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1 Introduction

Model-based policy design entails a reasonable specification of the underlying
model and an appropriate characterization of the uncertainties. The latter
can be an exogenous effect, parameter uncertainty, or uncertainty regarding
model structure. The latter requires a setting that admits rival structures
purporting to represent the same underlying system. In this paper, we con-
sider methods that address the first two types of uncertainty.

The two approaches used are expected value optimization of nonlinear
systems, and minimax, or worst—case optimization. The starting point for the
former is the expected value evaluation used in [2, 14] for systems governed
by parametrized feedback rules. The starting point for the the worst—case
optimization approach is that of Rustem and Howe [13]. The results from
both are compared in order to explore the trade—off between robustness cover
and performance (as measured by the objective or cost function).

The worst—case approach to economic policy design in this paper is an

application of minimax to decision making. The problem solved is the min-



imization of a convex (or locally convex) objective function with respect to
the decision variable, and maximization of the same function with respect to
the uncertainties. The uncertainties are characterized in terms of ranges in
which the uncertain parameters or exogenous effects may vary.

When the cost or objective function is also convex with respect to the un-
certain variables the maximum will be at the boundary of the feasible region.
This may, for example, correspond to one or more vertices of the hypercube
defined by the upper and lower bounds on the uncertain variables. If the
objective function is concave with respect to the uncertainties, the maxi-
mum may lie anywhere within the hypercube. An advantage of the present
approach is that it is straightforwardly applicable to nonlinear systems.

An alternative worst—case approach is the H* formulation (eg Basar and
Bernhard [1]). The H* approach transforms the original minimax problem
with box constraints, which may be convex with respect to the uncertain
variables, to a concave maximization problem by an appropriate choice of a
penalty parameter . This requires the solution of a minimax saddle point
problem, convex in the minimization (i.e. policy) variables and concave in
the maximization variables (i.e. uncertainties). Although the formulation is
sensitive to the choice of v, Basar and Bernhard in [1] give conditions that
ensure a unique saddle point solution, thus providing a degree of robustness

cover.



The distinguishing features of the mean—variance optimization in this
paper are: a general approach to nonlinear dynamic systems and use of
quasi-Monte Carlo (MC) simulations [16, 17] to determine the discrepancy
(bias) between analytical and numerical evaluations of expectations arising

from the nonlinearity of the system.

2 The Stochastic Problems

Assume that a stochastic system f(z,v), is given:

fi(z,v)
folx, v
f(z,v) = ( ) ; (1)

fr(z,v)

and let a function F'(z,v) be defined as follows:
F(z,v) = fi(z,v) f(z,v): R"™™ = R, (2)

r € R" and v € R™. We assume that v contains noise, so v = v + ¢, where
¢ has a normal distribution, with zero mean and A deviation: € ~ N (0, A).

The problems we consider in this paper are expected value optimization:

mxin E,(F(z,v)). (3)



We also consider the optimization of the variance of F(z,v):

min Var,(F(z,v)). (4)

T

For non-linear models, in general, it can not be assumed that the deter-
ministic value of the objective function is a satisfactory measure of the mean
value. There are a number of studies of nonlinearity that have demonstrated
the discrepancy between the two can be numerically important [4, 6, 7]. It
is possible, using the Taylor series expansion, to refine the computation of
E,(F(z,v)) by taking into account any bias which is due to nonlinearity of
the model in computing this expectation [8, 14].

Proposition 1. Let ¢ € R" e ~ N(0,A), and Q@ € R™" a symmetric

matrix. Then we have
E(é'Qe) = trace(AQ).

Proof. Let ¢; denote the ¢ — th element of € and @);; the ¢j — th element
of Q). Evaluating the quadratic, we obtain
E(¢Qe) = ED) | eQijeil = > QijE(eie) = Y Qijhij, (5)
i,j N 1,J
from which the required result follows. m

Proposition 2. Let v € R",v ~ N (v,A), and ¢ € R". Then

E,(¢'v)* = (¢'v) + ¢'Aq.
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Proof. To prove the above proposition we introduce a new variable
e ~N(0,A), so that v =7 + e.
E,(¢)* = E,(¢'w'q)
= E(d@+e)([@+e)q)
= (¢0)* +d'Aq,
as E,(e) =0 and E,(v) =7. =

Proposition 3. Let v € R",v ~ N(0,A) and @ a symmetric matrix of

dimension n. Then
E,[(v'Qu)]? = [trace(AQ)]? + 2trace(AQ)?.

Proof. Let the matrix A'/? be symmetric and A'/? - A2 = A Further-

more, let v = A'/?b. Thus we have:
E) =1, (v'Qv)= (b'Bb),

where B = A'2QA'Y? and B is a symmetric matrix.
The components of vector b, where we denote the ¢th component with b;

are uncorrelated normally distributed variables and it follows from [12] that
Eb)* =1, Eb)*=3, Vi.
Consider the transformed expression:

E(W'Bb)’ =E Y _ bib;bpbiBi;By.

1,5,k
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The only nonzero terms arise from equality of all indices or equality in

pars

So we have

E(b'Bb)®

> BaBut ) Bj
i,kyiZk 1,J,5#]
+ Z B;jBj; + 3 Z B
irj i
= ) BiBu+2) Bj (6)
ik ij
= [trace(B)]* + 2trace(B?).
Noting that for two square matrices D, F, trace(DF) = trace(F D) we have

traceB = traceA*?QAY? = traceAV?A%Q = traceAQ,

traceB% = traceAV?QAY2AY2QAY? = trace AQAQ = trace(AQ)>.



2.1 Expected Value Optimization

To solve problem (3) Taylor series expansion in the neighborhood of ¥ is used,
first to compute E,(f;(x,v)), and consequently approximations for f;(z,v),

and E,(F(z,v)). Evaluating f;(z,v) yields:

Filz,v) = fi(z,0) + %(v — ) + 5(@ —7)*
where «;(z) is evaluated to ensure that

B(fle ) = Bu(e )+ Lo -5+ Lo -0y B -3y ). )

The expected value on the right of (7) is evaluated as follows:

B(ile) = B )+ 2 —9) + Lo =95 E 0~ 7) + a(a)
— fie7) + %EU((U _ @)tg?;i (v — 7)) + () (8)
= fi(z,v) + %tmce(Ang;) + a;(z),

which follows from Proposition 1 as v — 7 ~ N (0,A). Thus, E,(fi(x,v)) is

given by

P f;
Ov? )

1
fi(z,v) + itrace(A

and o;(x) the expected deviation of this value from E,(f;(x,v)) which, from

(8), can be expressed as:

0% f;
). ©)

a;(z) = Ey(fi(z,v)) — fi(z,v) — %tmce(A



The expectation in o; () is estimated using MC simulation of the stochas-

tic disturbance v.

To solve the minimization problem (3) the following expectation needs to

be computed:

Ev(ﬁ(ac,v)) = Ev(ﬁ(x,v)f(x,v))

Using the Taylor series expansion (7) yields:

afz 1 t82fz'

Fiw 0 = (fi(e,5) + S0 =) + 50 = 0 S5 (0 = ) + (@)

ov

Now, it is possible to compute Ev(ﬁ(x, v)?):

7 ofi"\Ofi | 1 & fi
. 2y . r A, - 2
Ey(fi(z,v)%) By A@v + 4t7°ace (A 81}2)
1 8,
+ itmce(A 81)]; )2+ 7i(z)?

(92f~)
ov?’’

+ 7(x) - trace(A

where 7;(z) = fi(z,v) + a;(z).

(11)

(12)

Problem (3) can then be transformed into the following unconstrained

optimization problem:

k
msclnz Ev(ﬁ(x, v)?).
i=1

(13)

Corollary 1. If f;(z,v) is quadratic in v, then o;(z) = 0, and the expected

value of (2) is exactly computed by:



If the problem is of higher order, then a quadratic approximation is used
for minimizing expected value. An iterative approach to solving higher di-
mensional problems is presented below. The algorithm is based on solving
the deterministic solution (for ¥) and determining the bias «;(x), the ex-
pected deviation due to the nonlinearity. It requires repeated solution of the

problem as shown in Algorithm 1.

Algorithm 1: Expected Value Optimization

STEP 0: Initialization:

[ =0, choose xg
STEP 1: Calculate o = ;(x;)Vi, using MC simulation

STEP 2: Solve

%141 = argmin, B, (F(z,v)) (from (13))

STEP 3: Check for convergence:

if lowill < ¢ gtop, otherwise [ =1 + 1, goto STEP 1

[l

STEP 4: End

It is shown in Corollary 1 that a(x) is zero when considering model equa-
tions which are quadratic in the uncertainty v. If the uncertainty is normally
distributed, the mean of the objective function can be evaluated analytically

10



as a quartic in the uncertain variables. Algorithm 1 converges in one step in
this case. However, Step 2 requires an iterative procedure for solving the op-
timization problem which is generally nonlinear with respect to the decision
variables.

The convergence of the algorithm is tested in Step 3 to check if a fixed-
point has been reached. The convergence of the algorithm is discussed below.
Additionally, numerical experience has been positive. As also reported in
[2, 14], even for nonlinear models, «;(z) does not seem to change appreciably
after the first iteration of the algorithm.

Proposition 4. Suppose that {z;} is a sequence generated in Step 2 of
Algorithm 1, and that it remains in a compact set X. Furthermore, suppose

that either of the following two assumptions holds.

1. There exists some polynomial p : R™ — R such that:

fil,v) <plv) YoeR™i=1,....k
2. Let
Koo = {0 € R™ | lim |f(-,v)| = o0}.
V=V
Suppose that G(K) = 0, where G denotes the Gaussian measure on

R™.

Then any limit point of {z;} minimizes the expectation of F(z,v) on X.

11



Proof. Let z* be any limit point of {z;}. By the definition of o;(z) in
(9), it follows that the each member of the family of functions F = {a;(z)}
is uniformly continuous. If either condition (1) or (2) above hold then it
follows that «;(x) is also G-almost surely bounded. Since F is a finite set it
follows that the members of F are uniformly equi-continuous and bounded.
It follows from the Arzela-Ascoli Theorem [5] that every sequence from F

has a subsequence which is uniformly convergent in X'. Therefore

{a;(z))} = ai(z").

The result now follows from (7). m

Remark: The conditions in Proposition 4 above are sufficiently general for
most applications. If however, the function grows without bound, and this
growth occurs on a set of positive measure, then one could introduce the
noise in such a way so that it has its support on a compact set. In this

approach we introduce the noise through an auxiliary function:

v="7+g(e€).

The auxiliary function g : R™ — R™ is defined as follows:

9(z) = Ligery(z — p), (14)

12



where:

1 ifzxeK,
lizery =

0 otherwise.

,ui:/ win(w)dw
K
exp (—sw A w)

") = = ot der()?

K is defined as the hypercube: [—a,a|™, for some finite a. The derivations

of this section remain largely the same so we omit the details.

2.2 Variance Optimization

When minimizing expected value performance, it is possible to consider
quadratic approximations. However, when considering variance optimiza-
tion, a linear approximation is the only computationally viable option. An
analysis of the first order approximation is proposed in this section. The

variance is given by:

Var,(F(z,v)) = E,[F(z,v) — E,(F(z,v))]. (16)

13



Let the model be given, as in (1):

fl(xﬂv)

fQ(xa U)
flz,v) = . : (17)

i fk(xav) i

The first order Taylor series approximation of f;(z,v) in the neighborhood

of ¥ and the corresponding expectation yield:

ﬁ(a:,v) = fi(:c,ﬂ)-f—%e-l-éi(:c) (18)

E(fi(z,v)) = fi(z,0)+ bi(x).

As in previous section, J;(x) represents the expected deviation of f;(x, )

from E,(f;(z,v)) which, from (18), can be expressed as:

0i(z) = Ey(fi(z,v)) — filz,0), (19)

and the expectation in §;(z) is estimated using a quasi-Monte Carlo simula-
tion of the stochastic disturbance v.
Expected value of the quadratic objective function F'(z,v) is evaluated

as follows:

E(F(@,v) = EY_ fi(e,v)* = 3 B(fiz,v)"), (20)

14



where E(f;(z,v)?) is computed using the expansion in (18):

~

B ?) = Bli(em)+ et ()

= (e + o)+ A

The problem of minimizing the variance is formulated as:

T

min Varv(ﬁ(x, v)) = mwlnz Va?“v(ﬁ(l'a v)?),

where

ofi ofi*, 9fi

= trace(ADf;(z))? + 2trace*(ADf;(x))

05\ Of _ (0! Of,
+ Al AG (G, Aa—v)

¢o(z) = 6(x) + fi(z,7), and Dfi(z) = 92",

~ 4 of:'
Var,(fi(z,v)?) = E(%e) +4(p(33)2% A% — (8—{) A

(21)
(22)
0fi\?
)
(23)

Corollary 2. If f;(z,v) is linear in v then 6;(z) = 0, and Var,(F(z,v)) is

exactly computed by:

Var,(F(z,v)) = Z Var,(fi(z,v)?).

An iterative approach to solving higher dimensional problems is presented

in Appendix A. If the problem is of higher order, then a linear approximation

is used for minimizing variance.

15



3 The Worst—case Approaches

In the previous two sections we were interested in the optimization of the
expected value or variance of the objective function. We now turn our atten-
tion to a different approach: worst—case analysis. The latter type of analysis
has a game-theoretic interpretation. The first player is the decision-maker,
choosing the decision vector x. The second player is nature, and is assumed
to be antagonistic to the decision maker, nature selects the realizations of
the random variables. Therefore, the aim of worst-case analysis is to min-
imize the objective function with respect to the worst possible outcome of
the uncertain variables v. In this section, two worst—case approaches are

considered, namely the minimax and H* approach.

3.1 The Minimax Approach

According to the framework described above, the optimization problem we

consider in this section is given by:

min max  F(z,v),
T v

st. T—A<v<T+A, A>0. (24)

Due to the hypercube constraining (24), the problem above is referred to as

box-constrained.

16



Let

®(z) = max F(z,v), (25)

T—A<v<v+A

for all z. We call ®(x) the max—function. Therefore, (24) can be written as

min ®(z). (26)

x

To solve (26) a quasi—-Newton algorithm is used. The algorithm generates
a descent direction based on a subgradient of F(x,.) and uses an approximate
Hessian (Hy) in the presence of possibly multiple maximizers of (25) as well as
a step size strategy that ensures sufficient decrease in ®(z) at each iteration
(Rustem and Zakovic [15]).

Problem (26) poses several difficulties:

e ®(z) is in general continuous but may have kinks, so it might not be
differentiable. At a kink the maximizer is not unique and the choice of

subgradient to generate a search direction is not simple;

e &(x) may not be computed accurately as it would require infinitely

many iterations of an algorithm to maximize f(z,y);

e In (26) a global maximum is required in view of possible multiple so-
lutions. The use of a local maximum cannot guarantee a monotonic

decrease in ®(z).

17



Full minimax algorithms and applications to a number of problems in
engineering, finance and macroeconomics are presented in [13, 15, 19, 20].

The issue of global maxima is further considered in Section 4.2.

3.2 The H*® Approach

Another approach to robust design, with a minimax origin, is the H* frame-
work (Basar and Bernhard [1]). In the minimax approach the uncertainty v
is allowed to take arbitrary values from the feasible region, regardless of how
low probability of those values occurring is. In other words, nature’s strategy
is to place all its mass on the worst—case scenario. The H* approach, and
its precursors (Bernhard and Bellec [3], Jacobson[10]) take this into account
by including a penalty term within a linear—quadratic control framework.
The two papers show that the importance and robustness of minimax and
worst—case design has been recognized for more than 30 years.

Consider the following problem

minmax  F(z,v)
x v

st.  |v—19|3<C. (27)

If F'is convex in z and convex in v, the solution of this problem lies on the
boundary of the constraint ||v — v||3 < C. Furthermore, generally, there are
multiple maximizers. The constraint is implicitly imposed using a penalty

18



formulation that discourages its transgression. Hence, the H* formulation

is given by

minmax F(z,v) — v*||v — 9|3, (28)
X v

where v > 0. For small values of v, (28) is convex in x and convex in v.
Hence, it can have multiple maxima. As <y increases, the augmented objective
function (28) becomes concave in v at some value of . It is this value of
~v that H* seeks. The approach is sensitive to the choice of v but yields
a robust solution that is also a saddle point as the transformed objective is
convex in x and concave in v for larger . The choice of ~y is further discussed

in Section 4.2.

3.3 Robustness and Optimality of Minimax

Robustness and the price paid for this desirable property, has been the topic
of interest for a number of years [10]. For both, the minimax and H* for-
mulation, robustness is ensured by an optimality condition. Let z*, v* solve

(24). Then we have
F(z*,v*) > F(z*,v), for all feasible v,
and let z**,v** solve (28). Then

F(x**,v**) — ¥*||[v** —9||2 > F(2**,v) — 7?||v — ||3, for all feasible v.

19



The above inequalities simply state the optimality of v*, v** for the corre-
sponding problem. However, they encompass the robustness of minimax in
that performance is assured to improve if the worst—case v*, or v** does not
happen.

Similarly, under the same assumptions

F(z*,v*) < F(z,v*), for all feasible z,

and

F(z*,v**) — ¥2||v™* — 9|2 < F(z,v*) — 2||[v** — |2, for all feasible z.

This is illustrated in Section 4.3 where we compute minimax, z*, v*, and

expected value optima, z., and confirm the inequality

F(z*,v*) < F(ze, v*).

4 Numerical Results

One can present arguments for and against expected value optimization, and
similarly for worst—case analysis. Using the methods to solve real world
problems is bound to give more insight into the usefulness and properties of
the two frameworks adumbrated in previous sections. In this section we will

present and compare results obtained with the two different approaches:

20



e Worst—case analysis using the minimax formulation:

min max  F(z,v),
T v

s.t. V—0y <v< U+ 0y,

e Minimization of expected value performance:

min  E,(F(z,v))

T

st.  v~N(U,A).

4.1 A Model of the Economy

In a recent paper, Orphanides and Wieland [11] use a simple macroeconomic
model of inflation, output and interest rates to investigate different motives
for inflation point versus inflation zone targeting. In the first case, the policy-
maker varies short-term nominal interest rates in order to stabilize inflation
around a target point. In the second case, the emphasis is on containing infla-
tion within a target range. Inflation point targeting arises naturally in linear
models of the economy with a quadratic loss function for the policymaker
(the L-Q model in [11]). Orphanides and Wieland show that inflation zone
targeting may be motivated by a non-linear, or more precisely, zone-linear
Phillips curve relationship between the change in inflation and the output
gap (the ZL-Q model in [11]).

21



In the minimalist macro model of [11], the two key variables for the
policy decision process are inflation and output. The policy instrument is
the short term nominal interest rate. The dynamic structure of the model
is represented by a single lag of inflation in the Phillips curve, and a single
lag of the output gap in the aggregate demand equation. It is appropriate,
therefore, to interpret the length of a period to be rather long, say half a
year to a year.

In every period, the policymaker sets the nominal interest rate, R, with
the objective to maintain inflation 7, close to a desired target and output
close to the economy’s natural level. To describe the policymaker’s welfare

loss during a period ¢, a per—period loss function is specified:

le = U, y)-
Assuming that the policymaker discounts the future with a fixed factor 3,

we can view the objective in period ¢ as to minimize the expected discounted

sum of future per—period losses from ¢ + 1 onwards:

min E{> "'} (29)
" t=1
The per—period loss facing the policymaker in period t + 1, l;1; can be

expressed as a weighted average of the deviation of inflation 7 from its desired

target 7* and the output deviation from the economy’s natural level y.

b1 = w(mpr — )+ (1 —w)yfy, w e (0,1). (30)

22



The following two equations describe the evolution of the economy:

e 1 ap M1 —af
= + T4
Yi 0 p Y1 —&
ad + auy + e
+ , (31)
) -+ Uy

where e; and u; are normally distributed, zero—mean shocks:
U, € N(O, A), Vt. (32)

The objective function is defined in terms of a sum of per—period losses

ltI

o0

F(roo)=Y_ g (33)

t=1

An alternative approach, which could be used in this framework, is that
of Tetlow and von zur Muehlen [18]. In their approach (also Hansen and
Sargent in [9]) the policymaker chooses the parameters z; and xo of the

feedback law:

Ty = L1471 + TalYp—1, (34)

to minimize welfare losses that are maximized over w,. This rule is referred
to as a feedback rule.

The problem can be formulated as:

min E, (F(z,v)), (35)

T1,T2

23



where F, denotes the expectation computed for uncertain variables v, the
objective function F is given by (33), the constraints on the systems are given

by the model (31) and the feedback law given by (34).

Let
B2 (my — ) By
B3 (my — ) B2y,
fl(xav) = ) fg(.T,’U) = ) (36)
_ B (mp — ) _ _ B yr _

then, the objective function can be formulated as:

Fz,v) =wfifi + (1= w)fsfe (37)

so the problem becomes:

min{w B, (1 (z,v)f (z,v)) + Eu(f3(z,v) f2(2, 0))}- (38)

Therefore, the expectation E,F(x,v) can be calculated as the sum of
expectations of quadratic functions (m1 — 7*)® and y;7,,. ;From (12) the
expectations for each time period ¢ that appear in the sum can be calculated,

allowing for the bias to be evaluated with increased accuracy.

4.2 Observations on Minimax

The importance of identifying all global maxima is illustrated in Figure 1,
which is based on the economic model introduced in Section 4.1. As men-
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Figure 1: Optimizing in view of worst—case 1 only and cross evaluation of

performance if worst—case 2 is realized.
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tioned before, the model consists of three variables - interest rate (the decision
variable), output gap, and inflation (uncertain variables — contain random
shocks). Figure 1 shows the behavior when the decision (interest rate) is
optimized with respect to one maximizer (worst—case realization of shocks)
only.

If worst—case 1 is realized then inflation stays close to the given target of
2%. However if worst—case 2 is realized then inflation rises to more than 6

%, three times greater than the desired target. A similar result applies for
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output gap.

In the H* formulation in Section 3.2, we note the importance of the
choice of parameter . The results for various choices of v are presented in
Figures 2, 3 and 4. In the first, v = 1, two distinctive maxima are observed

(i.e. two worst—case scenarios) of interest rate, inflation, and output gap.

Figure 2: Inflation patterns for v = 1. Two maxima encountered.

H_inf, gamma=1, 2 maxima

Interest rate 1

Inflation 1
Cutput gap 1
= = sInterest rate 2

Inflation 2
= = =Output gap 2

. /

In Figure 3, the penalty parameter is increased to v = 2. There are
still two maxima, but it can be observed that they are much closer, almost
identical.

In Figure 4, with v = 3, the uncertainties are forced to zero and we have
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Figure 3: Inflation patterns for v = 2. Two maxima encountered.
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a saddle point. One maximum is observed for interest rate, inflation and
output gap.

The advantage of the minimax approach is that it provides a worst—case
value of v and enables us to evaluate the worst—case scenario. On the other
hand, H* ensures robustness of the strategy from deviation of v away from
its nominal value of 7 and as a saddle point problem it is simpler to compute
(see [19]).

The robustness of minimax is illustrated in Figure 5, where there are two

possible worst—case scenarios (v; and v}), represented with two paths with
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Figure 4: Inflation patterns for v = 3. One maximum encountered.

H_inf, gamma = 3, unique maximizer
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the highest function values (F(z*,v}) and F'(z*,v})). All the other paths on
the graph represent different, randomly chosen scenarios and it can be seen

that function values in all the other cases are significantly smaller.

4.3 Computational Experiments

The results that follow are obtained for 7 = 0,7 = 20, § = 0.9 and the same
weight w = % for both inflation and output gap. For the model parameters
the estimates obtained by Orphanides and Wieland [11] are used. These

estimates are summarized in Table 1. Only the estimates from the first
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Figure 5: Noninferiority of minimax: performance improves if the two worst
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cases viand vy do not materialize. Hence, F'(z*,v}) = F(z*,v}) > F(x*,v;),

for randomly generated v;,7 = 3, ...
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column (Euro Area 1976-1998) are used for the numerical solutions.

There are three sets of results in Table 2, corresponding to different

bounds on the uncertainties. As the shocks (uncertainties u, e) are additive in

the model, the feedback rules are the same for all three cases. What changes

is the function value, which increases with the increment of the boundaries

on uncertainties. We also report the number of worst—cases observed at each

computation.
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Table 1: State Equation Parameters

Euro Area United States
(OECD) | (OECD) (CBO) (CBO)

1976-1998 | 1976-1998 | 1976-1998 | 1960-1998
o 1.07 1.03 0.54 0.64
p 0.77 0.47 0.64 0.63
13 0.40 0.32 0.23 0.23
Oy 0.84 1.51 1.62 1.80
a 0.34 0.39 0.31 0.31
Oc 0.96 0.85 0.89 1.06

In Table 3 results of minimizing the expected value are presented. A
similar conclusion can be drawn: the optimal decision is the same due to the
shocks appearing linearly in the model, and also the expected loss increases
as the uncertainty increases.

It can be observed from the results that expectation of the loss is always
lower than the worst—case. Results of cross evaluation are presented in Table
4. We evaluate the consequence of applying the expected value optima (cor-
responding to different levels of uncertainty) when the worst—case scenario

is realized. Also, the consequence of adopting the worst—case optima (corre-
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Table 2: Linear Model - Minimax

o, = 0.84, 0, = 0.96

bounds T zo | F(z,v) | maxima

%Uu %oe 5.217 1.873 | 10.943 2

oy O¢ | 05217 1873 | 43.772 2

N[O
N[

oy 50| 5.217 1.873 | 101.252 2

Table 3: Linear Model - Expected values

distribution x1 zo | E(F(z,v))
N(0,2?) N(0,%%) | 1.857 1.930 4.013
N(0,02) N(0,02) | 1.857 1.930 16.053
N0, (30,)%) N(0,(30.)?) | 1.857 1.930 36.119

sponding to different bounds) in view of stochastic uncertainty is evaluated.

We compare adopting the worst—case feedback rule in the stochastic
framework and the expected value optimization feedback rule when the worst—
case is realized. The expected performance of the former (completed using
MC simulation) is observed to be much better than the performance of the

latter (for example 6.583 is the expectation, while the worst—case value is

10.943).
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Table 4: Cross Evaluation

Minimax Optimum

worst—case exp. val.

bounds T To optimum of mmx
%au, %ae 5.217 1.873 10.943 6.583
Ou, 0 | 5.217 1.873 43.772 26.334
S0u, 30,, | 5.217 1.873 101.252 72.638

Minimized Expectation

exp. val. | worst—case of

distribution | X9 optimum || exp. val. opt.

N(0, 24), N'(0, %) | 1.857 1.930 4.013 12.564
N(0,02),N(0,02) | 1.857 1.930 16.053 66.543

N(0, (35+)?), N (0, (35=)?) | 1.857 1.930 36.119 129.733

The situation rapidly changes when the feedback rules obtained from
minimizing expectation are used. In case when such rules are used and the
worst—case scenario happens, the loss could increase up to 60% (from 43.772
to 66.543). Therefore, this brings us to the main conclusion that, although
the expected value optimization performs better on average, minimax opti-

mization guards against the worst possible scenarios and provides the upper
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bound for (in this case) loss function. Performance is guaranteed for the
worst—case and will improve if any scenario, other than the worst—case, is

realized.

5 Conclusions

Methods for mean variance and worst—case optimization of nonlinear mod-
els have been presented. Algorithms for computing optimal expected value
and variance based on iterative Taylor expansions have been developed and
compared with a minimax algorithm for computing robust policies.

To compare results a simple macroeconomic model of inflation, output
and interest rates due to Orphanides and Wieland [11] was used. The results
presented in Section 4.3 showed that, although the expected value optimiza-
tion performed better on average, the worst—case optimal strategy provided
robust solutions, that performed much better under the worst—case scenarios
(two have been found for all of the three experiments) and optimal cross
evaluation of worst—case scenarios for expected value strategy indicates that
performance deterioration for the latter could be a serious issue. The im-
portance of finding all worst—cases, together with robustness issues of the
minimax strategy has been emphasized in Section 4.2.

The H* method as an alternative minimax approach has also been con-
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sidered. This method is very sensitive to the choice of the penalty parameter

v, which we illustrated in Figures 2, 3 and 4.
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Appendix A

The Algorithm for Variance Optimization

As in case of expected value optimization, the algorithm is based on
solving the deterministic solution (for 7) and determining the bias J;(x) (the
expected deviation due to the nonlinearity). It requires repeated solution of

the problem as shown in Algorithm 2.
Algorithm 2: Variance Optimization
STEP 0: Initialization:
[ = 0, choose xg
STEP 1: Calculate 6! = §;(z;)Vi, using MC simulation
STEP 2: Solve
Zp41 = argming Var,(F(z,v)) (from (22))

STEP 3: Check for convergence:

if W < € stop, otherwise [ = [ + 1, goto STEP 1

STEP 4: End

This algorithm converges in one step for a model linear in uncertainties
and a quadratic objective. Corollary 2 ensures that §;(z) = 0 in this case
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and the variance can be evaluated analytically as a function of the decision

variables.
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