete orderings among forecasts can

be de�ned by the expected loss ES(a; p) for a loss function S, called scoring rule in this

context. Another way to de�ne re�nement for a sequence of forecasts and events (ai; pi) is

to say that the subsequence of events corresponding to a speci�c forecast p�, (ai)fijpi=p�g,

should be stochastically independent. (Otherwise, it would be possible to improve the

forecast.)

In the context where we have a forecast F̂ for the probability distribution F of a

continuous random variable C, the concept of well-calibration becomes

PfC � xjF̂g = F̂ (x); (12)

i.e., the forecast of each event based on C is well-calibrated (Dawid; 1984, p.281). If F̂

is continuous, (12) implies that F̂ (C) is uniformly distributed on [0; 1]. The requirement

that a sequence of \realized probabilities" F̂t(Ct) is stochastically independent is a kind

of re�nement requirement.

Given that banks do not report the whole forecast distribution F̂ but only a quantile

q̂(�) := F̂
�1(�), the important question is in which sense and under which conditions the

realized probabilities F (Rt) of the standardized returns

Rt := Ct

q(�)

q̂t(�)
(q(�) = F

�1(�)) (13)

for some �xed p.d.f. F can be taken as a substitute for the \true" realized probabilities

F̂t(Ct).

If the forecast F̂ comes from a location-scale family of distributions, i.e.,

F̂ (x) = F ((x� �̂)=�̂); (14)

and the location �̂ is 0, then the realized probabilities of the standardized returns are

obviously a perfect substitute for the \true" realized probabilities:

F̂t(Ct) = F (Ct=�̂t) = F (Ct

q(�)

q̂t(�)
) = F (Rt):

Interestingly, the converse also holds.

Proposition 1 Let C be a random variable and F0 its distribution under the true prob-

ability. Let F̂ be a forecast for F0 and F a �xed \benchmark" distribution. Assume F ,

F0, and F̂ are continuous and have support (�1;1). Let q and q̂ denote the inverses

of F and F̂ , respectively. The value U = F (C
q(�)

q̂(�)
) has the same distribution as the real-

ized probability F̂ (C) under the true probability measure if and only if F̂ comes from the

scale-family F̂ (x) = F (x
q(�)

q̂(�)
) .
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Proof. We only have to show the non-trivial direction. Assume that

P0fU � pg = P0fF̂ (C) � pg 8p 2 [0; 1]:

This implies

F0

�
F
�1(p)

q̂(�)

q(�)

�
= F0

�
F̂
�1(p)

�
:

Since F0 is invertible, this equation also holds for the arguments of F0(:). Setting x :=

F
�1(p)

q̂(�)

q(�)
, this leads to

F̂ (x) = p

which equals

= F

�
x
q(�)

q̂(�)

�

by de�nition of x. 2

The assumption that the banks' forecasts F̂ come from a location-scale family with

location 0 is a rather unrealistic one. We actually know from those banks that use

historical simulation and various delta-gamma-normal methods that the forecasts F̂ do

not in general come from such a family. In the empirical analysis, however, we observed

that the empirical distribution of the standardized returns is remarkably close to normal.

An interesting question is now how the two concepts of well-calibration are related under

the additional assumption

R = C
q(�)

q̂(�)
� F (:=�) (15)

for some �xed benchmark distribution F and scale � > 0.

Proposition 2 Let F̂ be a forecast for the distribution F0 of a random variable C and F

a �xed \benchmark" distribution. Assume F , F0, and F̂ are continuous and have support

(�1;1). Let q and q̂ denote the inverses of F and F̂ , respectively. Assume that the

standardized returns R = C
q(�)

q̂(�)
are known to come from the scale family (15) and the

forecast F̂ is well-calibrated as in (12). Then � = 1 and the forecast F̂ \comes on average

from a scale-family" in the sense of

F (x) = E

�
F̂

�
x
q̂(�)

q(�)

��
: (16)

In general it cannot be concluded, however, that each single forecast comes from a scale

family F̂ (x) = F (x=�̂).

Proof. We �rst prove � = 1. Since F̂ is well-calibrated,

� = PfC � q̂(�)jF̂ g

= PfR � q(�)jF̂ g:
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Taking expectation, this also holds unconditionally:

� = PfR � q(�)g;

which equals F (q(�)=�) because of (15). But this implies � = 1.

Furthermore,

F (x) = P

�
C
q(�)

q̂(�)
� x

�

= E

�
PfC

q(�)

q̂(�)
� xjF̂g

�

= E

�
F̂

�
x
q̂(�)

q(�)

��
:

Example. Assume C = m + X; m � G and X � F0(:=�0) are independent random

variables. Assume further that the bank has advance knowledge of m (but no knowledge

of X), then the forecast

F̂ (x) := F0((x�m)=�0)

is well-calibrated in the sense (12), it comes from a location-scale family, but the location

is not necessarily 0. The standardized return becomes

R = C
q(�)

q̂(�)
= (m+X)

q(�)

m+ �0q0

where q0 := F
�1
0 (�). This equation shows that the conditional distribution of R given m

comes from the location-scale family de�ned by F0.

Being more speci�c, assume F0 is the standard normal distribution. Then the distri-

bution F observed by the supervisor is a certain mixture of normal distributions and will

usually have a di�erent shape as and fatter tails than F0. 2

The proposition shows that the notion of well-calibration based on the standard de-

viation of Rt di�ers from the notion of well-calibration in the sense of Dawid (1986),

unless one makes additional assumptions. For equivalence, one needs the rather unrealis-

tic assumption that all individual forecasts come from a scale-family. Under the weaker

condition (15), well-calibration implies � = 1. I.e., if we \observe" that the standardized

returns Rt are approximately normal, then the variance of the standardized returns is 1

for well-calibrated forecasts. The condition �(Rt) = 1 as a criterion of well-calibration is

to be understood in this sense in the paper.
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